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Abstract

Many real-world problems, such as network
packet routing and urban traffic control, are
naturally modeled as multi-agent reinforcement
learning (RL) problems. However, existing
multi-agent RL methods typically scale poorly in
the problem size. Therefore, a key challenge is to
translate the success of deep learning on single-
agent RL to the multi-agent setting. A major
stumbling block is that independent Q-learning,
the most popular multi-agent RL method, intro-
duces nonstationarity that makes it incompati-
ble with the experience replay memory on which
deep Q-learning relies. This paper proposes two
methods that address this problem: 1) using a
multi-agent variant of importance sampling to
naturally decay obsolete data and 2) condition-
ing each agent’s value function on a fingerprint
that disambiguates the age of the data sampled
from the replay memory. Results on a challeng-
ing decentralised variant of StarCraft unit micro-
management confirm that these methods enable
the successful combination of experience replay
with multi-agent RL.

1. Introduction
Reinforcement learning (RL), which enables an agent to
learn control policies on-line given only sequences of
observations and rewards, has emerged as a dominant
paradigm for training autonomous systems. However,
many real-world problems, such as network packet deliv-
ery (Ye et al., 2015), rubbish removal (Makar et al., 2001),
and urban traffic control (Kuyer et al., 2008; Van der Pol
& Oliehoek, 2016), are naturally modeled as cooperative
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multi-agent systems. Unfortunately, tackling such prob-
lems with traditional RL is not straightforward.

If all agents observe the true state, then we can model a co-
operative multi-agent system as a single meta-agent. How-
ever, the size of this meta-agent’s action space grows ex-
ponentially in the number of agents. Furthermore, it is not
applicable when each agent receives different observations
that may not disambiguate the state, in which case decen-
tralised policies must be learned.

A popular alternative is independent Q-learning (IQL)
(Tan, 1993), in which each agent independently learns its
own policy, treating other agents as part of the environ-
ment. While IQL avoids the scalability problems of cen-
tralised learning, it introduces a new problem: the environ-
ment becomes nonstationary from the point of view of each
agent, as it contains other agents who are themselves learn-
ing, ruling out any convergence guarantees. Fortunately,
substantial empirical evidence has shown that IQL often
works well in practice (Matignon et al., 2012).

Recently, the use of deep neural networks has dramatically
improved the scalability of single-agent RL (Mnih et al.,
2015). However, one element key to the success of such
approaches is the reliance on an experience replay mem-
ory, which stores experience tuples that are sampled during
training. Experience replay not only helps to stabilise the
training of a deep neural network, it also improves sample
efficiency by repeatedly reusing experience tuples. Unfor-
tunately, the combination of experience replay with IQL
appears to be problematic: the nonstationarity introduced
by IQL means that the dynamics that generated the data in
the agent’s replay memory no longer reflect the current dy-
namics in which it is learning. While IQL without a replay
memory can learn well despite nonstationarity so long as
each agent is able to gradually track the other agents’ poli-
cies, that seems hopeless with a replay memory constantly
confusing the agent with obsolete experience.

To avoid this problem, previous work on deep multi-agent
RL has limited the use of experience replay to short, recent
buffers (Leibo et al., 2017) or simply disabled replay alto-
gether (Foerster et al., 2016). However, these workarounds
limit the sample efficiency and threaten the stability of
multi-agent RL. Consequently, the incompatibility of ex-
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perience replay with IQL is emerging as a key stumbling
block to scaling deep multi-agent RL to complex tasks.

In this paper, we propose two approaches for effectively
incorporating experience replay into multi-agent RL. The
first approach interprets the experience in the replay mem-
ory as off-environment data (Ciosek & Whiteson, 2017).
By augmenting each tuple in the replay memory with the
probability of the joint action in that tuple, according to
the policies in use at that time, we can compute an impor-
tance sampling correction when the tuple is later sampled
for training. Since older data tends to generate lower im-
portance weights, this approach naturally decays data as it
becomes obsolete, preventing the confusion that a nonsta-
tionary replay memory would otherwise create.

The second approach is inspired by hyper Q-learning
(Tesauro, 2003), which avoids the nonstationarity of IQL
by having each agent learn a policy that conditions on an
estimate of the other agents’ policies inferred from observ-
ing their behaviour. While it may seem hopeless to learn Q-
functions in this much larger space, especially when each
agent’s policy is a deep neural network, we show that doing
so is feasible as each agent need only condition on a low-
dimensional fingerprint that is sufficient to disambiguate
where in the replay memory an experience tuple was sam-
pled from.

