
Integrating Distributed Bayesian Inference and

Reinforcement Learning for Sensor Management

Corrado Grappiolo Shimon Whiteson +Gregor Pavlin Bram Bakker

ISLA,University of Amsterdam,

Kruislaan 403, 1098SJ, Amsterdam,

The Netherlands

+Thales Research and Technology, D-CIS lab,

Postbus 90, 2600 AB Delft,

the Netherlands

Abstract – This paper introduces a sensor manage-
ment approach that integrates distributed Bayesian in-
ference (DBI) and reinforcement learning (RL). DBI
is implemented using distributed perception networks
(DPNs), a multiagent approach to performing efficient
inference, while RL is used to automatically discover a
mapping from the beliefs generated by the DPNs to the
actions that enable active sensors to gather the most
useful observations. The resulting method is evaluated
on a simulation of a chemical leak localization task and
the results demonstrate 1) that the integrated approach
can learn policies that perform effective sensor man-
agement, 2) that inference based on a correct observa-
tion model, which the DPNs make feasible, is critical
to performance, and 3) that the system scales to larger
versions of the task.

Keywords: Sensor management, distributed Bayesian
inference, reinforcement learning, POMDPs.

1 Introduction

Recent advances in sensing, communication and pro-
cessing technology offer new opportunities for advanced
situation assessment. Often the primary challenge is to
perform efficient inference about phenomena that can-
not be directly observed, given observations from sen-
sors that may be heterogeneous and unreliable. For
example, in industrial areas where chemical leaks can
occur, rapid and accurate detection and localization of
such leaks is critical to minimizing human casualties.
In principle, this is a search problem [14] whose so-
lution requires efficient fusion of information stemming
from various, spatially distributed sensors. In addition,
some of the sensors can be actively controlled. For ex-
ample, the system may be capable of adjusting sensor
settings (e.g., determining sensitivity vs. specificity) or
turning certain sensors on or off. Or, as in the chemical
leak scenario, some types of sensors may be too expen-
sive to install in fixed locations throughout the area.
Instead, it may be more practical to mount such sen-
sors on a mobile device like an autonomous helicopter,
which can sweep the area in search of leaks.

In other words, in the presented search challenge,
the problem of sensor fusion is augmented by the prob-
lem of sensor management [8], i.e. we must determine
the most efficient way for such a helicopter to nav-
igate its environment so as to gather the most use-
ful observations for rapid and accurate detection of
the hidden phenomena. In this paper, we introduce
a novel solution to this problem that integrates dis-
tributed Bayesian inference (DBI) and reinforcement
learning (RL) [17].

DBI is implemented using distributed perception net-
works (DPNs) [2, 9], a multiagent approach to modeling
the probabilistic relationships between the sensors and
the hidden phenomena. Such models make it possible
to efficiently fuse observations from all the sensors and
compute updated beliefs about the hidden phenomena.
Unlike centralized approaches [10], which require one
agent to bear the entire burden of inference, DPNs en-
able sensors to individually perform inference using lo-
cal models and the data they collect, and then share
results with other components of the system. Hence,
they distribute knowledge and computational require-
ments among the sensors and adapt flexibly to changes
in network structure.

RL, on the other hand, is a way for an autonomous
agent to learn, through interaction with the environ-
ment, a control policy that maximizes its long-term ex-
pected reward. Using RL, an active sensor can auto-
matically discover a mapping from the beliefs generated
by the DPNs to the actions that enable it to gather the
observations most useful for identifying the hidden phe-
nomena. In particular, we treat this problem as a par-
tially observable Markov decision process (POMDP) [4]
and train a linear function approximator on-line to es-
timate the mapping from beliefs to actions.

Often approaches to sensor management strive to
compute at runtime the expected reduction in uncer-
tainty that particular action sequences will create [14].
However, given the complexity of the probabilistic mod-
els involved and the vast number of action sequences
to be considered, this approach can be too computa-
tionally expensive for practical use. By contrast, our
approach generates complete control policies specifying

12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

978-0-9824438-0-4 ©2009 ISIF 93

what action to take for every belief. Consulting the
policy at runtime has trivial cost.

