
Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

Deep Variational Reinforcement Learning

trajectories since distinct histories can lead to similar or
identical beliefs.

The premise of this work is that deep policy learning for
POMDPs can be improved by taking less of a black box
approach than DRQN and ADRQN. While we do not want to
assume prior knowledge of the transition and observation
functions or the latent state representation, we want to allow
the agent to learn models of them and infer the belief state
using this learned model.

To this end, we propose DVRL, which implements this ap-
proach by providing a helpful inductive bias to the agent.
In particular, we develop an algorithm that can learn an
internal generative model and use it to perform approximate
inference to update the belief state. Crucially, the generative
model is not only learned based on an ELBO objective, but
also by how well it enables maximisation of the expected
return. This ensures that, unlike in an unsupervised appli-
cation of variational autoencoders (VAEs), the latent state
representation and the inference performed on it are suitable
for the ultimate control task. Specifically, we develop an
approximation to the ELBO based on autoencoding sequen-
tial Monte Carlo (AESMC) (Le et al., 2018), allowing joint
optimisation with the n-step policy gradient update. Uncer-
tainty in the belief state is captured by a particle ensemble.
A high-level overview of our approach in comparison to
previous RNN-based methods is shown in Figure 1.

We evaluate our approach on Mountain Hike and several
flickering Atari games. On Mountain Hike, a low dimen-
sional, continuous environment, we can show that DVRL is
better than an RNN based approach at inferring the required
information from past observations for optimal action se-
lection in a simple setting. Our results on flickering Atari
show that this advantage extends to complex environments
with high dimensional observation spaces. Here, partial
observability is introduced by (1) using only a single frame
as input at each time step and (2) returning a blank screen
instead of the true frame with probability 0.5.

2. Background
In this section, we formalise POMDPs and provide back-
ground on recent advances in VAEs that we use. Lastly, we
describe the policy gradient loss based on n-step learning
and A2C.

2.1. Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) is
a tuple (S,A,O, F, U,R, b0), where S is the state space, A
the action space, and O the observation space. We denote
as st ∈ S the latent state at time t, and the distribution
over initial states s0 as b0, the initial belief state. When
an action at ∈ A is executed, the state changes accord-

ing to the transition distribution, st+1 ∼ F (st+1|st, at).
Subsequently, the agent receives a noisy or partially oc-
cluded observation ot+1 ∈ O according to the distribution
ot+1 ∼ U(ot+1|st+1, at), and a reward rt+1 ∈ R according
to the distribution rt+1 ∼ R(rt+1|st+1, at).

An agent acts according to its policy π(at|o≤t, a<t) which
returns the probability of taking action at at time t, and
where o≤t = (o1, . . . , ot) and a<t = (a0, . . . , at−1) are the
observation and action histories, respectively. The agent’s
goal is to learn a policy π that maximises the expected future
return

J = Ep(τ)

[
T∑
t=1

γt−1rt

]
, (1)

over trajectories τ = (s0, a0, . . . , aT−1, sT) induced by its
policy1, where 0 ≤ γ < 1 is the discount factor. We follow
the convention of setting a0 to no-op (Zhu et al., 2017).

In general, a POMDP agent must condition its actions on the
entire history (o≤t, a<t) ∈ Ht. The exponential growth in
t ofHt can be addressed, e.g., with suffix trees (McCallum
& Ballard, 1996; Shani et al., 2005; Bellemare et al., 2014;
Bellemare, 2015; Messias & Whiteson, 2017). However,
those approaches suffer from large memory requirements
and are only suitable for small discrete observation spaces.

Alternatively, it is possible to infer the filtering distribution
p(st|o≤t, a<t) =: bt, called the belief state. This is a suffi-
cient statistic of the history that can be used as input to an
optimal policy π?(at|bt). The belief space does not grow
exponentially, but the belief update step requires knowledge
of the model:

bt+1 =

∫
btU(ot+1|st+1, at)F (st+1|st, at)dst∫ ∫

btU(ot+1|st+1, at)F (st+1|st, at) dst dst+1
.

(2)

2.2. Variational Autoencoder

We define a family of priors pθ(s) over some latent state
s and decoders pθ(o|s) over observations o, both param-
eterised by θ. A variational autoencoder (VAE) learns θ
by maximising the sum of log marginal likelihood terms∑N
n=1 log pθ(o

(n)) for a dataset (o(n))Nn=1 where pθ(o) =∫
pθ(o|s)pθ(s) ds (Rezende et al., 2014; Kingma & Welling,

2014)) . Since evaluating the log marginal likelihood is in-
tractable, the VAE instead maximises a sum of ELBOs where
each individual ELBO term is a lower bound on the log
marginal likelihood,

ELBO(θ, φ, o) = Eqφ(s|o)

[
log

pθ(o|s)pθ(s)
qφ(s|o)

]
, (3)

1The trajectory length T is stochastic and depends on the time
at which the agent-environment interaction ends.

Deep Variational Reinforcement Learning

for a family of encoders qφ(s|o) parameterised by φ. This
objective also forces qφ(s|o) to approximate the posterior
pθ(s|o) under the learned model. Gradients of (3) are esti-
mated by Monte Carlo sampling with the reparameterisation
trick (Kingma & Welling, 2014; Rezende et al., 2014).

