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Abstract As retrieval systems become more complex, learning to rank approaches
are being developed to automatically tune their parameters. Using online learning
to rank, retrieval systems can learn directly from implicit feedback inferred from
user interactions. In such an online setting, algorithms must obtain feedback for
effective learning while simultaneously utilizing what has already been learned to
produce high quality results.

We formulate this challenge as an exploration-exploitation dilemma and propose
two methods for addressing it. By adding mechanisms for balancing exploration
and exploitation during learning, each method extends a state-of-the-art learning
to rank method, one based on listwise learning and the other on pairwise learning.

Using a recently developed simulation framework that allows assessment of
online performance, we empirically evaluate both methods. Our results show that
balancing exploration and exploitation can substantially and significantly improve
the online retrieval performance of both listwise and pairwise approaches. In ad-
dition, the results demonstrate that such a balance affects the two approaches
in different ways, especially when user feedback is noisy, yielding new insights
relevant to making online learning to rank effective in practice.
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1 Introduction

Information retrieval (IR) systems are becoming increasingly complex. For ex-
ample, web search engines may combine hundreds of ranking features that each
capture a particular aspect of a query, candidate documents, and the match be-
tween the two.1 In heavily used search engines, these combinations are carefully
tuned to fit users’ needs. However, on smaller-scale systems, such careful manual
tuning is often infeasible.

For automatically tuning the parameters of such a system, machine learning
algorithms are invaluable (Liu, 2009). Most methods employ supervised learning,
i.e., algorithms are trained on examples of relevant and non-relevant documents
for particular queries. While large amounts of data are available for training in
some applications, such as web search, there are also many situations in which
such data cannot be obtained. For example, when deploying a search engine for
a company’s intranet (enterprise search) or a personal computer (desktop search,
personalization), collecting the large amounts of training data required for su-
pervised learning is usually not feasible (Sanderson, 2010). Even in environments
where training data is available, it may not capture typical information needs and
user preferences perfectly (Radlinski and Craswell, 2010), and cannot anticipate
future changes in user needs.

A promising direction for addressing a lack of resources for manual or super-
vised training are online approaches for learning to rank (Joachims, 2002; Yue and
Joachims, 2009; Yue et al, 2009). These methods work in settings where no train-
ing data is available before deployment. They learn directly from implicit feedback
inferred from user interactions, such as clicks, making it possible to adapt to users
throughout the lifetime of the system.2

In an online setting, it is crucial to consider the impact of such learning on the
users. In contrast to offline approaches, where the goal is to learn as effectively as
possible from the available training data, online learning affects, and is affected by,
how user feedback is collected. Ideally, the learning algorithm should not interfere
with the user experience, observing user behavior and learning in the background,
so as to present search results that meet the user’s information needs as well as
possible at all times. This would imply passively observing, e.g., clicks on result
documents. However, passively observed feedback can be biased towards the top
results displayed to the user (Silverstein et al, 1999). Learning from this biased
feedback may be suboptimal, thereby reducing the system’s performance later on.
Consequently, an online learning to rank approach should take into account both
the quality of current search results, and the potential to improve that quality in
the future, if feedback suitable for learning can be observed.

In this article, we frame this fundamental trade-off as an exploration–exploitation

dilemma. If the system presents only document lists that it expects will satisfy the
user, it cannot obtain feedback on other, potentially better, solutions. However, if
it presents document lists from which it can gain a lot of new information, it risks

1 http://www.google.com/corporate/tech.html
2 This article focuses on learning solutions that generalize to unseen queries. Thus, learning

from previous interactions with results for the same query is not possible, in contrast to settings
assumed by most on-line relevance feedback and re-ranking approaches. These approaches are
orthogonal to work in online learning to rank and could, e.g., be used to further improve
learned rankings for frequent queries.
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presenting bad results to the user during learning. Therefore, to perform optimally,
the system must explore new solutions, while also maintaining satisfactory perfor-
mance by exploiting existing solutions. Making online learning to rank for IR work
in realistic settings requires effective ways to balance exploration and exploitation.

We investigate mechanisms for achieving a balance between exploration and
exploitation when using listwise and pairwise methods, the two most successful
approaches for learning to rank in IR (Liu, 2009). The pairwise approach takes
as input pairs of documents with labels identifying which is preferred and learns
a classifier that predicts these labels. In principle, pairwise approaches can be di-
rectly applied online, as preference relations can be inferred from clicks (Joachims,
2002). However, as we demonstrate in this article, balancing exploration and ex-
ploitation is crucial to achieving good performance. In contrast, listwise approaches
aim to directly optimize an evaluation measure, such as NDCG, that concerns the
entire document list. Since such evaluation measures cannot be computed online,
new approaches that work with implicit feedback have been developed (Yue and
Joachims, 2009). These online approaches rely on interleaving techniques, where
preference relations between two ranking functions can be inferred from aggregated
clicks (Joachims et al, 2007).

In this article, we present the first two algorithms that can balance exploration
and exploitation in settings where only implicit feedback is available. First, we start
from a recently developed listwise algorithm that is initially purely exploratory
(Yue and Joachims, 2009). Second, we develop a similar mechanism for a pairwise
approach that is initially purely exploitative.

We assess the resulting algorithms using an evaluation framework that lever-
ages standard learning to rank datasets and models of users’ click behavior. Our
main result is that finding a proper balance between exploration and exploita-
tion can substantially and significantly improve the online retrieval performance
of both listwise and pairwise approaches.

In addition, our results are the first to shed light on the strengths and weak-
nesses of using pairwise and listwise approaches online, as they have previously
only been compared offline. We find that the pairwise approach can learn effec-
tively when feedback is reliable. However, when feedback is noisy, a high amount
of exploration is required to obtain reasonable performance. The listwise approach
learns more slowly when provided with perfect feedback, but is much more ro-
bust to noise than the pairwise approach. We discuss in detail the effects on each
approach of balancing exploration and exploitation, the amount of noise in user
feedback, and characteristics of the datasets. Finally, we describe the implications
of our results for making these approaches work effectively in practice.

The remainder of this paper is organized as follows. We present related work in
§2 and our methods for balancing exploration and exploitation in §3. Experiments
are described in §4, followed by results and analysis in §5. We conclude in §6.

2 Related work

While our methods are the first to balance exploration and exploitation in a set-
ting where only implicit feedback is available, a large body of research addresses
related problems. The question of how to explore is addressed by active learning
approaches for supervised learning to rank, and in online learning to rank for IR
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approaches. A large body of work in reinforcement learning (RL), a branch of ma-
chine learning where an algorithm learns from interactions with an environment
(Sutton and Barto, 1998), addresses the problem of balancing exploration and
exploitation when explicit feedback can be observed. Below, we first summarize
related work in learning to rank for IR and then turn to relevant results from RL.

As an alternative to manual tuning of IR systems, supervised learning to rank
has become very popular in recent years (Liu, 2009). Various approaches have been
developed, the most successful of which are pairwise (e.g., RankSVM (Herbrich
et al, 1999; Joachims, 2002)) and listwise (e.g., SoftRank (Taylor et al, 2008))
learning to rank. As in other supervised learning settings, supervised learning to
rank methods typically assume that a representative set of training data (including
judgments) is available at training time, so that characteristics of the data can be
estimated from this set.

In contrast to offline supervised learning, we address learning to rank in an
online setting, where a system learns directly from interactions with the user.
In this setting, labeled training data is not provided but needs to be collected
through interaction with the user. A first evaluation of RankSVM in an online
setting demonstrated that learning from implicit feedback is possible in principle
(Joachims, 2002). How to best collect feedback for effective learning from implicit
feedback has so far not been examined further, but we hypothesize that online
approaches need to explore to learn effectively.

Many researchers have considered how best to explore efficiently in informa-
tion retrieval, without addressing the question of how to balance that exploratory
behavior with exploitation. The most common approach is based on active learn-
ing, where the focus is on reducing manual labeling. Xu et al (2007) present an
algorithm that learns a linear combination of features based on relevance, docu-
ment density, and diversity, which is then used to select documents for which to
obtain relevance feedback. Similarly, Xu and Akella (2008) follow a probabilistic
approach that selects documents expected to minimize model variance. Donmez
and Carbonell (2009) apply active learning to two state-of-the-art learning to
rank algorithms, RankSVM and RankBoost. Their approach selects the training
instances expected to have the largest effect on the current model.