Furthermore, approaches that merely strive to re-
duce uncertainty about the hidden phenomena do not
allow the agent to directly reason about the value of
uncertainty reduction. In the RL approach, potential
policies are evaluated with respect to the long-term re-
ward they accrue, thus seeking an optimal balance be-
tween uncertainty reduction and other factors such as
speed. For example, an RL agent can automatically
determine when obtaining additional observations is no
longer worth the delay, which methods that merely re-
duce uncertainty cannot do.

Previous work using the POMDP framework for sen-
sor management [16] employs centralized inference to
update beliefs and off-line planning to find control poli-
cies, both of which are computationally expensive. By
contrast, we use DPNs to perform distributed inference
and on-line linear function approximation to learn the
policy, so both belief and policy updates are computa-
tionally efficient.

Hence, the primary contribution of this work is a
principled, efficient approach to sensor management.
From the perspective of DBI, this approach is an im-
provement because it adds a way to intelligently con-
trol mobile sensors that contribute observations for in-
ference. From the perspective of POMDPs and RL,
this approach is also an improvement because it of-
fers a way to use DPNs to efficiently maintain, in a
distributed manner, the beliefs necessary for reasoning
about POMDPs.

We evaluate this method on a simulation of the chem-
ical leak localization task. Our results demonstrate 1)
that the integrated approach can learn policies that
perform effective sensor management, 2) that inference
based on a correct observation model, which the DPNs
make feasible, is critical to performance, and 3) that
the system scales to larger versions of the task.

The remainder of this paper is organized as follows.
Section 2 provides background about DPNs and RL and
Section 3 details the chemical leak localization problem.
Section 4 describes the integration of DPNs and RL for
sensor management. Section 5 presents and discusses
experimental results and Section 6 concludes and out-
lines directions for future work.

2 Background
The approach to sensor management presented in

this paper is a combination of two components: DPNs
to perform distributed Bayesian inference and RL to
find control policies for mobile sensors. In this section,
we provide brief background about these components.

2.1 Distributed Perception Networks

One way of performing distributed reasoning about
causal stochastic processes is using a multiagent

approach, such as distributed perception networks
(DPNs) [9]. DPNs are modular, self-configurable in-
ference systems that can efficiently interpret large
amounts of heterogeneous information through coop-
eration among various DPN agents. Each such agent
implements an inference module with limited domain
expertise (e.g., about one particular sensor), which is
represented by a local Bayesian network. The network
is a directed acyclic graph that uses conditional proba-
bility tables to describe the relationships between vari-
ables [10].

To perform inference at runtime, special fusion mod-
ules integrate the expertise provided by these agents
into complete distributed models that correctly cap-
ture probabilistic relationships between the sensors and
the hidden phenomena. This integration is performed
by applying simple design and assembly rules based on
the locality of causal relations explicitly represented by
Bayesian networks [10]. Contrary to other approaches
to distributed inference [18, 6], the DPN framework
does not rely on the computation of secondary inference
structures such as junction trees, which span multiple
modules. Compilation of such structures can be com-
putationally expensive; it requires recursion through a
system of inference modules (i.e. agents), which can
be a serious obstacle if the sensor constellations change
frequently at runtime. In DPNs, such compilation is
avoided through systematic instantiation of variables in
Markov boundaries [9]. The resulting inference is equiv-
alent to exact belief propagation in a monolithic causal
Bayesian network. Figure 1 shows a simple DPN used
in the leak localization task. Note, however, that DPNs
support inference for arbitrarily complex Bayesian net-
works (see [9] for more complex examples).

However, centralized control is no longer required.
As a result, the computational load of inference can be
distributed throughout the system. Furthermore, it is
no longer necessary to gather knowledge about all the
sensors in the system into one place. Instead, each sen-
sor can be wrapped in a DPN agent that contributes
a model of only that sensor, without needing knowl-
edge of disparate sensors in other parts of the system.
In other words, each agent contributes a local model
which relates the sensor’s observations with the rest of
the distributed causal model. As a result, DPNs can
efficiently cope with changing constellations of sensors.
This is an important feature in applications like chemi-
cal leak localization, where sensor availability may not
be known in advance and mobile sensors are constantly
joining and leaving different parts of the environment.