2.3. VAE for Time Series

For sequential data, we assume that a series of latent states
s≤T gives rise to a series of observations o≤T . We consider
a family of generative models parameterised by θ that con-
sists of the initial distribution pθ(s0), transition distribution
pθ(st|st−1) and observation distribution pθ(ot|st). Given a
family of encoder distributions qφ(st|st−1, ot), we can also
estimate the gradient of the ELBO term in the same manner
as in (3), noting that:

pθ(s≤T , o≤T) = pθ(s0)
T∏
t=1

pθ(st|st−1)pθ(ot|st), (4)

qφ(s≤T |o≤T) = pθ(s0)

T∏
t=1

qφ(st|st−1, ot), (5)

where we slightly abuse notation for qφ by ignoring the fact
that we sample from the model pθ(s0) for t = 0. Le et al.
(2018), Maddison et al. (2017) and Naesseth et al. (2018)
introduce a new ELBO objective based on sequential Monte
Carlo (SMC) (Doucet & Johansen, 2009) that allows faster
learning in time series:

ELBOSMC(θ, φ, o≤T) = E

[
T∑
t=1

log

(
1

K

K∑
k=1

wkt

)]
, (6)

where K is the number of particles and wkt is the weight
of particle k at time t. Each particle is a tuple containing
a weight wkt and a value skt which is obtained as follows.
Let sk0 be samples from pθ(s0) for k = 1, . . . ,K. For
t = 1, . . . , T , the weights wkt are obtained by resampling
the particle set (skt−1)Kk=1 proportionally to the previous
weights and computing

wkt =
pθ(s

k
t |s

ukt−1

t−1)pθ(ot|skt)

qφ(skt |s
ukt−1

t−1 , ot)
, (7)

where skt corresponds to a value sampled from

qφ(·|su
k
t−1

t−1 , ot) and s
ukt−1

t−1 corresponds to the re-
sampled particle with the ancestor index uk0 = k

and ukt−1 ∼ Discrete((wkt−1/
∑K
j=1 w

j
t−1)Kk=1) for

t = 2, . . . , T .

2.4. A2C

One way to learn the parameters ρ of an agent’s policy
πρ(at|st) is to use n-step learning with A2C (Dhariwal

et al., 2017; Wu et al., 2017), the synchronous simplification
of asynchronous advantage actor-critic (A3C) (Mnih et al.,
2016). An actor-critic approach can cope with continuous
actions and avoids the need to draw state-action sequences
from a replay buffer. The method proposed in this paper is
however equally applicable to other deep RL algorithms.

For n-step learning, starting at time t, the current policy
performs ns consecutive steps in ne parallel environments.
The gradient update is based on this mini-batch of size
ne × ns. The target for the value-function Vη(st+i), i =
0, . . . , ns − 1, parameterised by η, is the appropriately dis-
counted sum of on-policy rewards up until time t+ ns and
the off-policy bootstrapped value V −η (st+ns). The minus
sign denotes that no gradients are propagated through this
value. Defining the advantage function as

At,iη (st+i, at+i) :=

ns−i−1∑
j=0

γjrt+i+j

+ γns−iV −η (st+ns)− Vη(st+i) ,

(8)

the A2C loss for the policy parameters ρ at time t is

LAt (ρ) = − 1

nens
ne∑

envs

ns−1∑
i=0

log πρ(at+i|st+i)At,i,−η (st+i, at+i).

(9)

and the value function loss to learn η can be written as

LVt (η) =
1

nens

ne∑
envs

ns−1∑
i=0

At,iη (st+i, at+i)
2. (10)

Lastly, an entropy loss is added to encourage exploration:

LHt (ρ) = − 1

nens

ne∑
envs

ns−1∑
i=0

H(πρ(·|st+i)), (11)

where H(·) is the entropy of a distribution.

3. Deep Variational Reinforcement Learning
Fundamentally, there are two approaches to aggregating the
history in the presence of partial observability: remembering
features of the past or maintaining beliefs.

In most previous work, including ADRQN (Zhu et al., 2017),
the current history (a≤t, o<t) is encoded by an RNN, which
leads to the recurrent update equation for the latent state ht:

ht = RNNUpdateφ(ht−1, at−1, ot) . (12)

Since this approach is model-free, it is unlikely to approx-
imate belief update steps, instead relying on memory or
simple heuristics.

Deep Variational Reinforcement Learning

Inspired by the premise that a good way to solve many
POMDPs involves (1) estimating the transition and obser-
vation model of the environment, (2) performing inference
under this model, and (3) choosing an action based on the
inferred belief state, we propose deep variational reinforce-
ment learning (DVRL). It extends the RNN-based approach
to explicitly support belief inference. Training everything
end-to-end shapes the learned model to be useful for the RL
task at hand, and not only for predicting observations.

We first explain our baseline architecture and training
method in Section 3.1. For a fair comparison, we modify
the original architecture of Zhu et al. (2017) in several ways.
We find that our new baseline outperforms their reported
results in the majority of cases.

In Sections 3.2 and 3.3, we explain our new latent belief
state b̂t and the recurrent update function

b̂t = BeliefUpdateθ,φ(b̂t−1, at−1, ot) (13)

which replaces (12). Lastly, in Section 3.4, we describe our
modified loss function, which allows learning the model
jointly with the policy.

3.1. Improving the Baseline

While previous work often used Q-learning to train the
policy (Hausknecht & Stone, 2015; Zhu et al., 2017; Foerster
et al., 2016; Narasimhan et al., 2015), we use n-step A2C.
This avoids drawing entire trajectories from a replay buffer
and allows continuous actions.

Furthermore, since A2C interleaves unrolled trajectories and
performs a parameter update only every ns steps, it makes it
feasible to maintain an approximately correct latent state. A
small bias is introduced by not recomputing the latent state
after each gradient update step.

We also modify the implementation of backpropagation-
throught-time (BPTT) for n-step A2C in the case of policies
with latent states. Instead of backpropagating gradients
only through the computation graph of the current update
involving ns steps, we set the size of the computation graph
independently to involve ng steps. This leads to an aver-
age BPTT-length of (ng − 1)/2.2 This decouples the bias-
variance tradeoff of choosing ns from the bias-runtime trade-
off of choosing ng. Our experiments show that choosing
ng > ns greatly improves the agent’s performance.

3.2. Extending the Latent State

For DVRL, we extend the latent state to be a set of K par-
ticles, capturing the uncertainty in the belief state (Thrun,
2000; Silver & Veness, 2010). Each particle consists of the

2This is implemented in PyTorch using the
retain graph=True flag in the backward() function.

triplet (hkt , z
k
t , w

k
t) (Chung et al., 2015). The value hkt of

particle k is the latent state of an RNN; zkt is an additional
stochastic latent state that allows us to learn stochastic tran-
sition models; and wkt assigns each particle an importance
weight.