Two recently developed approaches have addressed the problem of exploration
in online learning to rank. These stochastic methods infer feedback using inter-
leaved comparison methods (Hofmann et al, 2011b; Radlinski and Craswell, 2010).
Using such techniques, the algorithms infer relative preferences between an ex-
ploratory and an exploitative ranking function (Yue and Joachims, 2009; Yue
et al, 2009). One algorithm compares a fixed set of ranking functions and selects
the best one (Yue et al, 2009). The other algorithm, on which our approach is
based, uses relative feedback about two ranking functions for stochastic gradient
descent (Yue and Joachims, 2009).

In RL, balancing exploration and exploitation is considered important for opti-
mizing performance while learning, and we hypothesize that similar benefits can be
achieved in information retrieval. The distinguishing characteristic of RL problems
is that an agent interacts with an environment by trying out actions and receiving
rewards (Kaelbling et al, 1996). In this setting, the agent can only observe the
rewards for the actions it selected, meaning that it is never shown any examples
of the optimal action for any situation, as is the case in e.g., supervised learning.
For this reason, balancing exploration and exploration is crucial. The agent needs
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to try out new solutions to be able to learn from the observed feedback, and it
needs to exploit what it has already learned to ensure high reward.3

Particularly relevant to this article are methods for tackling contextual bandit
problems,4 a well-studied type of RL problem (Auer, 2003; Barto et al, 1981;
Langford and Zhang, 2008; Strehl et al, 2006), as they have been successfully
applied to problems similar to learning to rank for IR. For example, Langford
et al (2008) consider the ad placement application. Given a website, their algorithm
learns the value of placing each of a set of candidate ads on the website. Similarly,
Radlinski et al (2008a) consider how to learn diverse document lists such that
different information needs are satisfied; they present an algorithm for doing so
that balances exploration and exploitation. Another widely-studied application
area of related approaches is news recommendation, where news stories are selected
for a user population or for individual users. Work in this area has focused on
learning approaches (Agarwal et al, 2008; Li et al, 2010), and methods for offline
evaluation (Li et al, 2011). Finally, an application to adaptive filtering is presented
in (Zhang et al, 2003). However, like other RL algorithms, these methods all assume
access to explicit feedback. For example, in ad placement, clicks provide explicit
feedback because they are directly correlated with the value of the ad-website pair
(assuming a pay-per-click model). Since explicit feedback is not typically available
in online IR settings, these methods are not directly applicable. Note that, while
in related areas implicit feedback can often be interpreted as absolute (possibly
noisy) reward, this is not possible in our setting.

Within IR, using implicit feedback to improve search results has long been the
goal of relevance feedback approaches. Exploration in the relevance feedback set-
ting has, e.g., been formulated in terms of diversifying the list of initial documents
that is shown to the user to elicit relevance feedback (Karimzadehgan and Zhai,
2010). These methods typically assume explicit feedback (which can be noisy) and
do not generalize over queries.

3 Approach

In this section, we first formalize the problem of online learning to rank for IR.
Then we describe our approaches, starting with the baseline learning algorithms,
and extend them to balance exploration and exploitation.

3.1 Problem formulation

Our formulation of learning to rank for IR differs from most other work in learning
to rank in that we consider the interactions between users and the search engine
as a continuous cycle. A natural fit for this problem are formalizations from RL,

3 Balancing exploration and exploitation also plays an important role in other areas, such as
sequential experimental design and in the multi-armed bandit work coming from the applied
probability community. Early work includes (Robbins, 1952), with an important breakthrough
by Gittins (1979). A recent overview can be found in (Mahajan and Teneketzis, 2008). Explo-
ration and exploitation have also been extensively studied as fundamental principles of human
and animal decision-making behavior (Cohen et al, 2007).

4 Contextual bandit problems are also known as bandits with side information, or associative
RL.
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Fig. 1 The IR problem modeled as a contextual bandit problem, with IR terminology in black
and corresponding RL terminology in green and italics.

in which an algorithm learns by trying out actions (e.g., document lists) that
generate rewards (e.g., an evaluation measure such as AP or NDCG) from its
environment (e.g., users) (Sutton and Barto, 1998). Using this formalization allows
us to describe this problem in a principled way and to apply concepts and solutions
from this well-studied area.

Figure 1 shows the interaction cycle. A user submits a query to a retrieval
system, which generates a document list and presents it to the user. The user
interacts with the list, e.g., by clicking on links, from which the retrieval system
infers feedback about the quality of the presented document list. This problem
formulation directly translates to an RL problem (cf., Figure 1, terminology in
italics) in which the retrieval system tries, based only on implicit feedback, to
maximize a hidden reward signal that corresponds to some evaluation measure.
We make the simplifying assumption that queries are independent, i.e., queries are
submitted by different users and there are no sessions. This renders the problem
a contextual bandit problem (Barto et al, 1981; Langford and Zhang, 2008).

Since our hypothesis is that balancing exploration and exploitation improves re-
trieval performance while learning, we need to measure this aspect of performance.
Previous work in learning to rank for IR has considered only final performance, i.e.,
performance on unseen data after training is completed (Liu, 2009), and, in the
case of active learning, learning speed in terms of the number of required training
samples (Xu et al, 2010).

As is common in RL, we measure cumulative reward, i.e., the sum of rewards over
all queries addressed during learning (Sutton and Barto, 1998). Many definitions
of cumulative reward are possible, depending on the modeling assumptions. We
assume an infinite horizon problem, a model that is appropriate for IR learning
to rank problems that run indefinitely. Such problems include a discount factor

γ ∈ [0, 1) that weights immediate rewards higher than future rewards. One way to
interpret the discount factor is to suppose that there is a 1 − γ probability that
the task will terminate at each timestep (e.g., users may abandon the retrieval
system). Rewards are thus weighted according to the probability that the task
will last long enough for them to occur. Then, cumulative reward is defined as the
discounted infinite sum of rewards ri: C =

∑∞
i=1 γ

i−1ri.

To summarize, we model online learning to rank for IR as an interaction cycle
between the user and the retrieval system. We assume an infinite horizon set-
ting and use discounting to emphasize immediate reward. The resulting problem
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formulation differs from those traditionally used in IR because performance de-
pends on cumulative reward during the entire learning process, rather than just
the quality of the final retrieval system produced by learning. It also differs from
typical contextual bandit problems, which assume that the agent has access to the
true immediate reward resulting from its actions. Typical IR evaluation measures
require explicit feedback, which is not available in most realistic use cases for on-
line learning to rank. Thus, this contextual bandit problem is distinct in that it
requires the learner to cope with implicit feedback such as click behavior.

3.2 Balancing exploration and exploitation in pairwise learning to rank

Our first approach builds off a pairwise formulation of learning to rank, and a
stochastic gradient descent learner. Pairwise approaches model the pairwise rela-
tions between documents for a given query. Our formulation of the learning to rank
problem from implicit feedback follows (Joachims, 2002). The learning algorithm
is a stochastic gradient descent algorithm, following (Sculley, 2009; Zhang, 2004).

Baseline learning approach Pairwise learning to rank approaches for IR con-
struct training data from observed queries and preference relations between pairs
of documents. Given an appropriate method of obtaining such pairwise labeled
training data, learning in this setting can be reduced to binary classification (Scul-
ley, 2009). Our baseline algorithm obtains pairwise labels by observing clicks on an
exploitative result list and learns a weight vector w for ranking documents using
the learning algorithm from (Sculley, 2009; Zhang, 2004).

Our pairwise approach infers labels from clicks, following the method devel-
oped by (Joachims, 2002). This method is based on the observation that clicks on
results are too unreliable to allow conclusions about absolute relevance of clicked
documents, but that clicked documents that were displayed at lower ranks than
a non-clicked document can be assumed to be preferred over the non-clicked doc-
ument. For example, assume a query q, in response to which the system returns
documents (d1, d2, d3), in this order. If the user clicks on documents d2 and d3,
but not on d1, we can infer that d2 � d1 and d3 � d1. From these observations,
labeled data could be extracted as (d1, d2,−1) and (d1, d3,−1).

Given a set of labeled document pairs, we apply the stochastic gradient descent
(SGD) algorithm defined by Zhang (2004, Algorithm 2.1). This algorithm finds a
weight vector ŵ that minimizes the empirical loss L(w,x, y) given a set P of labeled
training samples each consisting of a feature vector x and a label y:

ŵ = arg min
w

[
1

P

P∑
i=0

L(w,xi, yi) +
λ

2
||w||22

]
, (1)

where the last term is a regularization term. Using the hinge loss, i.e., L(w,x, y) =
max(0, 1− ywTx), the algorithm optimizes the same quantity as RankSVM (Joa-
chims, 2002). It was shown to perform competitively on standard learning to rank
datasets in terms of ranking performance with only a fraction of the training time
(Sculley, 2009). Here, we follow the implementation provided in sofia-ml,5 and ap-
ply it to pairwise learning by setting x = (xa−xb), where xa and xb are the feature
vectors of a document pair.