2.2 Reinforcement Learning

Reinforcement learning (RL) [17] is a family of meth-
ods for solving sequential decision problems given only
an immediate reward signal as feedback, in the absence
of examples or correct or incorrect behavior. The tradi-
tional model for such problems is the Markov decision

94

L

1
G

i
G

N
G

i
C i

I
i

M

C
E

1

I
E

1

M
E

1
C

E 3

I
E 2

C
E

2

L

1
G

i
G N

G

i
G

i
C

i
I i

M

L
A

G

i
A

C I
M

I
E

M
EC

E

C

i
A

I

i
A

M

i
A

a.) b.)

Figure 1: a) a monolithic causal Bayesian network describing the relationships between various senor observations
(leaf nodes) and the location of a chemical leak (root node). b) an equivalent distributed network consisting of
DPN agents (solid boxes). Dashed arrows show the flow of inter-agent messages containing partial fusion results.

process (MDP). In each timestep of an MDP, the agent
perceives the environment’s current state, s and selects
an action a. The environment responds with a reward
signal r and a new state s′. Since MDPs satisfy the
Markov property, the transition and reward dynamics
depend only on the current state, not the whole state
history. If a model of the transition and reward dynam-
ics is known, MDPs can be solved off-line using plan-
ning techniques. If a model is not known, an agent can
still learn an optimal policy by interacting with the en-
vironment and using temporal-difference methods such
as Q-learning [17].

Cases where the Markov property does not hold
can be modeled using a partially observable MDP
(POMDP) [4], where the state signal is replaced by
an observation correlated with the state. These ob-
servations are not Markov but the agent can maintain
a belief b, a distribution over the current state, which
is Markov. As a result, if the transition, reward, and
observation models are known, POMDPs can also be
solved off-line using planning techniques.

The chemical leak localization, and other sensor man-
agement tasks, can be modeled as POMDPs, where the
state describes the hidden phenomena and the observa-
tions consist of readings from fixed and mobile sensors.
In Section 4 we describe how DPNs can be used to
efficiently maintain updated beliefs given observations
from distributed sensors and how RL can be used to
tackle the resulting POMDP given such beliefs.

3 Chemical Leak Localization

In many industrial areas, the threat of chemical leaks
is a serious concern. Discovering such leaks rapidly
is critical to minimizing human casualties and prop-
erty damage. Some types of sensors are inexpensive
enough to distribute throughout the environment. Un-
fortunately, they are not very reliable. Reliable sensors
exist, but are too expensive to put in each region of
the environment. However, they can be mounted on a
mobile device like an autonomous helicopter, which can
sweep the area in search of leaks. In the chemical leak
localization (search) problem, we seek a policy for an
agent controlling such a mobile sensor.

The environment is simulated using an m×m square
grid consisting of n = m2 locations l1, . . . , ln. Each
location li contains one ionization sensor Ii and one
conductivity sensor Ci. In addition, there is one mobile
sensor M .

The complete state consists of the location of the
mobile sensor S, which the mobile agent knows, and
the location of the leak L, which it strives to discover.
Both the mobile sensor and leak locations are assigned
randomly at the beginning of each episode; only the
former can change within an episode.

At each timestep, the mobile agent can take several
types of actions. There are four move actions, one cor-
responding to each of the cardinal directions, that cause
the mobile agent to move to an adjacent location un-
less the edge of the grid lies in that direction, in which
case it remains stationary. There is one sense action,
which employs the mobile sensor in the agent’s current

95

location. There are also n report actions, one for each
location, which end the episode and cause the mobile
agent to issue a report stating that the leak is in that
location. If the mobile agent does not report within the
first 1000 timesteps, a report action is forced, in order
to prevent episodes from continuing indefinitely.

Regardless of the action it selects, the agent observes
at each location li sensor readings ǫi = 〈ǫC

i , ǫI
i 〉. If at

location li the mobile agent performs a sense action,
its observations at that location are ǫi = 〈ǫC

i , ǫI
i , ǫ

M 〉.
The observations are outcomes of the stochastic process
described by the network shown in Figure 1a.

At each timestep that the mobile agent does not issue
a report action, it receives a reward of −1, which repre-
sents the accumulating human casualties and property
damage resulting from the undetected leak. When the
mobile agent does report, it receives no reward if the
leak is in the reported location. Otherwise, it receives
a penalty p = −1000. The value of p determines an
important trade-off in the optimal behavior of the mo-
bile agent. If the magnitude of p is large, the mobile
agent should wait until it is extremely confident about
the leak location before reporting. If the magnitude of
p is small, it should risk reporting early to avoid the
cost of further reducing its uncertainty.