Our latent state b̂t is thus an approximation of the belief
state in our learned model

pθ(h≤T , z≤T , o≤T |a<T) = pθ(h0)

T∏
t=1

pθ(zt|ht−1, at−1)

pθ(ot|ht−1, zt, at−1)δψRNN
θ (ht−1,zt,at−1,ot)(ht), (14)

with stochastic transition model pθ(zt|ht−1, at−1), decoder
pθ(ot|ht−1, zt, at−1), and deterministic transition function
ht = ψRNN

θ (ht−1, zt, at−1, ot) which is denoted using the
delta-distribution δ and for which we use an RNN. The
model is trained to jointly optimise the ELBO and the ex-
pected return.

3.3. Recurrent Latent State Update

To update the latent state, we proceed as follows:

ukt−1 ∼ Discrete

(
wkt−1∑K
j=1 w

j
t−1

)
(15)

zkt ∼ qφ(zkt |h
ukt−1

t−1 , at−1, ot) (16)

hkt = ψRNN
θ (h

ukt−1

t−1 , z
k
t , at−1, ot) (17)

wkt =
pθ(z

k
t |h

ukt−1

t−1 , at−1)pθ(ot|h
ukt−1

t−1 , z
k
t , at−1)

qφ(zkt |h
ukt−1

t−1 , at−1, ot)
. (18)

First, we resample particles based on their weight by draw-
ing ancestor indices ukt−1. This improves model learning
(Le et al., 2018; Maddison et al., 2017) and allows us to
train the model jointly with the n-step loss (see Section 3.4).

For k = 1 . . .K, new values for zkt are sampled from the

encoder qφ(zkt |h
ukt−1

t−1 , at−1, ot) which conditions on the re-

sampled ancestor values h
ukt−1

t−1 as well as the last actions
at−1 and current observation ot. Latent variables zt are
sampled using the reparameterisation trick. The values zkt ,

together with h
ukt−1

t−1 , at−1 and ot, are then passed to the
transition function ψRNN

θ to compute hkt .

The weights wkt measure how likely each new latent state
value (zkt , h

k
t) is under the model and how well it explains

the current observation.

To condition the policy on the belief b̂t = (zkt , h
k
t , w

k
t)Kk=1,

we need to encode the set of particles into a vector represen-
tation ĥt. We use a second RNN that sequentially takes in
each tuple (zkt , h

k
t , w

k
t) and its last latent state is ĥt.

Deep Variational Reinforcement Learning

Figure 2: Overview of DVRL. We do the following K times to compute our new belief b̂t: Sample an ancestor index ukt−1 based on the

previous weights w1:K
t−1 (Eq. 15). Pick the ancestor particle value h

ukt−1
t−1 and use it to sample a new stochastic latent state zkt from the

encoder qφ (Eq. 16). Compute hkt (Eq. 17) and wkt (Eq. 18). Aggregate all K values into the new belief b̂t and summarise them into a
vector representation ĥt using a second RNN. Actor and critic can now condition on ĥt and b̂t is used as input for the next timestep. Red
arrows denote random sampling, green arrows the aggregation of K values. Black solid arrows denote the passing of a value as argument
to a function and black dashed ones the evaluation of a value under a distribution. Boxes indicate neural networks. Distributions are
normal or Bernoulli distributions whose parameters are outputs of the neural network.

Additional encoders are used for at, ot and zt; see Appendix
A for details. Figure 2 summarises the entire update step.

3.4. Loss Function

To encourage learning a model, we include the term

LELBO
t (θ, φ) = − 1

nens

ne∑
envs

ns−1∑
i=0

log

(
1

K

K∑
k=1

wkt+i

)
(19)

in each gradient update every ns steps. This leads to the
overall loss:

LDVRL
t (ρ, η, θ, φ) = LAt (ρ, θ, φ) + λHLHt (ρ, θ, φ)+

λV LVt (η, θ, φ) + λELELBO
t (θ, φ) . (20)

Compared to (9), (10) and (11), the losses now also depend
on the encoder parameters φ and, for DVRL, model parame-
ters θ, since the policy and value function now condition on
the latent states instead of st. By introducing the n-step ap-
proximation LELBO

t , we can learn θ and φ to jointly optimise
the ELBO and the RL loss LAt + λHLHt + λV LVt .

If we assume that observations and actions are drawn from
the stationary state distribution induced by the policy πρ,
then LELBO

t is a stochastic approximation to the action-

conditioned ELBO:

1

T
Ep(τ) ELBOSMC(o≤T |a<T) =

1

T
Ep(τ)E

[
T∑
t=1

log

(
1

K

K∑
k=1

wkt

)∣∣∣∣∣ a≤T
]
, (21)

which is a conditional extension of (6) similar to the exten-
sion of VAEs by Sohn et al. (2015). The expectation over
p(τ) is approximated by sampling trajectories and the sum∑T
t=1 over the entire trajectory is approximated by a sum∑t+ns−1
i=t over only a part of it.

The importance of the resampling step (15) in allowing this
approximation becomes clear if we compare (21) with the
ELBO for the importance weighted autoencoder (IWAE) that
does not include resampling (Doucet & Johansen, 2009;
Burda et al., 2016):

ELBOIWAE(o≤T |a<T) = E

[
log

(
1

K

K∑
k=1

T∏
t=1

wkt

)∣∣∣∣∣ a≤T
]
.

(22)
Because this loss is not additive over time, we cannot ap-
proximate it with shorter parts of the trajectory.

4. Related Work
Most existing POMDP literature focusses on planning algo-
rithms, where the transition and observation functions, as
well as a representation of the latent state space, are known

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Deep Variational Reinforcement Learning

DVRL used 30 particles and we set ng = 25 for both RNN
and DVRL. The latent state h for the RNN-encoder archi-
tecture was of dimension 256 and 128 for both z and h for
DVRL. Lastly, λE = 1 and ns = 5 were used, together with
RMSProp with a learning rate of 10−4 for both approaches.