5 Provided online at http://code.google.com/p/sofia-ml/.
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Algorithm 1 Baseline algorithm for the pair-
wise setting, based on (Joachims, 2002; Sculley,
2009; Zhang, 2004).

1: Input: D, η, λ, w0

2: for query qt (t = 1..T ) do
3: X = φ(D|qt) // extract features

// construct exploitative result list
4: S = wT

t−1X

5: L = sortDescendingByScore(D,S)
6: I = L[1 : 10]
7: Display I and observe clicked elements C.
8: Construct all labeled pairs P = (xa,xb, y) from

I and C.
9: for i in (1..P ) do

10: if yiw
T
t−1(xai−xbi ) < 1.0 and yi 6= 0.0 then

11: Update wt as:
wt = wt−1 + ηyi(xai − xbi )− ηλwt−1

12: return wt

Combining the above me-
thod of inferring pairwise
feedback and the pairwise
learning method, we obtain
our pairwise baseline algo-
rithm (Algorithm 1). It re-
ceives as input a document set
D, learning rate η, regularizer
weight λ, and an initial weight
vector w0. For each observed
query qt, a set of feature vec-
tors φ(di|q) is extracted that
characterize the relationship
between the query and each
candidate document di ∈ D.
The document feature vec-
tors are then scored using the
weight vector learned so far (wt−1), and sorted by this score to obtain an exploita-
tive result list (the best ranking given what has been learned so far).

The constructed exploitative result list is shown to the user, and clicks on any of
the result documents are observed. From the observed clicks C, all possible labeled
document pairs P are inferred using the pairwise labeling method described above
(Joachims, 2002).

The labeled samples in P are then used to update the weight vector w. For each
pair, the loss is obtained by comparing the current solution to the observed label
(line 10, cf. the definition of the hinge loss above). If the labels do not match, or
the prediction margin is too small, the weight vector is updated using the update
rule wt = wt−1 + ηyi(xai − xbi)− ηλwt−1. Here, we use the unregularized version
of this update rule (by setting λ = 0) and use a small constant η. This formulation
was found to show good convergence properties (Zhang, 2004) and resulted in good
performance in preliminary experiments.

Balancing exploration and exploitation In previous applications of pairwise
learning to implicit feedback scenarios, learning was performed in a batch set-
ting. First, implicit feedback was collected given an initial ranking function. Then,
the algorithm was trained on all collected implicit feedback. Finally, this trained
system was deployed and evaluated (Joachims, 2002). In this setting, data collec-
tion is naturally exploitative. Users are shown results that are most likely to be
relevant according to a current best ranking function. In the online setting, such
an exploitative strategy is expected to result in the highest possible short-term
performance. However, it is also expected to introduce bias, as some documents
may never be shown to the user, which may result in sub-optimal learning and
lower long-term performance. This is confirmed in our experiments, as we will see
below.

In supervised applications of pairwise learning to rank methods, the learning
algorithm is typically trained on the complete dataset. Sculley (2009) developed a
sampling scheme that allows training of a stochastic gradient descent learner on a
random subset of the data without noticeable loss in performance of the trained
algorithm. In this setting, document pairs were sampled randomly such that at
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each learning step one relevant and one non-relevant document were selected to
form a training pair. We expect this strategy, which is fully exploratory, to result
in minimal training bias.

In the online setting where we learn from implicit feedback, we cannot directly
determine for which document pairs we obtain feedback from the user. Any docu-
ment list that is presented in response to a query may result in zero or more clicks
on documents, such that zero or more pairwise constraints can be extracted. Due
to position bias (Silverstein et al, 1999), the higher a document is ranked in the
result list presented to the user, the more likely it is to be inspected and clicked.

Here, we ignore explicit dependencies between displayed documents, and define
two document lists, one exploratory and one exploitative, that are then combined
to balance exploration and exploitation. The exploitative list is generated by ap-
plying the learned weights to compute document scores and then sorting by score,
as in the baseline algorithm. The exploratory list is generated by uniform random
sampling of the documents associated with a query.6

Algorithm 2 Baseline algorithm for the pair-
wise setting, based on (Joachims, 2002; Sculley,
2009; Zhang, 2004).

1: Input: D, η, λ, w0, ε
2: for query qt (t = 1..T ) do
3: X = φ(D|qt) // extract features

// construct exploitative result list
4: S = wT

t−1X

5: L = sortDescendingByScore(D,S)
6: I[r]← first element of L /∈ I with probability ε;

element randomly sampled without replacement
from L \ I with probability 1− ε

7: Display I and observe clicked elements C.
8: Construct all labeled pairs P = (xa,xb, y) from

I and C.
9: for i in (1..P ) do

10: if yi(xai−xbi )wT
t−1 < 1.0 and yi 6= 0.0 then

11: Update wt as:
wt = wt−1 + ηyi(xai − xbi )− ηλwt−1

12: return wt

We employ a method for
balancing exploration and ex-
ploitation that is inspired by
ε-greedy, a commonly used
exploration strategy in RL
(Watkins, 1989). In ε-greedy
exploration, the agent selects
an exploratory action with
probability ε at each timestep.
With probability 1 − ε, it se-
lects the greedy action, i.e.,
the action with the highest
currently estimated value.7

The difference between
our approach and ε-greedy is
that we do not pick a single
action at each timestep, but
that we can select a number
of actions that are presented
simultaneously. This results in Algorithm 2 that differs from our baseline algo-
rithm in how the result list is constructed (line 6).

Therefore, we vary the relative number of documents from the exploratory
and exploitative lists as determined by ε ∈ [0, 1]. For each rank, an exploitative

6 In practice, candidate documents are typically collected based on some feature-based cri-
teria, such as a minimum score. Here, we use the candidate documents provided with the
learning to rank data sets used in our experiment, where candidate selection may have been
biased (Minka and Robertson, 2008). However, bias in terms of feature values can be neglected
here, as the specifics of the learned ranker are not the subject of this study, and all learning
methods are affected equally.

7 More complex schemes of balancing exploration and exploitation are of course possible,
but our focus here is on demonstrating the benefit of such a balance over purely exploratory
and purely exploitative forms of soliciting feedback. A simple scheme is sufficient for this goal.
We also experimented with a more complex softmax-like algorithm and obtained qualitatively
similar results. However, such an algorithm is more difficult to tune than the ε-greedy-like
algorithm used here (Sutton and Barto, 1998; Whiteson and Stone, 2006).



10 K. Hofmann et al.

action (a document from the exploitative list) is selected with probability 1 − ε.
A document from the exploratory list is selected with probability ε. Thus, values
of ε close to 0 mean that little exploration is taking place, making the algorithm
collect feedback in an exploitative way (ε = 0 corresponds to the purely exploitative
baseline setting). Values close to 1 mean more exploration.

3.3 Balancing exploration and exploitation in listwise learning to rank

Our second online learning to rank approach builds off a gradient-based policy
search algorithm called Dueling Bandit Gradient Descent (DBGD) (Yue and Joa-
chims, 2009). This algorithm has been specifically developed for learning to rank
in an online setting, and it requires only relative evaluations of the quality of
two document lists, and infers such comparisons from implicit feedback (Radlinski
et al, 2008b).

Baseline learning approach Similar to the pairwise learning to rank approach
discussed in the previous section, DBGD learns a ranking function consisting of
a weight vector w for a linear weighted combination of feature vectors. Thus, to
rank a set of documents D given a query q, feature vectors X = {x1,x2, . . . ,xD}
that describe the relation between D and q are produced. Next, scores S for each
document are produced using S = wX. Finally, documents are ranked by their
scores to generate a ranked document list l.

Algorithm 3 Baseline algorithm, based on (Yue
and Joachims, 2009).

1: Input: f(l1, l2), α, δ, w0

2: for query qt (t = 1..T ) do
3: Sample unit vector ut uniformly.
4: w′t ← wt + δut // generate exploratory w
5: if f(l(wt), l(w′t)) then
6: wt+1 ← wt + αut // update exploitative w
7: else
8: wt+1 ← wt

9: return wt+1

Algorithm 3 summarizes
this approach. It takes as
input a comparison method
f(l1, l2), that compares two
document lists, and three pa-
rameters, the step sizes α8

and δ, and an initial weight
vector w0. At each timestep
t, the algorithm observes a
query qt from which two doc-
ument lists are produced: one
exploitative, one exploratory.
The exploitative list is pro-
duced from the current exploitative weight vector wt, found to perform best up
to the current timestep t. The exploratory list is produced from an exploratory
weight vector w′t, which is generated by moving wt in a random direction ut by
a step of size δ. The exploitative and exploratory lists are then compared using a
function f(l1, l2). If the exploratory weight vector w′t is judged to have produced
the better document ranking, the current exploitative weight vector wt is updated
by moving it towards w′t by a step size α.