4 Integrating DPNs and RL
This section describes how DPNs can be integrated

with RL to perform efficient sensor management in
tasks like the chemical leak localization problem. Fig-
ure 2 shows an overview of the complete integrated sys-
tem.

Each location in the environment grid (bottom) con-
tains fixed sensors (open circles) and possibly a mobile
sensor (filled circle), which contribute observations to
the DPNs (dotted box). The DPNs describe the prob-
abilistic relationships between these observations and
intermediate phenomena such as ionization and con-
ductivity and, in turn, the relationship between those
intermediate phenomena and the location of the chemi-
cal leak. These DPNs produce an updated belief which
is used by the RL system to update its policy π. The
resulting new policy π′ is used to generate an action
applied to the mobile sensor. The entire mobile agent
(solid box) consists of the RL system and two DPN
agents: one describing the mobile sensor and one inte-
grating all the observations into a new belief.

4.1 Implementing DPN Component

The main task of the DPNs is to compute a belief vec-
tor b = P (L|ǫ) = [P (l1|ǫ), . . . , P (ln|ǫ)], where P (li|ǫ)
denotes the posterior probability of a leak at location li,
given all available observations ǫ. P (L|ǫ) must correctly
capture correlations between the observations and the
leak location. This can be achieved through belief prop-
agation in the causal Bayesian network that describes

the processes producing a particular observation set ǫ
(see Figure 1a).

However, because this network explicitly represents
every sensor and its readings, at each time step we need
a different monolithic network to reflect the current sen-
sor constellations and reports. This is clearly impracti-
cal. Therefore, we use the DPN approach, where DPN
agents collaboratively compute b = P (L|ǫ) (see Figure
1b). Each DPN agent uses a Bayesian network that
captures a subset of variables and relations from the
monolithic network, i.e., each DPN agent has partial
knowledge of the process depicted in Figure 1a. The
DPN agents autonomously configure distributed infer-
ence systems by using service discovery. For each loca-
tion li we assume a system of DPN fusion agents pro-
cessing all available observations ǫi obtained within li.
The DPN agents collaboratively estimate the proba-
bility distribution P (Gi|ǫi), where Gi is indicates the
presence or absence of the leak at location li.

In particular, there are five types of DPN agents.
For each location li we use agent AG

i
which computes

P (Gi|ǫi). In addition, agents AC
i and AI

i are used to
process raw sensor reports and compute P (Ci|ǫ

C
i

) and
P (Ii|ǫ

I
i
), respectively. For example, Figure 2 depicts

sets of agents dedicated to locations l1 and l2.

Moreover, two DPN agents inside the mobile agent
implement separate local inference processes (shown
within the solid rectangle in Figure 2). Agent AM

computes P (M |ǫM) using observations from the mobile
sensor at location li. Also, for all locations AM stores
P (M |ǫM) obtained up to a certain point in time. In
this way AM correctly combines observations collected
during different visits to a certain location. Agent AL

computes P (L|ǫ) by integrating information from all
locations:

P (L|ǫ) = cP (L)

n∏

i=1

∑

Gi

P (Gi|L)P (Gi|ǫi),

where c is a normalization constant. P (L) describes the
prior probability of a leak at different locations while
P (Gi|L) is a simple leak dispersion model. Both, P (L)
and P (Gi|L) are local domain knowledge of agent AL.
Each distribution P (Gi|ǫi) is provided to AL after be-
ing computed by the set of DPN agents assigned to
location li and the DPN agents in the mobile agent.
This approach supports correct computation of P (L|ǫ),
since each agent AG

i
assumes a uniform prior distribu-

tion over Gi and the ratio P (Gi|ǫi)/P (ǫi|Gi) is constant
for all states of Gi.

When the mobile agent moves, it updates AM with its
current position. Using this information, AM joins the
DPN agents dedicated to that location. For example,
in Figure 2 the helicopter is located in l2 so AM joins
the network consisting of agents dedicated to l2.