The main difficulty in Mountain Hike is to correctly esti-
mate the current position. Consequently, the achieved return
reflects the capability of the network to do so. DVRL out-
performs RNN based policies, especially for higher levels
of observation noise σo (Figure 4). In Figure 3 we compare
the different trajectories for RNN and DVRL encoders for
the same noise, i.e. εRNN

s,t = εDVRL
s,t and εRNN

o,t = εDVRL
o,t for all

t and σo = 3. DVRL is better able to follow the mountain
ridge, indicating that its inference based history aggregation
is superior to a largely memory/heuristics based one.

The example in Figure 3 is representative but selected for
clarity: The shown trajectories have ∆J(σo = 3) = 20.7
compared to an average value of ∆J̄(σo = 3) = 11.43 (see
Figure 4).

0.0 0.5 1.0 1.5 2.0 2.5

Frames ×107

−250

−200

−150

−100

R
et

u
rn
J̄

DVRL

RNN
σo = 0

σo = 1.5

σo = 3
0 1 2 3

σo

5

10

∆
J̄

Figure 4: Returns achieved in Mountain Hike. Solid lines: DVRL.
Dashed lines: RNN. Colour: Noise levels. Inset: Difference in
performance between RNN and DVRL for same level of noise:
∆J̄(σo) = J̄(DVRL, σo)− J̄(RNN, σo). DVRL achieves slighly
higher returns for the fully observable case and, crucially, its perfor-
mance deteriorates more slowly for increasing observation noise,
showing the advantage of DVRL’s inference computations in en-
coding the history in the presence of observation noise.

5.2. Atari

We chose flickering Atari as evaluation benchmark, since it
was previously used to evaluate the performance of ADRQN
(Zhu et al., 2017) and DRQN (Hausknecht & Stone, 2015).
Atari environments (Bellemare et al., 2013) provide a wide
set of challenging tasks with high dimensional observation
spaces. We test our algorithm on the same subset of games
on which DRQN and ADRQN were evaluated.

Partial observability is introduced by flickering, i.e., by a
probability of 0.5 of returning a blank screen instead of

the actual observation. Furthermore, only one frame is
used as the observation. This is in line with previous work
(Hausknecht & Stone, 2015). We use a frameskip of four3

and for the stochastic Atari environments there is a 0.25
chance of repeating the current action for a second time at
each transition.

DVRL used 15 particles and we set ng = 50 for both agents.
The dimension of h was 256 for both architectures, as was
the dimension of z. Larger latent states decreased the perfor-
mance for the RNN encoder. Lastly, λE = 0.1 and ns = 5
was used with a learning rate of 10−4 for RNN and 2 · 10−4

for DVRL, selected out of a set of 6 different rates based on
the results on ChopperCommand.

Table 1 shows the results for the more challenging stochastic,
flickering environments. Results for the deterministic envi-
ronments, including returns reported for DRQN and ADRQN,
can be found in Appendix A. DVRL significantly outper-
forms the RNN-based policy on five out of ten games and
narrowly underperforms significantly on only one. This
shows that DVRL is viable for high dimensional observation
spaces with complex environmental models.

Table 1: Returns on stochastic and flickering Atari environments,
averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level. Out of ten games, DVRL significantly
outperforms the baseline on five games and underperforms nar-
rowly on only one game. Comparisons against DRQN and ADRQN
on deterministic Atari environments are in Appendix A.

Env DVRL(±std) RNN(±std)

Pong 18.17(±2.67) 6.33(±3.03)
Chopper 6602(±449) 5150(±488)
MsPacman 2221(±199) 2312(±358)
Centipede 4240(±116) 4395(±224)
BeamRider 1663(±183) 1801(±65)
Frostbite 297(±7.85) 254(±0.45)
Bowling 29.53(±0.23) 30.04(±0.18)
IceHockey −4.88(±0.17) −7.10(±0.60)
DDunk −5.95(±1.25) −15.88(±0.34)
Asteroids 1539(±73) 1545(±51)

5.3. Ablation Studies

Using more than one particle is important to accurately ap-
proximate the belief distribution over the latent state (z, h).
Consequently, we expect that higher particle numbers pro-
vide better information to the policy, leading to higher re-
turns. Figure 5a shows that this is indeed the case. This is
an important result for our architecture, as it also implies
that the resampling step is necessary, as detailed in Section
3.4. Without resampling, we cannot approximate the ELBO

3A frameskip of one is used for Asteroids due to known ren-
dering issues with this environment

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

1 Particle

3 Particles

10 Particles

30 Particles

(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

No ELBO

No joint optim

(b) Performance of the full DVRL algorithm
compared to setting λE = 0 (”No ELBO”)
or not backpropagating the policy gradients
through the encoder (”No joint optim”).

0 2 4

Frames ×107

2000

4000

6000

8000

R
et

u
rn

DVRL

RNN

ng = 5

ng = 50

ng = 150

(c) Influence of the maximum backpropaga-
tion length ng on performance. Note that
RNN suffers most from very short lengths.
This is consistent with our conjecture that
RNN relies mostly on memory, not inference.

Figure 5: Ablation studies on flickering ChopperCommand (Atari).

on only ns observations.

Secondly, Figure 5b shows that the inclusion of LELBO

to encourage model learning is required for good perfor-
mance. Furthermore, not backpropagating the policy gradi-
ents through the encoder and only learning it based on the
ELBO (“No joint optim”) also deteriorates performance.

Lastly, we investigate the influence of the backpropaga-
tion length ng on both the RNN and DVRL based policies.
While increasing ng universally helps, the key insight here
is that a short length ng = 5 (for an average BPTT-length
of 2 timesteps) has a stronger negative impact on RNN than
on DVRL. This is consistent with our notion that RNN is
mainly performing memory based reasoning, for which
longer backpropagation-through-time is required: The be-
lief update (2) in DVRL is a one-step update from bt to bt+1,
without the need to condition on past actions and observa-
tions. The proposal distribution can benefit from extended
backpropagation lengths, but this is not necessary. Con-
sequently, this result supports our notion that DVRL relies
more on inference computations to update the latent state.