For the comparison method f(l1, l2), several implementations have been sug-
gested (He et al, 2009; Radlinski et al, 2008b). We chose a variant of the balanced

interleave method as it is efficient, easy to implement, and was found to be more
reliable than the similar team-draft method both in (He et al, 2009) and in our

8 In (Yue and Joachims, 2009), γ denotes the exploitation step size. We use α to avoid
confusion with the discount factor γ.
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own preliminary experiments. This method takes as input two document lists and
constructs an interleaved result list by randomly selecting a starting list and then
interleaving the two lists so that presentation bias between the two lists is mini-
mized. After observing user clicks on the result list, a preference between the lists
is inferred as follows. The rank of the lowest clicked document N is identified.
Then, for each list the number of clicked documents within the top N is counted.
The list that received more clicks in its top N is preferred. Ties are ignored.

Balancing exploration and exploitation Given an appropriate function for com-
paring document lists, the baseline algorithm described above learns effectively
from implicit feedback. However, the algorithm always explores, i.e., it constructs
the result list in a way that minimizes bias between the exploratory and exploita-
tive document lists, which is assumed to produce the best feedback for learning. We
now present a comparison function f(l1, l2) that does allow balancing exploration
and exploitation.

In contrast to previous work, we alter the balanced interleave function to inter-
leave documents probabilistically. Instead of randomizing only the starting position
and then interleaving documents deterministically, we randomly select the list to
contribute the document at each rank of the result list. In expectation, each list
contributes documents to each rank equally often.

Constructing result lists by probabilistic interleaving, allows us to apply a
method similar to ε-greedy. Our probabilistic interleave algorithm, which supplies

Algorithm 4 f(l1, l2) – k-greedy comparison of
document lists
1: Input: l1, l2, k
2: initialize empty result list I

// construct result list
3: for rank r in (1..10) do
4: L← l1 with probability k, l2 with probability 1−k
5: I[r]← first element of L /∈ I
6: display I and observe clicked elements C
7: N = length(C); c1 = c2 = 0
8: for i in (1..N) do
9: if C[i] ∈ l1[1 : N ] then

10: c1 = c1 + 1 // count clicks on l1
11: if C[i] ∈ l2[1 : N ] then
12: c2 = c2 + 1 // count clicks on l2

// compensate for bias (Eq. 2)
13: n1 = |l1[1 : N ] ∩ I[1 : N ]|
14: n2 = |l2[1 : N ] ∩ I[1 : N ]|
15: c2 = n1

n2
∗ c2

16: return c1 < c2

the comparison method that
is required by DBGD, is
shown in Algorithm 4. The
algorithm takes as input two
document lists l1 and l2, and
an exploration rate k. For
each rank of the result list to
be filled, the algorithm ran-
domly picks one of the two re-
sult lists (biased by the explo-
ration rate k). From the se-
lected list, the highest-ranked
document that is not yet in
the combined result list, is
added at this rank. The result
list is displayed to the user
and clicks C are observed.
Then, for each clicked docu-
ment, a click is attributed to
list li (i = 1, 2) if the document is in the top N of li, where N is the lowest-ranked
click.

The exploration rate k ∈ [0.0, 0.5] controls the relative amount of exploration
and exploitation, similar to ε. It determines the probability with which a list is
selected to contribute a document to the interleaved result list at each rank. When
k = 0.5, an equal number of documents are presented to the user in expectation.9

9 Note that the setting k = 0.5 corresponds to the fully exploratory baseline algorithm.
Setting k > 0.5 would not increase the amount of information that can be gained from a
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As k decreases, more documents are contributed by the exploitative list, which is
expected to improve the quality of the result list but produce noisier feedback.

As k decreases, more documents from the exploitative list are presented, which
introduces bias for inferring feedback. The bias linearly increases the expected
number of clicks on the exploitative list and reduces the expected number of clicks
on the exploratory list. We can partially compensate for this bias since

E[c2] =
n1
n2
∗ E[c1], (2)

where E[ci] is the expected number of clicks within the top N of list li, and ni is the
number of documents from li that were displayed in the top N of the interleaved
result list. This compensates for the expected number of clicks, but some bias
remains because the observed clicks are converted to binary preference decisions
before they are aggregated over queries. While perfectly compensating for bias
is possible, it would require making probabilistic updates based on the observed
result. This would introduce additional noise, creating a bias/variance trade-off.
Preliminary experiments show that the learning algorithm is less susceptible to
increased bias than to increased noise. Therefore we use this relatively simple,
robust bias correction.

4 Experiments

In this section, we describe the experiments that evaluate the algorithms presented
in §3. We first give an overview of the general evaluation setup, before giving
further details on specific aspects such as the datasets and runs.

4.1 Evaluation Setup

Evaluating the ability of an algorithm to maximize cumulative performance in an
online IR setting poses unique experimental challenges. The most realistic exper-
imental setup—in a live setting with actual users—is risky because users may get
frustrated with bad search results. The typical TREC-like setup used in super-
vised learning to rank for IR is not sufficient because information on user behavior
is missing. Also, live experiments cannot evaluate and compare many different
settings like simulated experiments can.

To address these challenges, we propose an evaluation setup that simulates
user interactions. This setup combines datasets with explicit relevance judgments
that are typically used for supervised learning to rank with recently developed click
models. Given a dataset with queries and explicit relevance judgments, interactions
between the retrieval system and the user are simulated (c.f., the box labeled
“user/environment” in Figure 1). Submitting a query is simulated by random
sampling from the set of queries. After the system has generated a result list for
the query, feedback is generated using a click model and the relevance judgments
provided with the dataset. Note that the explicit judgments from the dataset are

comparison, but would hurt the expected reward, because fewer exploitative documents would
be shown.
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not directly shown to the retrieval system but used to simulate the user feedback
and measure cumulative performance.

Using simulated evaluations naturally has limitations. Here, we can show how
learning methods behave under different assumptions about user behavior, but
to what degree these assumptions apply in specific practical settings needs to be
studied in more detail.

4.2 Click model

Our click model is based on the Dependent Click Model (DCM) (Guo et al,
2009a,b), a generalization of the cascade model (Craswell et al, 2008). The model
posits that users traverse result lists from top to bottom, examining each docu-
ment as it is encountered. Based on this examination, the user decides whether
to click on the document or skip it. After each clicked document, the user decides
whether or not to continue examining the document list. Since the DCM has been
shown to effectively predict users’ click behavior (Guo et al, 2009b), we believe it
is a good model for generating implicit feedback.

When a user examines a document in the result list, he or she does not know
the true relevance label of the document. However, aspects of the document’s rep-
resentation in the result list (e.g., its title) make it more likely that a document
is clicked if it is relevant. Using this assumption, the ground truth relevance judg-
ments provided in explicitly annotated learning to rank datasets, and the process
put forward by the DCM, we define the following model parameters. Relevant doc-
uments are clicked with a probability p(c|R), the probability of a click given that
a document is relevant. Non-relevant documents can attract (noisy) clicks, with
probability p(c|NR). After clicking a document, the user may be satisfied with the
results and stop examination with probability p(s|R), the probability of stopping
examination after clicking on a relevant document. The probability of stopping
after visiting a non-relevant document is denoted by p(s|NR).

To instantiate this click model we need to define click and stop probabili-
ties. When the DCM is trained on large click logs, probabilities are estimated for
individual query-document pairs, while marginalizing over the position at which
documents were presented in the training data. In our setting, learning these prob-
abilities directly is not possible, because no click log data is available. Therefore
we instantiate the model heuristically, making choices that allow us to study the
behavior of our approach in various settings. Setting these probabilities heuristi-
cally is reasonable because learning outcomes for the gradient algorithms used in
this paper are influenced mainly by how much more likely users are to click on
relevant and non-relevant documents. Thus, this ratio is more important than the
actual numbers used to instantiate the model.