We evaluate these methods on a decentralised vari-
ant of StarCraft unit micromanagement,1 a challenging
multi-agent benchmark problem with a high dimensional,
stochastic environment that exceeds the complexity of
many commonly used multi-agent testbeds. Our results
confirm that, thanks to our proposed methods, experience
replay can indeed be successfully combined with multi-
agent Q-learning to allow for stable training of deep multi-
agent value functions.

2. Related Work
Multi-agent RL has a rich history (Busoniu et al., 2008;
Yang & Gu, 2004) but has mostly focused on tabular set-
tings and simple environments. The most commonly used
method is independent Q-learning (Tan, 1993; Shoham &
Leyton-Brown, 2009; Zawadzki et al., 2014), which we dis-
cuss further in Section 3.2.

Methods like hyper Q-learning (Tesauro, 2003), also dis-
cussed in Section 3.2, and AWESOME (Conitzer & Sand-
holm, 2007) try to tackle nonstationarity by tracking and
conditioning each agent’s learning process on their team-
mates’ current policy, while Da Silva et al. (2006) pro-
pose detecting and tracking different classes of traces

1StarCraft and its expansion StarCraft: Brood War are trade-
marks of Blizzard EntertainmentTM.

on which to condition policy learning. Kok & Vlassis
(2006) show that coordination can be learnt by estimat-
ing a global Q-function in the classical distributed setting
supplemented with a coordination graph. In general, these
techniques have so far not successfully been scaled to high-
dimensional state spaces.

Lauer & Riedmiller (2000) propose a variation of dis-
tributed Q-learning, a coordination-free method. However,
they also argue that the simple estimation of the value
function in the standard model-free fashion is not enough
to solve multi-agent problems, and coordination through
means such as communication (Mataric, 1998) is required
to ground separate observations to the full state function.

More recent work tries to leverage deep learning in multi-
agent RL, mostly as a means to reason about the emergence
of inter-agent communication. Tampuu et al. (2015) ap-
ply a framework that combines DQN with independent Q-
learning to two-player pong. Foerster et al. (2016) propose
DIAL, an end-to-end differentiable architecture that allows
agents to learn to communicate and has since been used by
Jorge et al. (2016) in a similar setting. Sukhbaatar et al.
(2016) also show that it is possible to learn to communi-
cate by backpropagation. Leibo et al. (2017) analyse the
emergence of cooperation and defection when using multi-
agent RL in mixed-cooperation environments such as the
wolfpack problem. He et al. (2016) address multi-agent
learning by explicitly marginalising the opponents’ strategy
using a mixture of experts in the DQN. Unlike our contri-
butions, none of these papers directly aim to address the
nonstationarity arising in multi-agent learning.

Our work is also broadly related to methods that attempt to
allow for faster convergence of policy networks such as pri-
oritized experience replay (Schaul et al., 2015), a version of
the standard replay memory that biases the sampling distri-
bution based on the TD error. However, this method does
not account for nonstationary environments and does not
take into account the unique properties of the multi-agent
setting.

Wang et al. (2016) describe an importance sampling
method for using off-policy experience in a single-agent
actor-critic algorithm. However, to calculate policy-
gradients, the importance ratios become products over po-
tentially lengthy trajectories, introducing high variance that
must be partially compensated for by truncation. By con-
trast, we address off-environment learning and show that
the multi-agent structure results in importance ratios that
are simply products over the agents’ policies.

Finally, in the context of StarCraft micromanagement,
Usunier et al. (2016) learn a centralised policy using stan-
dard single-agent RL. Their agent controls all the units
owned by the player and observes the full state of the game.
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By contrast, we consider a decentralised task in which each
unit has only partial observability.

3. Background
We begin with background on single-agent and multi-agent
reinforcement learning.

3.1. Single-Agent Reinforcement Learning

In a traditional RL problem, the agent aims to maximise
its expected discounted return Rt =

∑∞
t=0 γ

trt, where rt
is the reward the agent receives at time t and γ ∈ [0, 1)
is the discount factor (Sutton & Barto, 1998). In a fully
observable setting, the agent observes the true state of the
environment st ∈ S, and chooses an action ut ∈ U accord-
ing to a policy π(u|s).