6. Conclusion
In this paper we proposed DVRL, a method for solving
POMDPs given only a stream of observations, without knowl-
edge of the latent state space or the transition and observa-
tion functions operating in that space. Our method leverages
a new ELBO-based auxiliary loss and incorporates an induc-
tive bias into the structure of the policy network, taking
advantage of our prior knowledge that an inference step is
required for an optimal solution.

We compared DVRL to an RNN-based architecture and found
that we consistently outperform it on a diverse set of tasks,

including a number of Atari games modified to have partial
observability and stochastic transitions.

We also performed several ablation studies showing the
necessity of using an ensemble of particles and of joint
optimisation of the ELBO and RL objective. Furthermore,
the results support our claim that the latent state in DVRL
approximates a belief distribution in a learned model.

Access to a belief distribution opens up several interesting
research directions. Investigating the role of better gen-
eralisation capabilities and the more powerful latent state
representation on the policy performance of DVRL can give
rise to further improvements. DVRL is also likely to benefit
from more powerful model architectures and a disentangled
latent state. Furthermore, uncertainty in the belief state and
access to a learned model can be used for curiosity driven
exploration in environments with sparse rewards.

Acknowledgements
We would like to thank Wendelin Boehmer and Greg Far-
quar for useful discussions and feedback. The NVIDIA
DGX-1 used for this research was donated by the NVIDIA
corporation. M. Igl is supported by the UK EPSRC CDT in
Autonomous Intelligent Machines and Systems. L. Zintgraf
is supported by the Microsoft Research PhD Scholarship
Program. T. A. Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. F. Wood is supported
by DARPA PPAML through the U.S. AFRL under Coop-
erative Agreement FA8750-14-2-0006; Intel and DARPA
D3M, under Cooperative Agreement FA8750-17-2-0093.
S. Whiteson is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement number
637713).

Deep Variational Reinforcement Learning

References
Astrom, Karl J. Optimal control of markov decision pro-

cesses with incomplete state estimation. Journal of math-
ematical analysis and applications, 10:174–205, 1965.

Azizzadenesheli, Kamyar, Lazaric, Alessandro, and Anand-
kumar, Animashree. Reinforcement learning of pomdps
using spectral methods. arXiv preprint 1602.07764, 2016.

Babayan, Benedicte M, Uchida, Naoshige, and Gershman,
Samuel J. Belief state representation in the dopamine
system. Nature communications, 9(1):1891, 2018.

Bakker, Bram. Reinforcement learning with long short-term
memory. In Advances in neural information processing
systems, pp. 1475–1482, 2002.

Barto, Andrew G, Bradtke, Steven J, and Singh, Satinder P.
Learning to act using real-time dynamic programming.
Artificial intelligence, 72(1-2):81–138, 1995.

Bellemare, Marc, Veness, Joel, and Talvitie, Erik. Skip
context tree switching. In International Conference on
Machine Learning, pp. 1458–1466, 2014.

Bellemare, Marc G. Count-based frequency estimation with
bounded memory. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

Bellemare, Marc G, Naddaf, Yavar, Veness, Joel, and Bowl-
ing, Michael. The arcade learning environment: An eval-
uation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013.

Burda, Yuri, Grosse, Roger, and Salakhutdinov, Ruslan.
Importance weighted autoencoders. In ICLR, 2016.

Chung, Junyoung, Kastner, Kyle, Dinh, Laurent, Goel,
Kratarth, Courville, Aaron C, and Bengio, Yoshua. A
recurrent latent variable model for sequential data. In Ad-
vances in neural information processing systems, 2015.

Coquelin, Pierre-Arnaud, Deguest, Romain, and Munos,
Rémi. Particle filter-based policy gradient in pomdps. In
NIPS, 2009.

Deisenroth, Marc Peter and Peters, Jan. Solving nonlinear
continuous state-action-observation pomdps for mechani-
cal systems with gaussian noise. 2012.

Dhariwal, Prafulla, Hesse, Christopher, Klimov, Oleg,
Nichol, Alex, Plappert, Matthias, Radford, Alec, Schul-
man, John, Sidor, Szymon, and Wu, Yuhuai. Openai
baselines, 2017.

Doshi-Velez, Finale, Pfau, David, Wood, Frank, and Roy,
Nicholas. Bayesian nonparametric methods for partially-
observable reinforcement learning. IEEE transactions

on pattern analysis and machine intelligence, 37(2):394–
407, 2015.

Doucet, Arnaud and Johansen, Adam M. A tutorial on parti-
cle filtering and smoothing: Fifteen years later. Handbook
of nonlinear filtering, 12(656-704):3, 2009.

Foerster, Jakob N, Assael, Yannis M, de Freitas, Nando, and
Whiteson, Shimon. Learning to communicate to solve
riddles with deep distributed recurrent q-networks. arXiv
preprint 1602.02672, 2016.

Hausknecht, Matthew and Stone, Peter. Deep recurrent q-
learning for partially observable MDPs. In 2015 AAAI
Fall Symposium Series, 2015.

Heess, Nicolas, Hunt, Jonathan J, Lillicrap, Timothy P, and
Silver, David. Memory-based control with recurrent neu-
ral networks. arXiv preprint 1512.04455, 2015.

Jaderberg, Max, Mnih, Volodymyr, Czarnecki, Woj-
ciech Marian, Schaul, Tom, Leibo, Joel Z, Silver, David,
and Kavukcuoglu, Koray. Reinforcement learning with
unsupervised auxiliary tasks. arXiv preprint 1611.05397,
2016.

Kaelbling, Leslie Pack, Littman, Michael L, and Cassandra,
Anthony R. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 101(1), 1998.

Karkus, Peter, Hsu, David, and Lee, Wee Sun. Qmdp-net:
Deep learning for planning under partial observability. In
Advances in Neural Information Processing Systems, pp.
4697–4707, 2017.