Table 1 Overview of the click models used.

model p(c|R) p(c|NR) p(s|R) p(s|NR)

perfect 1.0 0.0 0.0 0.0
navigational 0.95 0.05 0.9 0.2
informational 0.9 0.4 0.5 0.1
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Table 1 gives an overview of the click models used in our experiments. First, to
obtain an upper bound on the performance that could be obtained if feedback was
deterministic, we define a perfect model, where all relevant documents are clicked
and no non-relevant documents are clicked. We further implement two realistic
models, the navigational and informational models. These two models are based on
typical user behavior in web search (Broder, 2002; Guo et al, 2009a), because 8 of
the 9 datasets we use implement web search tasks (see below). In a navigational
task, users look for a specific document they know to exist in a collection, e.g., a
company’s homepage. Typically, it is easy to distinguish relevant and non-relevant
documents and the probability of stopping examination after a relevant hit is
high. Therefore, our navigational model is relatively reliable, with a big difference
between p(c|R) and p(c|NR). In an informational task, users look for information
about a topic, which can be distributed over several pages. Here, users generally
know less about what page(s) they are looking for and clicks tend to be noisier.

4.3 Data

We conducted our experiments using two standard collections for learning to rank:
LETOR 3.0 and LETOR 4.0 (Liu et al, 2007). In total, these two collections
comprise 9 datasets. Each consists of queries for which features were extracted
from a document collection, together with relevance judgements for the considered
query-document pairs.

The datasets were compiled from different sources: the 106 queries in OHSU-
MED are based on a log of a search engine for scientific abstracts drawn from the
MedLine database. The remaining datasets are based on Web Track collections run
between 2003 and 2008 at TREC. HP2003, HP2004, NP2003, NP2004, TD2003
and TD2004 implement homepage finding, named-page finding, and topic distilla-
tion tasks, using a crawl of web pages within the .gov domain. These datasets con-
tain between 50–150 queries each, with about 1000 judged documents per query.
MQ2007 and MQ2008 are based on the 2007 and 2008 Million Query track at
TREC and use the .GOV2 collection. These two datasets contain substantially
more queries, 1700 and 800 respectively, but far fewer judged documents per query.

The datasets based on the TREC Web track use binary relevance judgments,
while OHSUMED, MQ2007 and MQ2008 are judged on a 3-point scale from 0
(non-relevant) to 2 (highly relevant). In all experiments we use binary relevance
judgments. For the three datasets that originally contain graded judgments, we
treat all judgments greater than zero as relevant. In preliminary experiments with
graded relevance, we obtained results nearly identical to those with the simpler
binary judgments.10

Each dataset comes split up for machine learning experiments using 5-fold
cross-validation. We use the training sets for training during the learning cycle
and for calculating cumulative performance, and the test sets for measuring final
performance.

10 The reason appears to be that the learning algorithm works with very coarse feedback, so
more finely grained feedback has little influence on the reliability of inferred judgments.
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4.4 Runs

Pairwise approach In all pairwise experiments, we initialize the starting weight
vector w0 to zero. In preliminary experiments we evaluated offline performance
for η ∈ {0.0001, 0.001, 0.01, 0.1}, and selected the setting that performed best over
all data sets (η = 0.001). Our baseline is the pairwise formulation of learning to
rank with stochastic gradient descent as described in §3.2, in the fully exploitative
setting (r = 0). Against this baseline we compare increasingly exploratory versions
of the algorithm (r ∈ {0.2, 0.4, 0.6, 0.8, 1.0}). All experiments are run for 1000
iterations.

Listwise approach In all listwise experiments, we initialize the starting weight
vector w0 to a random point on a unit sphere around the origin, and use the best
performing parameter settings from (Yue and Joachims, 2009): δ = 1 and α = 0.01
(these settings resulted in good performance over all datasets in our preliminary
experiments). Our baseline is Algorithm 3, based on (Yue and Joachims, 2009),
which corresponds to a purely exploratory setting of k = 0.5 in our extended
method.11 Against this baseline we compare exploit runs that balance exploration
and exploration by varying the exploration rate k between 0.4 and 0.1 as shown
in Algorithm 4. Again, we run all experiments for 1000 iterations.

4.5 Discounting

Because our problem formulation assumes an infinite horizon, cumulative perfor-
mance is defined as an infinite sum of discounted rewards (cf. §3). Since experi-
ments are necessarily finite, we cannot compute this infinite sum exactly. However,
because the sum is discounted, rewards in the far future have little impact and
cumulative performance can be approximated with a sufficiently long finite exper-
iment.

In our experiments, we set the discount factor γ = 0.995. This choice can be
justified in two ways. First, it is typical of discount factors used when evaluating
RL methods (Sutton and Barto, 1998). Choosing a value close to 1 ensures that
future rewards have significant weight and thus the system must explore in order to
perform well. Second, at this value of γ, cumulative performance can be accurately
estimated with the number of queries in our datasets. Since rewards after 1000
iterations have a weight of 1% or less, our finite runs are good approximations of
true cumulative performance.

4.6 Evaluation Measures

We use cumulative NDCG on the result list presented to the user to measure
cumulative performance of the system. We define cumulative reward as the dis-
counted sum of NDCG that the retrieval system accrues throughout the length of
the experiment. Final performance is reported in terms of NDCG on the test set.

11 In the listwise approach, the highest level of exploration is reached when the two candidate
lists are interleaved in equal parts, i.e., k = 0.5.
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Table 2 NDCG@10, P@10, and MAP for the pairwise baseline algorithm (perfect click model).

NDCG@10 P@10 MAP

HP2003 0.820 0.106 0.753
HP2004 0.803 0.099 0.705
NP2003 0.794 0.093 0.676
NP2004 0.796 0.095 0.672
TD2003 0.271 0.153 0.208
TD2004 0.279 0.217 0.183
OHSUMED 0.321 0.392 0.371
MQ2007 0.377 0.343 0.412
MQ2008 0.490 0.239 0.452

For each dataset we repeat all runs 25 times and report results averaged over
folds and repetitions. We test for significant differences with the baseline runs
(purely exploitative for the pairwise approach (k = 0.0), purely exploratory for
the listwise approach (k = 0.5)) using a two-sided student’s t-test. Runs that
significantly outperform the exploratory baseline are marked with M (p < 0.05) or
N (p < 0.01).

5 Results and Discussion

The primary goal of this paper is to show that balancing exploration and ex-
ploitation in online learning to rank for IR can improve cumulative performance.
As there is currently little known about the performance of pairwise and listwise
learning to rank approaches in an online setting, we first report on the performance
of each baseline algorithm, before turning to our main results. Finally, we compare
the performance of the two approaches under the novel perspective of balancing
exploration and exploitation.

5.1 Pairwise learning

As a first sanity check, we calculate standard evaluation measures that are typically
used to evaluate supervised learning to rank methods for the baseline approach
(purely exploitative, i.e., r = 0.0). Results in terms of NDCG at 10 (NDCG@10 ),
Precision at 10 (P@10 ), and Mean Average Precision (MAP) (Liu, 2009) for the
perfect click model are shown in Table 2. These are computed after 1000 iterations
(consisting of 1 query, result list, and learning step each), which means that learn-
ing may not have converged and higher results are possible. These results should
therefore be interpreted as a rough indication of what performance can typically
be achieved by this approach in an implicit feedback setting.

Based on the performance of the pairwise approach relative to state-of-the-
art supervised approaches (Liu, 2009), we can divide the datasets used in our
experiments in two groups. For the first group, which includes the datasets HP-

2003, HP2004, NP2003, and NP2004, performance is quite high. In particular, for
the datasets HP2003 (NDCG@10= 0.820) and HP2004 (NDCG@10= 0.803), the
pairwise exploitative learner is among the top 3 approaches and even beats the
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supervised version of RankSVM (with an NDCG@10 of 0.807 and 0.768, respec-
tively). For the second group, which includes the remaining datasets, performance
is lower both in absolute terms and relative to state-of-the-art supervised learning
approaches. Here, performance is comparable to the mid-range of the approaches
compared in (Liu, 2009).
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Fig. 2 Final performance for the pairwise approach (with 5% confidence intervals) over
time for the datasets (a) MQ2007 and (b) NP2003, under the perfect click model and
r ∈ {0.0, 0.8, 1.0}.

To analyze the performance differences between datasets, we study the learning
curves of two representative datasets, MQ2007 and NP2003, at different levels of
exploration. Figure 2 shows the final performance in terms of NDCG (on the whole
result list) plotted over time (up to 1000 iterations). For the dataset MQ2007 we
see that best learning is achieved at high exploration rates (the dark, dashed lines;
the difference between settings r = 0.8 and r = 1.0 is negligible). As expected,
when implicit feedback is collected on fully exploratory result lists, it is unbiased
and thus results in the best learning. However, we see the opposite for the dataset
NP2003, where performance further improves when implicit feedback is collected
on exploitative result lists (r = 0, light and solid lines). Most likely, this increase
in performance results from an effect similar to that observed in active learning.
Because the current top results are shown, feedback is focused on the part of the
document space that is most informative for learning. All datasets for which this
effect is observed have few relevant documents, so that focusing feedback on a
promising region can have a substantial benefit. For the remaining datasets, there
are more relevant documents per query. Thus, feedback that is focused on one part
of the solution space (in the exploitative setting) does not improve performance.

