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ABSTRACT

Nowelty search is a recently proposed method for evolution-
ary computation designed to avoid the problem of decep-
tion, in which the fitness function guides the search process
away from global optima. Novelty search replaces fitness-
based selection with novelty-based selection, where novelty
is measured by comparing an individual’s behavior to that
of the current population and an archive of past novel indi-
viduals. Though there is substantial evidence that novelty
search can overcome the problem of deception, the critical
factors in its performance remain poorly understood. This
paper helps to bridge this gap by analyzing how the behavior
function, which maps each genotype to a behavior, affects
performance. We propose the notion of descendant fitness
probability (DFP), which describes how likely a genotype’s
descendants are to have a certain fitness, and formulate two
hypotheses about when changes to the behavior function will
improve novelty search’s performance, based on the effect of
those changes on behavior and DFP. Experiments in both
artificial and deceptive maze domains provide substantial
empirical support for these hypotheses.

Categories and Subject Descriptors
1.2.8 [Problem Solving, Control Methods, and Search]

General Terms

Algorithms, Measurement, Performance, Experimentation

Keywords

Evolutionary computation, problem of deception, novelty
search, neural networks, neuroevolution

1. INTRODUCTION

One of the biggest challenges for evolutionary compu-
tation, and stochastic optimization in general, is how to
tackle the problem of deception, in which the fitness func-
tion guides the search process towards local optima and away
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from global ones. According to Whitley, “the only challeng-
ing optimization tasks are problems involving some degree
of deception” [21]. Numerous techniques have been proposed
to overcome this problem. In fitness shaping [22, 3, 20, 19],
the fitness function is altered so as to reward intermediate
solutions on the path to a global optimum. However, it is
only feasible if strong prior knowledge is available. In con-
trast, diversity maintenance techniques [1, 17, 14, 2, 11, 5],
which aim to prevent premature convergence by maintain-
ing heterogeneous populations, require less prior knowledge.
However, they only mitigate the problem of deception and
can easily fail in highly deceptive tasks.

Recently, Lehman and Stanley proposed nowvelty search
[6], a radically different approach inspired by new insights
about the role of non-adaptive processes in complexification
in natural evolution [10, 12]. Essentially, it replaces fitness-
based selection with novelty-based selection and in so doing
bypasses the problem of deception. Novelty is measured by
comparing an individual’s behavior to that of the current
population and an archive of past novel individuals. Be-
haviors typically describe some aspect of the individual’s
phenotype, e.g., how a robot moves around a maze.

To make novelty search feasible, a task-specific behavior
function must be chosen to map each genotype to a behav-
ior. Novelty is thus measured in phenotype space instead
of genotype space. Choosing the behavior function requires
prior knowledge about which behavior features affect fitness.
However, unlike in fitness shaping, it is not necessary to un-
derstand how those features affect fitness, making novelty
search more generally applicable.

Substantial evidence has accrued demonstrating that nov-
elty search can successfully overcome deception and outper-
form fitness-based selection in deceptive problems [6, 16, 7,
8, 15]. However, there has been little work examining when
novelty search works and why. In particular, not much is
currently understood about how the behavior function influ-
ences performance and what properties of a behavior func-
tion are important for good performance.

The goal of this paper is to begin bridging this gap in our
understanding of novelty search. To this end, we introduce
the notion of descendant fitness probability (DFP), which
describes how likely a genotype’s descendants are to have a
certain fitness. Intuitively, DFP is important because geno-
types with similar DFPs will lead novelty search in similar
directions and should thus have similar behaviors to prevent
redundant exploration. Using DFP, we distinguish between
four relationships between pairs of genotypes that depend
on the equality or inequality of their behaviors and DFPs.



Next, we propose two specific hypotheses about the cir-
cumstances under which changes to the behavior function
will reduce novelty search’s evaluation costs, based on the
effect of those changes on the relationships between geno-
type pairs. To test these hypotheses, we construct an arti-
ficial domain in which the effect of mutations on behavior
is transparent, facilitating carefully controlled experiments.
In addition, we consider several deceptive maze domains, in-
cluding those used by Lehman and Stanley, that provide less
controlled but more realistic tests of our hypotheses. Over-
all, our results in both the artificial and maze domains pro-
vide substantial empirical support for our hypotheses about
the critical factors in the performance of novelty search, as
well as raising intriguing questions for future research.

2. NOVELTY SEARCH

Stochastic optimization methods such as evolutionary com-
putation typically use the fitness function as a guide for
search, e.g., in each generation a population is constructed
from the fittest members of the previous generation. Intu-
itively, this approach makes sense because good solutions
are likely to be related to even better solutions. Ideally, the
fitness function rewards intermediate solutions that light a
path towards a global optimum. However, in many cases,
this does not occur. Problems in which intermediate delete-
rious steps have to be made to reach the global optimum are
called deceptive and pose a major challenge for optimization.