Katt, Sammie, Oliehoek, Frans A, and Amato, Christopher.
Learning in pomdps with monte carlo tree search. In
International Conference on Machine Learning, 2017.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational Bayes. In ICLR, 2014.

Lample, Guillaume and Chaplot, Devendra Singh. Playing
fps games with deep reinforcement learning. In AAAI, pp.
2140–2146, 2017.

Le, Tuan Anh, Igl, Maximilian, Jin, Tom, Rainforth, Tom,
and Wood, Frank. Auto-encoding sequential Monte Carlo.
In ICLR, 2018.

Maddison, Chris J, Lawson, John, Tucker, George, Heess,
Nicolas, Norouzi, Mohammad, Mnih, Andriy, Doucet,
Arnaud, and Teh, Yee. Filtering variational objectives.
In Advances in Neural Information Processing Systems,
2017.

McAllester, David A and Singh, Satinder. Approximate
planning for factored pomdps using belief state simpli-
fication. In Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence, 1999.

Deep Variational Reinforcement Learning

McCallum, Andrew Kachites and Ballard, Dana. Reinforce-
ment learning with selective perception and hidden state.
PhD thesis, University of Rochester. Dept. of Computer
Science, 1996.

McCallum, R Andrew. Overcoming incomplete perception
with utile distinction memory. In Proceedings of the
Tenth International Conference on Machine Learning, pp.
190–196, 1993.

Messias, João V and Whiteson, Shimon. Dynamic-depth
context tree weighting. In Advances in Neural Informa-
tion Processing Systems, pp. 3330–3339, 2017.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G, Graves,
Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostro-
vski, Georg, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy, Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
methods for deep reinforcement learning. In International
Conference on Machine Learning, 2016.

Naesseth, Christian A, Linderman, Scott W, Ranganath,
Rajesh, and Blei, David M. Variational sequential monte
carlo. In AISTATS (To Appear), 2018.

Narasimhan, Karthik, Kulkarni, Tejas, and Barzilay, Regina.
Language understanding for text-based games using deep
reinforcement learning. arXiv preprint 1506.08941, 2015.

Oliehoek, Frans A, Spaan, Matthijs TJ, Whiteson, Shimon,
and Vlassis, Nikos. Exploiting locality of interaction
in factored dec-pomdps. In Proceedings of the 7th in-
ternational joint conference on Autonomous agents and
multiagent systems-Volume 1, 2008.

Pineau, Joelle, Gordon, Geoff, Thrun, Sebastian, et al. Point-
based value iteration: An anytime algorithm for pomdps.
In IJCAI, volume 3, 2003.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra,
Daan. Stochastic backpropagation and approximate infer-
ence in deep generative models. In ICML, 2014.

Roijers, Diederik Marijn, Whiteson, Shimon, and Oliehoek,
Frans A. Point-based planning for multi-objective
pomdps. In IJCAI, pp. 1666–1672, 2015.

Ross, Stéphane, Pineau, Joelle, Paquet, Sébastien, and
Chaib-Draa, Brahim. Online planning algorithms for
pomdps. Journal of Artificial Intelligence Research, 32:
663–704, 2008.

Ross, Stéphane, Pineau, Joelle, Chaib-draa, Brahim, and
Kreitmann, Pierre. A bayesian approach for learning
and planning in partially observable markov decision
processes. Journal of Machine Learning Research, 2011.

Shani, Guy, Brafman, Ronen I, and Shimony, Solomon E.
Model-based online learning of pomdps. In European
Conference on Machine Learning, pp. 353–364. Springer,
2005.

Silver, David and Veness, Joel. Monte-carlo planning in
large pomdps. In Advances in neural information pro-
cessing systems, pp. 2164–2172, 2010.

Sohn, Kihyuk, Lee, Honglak, and Yan, Xinchen. Learning
structured output representation using deep conditional
generative models. In Advances in Neural Information
Processing Systems, pp. 3483–3491, 2015.

Tamar, Aviv, Wu, Yi, Thomas, Garrett, Levine, Sergey, and
Abbeel, Pieter. Value iteration networks. In Advances in
Neural Information Processing Systems, pp. 2154–2162,
2016.

Thrun, Sebastian. Monte carlo pomdps. In Advances in
neural information processing systems, pp. 1064–1070,
2000.

Wierstra, Daan, Foerster, Alexander, Peters, Jan, and
Schmidhuber, Juergen. Solving deep memory pomdps
with recurrent policy gradients. In International Con-
ference on Artificial Neural Networks, pp. 697–706.
Springer, 2007.

Willems, Frans MJ, Shtarkov, Yuri M, and Tjalkens,
Tjalling J. The context-tree weighting method: basic
properties. IEEE Transactions on Information Theory, 41
(3):653–664, 1995.

Wu, Yuhuai, Mansimov, Elman, Grosse, Roger B, Liao,
Shun, and Ba, Jimmy. Scalable trust-region method for
deep reinforcement learning using Kronecker-factored
approximation. In Advances in neural information pro-
cessing systems, pp. 5285–5294, 2017.

Zhang, Marvin, Levine, Sergey, McCarthy, Zoe, Finn,
Chelsea, and Abbeel, Pieter. Policy learning with contin-
uous memory states for partially observed robotic control.
CoRR, 2015.

Zhu, Pengfei, Li, Xin, and Poupart, Pascal. On improving
deep reinforcement learning for POMDPs. arXiv preprint
1704.07978, 2017.

Deep Variational Reinforcement Learning

A. Experiments
A.1. Implementation Details

In our implementation, the transition and proposal distributions pθ(zt|ht−1, at−1) and qθ(zt|ht−1, at−1, ot) are multivariate
normal distributions over zt whose mean and diagonal variance are determined by neural networks. For image data, the
decoder pθ(ot|zt, at−1) is a multivariate independent Bernoulli distribution whose parameters are again determined by a
neural network. For real-valued vectors we use a normal distribution.