The action-value function Q of a policy π is Qπ(s, u) =
E [Rt|st = s, ut = u]. The Bellman optimality equation,

Q∗(s, u) = T Q∗(s, u)

= r(s, u) + γ
∑
s′

P (s′|s, u) max
u′

Q∗(s′, u′),

(1)

recursively represents the optimal Q-function Q∗(s, u) =
maxπ Q

π(s, u) as a function of the expected immedi-
ate reward r(s, u) and the transition function P (s′|s, u),
which in turn yields an optimal greedy policy π∗(u|s) =
δ(arg maxu′ Q(s, u′) − u). Q-learning (Watkins, 1989)
uses a sample-based approximation of T to iteratively im-
prove the Q-function. In deep Q-learning (Mnih et al.,
2015), the Q-function is represented by a neural network
parameterised by θ. During training, actions are chosen at
each timestep according to an exploration policy, such as
an ε-greedy policy that selects the currently estimated best
action arg maxuQ(s, u) with probability 1 − ε, and takes
a random exploratory action with probability ε. The re-
ward and next state are observed, and the tuple 〈s, u, r, s′〉
is stored in a replay memory. The parameters θ are learned
by sampling batches of b transitions from the replay mem-
ory, and minimising the squared TD-error:

L(θ) =

b∑
i=1

[(yDQNi −Q(s, u; θ))2], (2)

with a target yDQNi = ri + γmaxu′i Q(s′i, u
′
i; θ
−), where

θ− are the parameters of a target network periodically
copied from θ and frozen for a number of iterations. The
replay memory stabilises learning, prevents the network
from overfitting to recent experiences, and improves sam-
ple efficiency. In partially observable settings, agents must
in general condition on their entire action-observation his-
tory, or a sufficient stastistic thereof. In deep RL, this is

accomplished by modelling the Q-function with a recur-
rent neural network (Hausknecht & Stone, 2015), utilising
a gated architecture such as LSTM (Hochreiter & Schmid-
huber, 1997) or GRU (Chung et al., 2014).

3.2. Multi-Agent Reinforcement Learning

We consider a fully cooperative multi-agent setting in
which n agents identified by a ∈ A ≡ {1, ..., n} par-
ticipate in a stochastic game, G, described by a tuple
G = 〈S,U, P, r, Z,O, n, γ〉. The environment occupies
states s ∈ S, in which, at every time step, each agent takes
an action ua ∈ U , forming a joint action u ∈ U ≡ Un.
State transition probabilities are defined by P (s′|s,u) :
S ×U × S → [0, 1]. As the agents are fully cooperative,
they share the same reward function r(s,u) : S ×U→ R.

Each agent’s observations z ∈ Z are governed by an ob-
servation function O(s, a) : S × A → Z. For notational
simplicity, this observation function is deterministic, i.e.,
we model only perceptual aliasing and not noise. How-
ever, extending our methods to noisy observation functions
is straightforward. Each agent a conditions its behaviour
on its own action-observation history τa ∈ T ≡ (Z × U)∗,
according to its policy πa(ua|τa) : T × U → [0, 1]. After
each transition, the action ua and new observation O(s, a)
are added to τa, forming τ ′a. We denote joint quantities over
agents in bold, and joint quantities over agents other than a
with the subscript −a, so that, e.g., u = [ua,u−a].

In independent Q-learning (IQL) (Tan, 1993), the simplest
and most popular approach to multi-agent RL, each agent
learns its own Q-function that conditions only on the state
and its own action. Since our setting is partially observable,
IQL can be implemented by having each agent condition on
its action-observation history, i.e., Qa(τa, ua). In deep RL,
this can be achieved by having each agent perform DQN
using a recurrent neural network trained on its own obser-
vations and actions.

IQL is appealing because it avoids the scalability problems
of trying to learn a joint Q-function that conditions on u,
since |U| grows exponentially in the number of agents.
It is also naturally suited to partially observable settings,
since, by construction, it learns decentralised policies in
which each agent’s action conditions only on its own ob-
servations.