For all datasets, the absolute difference in final performance at varying explo-
ration rates is relatively small (similar to the two datasets analyzed above) under
the perfect click model. Much higher variance is observed when we simulate noisy
feedback. Figure 3 shows learning curves for the dataset NP2003 at different set-
tings of r for the navigational and informational click models. For the navigational

click model (a) final performance improves over time for all r, although differences
in performance for different r are higher than with perfect click feedback. Final
performance is lowest for r = 1.0 (0.714), and increases for r = 0.0 (0.720) and
r = 0.8 (0.778). For the informational click model, final performance degrades dra-
matically in the purely exploitative baseline settings (r = 0, 0.102). In this setting,
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Fig. 3 Final performance for the pairwise approach (with 5% confidence intervals) over
time for the dataset NP2003 for a) navigational, and b) informational click models and
r ∈ {0.0, 0.8, 1.0}.

performance decreases over time. The purely exploratory setting (r = 1.0) leads
to reasonable final performance, while the best performance is achieved with high
exploration but some exploitation (r = 0.8, 0.724).

Our analysis of final performance results in a number of observations. We hy-
pothesized that the best learning would occur with perfect feedback and pure
exploration because this setting minimizes variance and bias in user feedback. As
expected, learning outcomes were best for perfect feedback and degraded with nois-
ier feedback. However, the effect of the exploration rate changed with the amount
of noise in user feedback and characteristics of the dataset. For perfect feedback,
little to no exploration sometimes produced the best learning outcomes because
exploitative result lists focused feedback on more informative parts of the solution
space. Under noisy feedback, higher exploration rates generally improved learning,
though the best performance occurred with moderate amounts of exploitation.

Balancing exploration and exploitation We now turn to our main results for
the pairwise approach: the influence of balancing exploration and exploitation
on online performance. Above, we saw that the effect of this balance on offline
performance is complex and that more exploration does not necessarily imply
better learning. When optimizing online performance, a system should generally
try to exploit as much as possible. However, if increasing exploration results in
sufficiently high learning gains, the short-term cost of this exploration may be
outweighed by long-term benefits, as it would increase the quality of exploitative
result lists later on.

Table 3 shows our results for comparing runs with varying amounts of explo-
ration (r ∈ [0.2, 1.0]) to the purely exploitative baseline (r = 0.0). The best runs
per row are highlighted in bold and significant differences are marked as described
above. For the perfect click model, the best performance is achieved in the baseline
settings for 7 out of 9 datasets, ranging from 103.05 (TD2003 ) to 124.75 (HP-

2003 ). For these datasets, the best learning is achieved at low exploration rates,
so that increasing exploration cannot lead to long-term benefits. The modest im-
provement in offline performance at slightly higher exploration rates (e.g., as for
datasets TD2003 and TD2004 at r = 0.2) is not large enough to outweigh the cost
of the increased exploration.
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Table 3 Results for the pairwise approach. Online performance (in terms of cumulative
NDCG) over 1000 iterations.

r 0.0 0.2 0.4 0.6 0.8 1.0

click model: perfect

HP2003 124.75 122.32 109.82H 89.50H 61.12H 1.35H

HP2004 115.08 102.15H 87.14H 72.64H 48.79H 1.14H

NP2003 115.75 110.72 96.21H 87.43H 54.94H 1.84H

NP2004 111.26 104.43 94.37H 76.60H 52.44H 1.17H

TD2003 103.05 98.88 85.37H 69.65H 43.63H 8.23H

TD2004 106.77 103.93 83.06H 65.56H 44.50H 14.62H

OHSUMED 119.13 134.53N 127.31N 119.68 111.42H 100.44H

MQ2007 104.12 107.06N 105.50N 101.53H 95.96H 90.13H

MQ2008 104.01 103.38 98.96H 93.70H 87.58H 80.60H

click model: navigational

HP2003 104.99 111.01 108.15 102.48 69.91H 1.39H

HP2004 91.69 110.26M 107.83M 82.70 57.20H 1.27H

NP2003 115.85 110.40 106.50 91.94H 61.19H 1.88H

NP2004 93.79 116.11N 106.39 89.67 64.20H 1.07H

TD2003 64.43 85.20N 77.85N 66.59 42.80H 8.08H

TD2004 87.59 97.90N 82.91 66.31H 45.46H 14.30H

OHSUMED 127.05 129.73 123.39H 117.64H 110.04H 100.81H

MQ2007 101.68 102.88M 101.99 99.13H 95.08H 90.05H

MQ2008 100.16 100.41 97.18H 93.06H 87.31H 81.23H

click model: informational

HP2003 7.21 40.39N 72.60N 66.52N 55.31N 1.37H

HP2004 6.39 29.81N 51.81N 67.20N 46.30N 1.11H

NP2003 5.75 24.39N 55.16N 60.57N 45.04N 1.90H

NP2004 5.64 23.95N 69.22N 65.58N 52.01N 1.21H

TD2003 7.47 23.64N 43.92N 43.96N 36.25N 7.85
TD2004 17.31 50.10N 60.12N 54.58N 38.44N 14.48O

OHSUMED 102.60 121.48N 122.06N 116.55N 109.53N 101.12
MQ2007 92.76 96.58N 98.19N 96.66N 95.43N 90.00H

MQ2008 90.00 91.14 92.45N 91.12 86.88H 81.69H

Exceptions are the datasets OHSUMED and MQ2007. For both datasets, on-
line performance improves significantly when the exploration rate is increased to
r = 0.2, with a relative increase of 12.9% for OHSUMED and 2.8% for MQ2007.
As discussed above, these datasets have more relevant documents per query. Con-
sequently, the expected utility is high, even when result lists are randomized (this
can also be observed when comparing online performance at the purely exploratory
setting r = 1.0). As a result, the cost of exploration is relatively low and easily
outweighed by the long-term learning gains.

In the relatively reliable navigational click model, optimal online performance is
achieved at the slightly higher exploration rate of r = 0.2 for all but one dataset.
For 5 of these datasets, this improvement is significant when compared to the
baseline setting. Compared to the perfect click model, online performance with
the noisier navigational model is typically lower, as expected. The performance
loss due to noise is between 3.5% (MQ2008 ) and 11.0% (HP2003 ). One exception
is the dataset NP2003, for which learning is not strongly affected by the small
increase in noise and where performance is close to identical to the perfect click
model. The second exception is the dataset NP2004, for which online performance
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for the navigational click model at the best settings (r = 0.2) is 4.4% higher than for
the best setting and the perfect click model. Interestingly, this result demonstrates
that a small amount of noise and mild exploration can lead to a better exploration
of the solution space and an improvement in online performance.

As in earlier results, we see a difference between datasets with high and low
ratios of relevant documents. For datasets with a relatively low ratio of relevant
documents (HP*, NP*, and TD* ) the relative improvement in online performance
at this higher exploration rate is typically big (up to 32.2% for the dataset TD-

2003 ). Although the short-term cost of exploration for these datasets is high, this
high cost is outweighed by even higher long-term benefits (being able to rank the
few relevant documents well). For datasets with a high ratio of relevant documents,
both the cost of exploration, and its long-term benefits are small. This leads to
relative improvements of between 0.3% (MQ2008 ) and 2.1% (OHSUMED). For
dataset NP2003, increased exploration does not lead to better online performance.

In the noisier informational click model, the trends observed for the naviga-

tional click model continue. Performance in the purely exploitative setting is sub-
stantially lower than for the other click models, as the increase in noise results
in lower learning gains and therefore lower online performance. In this setting,
the cost of exploration decreases relative to its benefit, so optimal performance
is seen at higher exploration rates. For 6 datasets, the best online performance
is achieved at r = 0.4; for the remaining 3 datasets the best setting is r = 0.6.
All improvements are statistically significant when compared to the purely ex-
ploitative baseline. For the datasets with a low ratio of relevant documents, online
performance improves by as much as an order of magnitude. For datasets with
a high ratio of relevant documents, improvements range from 2.7% (MQ2008 ) to
19.0% (OHSUMED). Compared to the navigational click model, online performance
drops for all datasets, as expected. The increase in noise leads to a drop in online
performance of between 4.6% (MQ2007 ) and 48.4% (TD2003 ).