Novelty search [6] was recently proposed as a way to tackle
deceptive problems. The authors, observing that the prob-
lem of deception is rooted in the fitness measure, propose
the radical idea of simply ignoring fitness altogether. In-
stead of searching for fit individuals, it searches for novel
ones. Unlike a random walk, novelty search has an explicit
drive to continually discover novel behaviors.

Novelty is measured by comparing an individual’s behav-
ior to that of the current population and an archive of past
novel individuals. Behaviors are represented using a behav-
ior characterization, a set of M features, which can be based
on the genotype, the phenotype, or characteristics of the
problem domain. The behavior of an individual = is an as-
signment of values to these features and is determined using
a behavior function B : x — RM . For simplicity, we assume
that behavior features are real-valued. Typically, B(z) is
computed by applying the genotype to the task and extract-
ing the behavior. Thus, in a stochastic domain, B(z) can
also be stochastic.

A distance metric is used to calculate the distance be-
tween two behaviors. Although the distance metric can be
arbitrarily complex, we assume the following form:

dist(z,y) = % 251(31‘(33),31‘(1/))

where B;(x) is the value of the i-th behavior feature for indi-
vidual z. The ¢; function is a feature-specific distance met-
ric, e.g., Euclidean, minimum edit, or Hamming distance.

Using the behavior function and distance metric, the nov-
elty metric calculates the average distance to the K nearest
neighbors in behavior space:

K
1 .
p(z) = X ¢§:1 dist(, pi)

where p; is the i-th nearest neighbor in the population or
the archive according to the distance metric. A high average
distance corresponds to low density and high novelty.

An adaptive threshold p.,in is used to determine which
behaviors to include in the archive. If the novelty of a new
individual is higher than the threshold (p(z) > pmin), it
is added to the archive. To keep the size of the archive ap-
proximately constant, pmin is increased by a fixed fraction if
the number of added behaviors exceeds the addma: thresh-
old in a certain number of evaluations. If the number of
added behaviors is lower than add..i;» in a certain number
of evaluations, pmin is decreased by a fixed fraction.

Since reproduction occurs just as in traditional evolution-
ary algorithms, novelty search can be easily implemented by
replacing the fitness function in such an algorithm with the
novelty metric. Since the relationship between genotypes
and behavior may be quite complex, novelty search cannot
purposefully explore behavior space, i.e., it cannot system-
atically generate novel behaviors. It can only generate new
genotypes through mutation and crossover and measure the
novelty of the resulting behaviors. Thus, it uses novel indi-
viduals as a guide towards finding more novel individuals,
just as fitness-based methods use fit individuals as a guide to
finding even fitter ones. Lehman and Stanley [6] argue that
this approach is feasible when “many points in the search
space collapse to the same point in behavior space”.

Novelty search was originally evaluated in two deceptive
maze tasks, in which behavior is characterized by the robot’s
final position after a fixed number of time steps [6]. Nov-
elty search greatly outperforms fitness-based optimization
in these tasks. Later, novelty search was also shown to
be effective at discovering neuromodulated neural networks
for deceptive tasks that require learning [16, 15]. Mouret
and Doncieux [13] show that behavioral diversity (the nov-
elty metric with p; in population only) can overcome the
bootstrap problem, i.e., a lack of fitness gradient during the
early stages of evolution. Gomez [4] shows that, in par-
tially observable tasks, using a behavioral distance measure
to maintain diversity can significantly improve performance
over standard genotypical distance measures.

In addition to confirming the efficacy of novelty search,
Lehman and Stanley [8] have also analyzed its properties.
In the maze domains and the deceptive Santa Fe Trail and
Los Altos benchmarks, they demonstrate that novelty search
evolves successful solutions more consistently than fitness-
based optimization. They also show that, although novelty
search finds more functionally complex solutions, the genetic
complexity is consistently lower.

In a separate article, they show that, on a single decep-
tive maze, there is no significant decrease in performance
when the dimensionality of the behavior characterization is
increased [7]. They hypothesize that this is due to the combi-
nation of novelty search with NEAT [18], a neuroevolution-
ary method which starts with simple networks and builds up
to larger ones. They conclude that “a high-dimensional be-
havior characterization is not a sufficient basis for predicting
that novelty search should fail.”

They also find that reducing the precision of the behav-
ioral characterization has complex effects. In the maze do-
main, performance is not strongly affected by a reduction
in precision, unless the reduction is too strong. They con-
clude that “conflation is harmful to the search for novelty
if behaviors are conflated in a way that interferes with the



discovery of stepping stones.” However, they do not offer a
precise definition of stepping stones.

Finally, they note that when the size of the behavior
space is unlimited, the reliability of novelty search greatly
decreases. In their most recent paper, they address this
problem by proposing minimal criteria novelty search, in
which an individual’s novelty is set to zero if it does not
meet minimal performance criteria [9]. They demonstrate
that this approach can speed novelty search by leveraging
domain knowledge to shrink the behavior space.