However, IQL introduces a key problem: the environment
becomes nonstationary from the point of view each agent,
as it contains other agents who are themselves learning,
ruling out any convergence guarantees. On the one hand,
the conventional wisdom is that this problem is not severe
in practice, and substantial empirical results have demon-
strated success with IQL (Matignon et al., 2012). On the
other hand, such results do not involve deep learning.
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As discussed earlier, deep RL relies heavily on experience
replay and the combination of experience replay with IQL
appears to be problematic: the nonstationarity introduced
by IQL means that the dynamics that generated the data in
the agent’s replay memory no longer reflect the current dy-
namics in which it is learning. While IQL without a replay
memory can learn well despite nonstationarity so long as
each agent is able to gradually track the other agents’ poli-
cies, that seems hopeless with a replay memory constantly
confusing the agent with obsolete experience. In the next
section, we propose methods to address this problem.

4. Methods
To avoid the difficulty of combining IQL with experience
replay, previous work on deep multi-agent RL has limited
the use of experience replay to short, recent buffers (Leibo
et al., 2017) or simply disabled replay altogether (Foerster
et al., 2016). However, these workarounds limit the sam-
ple efficiency and threaten the stability of multi-agent RL.
In this section, we propose two approaches for effectively
incorporating experience replay into multi-agent RL.

4.1. Multi-Agent Importance Sampling

We can address the non-stationarity present in IQL by de-
veloping an importance sampling scheme for the multi-
agent setting. Just as an RL agent can use importance sam-
pling to learn off-policy from data gathered when its own
policy was different, so too can it learn off-environment
(Ciosek & Whiteson, 2017) from data gathered in a differ-
ent environment. Since IQL treats other agents’ policies as
part of the environment, off-environment importance sam-
pling can be used to stabilise experience replay. In partic-
ular, since we know the policies of the agents at each stage
of training, we know exactly the manner in which the en-
vironment is changing, and can thereby correct for it with
importance weighting, as follows. We consider first a fully-
observable multi-agent setting. If the Q-functions can con-
dition directly on the true state s, we can write the Bellman
optimality equation for a single agent given the policies of
all other agents:

Q∗a(s, ua|π−a) =
∑
u−a

π−a(u−a|s)
[
r(s, ua,u−a)+

γ
∑
s′

P (s′|s, ua,u−a) max
u′a

Q∗a(s′, u′a)

]
. (3)

The nonstationary component of this equation is
π−a(u−a|s) = Πi∈−aπi(ui|s), which changes as
the other agents’ policies change over time. Therefore, to
enable importance sampling, at the time of collection tc,
we record πtc−a(u−a|s) in the replay memory, forming an
augmented transition tuple 〈s, ua, r, π(u−a|s), s′〉(tc).

At the time of replay tr, we train off-environment by min-
imising an importance weighted loss function:

L(θ) =

b∑
i=1

πtr−a(u−a|s)
πti−a(u−a|s)

[(yDQNi −Q(s, u; θ))2], (4)

where ti is the time of collection of the i-th sample.

The derivation of the non-stationary parts of the Bell-
man equation in the partially observable multi-agent set-
ting is considerably more complex as the agents’ action-
observation histories are correlated in a complex fashion
that depends on the agents’ policies as well as the transi-
tion and observation functions.

To make progress, we can define an augmented state space
ŝ = {s, τ−a} ∈ Ŝ = S × Tn−1. This state space includes
both the original state s and the action-observation history
of the other agents τ−a. We also define a corresponding
observation function Ô such that Ô(ŝ, a) = O(s, a). With
these definitions in place, we define a new reward function
r̂(ŝ, u) =

∑
u−a

π−a(u−a|τ−a)r(s,u) and a new transi-
tion function,

P̂ (ŝ′|ŝ, u) = P (s′, τ ′|s, τ, u) =∑
u−a

π−a(u−a|τ−a)P (s′|s,u)p(τ ′−a|τ−a,u−a, s′). (5)

All other elements of the augmented game Ĝ are adopted
from the original game G. This also includes T , the space
of action-observation histories. The augmented game is
then specified by Ĝ = 〈Ŝ, U, P̂ , r̂, Z, Ô, n, γ〉. We can now
write a Bellman equation for Ĝ:

Q(τ, u) =
∑
ŝ

p(ŝ|τ)

[
r̂(ŝ, u) +

γ
∑

τ ′,ŝ′,u′

P̂ (ŝ′|ŝ, u)π(u′, τ ′)p(τ ′|τ, ŝ′, u)Q(τ ′, u′)

]
. (6)

Substituting back in the definitions of the quantities in Ĝ,
we arrive at a Bellman equation of a form similar to (3),
where the righthand side is multiplied by π−a(u−a|τ−a):

Q(τ, u) =
∑
ŝ

p(ŝ|τ)
∑
u−a

π−a(u−a|τ−a)