When several inputs are passed to a neural network, they are concatenated to one vector. ReLUs are used as nonlinearities
between all layers. Hidden layers are, if not otherwise stated, all of the same dimension as h. Batch normalization was used
between layers for experiments on Atari but not on Mountain Hike as they significantly hurt performance. All RNNs are
GRUs.

Encoding functions ϕo, ϕa and ϕz are used to encode single observations, actions and latent states z before they are passed
into other networks.

To encode visual observations, we use the the same convolutional network as proposed by Mnih et al. (2015), but with only
32 instead of 64 channels in the final layer. The transposed convolutional network of the decoder has the reversed structure.
The decoder is preceeded by an additional fully connected layer which outputs the required dimension (1568 for Atari’s
84× 84 observations).

For observations in R2 we used two fully connected layers of size 64 as encoder. As decoder we used the same structure as
for pθ(z| . . .) and qφ(z| . . .) which are all three normal distributions: One joint fully connected layer and two separated
fully connected heads, one for the mean, one for the variance. The output of the variance layer is passed through a softplus
layer to force positivity.

Actions are encoded using one fully connected layer of size 128 for Atari and size 64 for Mountain Hike. Lastly, z is
encoded before being passed into networks by one fully connected layer of the same size as h.

The policy is one fully connected layer whose size is determined by the actions space, i.e. up to 18 outputs with softmax for
Atari and only 2 outputs for the learned mean for Mountain Hike, together with a learned variance. The value function is
one fully connected layer of size 1.

A2C used ne = 16 parallel environments and ns = 5-step learning for a total batch size of 80. Hyperparameters were
tuned on Chopper Command. The learning rate of both DVRL and RNN was independently tuned on the set of values
{3×10−5, 1×10−4, 2×10−4, 3×10−4, 6×10−4, 9×10−4} with 2×10−4 being chosen for DVRL on Atari and 1×10−4

for DVRL on MountainHike and RNN on both environments. Without further tuning, we set λH = 0.01 and λV = 0.5 as is
commonly used.

As optimizer we use RMSProp with α = 0.99. We clip gradients at a value of 0.5. The discount factor of the control
problem is set to γ = 0.99 and lastly, we use ’orthogonal’ initialization for the network weights.

The source code will be release in the future.

A.2. Additional Experiments and Visualisations

Table 2 shows the results on deterministic and flickering Atari, averaged over 5 random seeds. The values for DRQN and
ADRQN are taken from the respective papers. Note that DRQN and ADRQN rely on Q-learning instead of A2C, so the results
are not directly comparable.

Figure 6 and 7 show individual learning curves for all 10 Atari games, either for the deterministic or the stochastic version
of the games.

A.3. Computational Speed

The approximate training speed in frames per second (FPS) is on one GPU on a dgx1 for Atari:

• RNN: 124k FPS

• DVRL (1 Particle): 64k FPS

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

800

1000

1200

1400

1600

1800

R
et

u
rn

DVRL

RNN

(a) Asteroids

0 2 4

Frames ×107

500

1000

1500

2000

R
et

u
rn

DVRL

RNN

(b) Beam Rider

0 2 4

Frames ×107

22

24

26

28

30

R
et

u
rn

DVRL

RNN

(c) Bowling

0 2 4

Frames ×107

3000

3500

4000

4500

R
et

u
rn

DVRL

RNN

(d) Centipede

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

RNN

(e) Chopper Command

0 2 4

Frames ×107

−15

−10

−5

0

R
et

u
rn

DVRL

RNN

(f) Double Dunk

0 2 4

Frames ×107

200

250

300

R
et

u
rn

DVRL

RNN

(g) Frostbite

0 2 4

Frames ×107

−10

−8

−6

−4

R
et

u
rn

DVRL

RNN

(h) Ice Hockey

0 2 4

Frames ×107

1000

1500

2000

R
et

u
rn

DVRL

RNN

(i) Ms. Pacman

0 2 4

Frames ×107

−20

−10

0

10

20

R
et

u
rn

DVRL

RNN

(j) Pong

Figure 6: Training curves on the full set of evaluated Atari games, in the case of flickering and deterministic environments.

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

1000

1200

1400

1600

R
et

u
rn

DVRL

RNN

(a) Asteroids

0 2 4

Frames ×107

500

1000

1500

2000

R
et

u
rn

DVRL

RNN

(b) Beam Rider

0 2 4

Frames ×107

22

24

26

28

30

R
et

u
rn

DVRL

RNN

(c) Bowling

0 2 4

Frames ×107

2500

3000

3500

4000

4500

R
et

u
rn

DVRL

RNN

(d) Centipede

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

RNN

(e) Chopper Command

0 2 4

Frames ×107

−15

−10

−5

R
et

u
rn

DVRL

RNN

(f) Double Dunk

0 2 4

Frames ×107

150

200

250

R
et

u
rn

DVRL

RNN

(g) Frostbite

0 2 4

Frames ×107

−10

−8

−6

R
et

u
rn

DVRL

RNN

(h) Ice Hockey

0 2 4

Frames ×107

1000

1500

2000

2500

R
et

u
rn

DVRL

RNN

(i) Ms. Pacman

0 2 4

Frames ×107

−20

−10

0

10

20

R
et

u
rn

DVRL

RNN

(j) Pong

Figure 7: Training curves on the full set of evaluated Atari games, in the case of flickering and stochastic environments.

Deep Variational Reinforcement Learning

Table 2: Final results on deterministic and flickering Atari environments, averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level when comparing DVRL and RNN. The values for DRQN and ADRQN are taken from the respective papers.