3. DESCENDANT FITNESS PROBABILITY

The goal of this paper is to extend and refine Lehman and
Stanley’s work on analyzing the properties of novelty search.
We aim for a deeper understanding of what factors affect its
performance in various tasks. In particular, we focus on the
behavior function as a critical element. While Lehman and
Stanley assert that novelty search is feasible when “many
points in the search space collapse to the same point in be-
havior space”, we claim that novelty search is feasible when
many similar points in the search space collapse to the same
point in behavior space. In this section, we propose a precise
notion of similarity between two genotypes based on descen-
dant fitness probability (DFP), which describes how likely a
genotype’s descendants are to have a certain fitness.

The ultimate goal of optimization methods is to find the
fittest genotypes. A proximate goal is to find genotypes with
great potential: those whose descendants will be highly fit.
Fitness-based methods use a genotype’s fitness as a measure
of its potential. The problem of deception arises because this
measure may be misleading (e.g., at local optima).

Novelty search avoids this problem by ignoring fitness
and searching for novel behaviors. However, since genotype
space is typically large or infinite in size, the behavior func-
tion must map many genotypes to the same behavior to keep
the search feasible. Once a genotype is discovered, others
that map to the same behavior will not be considered novel
and are thus less likely to be selected for reproduction. Intu-
itively, mapping such genotypes to the same behavior is good
when the genotypes have similar potential, as it reduces the
size of the search space, and bad when they have dissimilar
potential, as important genotypes will be overlooked. The
central question, then, is how to define potential.

We propose that descendant fitness probability is a good
measure of a genotype’s potential. Given a genotype, a cur-
rent population, and selection and reproduction operators,
it is possible to compute a probability distribution over the
possible genotypes created as children. This calculation can
be repeated recursively to compute a distribution over the
grandchildren, great-grandchildren, etc. In principle, the fit-
ness of each possible descendant can be measured and used
to compute a distribution over the fitness of these descen-
dants, which we refer to as DFP.

Unfortunately, this notion of DFP is not helpful in ana-
lyzing in novelty search. The main problem is that it is not
fixed across time, since it depends on the current popula-
tion. Thus, it cannot be used to determine which genotypes
should be mapped to the same behavior, since such map-
pings are typically fixed across time. Therefore, we propose
a simpler, heuristic measure of DFP that models only mu-
tation. By assuming asexual reproduction, we render DFP
independent of the current population. Our simpler defini-
tion is based on descendant genotype probability (DGP):

DEFINITION 1. The descendant genotype probability
D% (x,y,m) is the probability that a genotype x will have a
descendant y after K generations assuming asexual repro-
duction with mutation operator m:

o B 1 ifr=y
Dg (z,y,m) = { 0 otherwise

Z D% _1(z,z,m) - Pr(d. = y|z,m)
z€G

D% (z,y,m)

where d, denotes the direct descendant of z and G denotes
the set of all possible genotypes.

DEFINITION 2. The descendant fitness probability
D% (z, f,m) is the probability that a genotype x will have
a descendant with fitness f after K generations assuming
asexual reproduction with mutation operator m:

Di(z, f,m) = Y DF(z,y,m)

yeYy

where Y = {z € G|F(2) = f} and F : G — R is the fitness
function.

Note that we do not propose DFP as a tool for helping de-
sign behavior functions for real tasks. On the contrary, cal-
culating even our simplified DFP is intractable on non-trivial
problems. Furthermore, even if the DFP of each genotype
was known, their fitnesses would also be known and thus
no optimization problem would remain. Instead, we merely
propose DFP as a critical ingredient for analyzing novelty
search and use it to formulate hypotheses in Section 4.

Using DFP, we can now enumerate the four different re-
lationships that pairs of genotypes can have. To illustrate
these relationships, we use a running example with 16 geno-
types laid out in a 4x4 grid as shown in Fig. 1. Each black
square denotes a genotype, the bottom left square denotes
(0;0), and each letter (and color) denotes a behavior. Thus,
different genotypes with the same letter map to the same
behavior. The optimal genotype is (3;3), and the fitness of
the other genotypes is 6 minus the Manhattan distance to
the optimal genotype. The offspring of a genotype will with
equal probability be the same or any adjacent genotype.

DEFINITION 3. Behavioral discrimination BD(x1,x2) oc-
curs between two different genotypes x1 and x2 iff they have
different behaviors and different DFPs:

BD(ml,a:z) = (B(xl) ;é B(wz))/\

Hkﬁf(Df(x:l’ f7 m) ‘/{ DE(‘T% f7 m))

Behavioral discrimination is illustrated in both grids in
Fig. 1 between genotypes (1;0) and (2;0). Increasing the
number of behaviorally discriminated genotype pairs increases
the size of the behavior space.