[
r(s,u) +

γ
∑

τ ′,ŝ′,u′

P (s′|s,u)p(τ ′−a|τ−a,u−a, s′) ·

π(u′, τ ′)p(τ ′|τ, ŝ′, u)Q(τ ′, u′)

]
. (7)

This construction simply allows us to demonstrate the de-
pendence of the Bellman equation on the same nonsta-
tionary term π−a(u−a|s) in the partially-observable case.
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Figure 1. An example of the observations obtained by all agents at each time step t. The function f provides a set of features for each
unit in the agent’s field of view, which are concatenated. The feature set is {distance, relative x, relative y, health
points, weapon cooldown}. Each quantity is normalised by its maximum possible value.

However, unlike in the fully observable case, the righthand
side contains several other terms that indirectly depend on
the policies of the other agents and are to the best of our
knowledge intractable. Consequently, the importance ratio

defined above,
πtr
−a(u−a|s)

π
ti
−a(u−a|s)

, is only an approximation in the

partially observable setting.

4.2. Multi-Agent Fingerprints

While importance sampling provides an unbiased estimate
of the true objective, it often yields importance ratios with
large and unbounded variance (Robert & Casella, 2004).
Truncating or adjusting the importance weights can reduce
the variance but introduces bias. Consequently, we propose
an alternative method that embraces the nonstationarity of
multi-agent problems, rather than correcting for it.

The weakness of IQL is that, by treating other agents
as part of the environment, it ignores the fact that such
agents’ policies are changing over time, rendering its own
Q-function nonstationary. This implies that the Q-function
could be made stationary if it conditioned on the policies
of the other agents. This is exactly the philosophy behind
hyper Q-learning (Tesauro, 2003): each agent’s state space
is augmented with an estimate of the other agents’ policies
computed via Bayesian inference. Intuitively, this reduces
each agent’s learning problem to a standard, single-agent
problem in a stationary, but much larger, environment.

The practical difficulty of hyper Q-learning is that it in-
creases the dimensionality of the Q-function, making it po-
tentially infeasible to learn. This problem is exacerbated
in deep learning, when the other agents’ policies consist of
high dimensional deep neural networks. Consider a naive
approach to combining hyper Q-learning with deep RL that
includes the weights of the other agents’ networks, θ−a, in
the observation function. The new observation function is
then O′(s) = {O(s),θ−a}. The agent could in principle

then learn a mapping from the weights θ−a, and its own tra-
jectory τ , into expected returns. Clearly, if the other agents
are using deep models, then θ−a is far too large to include
as input to the Q-function.

However, a key observation is that, to stabilise experience
replay, each agent does not need to be able to condition on
any possible θ−a, but only those values of θ−a that actu-
ally occur in its replay memory. The sequence of policies
that generated the data in this buffer can be thought of as
following a single, one-dimensional trajectory through the
high-dimensional policy space. To stabilise experience re-
play, it should be sufficient if each agent’s observations dis-
ambiguate where along this trajectory the current training
sample originated from.

The question then, is how to design a low-dimensional fin-
gerprint that contains this information. Clearly, such a
fingerprint must be correlated with the true value of state-
action pairs given the other agents’ policies. It should typ-
ically vary smoothly over training, to allow the model to
generalise across experiences in which the other agents ex-
ecute policies of varying quality as they learn. An obvious
candidate for inclusion in the fingerprint is the training it-
eration number e. One potential challenge is that after poli-
cies have converged, this requires the model to fit multiple
fingerprints to the same value, making the function some-
what harder to learn and more difficult to generalise from.

Another key factor in the performance of the other agents is
the rate of exploration ε. Typically an annealing schedule
is set for ε such that it varies smoothly throughout train-
ing and is quite closely correlated to performance. There-
fore, we further augment the input to the Q-function with
ε, such that the observation function becomes O′(s) =
{O(s), ε, e}. Our results in Section 6 show that even this
simple fingerprint is remarkably effective.
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5. Experiments
In this section, we describe our experiments applying expe-
rience replay with fingerprints (XP+FP), with importance
sampling (XP+IS), and with the combination (XP+IS+FP),
to the StarCraft domain. We run experiments with both
feedforward (FF) and recurrent (RNN) models, to test the
hypothesis that in StarCraft recurrent models can use tra-
jectory information to more easily disambiguate experi-
ences from different stages of training.