Env DVRL(±std) RNN DRQN ADRQN

Pong 20.07(±0.39) 19.3(±0.26) 12.1(±2.2) 7(±4.6)
Chopper 6619(±532) 4619(±306) 1330(±294) 1608(±707)
MsPacman 2156(±127) 2113(±135) 1739(±942)
Centipede 4171(±127) 4283(±187) 4319(±4378)
BeamRider 1901(±67) 2041(±81) 618(±115)
Frostbite 296(±8.2) 259(±5.7) 414(±494) 2002(±734)
Bowling 29.74(±0.49) 29.38(±0.52) 65(±13)
IceHockey −4.87(±0.24) −6.49(±0.27) −5.4(±2.7)
DDunk −6.08(±3.08) −15.25(±0.51) −14(±2.5) −13(±3.6)
Asteroids 1610(±63) 1750(±97) 1032(±410) 1040(±431)

• DVRL (10 Particles): 48k FPS

• DVRL (30 Particle): 32k FPS

A.4. Model Predictions

In Figure 8 we show reconstructed and predicted images from the DVRL model for several Atari games. The current
observation is in the leftmost column. The second column (’dt0’) shows the reconstruction after encoding and decoding the
current observation. For the further columns, we make use of the learned generative model to predict future observations.
For simplicity we repeat the last action. Columns 2 to 7 show predicted observations for dt ∈ {1, 2, 3, 10, 30} unrolled
timesteps. The model was trained as explained in Section 5.2. The reconstructed and predicted images are a weighted
average over all 16 particles.

Note that the model is able to correctly predict features of future observations, for example the movement of the cars in
ChopperCommand, the (approximate) ball position in Pong or the missing pins in Bowling. Furthermore, it is able to do so,
even if the current observation is blank like in Bowling. The model has also correctly learned to randomly predict blank
observations.

It can remember feature of the current state fairly well, like the positions of barriers (white dots) in Centipede. On the other
hand, it clearly struggles with the amount of information present in MsPacman like the positions of all previously eaten
fruits or the location of the ghosts.

B. Algorithms
Algorithm 1 details the recurrent (belief) state computation (i.e. history encoder) for DVRL. Algorithm 2 details the recurrent
state computation for RNN. Algorithm 3 describes the overall training algorithm that either uses one or the other to aggregate
the history. Despite looking complicated, it is just a very detailed implementation of n-step A2C with the additional changes:
Inclusion of LELBO and inclusing of the option to not delete the computation graph to allow longer backprop in n-step A2C.

Results for also using the reconstruction loss LENC for the RNN based encoder aren’t shown in the paper as they reliably
performed worse than RNN without reconstruction loss.

Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

Deep Variational Reinforcement Learning

Algorithm 1 DVRL encoder

Input: Previous state b̂t−1, observation ot, action at−1
Unpack w1:K

t−1 , z
1:K
t−1 , h

1:K
t−1, ĥt−1 ← b̂t−1

xo ← ϕoθ(ot)
xa ← ϕaθ(at−1)
for k = 1 to K do

Sample hkt−1 ∼ h1:Kt−1 based on weights
Sample zkt ∼ qθ(zkt |hkt−1, xo, xa)
xz ← ϕzθ(zt)
wkj ← pθ(z

k
t |hkt−1, xa)pθ(ot|hkt , xz, xa)/qθ(z

k
t |hkt−1, xo, xa)

hkt ← GRU(hkt−1, x
z, xo, xa)

end for
LELBO
t ← − log

∑
k w

k
t − log(K)

ĥt ← GRU(Concat(wkt , x
z, hkt)Kk=1passed sequentially)

Pack b̂t ← w1:K
t , z1:Kt , h1:Kt , ĥt

{When V or π is conditioned on b̂t, the summary ĥt is used.}
Output: b̂t,LELBO

t

Algorithm 2 RNN encoder

Input: Previous state hj−1, observation oj , action aj−1
xo ← ϕoθ(ot)
xa ← ϕaθ(at−1)

b̂j ← GRUθ(b̂j−1, xo, xa)

LENC
j ← − log pθ(oj |b̂j−1)

Output: hj ,LENC
j

Deep Variational Reinforcement Learning

Algorithm 3 Training Algorithm

Input: Environment Env, Encoder Encθ,φ (either RNN or DVRL)
Initialize observation o1 from Env.
Initialize encoder latent state s0 ← sinit0 as either h0 (for RNN) or b̂0,θ (for DVRL)
Initialize action a0 = 0 to no-op
Set s′0, a

′
0 ← s0, a0.

{The distinction between s′t and st is necessary when the environment resets at time t.}
repeat
LEncj , aj , a

′
j , sj , s

′
j , oj+1, rj+1, donej+1 ← NULL j = 1 . . . n

{Run n steps forward:}
for j = 1 to n do
sj ,LELBO

j ← Encθ,φ(oj , a
′
j−1, s

′
j−1)

Sample aj ∼ πρ(aj |sj)
oj+1, rj+1, donej+1 ← Env(aj)
if donej+1 then
s′j , a

′
j ← sinit0 , 0

{sj is still available to compute Vη(sj)}
oj+1 ← Reset Env()

else
s′j , a

′
j ← sj , aj

end if
end for
{Compute targets}
sn+1 ← Encθ,φ(on+1, a

′
n, s
′
n)

Qtargetn+1 ← Vη(sn+1).detach()
for j = n to 1 do
Qtargetj ← γ ·Qtargetj+1

if donej+1 then
Qtargetj ← 0

end if
Qtargetj ← Qtargetj + rj+1

end for
{Compute losses}
for j = n to 1 do
LVj ← (Qtargetj − Vη(sj))

2

LAj ← − log πρ(aj |sj)(Qtargetj − Vη(sj))

LHj ← −Entropy(πρ(·|sj))
end for
J ←

∑
j(λ

V LVj + LAj + λHLHj + λELELBO
j)

TakeGradientStep(∇J)
Delete or save computation graph of sn to determine backpropagation length
a′0, s

′
0 ← an, sn

o1 ← on+1

until converged

	Introduction
	Background
	Partially Observable Markov Decision Processes
	Variational Autoencoder
	VAE for Time Series
	A2C

	Deep Variational Reinforcement Learning
	Improving the Baseline
	Extending the Latent State
	Recurrent Latent State Update
	Loss Function

	Related Work
	Experiments
	Mountain Hike
	Atari
	Ablation Studies

	Conclusion
	Experiments
	Implementation Details
	Additional Experiments and Visualisations
	Computational Speed
	Model Predictions

	Algorithms