DEFINITION 4. Behavioral overdiscrimination BOD(x1,x2)
occurs between two different genotypes x1 and x2 iff they
have different behaviors but the same DFP:

BOD(z1,x2) & (B(z1) # B(z2))A

Vi,s(Dk (21, f,m) = Di (22, f,m))

Behavioral overdiscrimination is illustrated in both grids
in Fig. 1 between genotypes (3;0) and (0;3), which have the
same DFP due to symmetry about the diagonal. Intuitively,
behavioral overdiscrimination is undesirable because pairs of
genotypes with the same DFP are unnecessarily treated as
different. Increasing the number of overdiscriminated geno-
type pairs increases the size of the behavior space.
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Figure 1: Examples of behavioral discrimination and
overdiscrimination (a and b) as well as weak behavioral
aliasing and strong behavioral aliasing (b).

DEFINITION 5. Weak behavioral aliasing W BA(x1,x2) oc-
curs between two different genotypes 1 and x2 iff they have
the same behavior and the same DFP:

WBA(CL’l,xz) = (B(xl) = B(wz))/\
Ve s (DF, (21, f,m) = Df (x2, f,m))

Weak behavioral aliasing is illustrated in Fig. 1b, e.g.,
between genotypes (0;1) and (1;0), which were overdiscrim-
inated in Fig. la but have the same DFP due to symme-
try. Intuitively, weak behavioral aliasing is desirable be-
cause pairs of genotypes with the same DFP are collapsed
into one in behavior space. Thus, we expect that, when the
DFP of two genotypes is the same, weak behavioral aliasing
is preferable to behavioral overdiscrimination. Increasing
the number of weakly aliased genotype pairs decreases the
size of the behavior space.

DEFINITION 6. Strong behavioral aliasing SBA(x1,x2) oc-
curs between two different genotypes 1 and x2 iff they have
the same behavior but different DFPs:

SBA(a:l,xg) = (B(:El) = B(CI?Q))/\

Elk’f(Dg(xla f7 m) 7é DkF(‘zQ: fa m))

Strong behavioral aliasing is illustrated in Fig. 1b, e.g.,
between genotypes (0;0) and (1;0). Intuitively, strong be-
havioral aliasing can be either good or bad depending on
the degree of similarity between the DFPs. Increasing the
number of strongly aliased genotype pairs decreases the size
of the behavior space.

4. HYPOTHESES

In this section, we propose two hypotheses that use the
above definitions to relate changes in the behavior function
to the performance of novelty search. Because DFP is a
property of the task, we assume that the designer of the
behavior function cannot alter it. Consequently, the possi-
ble effects of changing the behavior function are limited to
switching between behavioral overdiscrimination and weak
behavioral aliasing or between behavioral discrimination and
strong behavioral aliasing, as illustrated in Table 1. Each
of our hypotheses predicts the effect on performance of one
of these changes. We equate performance with evaluation
costs, i.e., the number of genotype evaluations needed for
novelty search to discover an optimal genotype.

HYPOTHESIS 1. A change in the behavior function trans-
forming pairs of BOD genotypes to WBA genotypes decreases
expected evaluation costs.

When behavioral overdiscrimination occurs, two genotypes
map to different behaviors even though their DFP is the
same. As a result, novelty search can regard both geno-
types as novel and spend time exploring both their offspring.

B(z1) # B(za) |  B(z1) = B(w2)
D£ (1'1, fv m)

Vk,f = BOD(whxz) <~ WBA(CL‘1,$2)
Dg(‘r%fa m)
Dg(l'l,f, m)

Elk,f 7é BD(l‘1,$2) <~ SBA(111,$2)
DkF(xQva m)

Table 1: Changing the behavior function can change
genotype pairs from BOD to WBA and from BD to SBA.

However, since their DFPs are the same, each has the same
chance of producing fruitful descendants, making this explo-
ration redundant. Since changing such genotype pairs into
ones with weak behavioral aliasing avoids such redundancy,
we expect it to reduce evaluation costs.

HYPOTHESIS 2. A change in the behavior function trans-
forming pairs of BD genotypes to SBA genotypes can de-
crease expected evaluations costs only when genotypes with
dissimilar behaviors (before the change) but similar DFPs
are grouped into a single behavior (after the change).

When BD genotype pairs are transformed into SBA ones,
genotypes with different DFPs become mapped to the same
behavior. On the one hand, this reduces the size of the be-
havior space, simplifying the search problem. On the other
hand, discriminative power is lost, since the genotypes given
identical behaviors do not have identical DFPs.

The hypothesis states that, in order for this trade-off to
produce an overall decrease in evaluation costs, two con-
ditions must be met. First, the genotypes that become
mapped to the same behavior must have previously had dis-
similar behaviors. Thus, the genotypes would previously
have been considered novel w.r.t. each other but are now
treated as the same, yielding a smaller search problem.