5.1. Decentralised StarCraft Micromanagement

StarCraft is an example of a complex, stochastic en-
vironment whose dynamics cannot easily be simulated.
This differs from standard multi-agent settings such as
Packet World (Weyns et al., 2005) and simulated RoboCup
(Hausknecht et al., 2016), where often entire episodes can
be fully replayed and analysed. This difficulty is typical
of real-world problems, and is well suited to the model-
free approaches common in deep RL. In StarCraft, micro-
management refers to the subtask of controlling single or
grouped units to move them around the map and fight en-
emy units. In our multi-agent variant of StarCraft micro-
management, the centralised player is replaced by a set
of agents, each assigned to one unit on the map. Each
agent observes a subset of the map centred on the unit it
controls, as shown in Figure 1, and must select from a
restricted set of durative actions: move[direction],
attack[enemy id], stop, and noop. During an
episode, each unit is identified by a positive integer ini-
tialised on the first time-step.

All units are Terran Marines, ground units with a fixed
range of fire about the length of four stacked units. Re-
ward is the sum of the damage inflicted against opponent
units during that timestep, with an additional terminal re-
ward equal to the sum of the health of all units on the team.
This is a variation of a naturally arising battle signal, com-
parable with the one used by Usunier et al. (2016). A few
timesteps after the agents are spawned, they are attacked by
opponent units of the same type. Opponents are controlled
by the game AI, which is set to attack all the time. We
consider two variations: 3 marines vs 3 marines (m3v3),
and 5 marines vs 5 marines (m5v5). Both of these require
the agents to coordinate their movements to get the oppo-
nents into their range of fire with good positioning, and to
focus their firing on each enemy unit so as to destroy them
more quickly. Skilled human StarCraft players can typi-
cally solve these tasks.

We build our models in Torch7 (Collobert et al., 2011), and
run our StarCraft experiments with TorchCraft (Synnaeve
et al., 2016), a library that provides the functionality to en-
act the standard reinforcement learning step in StarCraft:
BroodWar, which we extend to enable multi-agent control.

5.2. Architecture

We use the recurrent DQN architecture described by
Foerster et al. (2016) with a few modifications. We do not
consider communicating agents, so there are no message
connections. As mentioned above, we use two different
different models: one with a feed-forward model with two
fully connected hidden layers, and another with a single-
layer GRU. For both models, every hidden layer has 128
neurons.

We linearly anneal ε from 1.0 to 0.02 over 1500 episodes,
and train the network for emax = 2500 training episodes.
In the standard training loop, we collect a single episode
and add it to the replay memory at each training step. We
sample batches of 30

n episodes uniformly from the replay
memory and train on fully unrolled episodes. In order to
reduce the variance of the multi-agent importance weights,
we clip them to the interval [0.01, 2]. We also normalise
the importance weights by the number of agents, by raising
them to the power of 1

n−1 . Lastly, we divide the impor-
tance weights by their running average in order to keep the
overall learning rate constant. All other hyperparameters
are identical to Foerster et al. (2016).

6. Results
In this section, we present the results of our StarCraft ex-
periments, summarised in Figure 2. Across all tasks and
models, the baseline without experience replay (NOXP)
performs poorly. Without the diversity in trajectories pro-
vided by experience replay, NOXP overfits to the greedy
policy once ε becomes small. When exploratory actions do
occur, agents visit areas of the state space that have not had
their Q-values updated for many iterations, and bootstrap
off of values which have become stale or distorted by up-
dates to the Q-function elsewhere. This effect can harm
or destabilise the policy. With a recurrent model, perfor-
mance simply degrades, while in the feed-forward case, it
begins to drop significantly later in training. We hypoth-
esise that full trajectories are inherently more diverse than
single observations, as they include compounding chances
for exploratory actions. Consequently, it is easier to overfit
to single observations, and experience replay is more es-
sential for a feed-forward model.

With a naive application of experience replay (XP), the
model tries to simultaneously learn a best-response policy
to every historical policy of the other agents. Despite the
nonstationarity, the stability of experience replay enables
XP to outperform NOXP in each case. However, due to
limited disambiguating information, the model cannot ap-
propriately account for the impact of any particular pol-
icy of the other agents, or keep track of their current pol-
icy. The experience replay is therefore used inefficiently,
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Figure 2. Performance of our methods compared to the two baselines XP and NOXP, for both RNN and FF; (a) and (b) show the 3v3
setting, in which IS and FP are only required with feed-forward networks; (c) and (d) show the 5v5 setting, in which FP clearly improves
performance over the baselines, while IS shows a small improvement only in the feedforward setting. Overall, the FP is a more effective
method for resolving the nonstationarity and there is no additional benefit from combining IS with FP. Confidence intervals show one
standard deviation of the sample mean.

and the model cannot generalise properly from experiences
early in training.