96

)|(22

M

MP ε

)|(εLP

G
A
1

)|(
11
εGP

)|(
11

C
IP ε

'
ππ →

C

A1
I

A
1

L

A

M
A

G
A
2

C
A2

I

A2

)|(
11

ICP ε

)|(
22
εGP

)|(
22

ICP ε
)|(22

C

IP ε

1
l

2
l

Figure 2: The integrated DPN+RL system. Each location in the environment grid (bottom) contain fixed sensors
(open circles) and possibly a mobile sensor (filled circle), which contribute observations to the DPNs (dotted box).
The DPNs produce an updated belief used by the RL system to produce a new policy that generates an action
applied to the mobile sensor. The mobile agent (solid box) consists of the RL system and a subset of the DPNs.

4.2 Implementing RL Component

DPNs provide an efficient mechanism for maintaining
an updated belief about the leak location as new sensor
readings are observed. What remains is to determine
how the mobile sensor can obtain the most useful ob-
servations. We apply RL to this part of the problem
because it allows the mobile agent to directly reason
about the value of uncertainty reduction.

In this section, we consider the best way to apply RL
to a POMDP like the chemical leak localization prob-
lem. The traditional approach to solving POMDPs is
to find a policy mapping beliefs to actions via off-line
planning methods such as value iteration [15]. To per-
form such planning, complete models of the transition,
reward, and observation functions are required. For the
chemical leak localization problem, this information is
available: the transition and reward functions are sim-
ple and deterministic and the observation function is
described by the DPNs. However, the computational
cost of exact POMDP planning is prohibitive for all
but the smallest problems. Many approximate plan-
ning methods such as value-directed methods [12] and
point-based value iteration [11] are faster but still too
expensive for real-world tasks with large state spaces,
such as chemical leak localization.

In lieu of planning, it is also possible to learn on-
line in a model-free fashion. Various heuristics such as
action voting [13], U-trees [7], and recurrent neural net-
works [1] use the current belief or portions of the agent’s
observation history to estimate the current state and
then act as in an MDP: with a policy mapping states
to actions. These approaches avoid the computational

problems of POMDP planning but are only applica-
ble when the current state can be accurately estimated
from the history. In chemical leak search, this is not
possible because ambiguity about the state is central
to the problem itself: if the state could be accurately
estimated, the leak location would be known. Thus,
a good policy for efficiently finding the leak must be
conditioned on beliefs, not on estimates of the current
state.

Since accurate state estimation is not possible and
off-line planning is intractable, we employ a different
approach. We treat the POMDP as a belief MDP,
i.e. an MDP in which the states are beliefs in the
POMDP [3, 5]. In essence, this approach treats belief
maintenance as part of the environment, such that the
belief update occurs within the state transition func-
tion. Since the beliefs are Markov, a policy for the
belief MDP can be learned using standard temporal-
difference methods such as Q-learning [17]. Note that,
although temporal-difference methods are a form of
“model-free” RL, this approach still depends critically
on the observation function (i.e. the DPNs) to per-
form the belief updates. The main difficulty is that
the beliefs are real-valued so function approximation is
required. For simplicity, we employ a linear function
approximator that maps beliefs to value estimates.

First, we must select an appropriate representation
for the mobile agent’s current belief B = (S, b) about
the complete state, which consists of the mobile sensor’s
current location S (known with certainty) and the belief
b about L, the leak location. To facilitate function ap-
proximation, the mobile sensor’s location is represented
by a binary vector S = S1, . . . , Sn, where Si is one if

97

the sensor is in li and zero otherwise. To represent b, we
apply two changes to the belief provided by the DPNs,
to make it egocentric and to use entropies instead of
raw probabilities.

In an egocentric representation, the belief is de-
scribed relative to the mobile agent’s current position,
to make it easier for function approximation to gener-
alize. This involves reordering the locations in the grid
based first on their Manhattan distance from the mo-
bile agent and then clockwise within the same distance.
When there are n = m2 locations, the mobile agent’s
view must include m − 1 locations in all directions to
ensure it can always see every location in the grid (e.g.,
when the agent is in the southwest corner, the north-
ern and eastern edges are each m − 1 locations away).
Hence, this representation requires (2m − 1)2 elements
in the belief vector. When the mobile agent is near an
edge, some of the locations in its view will not exist;
the corresponding vector elements are set to zero.

In addition, the raw probabilities are translated into
entropies, such that b = b1, . . . , b(2m−1)2, where

bi = −[P (li|ǫ) log P (li|ǫ) + P (¬li|ǫ) log P (¬li|ǫ)].