The second condition is that the genotypes that become
mapped to the same behavior must have similar DFPs.
Clearly, reducing the size of behavior space will not be bene-
ficial if genotypes with arbitrarily different DFPs are treated
as the same. For the benefit of a smaller behavior space to be
worth it, the loss of discriminative power must be minimized.
In essence, Hypothesis 2 can be viewed as a non-binary ver-
sion of Hypothesis 1. The DFPs need only be similar, not
identical, but the behaviors must previously have been truly
dissimilar, as opposed to merely not identical.

S. ARTIFICIAL DOMAIN EXPERIMENTS

As a first test of our hypotheses, we consider an artificial
domain with a simple genotype representation in which the
effect of mutations on behavior is predictable. The artificial
domain consists of a two-dimensional grid world. A geno-
type x consists of P independent points on the grid, where
each point is a pair of integers in {0, 1, ..., L} for some con-
stant L. The goal is to place one or more of these points in
(L —1; L — 1), the cell farthest from the origin.

Unless stated otherwise, the genotype and behavior are
exactly the same, i.e., each genotype point is a behavioral
feature. This formulation makes it possible to measure the
effect of behavioral changes in the absence of confounding
factors, since they result directly from changes to genotypes.
Nonetheless, we assume that the relationship between geno-
types and behavior is not known to the designer and is not
exploited by novelty search.

Though novelty search is typically used with NEAT, we
employ a simple genetic algorithm to keep the underlying
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Figure 2: DGPs and DFPs in the open grid (a and b) and the wall grid (c and d). DGP and DFP given parent
genotype (0;9) is shown in white squares/bars and given parent genotype (9;0) in black squares/bars. Grey squares

denote the same values for both parents.

mechanisms as simple and predictable as possible. The ini-
tial population is filled with genotypes at the origin (0;0)".
Offspring are created from a single parent genotype mutated
with probability 1. Mutations are applied independently to
all points. The distance function is Manhattan distance. In
selection, each individual in the top ten has an equal prob-
ability of getting selected for reproduction, which is steady
state: the offspring replaces the worst individual in the pool.
All results reported below are averaged over 70 indepen-
dent runs, each limited to 2-10° genotype evaluations. Runs
that did not discover the optimal genotype within this time
were given evaluation costs of 2 - 10°. Unless noted other-
wise, the statistical significance of all observed performance
differences was verified using a Student’s t-test (p < 0.05).

5.1 Measuring DFP

To test our hypotheses, we need to know when two geno-
types have the same or similar DFPs. Because of the sim-
plicity of the artificial domain, it is feasible to compute the
DFPs of every genotype in each variation of the artificial
domain used in the experiments below.

The first variation, the open grid shown in Fig.2a, in-
volves one genotype point in a 10 x 10 grid, i.e., L = 10 and
P = 1. Genotype mutations are integer changes in [—1, +1]
and F(z) = 18 — Manhattan(z, (9;9)). We computed both
DGP and DFP for K = 4 for each genotype. As expected,
because this domain is symmetrical about the (0;0)/(9;9)
diagonal, behavioral overdiscrimination occurs: each point
above the diagonal has the same DFP as the corresponding
one below it. Figs. 2a and 2b show the DGPs and DFPs,
respectively, for the points (0;9) and (9;0). Where compu-
tationally feasible, we use a second variation, the large grid,
in which L = 100, P = 1, mutations are in [—3,+3], and
F(z) = 198—Manbhattan(z1, (99;99)). Though not shown in
the figure, the DFP calculations were qualitatively identical:
DFPs are symmetrical about the diagonal.

The third variation, the wall grid shown in Fig. 2c, is ex-
actly like the first but with some genotypes excluded, form-
ing a wall in genotype space. As expected, this introduces an
asymmetry, preventing behavioral overdiscrimination: the
points above the diagonal no longer have the same DFP as
those below it. Figs. 2c and 2d show that the DGPs and
DFPs for the points (0;9) and (9;0) now differ.

5.2 Testing Hypothesis 1

To test Hypothesis 1 in the artificial domain, we use the
large grid, but with four points (P = 4). However, only the
first is relevant to the task, i.e., the goal is to place point 1 at

(99;99). We first treat each genotype point as a behavioral
feature and then examine how novelty search’s performance
changes as genotype points 2 — 4 are removed as behavioral
features. Because these features are irrelevant, genotypes
that differ only w.r.t. to such points have the same DFP and
are thus behaviorally overdiscriminated. Consequently, Hy-
pothesis 1 predicts that removing such behavioral features
should reduce evaluation costs.

Figure 3 shows the results. Not surprisingly, they confirm
our hypothesis. Since the size of the behavior space grows
exponentially w.r.t. the number of behavior features, re-
moving irrelevant dimensions greatly improves performance.
With three behavior points, 21 of the 70 runs did not find
an optimal genotype even after 2 - 10° evaluations. For four
behavior points, 29 runs failed to do so.