Overall, for the pairwise approach the effect of balancing exploration and
exploitation depends both on noise in user feedback and characteristics of the
datasets. When feedback is reliable, online performance is best in the purely ex-
ploitative (baseline) setting. However, the pairwise baseline approach does not
learn well when feedback is noisy. Increasing the exploration rate can partially
compensate for this. As a result, the best online performance under noisy feed-
back is achieved at r = 0.4 and r = 0.6, for which result lists contain about one
half exploratory and one half exploitative documents. These findings confirm our
hypothesis that balancing exploration and exploitation in the pairwise approach
improves online performance.

5.2 Listwise learning

As with the pairwise approach, we start by evaluating the final performance of
the listwise baseline approach (k = 0.5) in terms of standard evaluation measures.
Results for the perfect click model after 1000 iterations are listed in Table 4. In
this setting, performance is slightly lower than for the pairwise approach for 6 of
the 9 datasets used (except for TD2003, TD2004, and OHSUMED). Despite the
limited information available to the algorithm (relative quality of the result list
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Table 4 NDCG@10, P@10, and MAP for the listwise baseline algorithm (perfect click model).

NDCG@10 P@10 MAP

HP2003 0.792 0.102 0.721
HP2004 0.770 0.096 0.676
NP2003 0.761 0.090 0.649
NP2004 0.787 0.093 0.659
TD2003 0.296 0.152 0.231
TD2004 0.298 0.236 0.206
OHSUMED 0.422 0.488 0.437
MQ2007 0.375 0.335 0.410
MQ2008 0.488 0.238 0.447

instead of explicit relevance judgment per document), performance is competitive
with current supervised learning to rank algorithms (Liu, 2009).
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Fig. 4 Final performance (with 5% confidence intervals) over time for the datasets (a) MQ-
2007 and (b) NP2003 for the perfect click model and k ∈ {0.1, 0.2, 0.5}.

Figure 4 shows the learning curves for the datasets MQ2007 and NP2003 at
different settings of k and the perfect click model. In contrast to the pairwise
approach, there is no significant difference in performance after 1000 iterations
for either dataset. For NP2003, learning in the fully exploratory setting (k = 0.5)
is slightly faster than in other settings. This is expected, as the best feedback
is available at maximal exploration. However, learning at lower exploration rates
quickly catches up. Thus, for the listwise approach the exploration rate does not
appear to have a significant effect on offline performance when feedback is perfect.
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Fig. 5 Final performance (with 5% confidence intervals) over time for the dataset NP2003
for (a) navigational, and (b) informational click models and k ∈ {0.1, 0.2, 0.5}.
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Learning curves for the navigational and informational click models are shown
in Figure 5. As expected, learning is faster when feedback is more reliable. For the
idealized perfect click model, final performance after 1000 iterations ranges between
0.777 and 0.785 for different settings of k. For the noisy informational click model,
final performance is between 0.412 and 0.546. Although final performance drops
substantially as implicit feedback becomes extremely noisy, performance improves
over time for all datasets as there is still a signal, i.e., relevant documents are more
likely to be clicked than non-relevant ones.

Once again there is an interaction effect between click model and exploration
rate, although it is different from that of the pairwise approach. Here, there is no
significant difference between the final performance at different settings of k under
the perfect click model. Under the navigational click model, the effect of noise is
small, and results are similar to the perfect click model. However, in the informa-

tional click model, variance increases and there is a large difference between final
performance at different settings of k. This is a direct and expected consequence
of the noise in inferred feedback. More surprising is that final performance im-
proves for smaller k, since we expected feedback to be most reliable for the fully
exploratory setting k = 0.5. Instead, it appears that, since bias is only partially
compensated for (cf., §3), the bias that remains at lower values of k smoothes over
some of the noise in the click model. At lower exploration rates, fewer results from
the exploratory list are presented and it becomes harder for the exploratory list to
win the comparison. Thus, instead of noisier updates, the algorithm makes fewer,
more reliable updates that on average result in greater performance gains.

Balancing exploration and exploitation for the listwise approach Our main
results for the listwise approach are shown in Table 5. Here, we take the original,
purely exploratory, form of the algorithm as the baseline (k = 0.5) against which
we compare exploit runs (k ∈ [0.1, 0.4]). With the perfect click model, all lower
settings of k outperform the baseline in all datasets. For k < 0.4, all improvements
over the baseline are statistically significant. The improvements range from 4.1%
(OHSUMED) to 12.35% (NP2004 ).

Results for the navigational click model are similar. For all datasets, there are
several lower settings of k which outperform the baseline. For all but one dataset
(MQ2007 ), these improvements are statistically significant. Improvements range
from 0.54% (MQ2007 ) to 21.9% (NP2003 ).

The trend continues for the informational click model. Again, more exploitative
settings outperform the purely exploratory baseline in all cases. For 7 out of 9
cases the improvements are statistically significant. The improvement ranges up
to 35.9% for the dataset HP2004.

Together, these results demonstrate that, for all click models and all datasets,
balancing exploration and exploitation can significantly improve online perfor-
mance over the purely exploratory baseline. Comparing cumulative performance
listed in Table 5 with final performance in Table 4, we find that cumulative perfor-
mance does not depend only on final performance. For example, NDCG@10 and
MAP for HP2003 are higher than for OHSUMED, but cumulative performance is
similar (precision scores are low for HP2003 because there are few relevant doc-
uments in general, and are not a good indicator of the relative quality of result
rankings). The main factors affecting cumulative performance are the speed of
learning and how effectively early learning gains are exploited. Thus, these results
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Table 5 Results for the listwise approach. Cumulative NDCG for baseline (k = 0.5) and
exploit (k ∈ [0.1, 0.4]) runs.

k 0.5 0.4 0.3 0.2. 0.1

click model: perfect

HP2003 119.91 125.71N 129.99N 130.55N 128.50N

HP2004 109.21 111.57 118.54N 119.86N 116.46N

NP2003 108.74 113.61N 117.44N 120.46N 119.06N

NP2004 112.33 119.34N 124.47N 126.20N 123.70N

TD2003 82.00 84.24 88.20N 89.36N 86.20N

TD2004 85.67 90.23N 91.00N 91.71N 88.98M

OHSUMED 128.12 130.40N 131.16N 133.37N 131.93N

MQ2007 96.02 97.48 98.54N 100.28N 98.32N

MQ2008 90.97 92.99N 94.03N 95.59N 95.14N

click model: navigational

HP2003 102.58 109.78N 118.84N 116.38N 117.52N

HP2004 89.61 97.08N 99.03N 103.36N 105.69N

NP2003 90.32 100.94N 105.03N 108.15N 110.12N

NP2004 99.14 104.34M 110.16N 112.05N 116.00N

TD2003 70.93 75.20N 77.64N 77.54N 75.70M

TD2004 78.83 80.17 82.40M 83.54N 80.98
OHSUMED 125.35 126.92M 127.37N 127.94N 127.21
MQ2007 95.50 94.99 95.70 96.02 94.94
MQ2008 89.39 90.55 91.24M 92.36N 92.25N

click model: informational

HP2003 59.53 63.91 61.43 70.11M 71.19N

HP2004 41.12 52.88N 48.54M 55.88N 55.16N

NP2003 53.63 53.64 57.60 58.40 69.90N

NP2004 60.59 63.38 64.17 63.23 69.96M

TD2003 52.78 52.95 51.58 55.76 57.30
TD2004 58.49 61.43 59.75 62.88M 63.37
OHSUMED 121.39 123.26 124.01M 126.76N 125.40N

MQ2007 91.57 92.00 91.66 90.79 90.19
MQ2008 86.06 87.26 85.83 87.62 86.29

underscore the inadequacy of final performance as an evaluation measure for online
learning to rank algorithms.

The best setting for exploration rate k is 0.1 or 0.2 in all but two cases. A
setting of k = 0.2 means that by injecting, on average, only two documents from
an exploratory list, the algorithm learns effectively and achieves good online per-
formance for all levels of noise in click feedback. This means that surprisingly little
exploration is sufficient for good performance and that the original listwise algo-
rithm explores too much. In contrast, the best setting for the pairwise approach
depends on the amount of noise in the click model. When feedback is perfect, little
to no exploration is needed. For the informational click model, the optimal setting
of r ∈ {0.4, 0.6} means that up to 60% of the result list needs to be exploratory.