Using entropies in place of probabilities facilitates linear
function approximation because entropy has a mono-
tonic relationship with uncertainty. Intuitively, the mo-
bile agent should behave differently when uncertainty
is low. This is difficult to represent linearly given only
probabilities, since uncertainty is minimized both when
the probability is low and when it is high.

Given such a belief representation, we need a prac-
tical approach to handling the action space. Since the
mobile agent can report any location as the source of
the leak, the action space is large and grows linearly
with respect to n. However, it would never be advan-
tageous to report the leak in any location other than
that deemed most likely in the current belief. Hence,
we define a meta-report action, which searches the cur-
rent belief for the location with the highest probability
and executes the corresponding low-level report action.
Consequently, the mobile agent needs to reason about
only six actions: four movement actions, one sense ac-
tion, and one meta-report action.

Using this setup, we approximate the action-value
function with a separate linear function for each action
a. Each such function Q(B, a) is a linear combination of
the features in B, parameterized by a vector θa. These
parameters are updated on-line using Q-learning each
time the mobile agent takes an action,

θa ← θa +α[r+γmaxa′Q(B′, a′)−Q(B, a)]∆θa
Q(B, a)

where α is a learning rate parameter, γ is a discount
factor, and ∆θa

Q(B, a) is the gradient of the value func-
tion with respect to the parameters, which in this case is
simply B. The mobile agent’s policy is derived directly
from the action-value function: π(B) = maxaQ(B, a).

At each timestep, it follows this policy with probability
1 − β; with probability β, it takes a random action to
ensure sufficient exploration.1

This method of estimating the action-value function
is scalable to larger versions of the chemical leak local-
ization problem because the linear function is concise,
i.e., the size of each θa grows only linearly with re-
spect to the number of locations in the grid. Because
we use temporal-difference methods instead of off-line
planning, the mobile agent incrementally improves its
policy as it interacts with the environment. However,
this approach does not require the mobile agent to learn
on-line in the real world, which would be infeasibly risky
in tasks like chemical leak localization. On the contrary,
since a complete model is available, experience can be
simulated in advance, and the mobile agent deployed
only once a good policy is discovered.

5 Results and Discussion

In this section, we report on three sets of experiments
designed to investigate and illustrate our approach. In
all experiments, the following learning parameters were
used: β = 0.05, γ = 0.99, and α = 0.01. In each
run, learning was paused every 1,000 episodes to test
the quality of the policy learned so far. In these tests,
exploration was turned off (β = 0.0), the current pol-
icy was evaluated for 100 episodes, and the average
reward per episode was computed. All graphs below
show this testing performance, averaged over 10 inde-
pendent runs and smoothed using a uniform moving
average with a window of 10 testing intervals (10,000
learning episodes) for the first two experiments and 50
testing intervals (50,000 learning episodes) for the third.

The first experiment investigates the feasibility of our
approach by testing the integrated DPN+RL system in
the chemical leak localization problem where n = 25
(a 5 × 5 grid). To confirm that learning is successful,
performance is compared to a random baseline policy
that chooses actions with equal probability. Despite
an absence of learning, this baseline performs reason-
ably well. Since the fixed sensors provide useful, though
noisy, information about the leak location, the random
policy can simply wait for the DPNs to slowly reduce
uncertainty about the leak location, even without intel-
ligently using the mobile sensor.

Figure 3 shows that the DPN+RL system learns to
substantially outperform this baseline, cutting the av-
erage negative reward in half. Since the system relies
on linear function approximation, the final learned poli-
cies are not optimal. However, they display intuitively
correct behavior, exploring the grid, sensing, and re-
porting when uncertainty becomes low. The DPN+RL
system performs poorly in early episodes, which is not

1Typically named ǫ, e.g., ǫ-greedy exploration, but here named

β to avoid confusion with the observations ǫ.

98

Figure 3: The average performance over time of the
DPN+RL system using two different belief representa-
tions, compared to a random baseline policy.

surprising since initial learning can easily lead to poli-
cies that are worse than random, e.g., ones that report
immediately. Since off-line training is feasible, these
early episodes incur only simulation costs, not the ac-
tual costs of incorrect leak localization in the real world.