As a second test of Hypothesis 1, we reduce the behavior
space even further. Though there are no more irrelevant be-
havior features, the domain still contains behavioral overdis-
crimination due to symmetry about the diagonal, as shown
in Section 5.1. We can eliminate this overdiscrimination by
changing the behavior function such that the genotype cor-
responding to each cell in the top-left part of the grid maps
to the same behavior as its counterpart with identical DFP
in the right-bottom part of the grid. In other words, the grid
is virtually folded over the (0;0)/(99;99) diagonal. Figure 3
shows these results also, marked ‘1p no BOD’. As expected,
eliminating the remaining behavioral overdiscrimination re-
sults in another substantial reduction in evaluation costs,
from 63,440 to 27,427 on average.

So far, these results show only that reducing the behav-
ior space can improve performance. To examine the impor-
tance of creating weak behavioral aliasing, we must compare
against a scenario in which strong behavioral aliasing is in-
duced instead. We can create such a scenario by folding the
grid over the (0;99)/(99;0) diagonal instead. This results
in a behavior space of exactly the same size as in the ‘1p
no BOD’ scenario but with different DFPs mapped to the
same behavior. Figure 3 shows these results also, marked
‘1p SBA’. As expected, performance is quite poor in this
scenario because novelty search cannot properly discrimi-
nate between genotypes with different potential. In fact,
the optimal genotype was found in only 6 of the 70 runs.

5.3 Testing Hypothesis 2

To test Hypothesis 2 in the artificial domain, we conduct
two experiments that create strong behavioral aliasing, one
by grouping genotypes with similar behaviors, and one by
grouping genotypes with dissimilar behaviors.
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Figure 3: Effects on average evaluation costs when re-
ducing behavioral overdiscrimination.

The first experiment uses the large grid. To create strong
behavioral aliasing, we lay a coarser grid over the genotype
grid and map each cell in the same square ‘supercell’ of the
coarser grid to the same behavior. Because the genotypes
that are grouped are near each other in the grid, they have
similar behaviors before they are grouped.

The left portion of Fig. 4 shows the results for cell sizes
(CS), i.e., the length and width of each supercell, 1, 2, 5, 10
and 20. As predicted by Hypothesis 2, introducing SBA by
grouping similar behaviors does not improve performance.
Though the size of the behavior space is reduced, novelty
search is not sped up, since the genotypes that now map to
the same behavior were already considered similar by nov-
elty search and thus unlikely to be redundantly explored.

The results also show that such grouping can hurt per-
formance, as CS > 5 leads to significantly higher evalua-
tion costs. Understanding why requires examining the rela-
tionship between CS and the magnitude of genotype muta-
tions. Thus, we repeat the above experiment with mutation
ranges [—6,+6] and [—12,412]. The results are also shown
in Fig. 4. As before, grouping similar behaviors never re-
duces evaluation costs. However, whether doing so increases
evaluation costs depends on whether the supercell’s size ex-
ceeds the magnitude of the genotype mutations. When the
mutation range is [—3, +3], performance drops suddenly as
CS increases from 2 to 5. For mutation range [—6,+46] it
drops as CS increases from 5 to 10, and for mutation range
[—12,412] it drops as CS increases from 10 to 20. When
many genotypes are grouped together in one supercell, nov-
elty search in that supercell reduces to a random search. If
the mutations are small compared to the supercell’s size, the
chance of entering a new supercell through random search,
and thus discovering novel behavior, is also small.

The second experiment, in which we create strong be-
havioral aliasing by grouping dissimilar behaviors, uses
the wall grid. However, the genotype consists of three
points (P = 3), all relevant. Thus, the goal is to get
genotype points 1, 2 and 3 equal to (9;9) and F(z) =
54 — "% | Manhattan(¢s,, (9;9)). To make the experi-
ments computationally feasible, we consider any x for which
F(x) > 53 to be optimal.

As with the ‘1p no BOD’ setting in Section 5.2, we reduce
the behavior space by folding the grid over the (0;0)/(9;9)
diagonal. Thus, many points that are far away from each
other obtain the same behavior, leading to the grouping of
dissimilar behaviors. Because of the wall, the grouped geno-
types have different DFPs. Since Hypothesis 2 predicts that
the similarity in DFP is important, we also consider two
variations in which the grouped behaviors have more or less
similarity in their DFPs. To increase similarity in DFP, we
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Figure 4: Effects on average evaluation costs when SBA
is created by grouping similar behaviors.

fold the grid along the same diagonal but only for the subgrid
with corners at (3;3) and (9;9). Because none of the geno-
types in this subgrid are ‘blocked’ by the wall, our analysis
in Section 5.1 found that they have more similar DFPs with
their counterparts across the diagonal. To decrease similar-
ity in DFP, we again fold along the same diagonal but now
only for the regions outside this subgrid.