While balancing exploration and exploitation improves performance for all
datasets, the magnitude of these improvements differs substantially. For example,
for the navigational click model, the relative improvement between the baseline
and best settings for NP2003 is 21.9%, while for MQ2007 the difference is only
0.54%. Like the differences observed under the pairwise approach, these are a con-
sequence of the differences in the relative number of relevant documents per query.
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For datasets with few relevant documents, the differences between the exploitative
and exploratory document lists are large, leading to a high cost of exploration but
also high potential gains if this exploration leads to better learning. For datasets
MQ2007, MQ2008, and OHSUMED, which contain a high ratio of relevant docu-
ments, the cost of exploration and the potential long-term gains from improved
learning are relatively small. Note that, in realistic settings, it is likely that more
candidate documents are considered, so the effect of exploiting more is likely to
be stronger.

Cumulative performance is also affected by noise in click feedback, as observed
in the results obtained for the different click models. Performance is highest with
perfect feedback, and decreases as feedback becomes noisier. Performance on some
datasets is more strongly affected by noisy feedback. For the HP, NP, and TD

datasets, performance for the informational model drops substantially. This may
again be related to the large number of non-relevant documents in these datasets.
As finding a good ranking is harder, noise has a stronger effect. Despite this drop
in performance, balancing exploration and exploitation consistently leads to better
cumulative performance than the purely exploratory baseline.

5.3 Comparing the pairwise and listwise approach

For both the pairwise and the listwise approaches, our results confirm our hypoth-
esis that a balance between exploration and exploitation is needed to optimize
online performance. The mechanisms of how such a balance affects online perfor-
mance, however, differ between the two learning approaches. Below, we first discuss
how exploration impacts performance for both approaches. Then, we turn to an
overall comparison of the online and offline performance of the two approaches,
and conclude with implications for putting them in practice.

An unexpected outcome of our analysis is that increasing exploration does
not always lead to better learning, i.e., better offline performance. As a result,
exploitation can be “free,” i.e., the current best solution is also the most useful for
collecting feedback for learning. We observed this, e.g., for the pairwise approach
under perfect click feedback. As click feedback on the exploitative list automatically
focuses on an informative part of the document space, increasing exploration does
not result in better learning. For the listwise approach, differences in learning
for different exploration rates are small under the perfect click model. However,
exploration does lead to faster convergence, so exploitation has a small cost.

When click feedback is noisy, the pairwise approach benefits from increased ex-
ploration, while the opposite is true for the listwise approach. Exploitation intro-
duces bias in the pairwise approach, which focuses feedback on a relatively narrow
part of the solution space that is not informative. Depending on the amount of
noise, this effect can result in low final performance. Increasing exploration reduces
this bias and improves final performance. As a result, the optimal balance between
exploration and exploitation shifts towards increased exploration as feedback be-
comes noisier. For the listwise approach, an increase in noise also results in some
bias. However, in this approach, the bias does not affect the inferred preference
judgments (it only increases their variance) but acts as a safeguard against too
frequent updates based on noisy data. This leads to less frequent but more reli-
able updates of the weight vector, thereby improving offline performance. Thus,
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as noise in click feedback increases, the long-term cost of exploitation increases for
the pairwise approach, while it decreases for the listwise approach.

Final performance of the pairwise algorithm with the perfect click model is
generally high, compared to state-of-the-art supervised learning to rank methods.
Final performance also tends to be higher than for the listwise approach (winning
on 6 out of the 9 datasets studied), although these results should be considered
preliminary as we did not tune the approaches to the characteristics of the datasets
and higher performance may be possible.

In terms of online performance, however, the two approaches perform similarly,
with the listwise approach beating the pairwise approach on 4 datasets. An ad-
vantage of the listwise approach is that the cost of exploitation can be small if the
exploratory document list is similar to the exploitative one, which is more likely as
learning progresses. For the pairwise approach, the cost of exploration is generally
high, so the approach has a disadvantage when a similar level of exploration is
required for reasonable learning gains. Thus, at similar final performance and ex-
ploration rates, the listwise approach tends to achieve higher online performance
than the pairwise approach.

Differences in how implicit feedback is processed by the two approaches lead
to pronounced differences in their behavior when feedback is noisy. The perfor-
mance of the pairwise approach can drop dramatically, especially in the original
exploitative setting where often no learning is possible. However, balancing explo-
ration and exploitation allows the algorithm to recover its performance. A rela-
tively high amount of exploration, with about half the result list constructed from
exploratory documents, is needed to achieve good learning outcomes and high on-
line performance. The drop in performance due to noise is much less pronounced
for the listwise method. Online performance of the algorithm in its original, fully
exploratory, version is often an order of magnitude higher than for the original ver-
sion of the pairwise approach. A possible reason is that, by aggregating feedback
over document lists, the algorithm becomes inherently robust to noise. Increasing
exploitation can further improve online performance. However, after balancing ex-
ploration and exploitation, the two algorithms perform similarly, with the pairwise
approach winning on 4 datasets, and the listwise approach winning on 5.

Our analysis suggests that the pairwise and listwise approaches are appropriate
for learning from implicit feedback in different settings. If the implicit feedback is
known to be reliable, then the pairwise approach should be preferred as it results
in good offline performance. Also, in this setting, the pairwise approach requires
little to no exploration for substantial learning gains. Thus, it can exploit aggres-
sively, leading to high online performance. However, if feedback is expected to be
noisy, the listwise approach should be preferred. In contrast to the pairwise ap-
proach, it safeguards against dramatic loss in offline performance, as long as there
is some signal in the feedback that prefers truly relevant documents. In addition,
under noisy feedback, the listwise approach requires much less exploration than
the pairwise approach, and the cost of exploration is lower.

6 Conclusion

We demonstrated that balancing exploration and exploitation can substantially
and significantly improve online performance in online learning to rank for IR.
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We introduced two methods for balancing exploration and exploitation in this
setting, based on one pairwise and one listwise learning approach. To the best of
our knowledge, these are the first algorithms that can achieve such a balance in a
setting where only relative feedback is available.

Our experimental results demonstrated that the effect of balancing exploration
and exploitation is complex and that there is an interaction effect between the
amount of exploitation and the amount of noise in user feedback. When feedback
is reliable, both approaches learn well and a high amount of exploitation can be
tolerated, which leads to high online performance. As feedback becomes noisier,
learning under high exploitation becomes unreliable for the pairwise approach. A
higher amount of exploration is required to maintain reasonable performance. For
the listwise approach, however, a smoothing effect occurs under high exploitation,
so that exploitation is essentially cost-free. This allows the listwise approach to
maintain good performance under noisy feedback with a surprisingly small amount
of exploration.

Our results also shed new light on the relative performance of online learning to
rank methods. The pairwise approach makes very effective use of implicit feedback
when there is little noise, leading to final performance comparable to supervised
learning to rank approaches. However, it is strongly affected by noise in user feed-
back. Our results demonstrated that a balance of exploration and exploitation is
crucial in such a setting. For the listwise approach, learning can be slower but,
due to the aggregation of feedback over multiple result lists, this approach is more
robust to noise.

After demonstrating the importance of balancing exploration and exploitation
in online learning to rank, a crucial question is how best to explore. This is the
direction we are planning to pursue in future work. For the pairwise approach, the
cost of random exploration is high. Exploration methods based on active learning
approaches (Donmez and Carbonell, 2009; Tian and Lease, 2011; Xu et al, 2007)
are a promising alternative that may reduce its effect on short-term performance,
while maintaining or even improving long-term learning. For the listwise approach,
the current form of random exploration can lead to inefficient learning. Unlike for
the pairwise setting, we are not aware of any active learning methods for the list-
wise setting that could be used for smarter exploration. Obvious starting points are
methods for exploration in policy search reinforcement learning (Kalyanakrishnan
and Stone, 2010; Whiteson and Stone, 2006).

A straightforward way to further improve online performance would be to use
annealing schedules that reduce the exploration rate over time, as is common
practice in RL. While this technique could improve absolute performance, it is not
expected to affect the qualitative outcomes of our analysis. In realistic settings its
applicability may be limited as such problems are likely non-stationary, meaning
that the exploration rate should never become so small that the retrieval system
cannot adapt to changes in user preferences. A more interesting question is whether
and how the system could automatically adjust the amount of exploration to a
specific setting.

In this paper we focused on evaluating our methods using simulations. This
had the advantage that we could conduct experiments for various settings, such as
varying the amount of noise in click feedback. Naturally, assumptions underlying
these simulations need to be tested before moving these methods to a real setting.
Based on our results, we believe that it is particularly important to study the level
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of noise in user feedback, and collection characteristics such as the typical ratio
of relevant and non-relevant documents before applying the methods in a specific
environment. Based on such statistics, an informed choice about the appropriate
online learning approach and a good balance of exploration and exploitation can
be made.
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