6.1. Importance Sampling

The importance sampling approach (XP+IS) slightly out-
performs XP when using feed-forward models. While
mathematically sound in the fully observable case, XP+IS
is only approximate for our partially observable problem,
and runs into practical obstacles. Early in training, the
importance weights are relatively well behaved and have
low variance. However, as ε drops, the importance ratios
become multi-modal with increasing variance. The large
majority of importance weights are less than or equal to

ε(1 − ε) ≈ ε, so few experiences contribute strongly to
learning. In a setting that does not require as strongly de-
terministic a policy as StarCraft, ε could be kept higher and
the variance of the importance weights would be lower.

6.2. Fingerprints

Our results show that the simple fingerprint of adding e and
ε to the observation (XP+FP) dramatically improves per-
formance for the feed-forward model. This fingerprint pro-
vides sufficient disambiguation for the model to track the
quality of the other agents’ policies over the course of train-
ing, and make proper use of the experience buffer. The net-
work still sees a diverse array of input states across which
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to generalise but is able to modify its predicted value in
accordance with the known stage of training.

Figure 2 also shows that there is no extra benefit from com-
bining importance sampling with fingerprints (XP+IS+FP).
This makes sense given that the two approaches both ad-
dress the same problem of nonstationarity, albeit in differ-
ent ways.

Figure 3, which shows the estimated value for XP+FS of
a single initial state observation with different ε inputs,
demonstrates that the network learns to smoothly vary its
value estimates across different stages of training, correctly
associating high values with the low ε seen later in training.
This approach allows the model to generalise between best
responses to different policies of other agents. In effect,
a larger dataset is available in this case than when using
importance sampling, where most experiences are strongly
discounted during training. The fingerprint enables the
transfer of learning between diverse historical experiences,
which can significantly improve performance.
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Figure 3. Estimated value of a single initial observation with dif-
ferent ε in its fingerprint input, at different stages of training. The
network learns to smoothly vary its value estimates across differ-
ent stages of training.

6.3. Informative Trajectories

When using recurrent networks, the performance gains of
XP+IS and XP+FP are not as large; in the 3v3 task, neither
method helps. The reason is that, in StarCraft, the observed
trajectories are significantly informative about the state of
training, as shown in Figurea 4a and 4b. For example, the
agent can observe that it or its allies have taken many seem-
ingly random actions, and infer that the sampled experience
comes from early in training. This is a demonstration of
the power of recurrent architectures in sequential tasks with
partial observability: even without explicit additional infor-
mation, the network is able to partially disambiguate expe-
riences from different stages of training. To illustrate this,
we train a linear model to predict the training ε from the

hidden state of the recurrent model. Figure 4c shows a rea-
sonably strong predictive accuracy even for a model trained
with XP but no fingerprint, indicating that disambiguating
information is indeed kept in the hidden states. However,
the hidden states of a recurrent model trained with a finger-
print (Figure 4d) are even more informative.
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Figure 4. (upper) Sampled trajectories of agents, from the begin-
ning (a) and end (b) of training. Each agent is one colour and the
starting points are marked as black squares. (lower) Linear regres-
sion predictions of ε from the hidden state halfway through each
episode in the replay buffer: (c) with only XP, the hidden state
still contains disambiguating information drawn from the trajec-
tories, (d) with XP+FP, the hidden state is more informative about
the stage of training.

7. Conclusion
This paper proposed two methods for stabilising experience
replay in deep multi-agent reinforcement learning: 1) using
a multi-agent variant of importance sampling to naturally
decay obsolete data and 2) conditioning each agent’s value
function on a fingerprint that disambiguates the age of the
data sampled from the replay memory. Results on a chal-
lenging decentralised variant of StarCraft unit microman-
agement confirmed that these methods enable the success-
ful combination of experience replay with multiple agents.
In the future, we would like to apply these methods to a
broader range of nonstationary training problems, such as
classification on changing data, and extend them to multi-
agent actor-critic methods.
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