The results, shown in Figure 5, demonstrate that trans-
forming pairs of BD genotypes to pairs of SBA ones can
significantly reduce evaluation costs. However, as predicted
by Hypothesis 2, performance depends on the similarity in
DFP of the grouped genotypes. In ‘SBA in sub’, the grouped
genotypes have relatively similar DFPs and evaluation costs
are reduced by more than a factor of two. However, com-
paring ‘No SBA’ to ‘SBA out sub’ and comparing ‘SBA in
sub’ to ‘SBA in full’ shows that the addition of groupings
with dissimilar DFP leads to small increases in evaluation
costs. Due to high variance in evaluation costs between test
runs, these differences were not significant.

These results demonstrate that creating strong behavioral
aliasing can improve performance, but only up to a limit,
after which the discriminative power of the behavior func-
tion is too low and performance begins to decrease again.
The results thus confirm the prediction of Hypothesis 2 that
changing the behavior function such that previously dissim-
ilar behaviors are grouped together will yield a performance
benefit only when the genotypes grouped have similar DFPs.

6. MAZE DOMAIN EXPERIMENTS

In the artificial domain, the effects of mutations on be-
havior and DFP are easy to predict. As a result, we are
able to run well controlled tests of our hypotheses that iso-
late the critical factors. However, such tests are also lim-
ited because neither the setting nor the algorithm are re-
alistic. Therefore, in this section we present the results of
additional experiments conducted in more realistic settings
(deceptive maze domains) with a more realistic algorithm
(novelty search based on NEAT).

We consider the three deceptive mazes shown in Fig. 6:
the medium and hard mazes introduced by Lehman and
Stanley [6] and a new maze we call the star maze. In these
domains, a robot must navigate the maze using six range
sensor and a rough compass giving the direction towards the
goal (i.e., front, left, right, back). The robot has 400 time
steps to navigate from the start to the goal, after which its
fitness is calculated as F(z) = by — dy where by is a con-
stant bias to make sure fitness is always positive and dg the
Euclidean distance between the robot and the goal. Any
solution for which dy < 5 is considered optimal.
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Figure 5: Effects on average evaluation costs when SBA
is created by grouping dissimilar behaviors.

We consider two different behavior functions. In the one-
point function, an individual’s behavior is simply its (x;y)
position after 400 steps. In the eight-point function, its po-
sition is measured once every 50 timesteps. The robot is
controlled by a neural network evolved with novelty-based
NEAT using the same parameter settings as in [7]. Results
are averaged over 70 independent runs, each of which is ter-
minated after 2 - 10° genotype evaluations if no optimal so-
lution has been found.

Because it is unlikely for two different neural networks
to have exactly the same DFP, we focus only on testing Hy-
pothesis 2 in this setting. Doing so is challenging because we
need a way to measure when genotypes have similar DFPs
and behaviors. Unlike in the artificial domain, it is no longer
feasible to directly compute DFP because the genotypes con-
tain continuous parameters, mutations are governed by con-
tinuous probability distributions, and, due to complexifica-
tion, NEAT does not search in a fixed-dimensional space.

However, even without computing DFP exactly, we can
still identify cases where it is reasonable to assume that two
genotypes have similar DFP. In particular, since fitness de-
pends only on the robot’s final position, we assume that
the one-point behavior function is approximately optimal.
Since an optimal behavior function assigns similar behav-
iors to genotypes with similar DFPs, we can conclude that
similarity in one-point behavior implies similarity in DFP.

Determining when genotypes have similar behaviors is also
challenging because behaviors are affected, not only by the
behavior function but by domain constraints, e.g., narrow
passageways in the maze, and the neural network topology,
which restricts which behaviors are reachable. For example,
in the artificial domain, we can safely assume that removing
behavior features causes dissimilar behaviors to be grouped
together, since behavior features are independent. In con-
trast, in the maze domain, changing from eight-point behav-
ior to one-point behavior may only group similar behaviors
because, depending on the shape of the maze, the robot’s
positions at different times may be highly correlated.

Therefore, in each maze, we use the average correlation
between the one-point and eight-point behaviors as an ap-
proximate measure of similarity. In particular, we record the
behavior points encountered when using eight-point behav-
ior and measure the average Pearson correlation coefficient,
a standard measure of linear correlation, between the eighth
point and each of the first seven points. A high value implies
that switching from eight-point behavior to one-point behav-
ior only groups behaviors that are already similar, whereas a
low value implies that doing so groups dissimilar behaviors.
Thus, Hypothesis 2 predicts that one-point behavior should
outperform eight-point behavior in mazes with relatively low
correlation between behavior points.

To test this prediction, we evaluated both eight-point and

(a) Medium

(b) Hard

Figure 6: Deceptive mazes, in which the robot must
navigate from the large circle to the small one.

(c) Star

one-point behavior on each of the three deceptive mazes.
The results are shown in Fig. 7. Using the results of the
eight-point runs, we computed the average correlation, shown
below each maze in the z-axis of Fig. 7.