This figure also compares performance to a version
of the DPN+RL system that does not use the belief
representation based on egocentric entropies described
in Section 4.2, but instead simply uses the raw proba-
bilities supplied by the DPNs. The importance of us-
ing the egocentric entropy representation to facilitate
linear function approximation is confirmed by these re-
sults, which show that the alternative representation
performs dramatically worse, failing even to match the
baseline method. Informal experiments run for more
episodes suggest that the performance of this represen-
tation does not improve even given more time.

The second experiment investigates the consequences
of using an incorrect observation model to perform in-
ference. Instead of using a correct tree structure for
the computation of P (Gi|ǫi), the system relied on a
näıve Bayesian model that incorrectly assumes all ob-
servations ǫi are independent given Gi. In addition,
the conditional probability tables relating Gi and ǫi as-
sume lower noise than the true model. Figure 4 shows
the results of this experiment, again on a 5 × 5 grid,
which compares the performance of the system using a
correct model (also shown in Figure 3) to one using an
incorrect model.

This experiment clearly demonstrates that using a
correct model is essential for learning a good control
policy. It also gives some insight into how much perfor-
mance benefit the DPNs can offer, as the system with
an incorrect model can be said to approximate the case
where no DPNs are used. Since DPNs allow distributed
sensors to correctly combine their own partial models,
they can increase the quality of the resulting inference.
In the absence of DPNs, the mobile agent will have to
use a monolithic network. Since the cost of maintaining
and performing inference on such a network may be too
great for a computationally constrained mobile agent,
it will likely be forced to rely on approximations, the
effects of which are underlined by this experiment.

The third experiment investigates scalability by test-
ing the integrated DPN+RL system on a larger (10×10)
grid with n = 100. We compared the performance
of the DPN+RL system with a correct model and the
egocentric entropy belief representation to the random
baseline method. Figure 5 shows the results of this
experiment. As before, the DPN+RL method learns
to clearly outperform the baseline method. Learning
is slower than in the smaller grids, but not by much
considering that the grid is four times larger and the
state space is 16 times larger. Hence, this result sug-
gests that the generalization capabilities of the linear
function approximator contribute to the system’s scal-
ability. Nonetheless, the improvement over the baseline
method is smaller than in the 5×5 grid, which indicates
that finding good linear approximations becomes more
difficult in larger versions of the problem and that cou-
pling our approach with more sophisticated, nonlinear
function approximators could result in further perfor-
mance improvements and additional scalability.

Overall these results validate the potential of
DPN+RL as a tool for sensor management. The inte-
gration of these two technologies results in several im-
portant advantages. Because inference is distributed,
the computational costs are not imposed on a single
agent. Making inference tractable is important at two
stages: when searching for a policy and when using a
policy. Regardless of what approach is used to find a
policy, doing so requires performing many belief up-
dates. Once a policy is found, it can be used only if
the mobile agent knows its current belief, which re-
quires continual on-line belief updates. At both of
these stages, the DPNs make the necessary inference
tractable by distributing the work among many agents.
The DPNs also enable the agents to distribute knowl-
edge. When it is not feasible for the mobile sensor to
maintain correct models of every sensor in the system,
it can still perform correct inference since the DPNs
allow each sensor to contribute correct partial models.
The importance of using correct models for inference is
demonstrated in our second experiment.

The use of RL to find a control policy for the mobile
sensor allows the mobile agent to do more than just re-

99

Figure 4: The average performance over time of the
DPN+RL system using a correct observation model
compared to one with incorrect structure and condi-
tional probability tables.

duce uncertainty. It allows it reason about the value
of uncertainty reduction and discover an effective bal-
ance between it and other goals. Furthermore, since
RL discovers a complete policy mapping beliefs to ac-
tions, it avoids the expense of computing at runtime the
expected reduction in uncertainty of particular action
sequences. By applying temporal-difference methods
with linear function approximation, the intractability
of POMDP planning is also avoided. As a result, the
system is scalable to larger grid sizes, as confirmed by
our third experiment.

We believe this method can be useful in a wide range
of sensor management tasks. Many such tasks in-
volve mobile sensors that require control policies. More
broadly, any task containing sensors that are control-
lable, even if their location is fixed, could be appro-
priate. For example, some sensors may have multiple
settings that trade-off sensitivity and specificity and in
some tasks, it may be useful to determine when to turn
some sensors off. In all these cases, sensor management
could benefit from a principled approach to finding con-
trol policies for such sensors.