In the hard maze, the average correlation is high and there
is no significant performance difference between eight-point
and one-point behavior. This result is consistent with that
of Lehman and Stanley [7], who demonstrate that a high-
dimensional behavior characterization is not a sufficient ba-
sis for predicting that novelty search will fail. They hypoth-
esize that this is due to the use of NEAT, which starts with
small networks and complexifies. In domains where smaller
networks cause stronger correlation between behavioral fea-
tures, such complexification may mitigate the effects of these
extra features. While our results do not rule out such a hy-
pothesis, the high correlation between features does suggest
another explanation: one-point behavior does not perform
better because the behaviors it groups were already similar
under eight-point behavior.

This explanation is further supported by the medium maze
results, in which the average correlation is lower, and one-
point behavior performs better. Though Lehman and Stan-
ley conducted experiments in the medium maze, they do not
present results for eight-point behavior in this domain. The
presence of a performance difference in the medium maze
and the absence of one in the hard maze suggests that corre-
lation between the behavior points is indeed a critical factor
in novelty search’s performance. In addition, given our as-
sumptions that individuals with similar one-point behavior
have similar DFP and that low average correlation implies
that switching from eight-point to one-point behavior groups
dissimilar behaviors, these results also confirm Hypothesis 2.

After obtaining these results, we investigated several other
maze domains in order to determine how broadly Hypothesis
2 holds. Each produced results consistent with those from
the medium and hard mazes. The only exception was the
star maze: though its average correlation is only slightly
higher, at 0.55, than in the medium maze, switching to one-
point behavior does not reduce evaluation costs. On the
contrary, it substantially increases them. Thus, the star
maze is an intriguing and puzzling domain for novelty search.

There are many possible explanations for this counterin-
tuitive result. One is that Hypothesis 2 is incomplete, and
that the star maze represents a corner case not accounted
for in our current formulation. Another is that Hypothesis 2
is correct but our assumption that its conditions hold in the
star magze is not. In particular, we assume that a one-point
behavior function is approximately optimal and that the be-
haviors that become grouped therefore have similar DFPs.
While this seems obvious in the hard and medium mazes,
it may not hold in the star maze. In particular, we specu-
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Figure 7: Maze domain results.

late that the presence of many narrow corridors in the star
maze is an important factor. Though lack of space presents
its presentation here, we conducted an analysis of the robot
trajectories in the star maze and found that many individ-
uals get stuck in these corridors, leading to many different
solutions with nearly identical one-point behavior. Thus, it
may be that an individual’s entire trajectory, and not just its
end point, is an important factor in its offsprings’ potential.

7. DISCUSSION AND FUTURE WORK

Overall, the results presented in this paper offer several
new insights about the critical factors in the performance
of novelty search. At a high level, the results demonstrate
that the design of a good behavior function is essential to
novelty search’s success. At a lower level, the results isolate
both similarity in descendant fitness probability and behav-
ior as central characteristics of the behavior function. The
genotypes mapped to the same behavior should have simi-
lar DFPs or the benefit of a smaller behavior space will be
offset by the lack of discriminative power. In addition, the
genotypes that become grouped should previously have had
dissimilar behaviors or the change in the behavior function
will not substantially speed the search.

On the one hand, these findings are good news for nov-
elty search, as they identify a broad range of scenarios in
which the behavior function can supply substantial leverage
for speeding search. On the other hand, these findings are
bad news, as they underscore the difficulty of finding a good
behavior function in practice. Doing so with confidence re-
quires reasoning about DFP, which is infeasible to compute
in realistic problems. In general, finding a good behavior
function may be as difficult as solving the optimization prob-
lem itself. This problem is less severe for reasoning about
behaviors, since designers often have good intuition about
what behaviors are similar. However, the results shown in
Section 6 illustrate that such reasoning can also be tricky.
Even domain experts may have difficulty explaining why av-
erage correlation is higher in the hard magze than in the
medium maze, much less why the star maze benefits from a
larger behavioral characterization.

Thus, the irony is that novelty search, which strives to
operate independently of fitness, relies on a form of prior
knowledge that is inherently connected to it. While it re-
mains a radical and useful approach to addressing the prob-
lem of deception, these results show that it is, at least with
respect to its use of prior knowledge, not so different from
other optimization methods after all.

Several avenues for future work are suggested by the re-
sults presented here. First, additional study of the star do-
main and variations thereof could shed new light on how
broadly our hypotheses hold and how qualitative changes
to a domain affect the optimal behavior function. Second,

further study of DFP, including alternative heuristics, could
arm designers with valuable intuition to aid in the selec-
tion of a behavior function. Finally, other aspects of novelty
search remain to be analyzed. For example, while Lehman
and Stanley have considered two different rules for adding
individuals to the archive [6, 8], others are possible and the
effect of such choices has never been investigated.
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