6 Conclusions

This paper presents an approach to sensor manage-
ment that integrates DPNs and RL. DPNs are used to
perform efficient, distributed inference and RL is used

Figure 5: The average performance over time of the
DPN+RL system on a large (10 × 10) grid, compared
to a random baseline policy.

to automatically discover control policies for active sen-
sors. The resulting method is evaluated on a simulation
of a chemical leak localization task. The results demon-
strate 1) that the integrated approach can learn policies
that perform effective sensor management, 2) that in-
ference based on a correct observation model, which the
DPNs make feasible, is critical to performance, and 3)
that the system scales well to larger versions of the task.

The proposed method could be extended to handle
multiple mobile sensors which would require learning
separate control policies for each sensor via a multiagent
reinforcement learning method. Moreover, our function
approximation scheme could be extended to nonlinear
representations such as neural networks. This may fur-
ther improve system performance and allow additional
scalability to larger grids. We would also like to system-
atically investigate the impact various modeling errors
have on the learner’s performance. While our results
show that correct models are critical, we have not yet
determined the importance of errors in model structure
relative to errors in the conditional probability tables.

7 Acknowledgments

The reported research is part of the Interac-
tive Collaborative Information Systems (ICIS) project
(www.icis.decis.nl), supported by the Dutch Ministry
of Economic Affairs, grant nr: BSIK03024.

100

References
[1] Bram Bakker. Reinforcement learning with long

short-term memory. In Advances in Neural Infor-
mation Processing Systems 14, 2002.

[2] P. de Oude, G. Pavlin, and T. Hood. A modular
approach to adaptive Bayesian information fusion.
In the 10th International Conference on Informa-
tion Fusion, 2007.

[3] M. Hauskrecht. Value-function approximations
for partially observable Markov decision processes.
Journal of Artificial Intelligence Research, 13:33–
94, 2000.

[4] Leslie Pack Kaelbling, Michael L. Littman, and
Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence, 101:99–134, 1998.

[5] T. Karadeniz and L. Akin. FDMS with Q-learning:
A neuro-fuzzy approach to partially observable
markov decision problems. International Journal
of Advanced Robotic Systems, 1(3):251–262, 2004.

[6] Paskin Mark, Guestrin Carlos, and Jim McFad-
den. A robust architecture for inference in sensor
networks. In Fourth International Conference on
Information Processing in Sensor Networks, Los
Angelos, California, 2005.

[7] Andrew R. McCallum. Instance-based utile dis-
tinctions for reinforcement learning. In Proceed-
ings of the Twelfth International Machine Learn-
ing Conference, pages 387–395, 1995.

[8] H.M. Mitchel. Sensor Management. Springer,
2007.

[9] G. Pavlin, P. de Oude, M. Maris, J. Nunnink,
and T. Hood. A multi agent systems approach
to distributed Bayesian information fusion. Inter-
national Journal on Information Fusion, 2008. To
appear.

[10] Judea Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference.
Morgan-Kaufmann, 1988.

[11] J. Pineau, G. Gordon, and S. Thrun. Point-
based value iteration: An anytime algorithm for
POMDPs. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence,
2003.

[12] P. Poupart and C. Boutilier. Value-directed belief
state approximation for POMDPs. In Proceedings
of the Conference on Uncertainty in Artificial In-
telligence, pages 279–288, 2000.

[13] Reid Simmons and Sven Koenig. Probabilistic nav-
igation in partially observable environments. In
Fourteenth International Joint Conference on Ar-
tifcial Intelligence, pages 1080–1087, 1995.

[14] C. Simonin, J.-P. Le Cadre, and F. Dambreville.
The cross-entropy method for solving a variety
of hierarchical search problems. 10th Interna-
tional Conference on Information Fusion, pages 1–
8, 2007.

[15] R. W. Smallwood and E. J. Sondik. The opti-
mal control of partially observable markov pro-
cesses over a finite horizon. Operations Research,
21:1071–1088, 1973.

[16] Matthijs T. J. Spaan. Cooperative active percep-
tion using POMDPs. In AAAI 2008 Workshop on
Advancements in POMDP Solvers, 2008.

[17] Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. MIT Press,
Cambridge, Massachussets, 1998.

[18] Yang Xiang. Probabilistic Reasoning in Multiagent
Systems: A Graphical Models Approach. Cam-
bridge University Press, 2002.

101

