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ABSTRACT

Helicopter hovering is an important challenge problem in
the field of reinforcement learning. This paper considers sev-
eral neuroevolutionary approaches to discovering robust con-
trollers for a generalized version of the problem used in the
2008 Reinforcement Learning Competition, in which wind
in the helicopter’s environment varies from run to run. We
present the simple model-free strategy that won first place
in the competition and also describe several more complex
model-based approaches. Our empirical results demonstrate
that neuroevolution is effective at optimizing the weights of
multi-layer perceptrons, that linear regression is faster and
more effective than evolution for learning models, and that
model-based approaches can outperform the simple model-
free strategy, especially if prior knowledge is used to aid
model learning.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning; 1.2.9 [Artificial
Intelligence]: Robotics

General Terms

Algorithms, Experimentation

Keywords

neural networks, evolutionary computation, reinforcement
learning, robot control

1. INTRODUCTION

The field of reinforcement learning (RL) [10, 21] aims to
develop on-line algorithms for optimizing behavioral policies
in sequential decision problems (SDPs), wherein agents in-
teract with unknown environments and seek behavioral poli-
cies that maximize their long-term reward. Many challeng-
ing and realistic tasks can be cast in this framework (e.g.,
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robot control [18], game-playing [22], and system optimiza-
tion [24]), so developing effective RL algorithms is critical
to the progress of artificial intelligence.

In recent years, in an effort to encourage the community
to convert its research ideas into operational methods, RL
researchers have begun organizing competitive events. The
most recent such event, the 2008 RL Competition, began in
November 2007 and ended at the International Conference
on Machine Learning (ICML) in July 2008 in Helsinki, Fin-
land. It featured six problems of various size and difficulty,
some of which were formulated as generalized domains. A
generalized domain is not a single SDP but a class of re-
lated SDPs that vary along specific dimensions (e.g., sensor
noise or environment size). A small set of SDPs drawn from
this class were available to participants to use for training
but the competition was decided solely on performance on a
different set of SDPs independently sampled from the same
class. In this way, the competition discouraged participants
from overfitting to a single SDP and encouraged them to
develop methods capable of robust, on-line learning.

One such generalized domain from the 2008 competition
is the problem of helicopter hovering [3, 14], in which a 3-
dimensional simulated helicopter strives to hover as close as
possible to a fixed position. Helicopter hovering is an impor-
tant RL challenge problem because it has complex transition
dynamics, high-dimensional observation and action spaces,
and high risk. While the helicopter hovering problem has al-
ready been well studied, the 2008 RL Competition marked
the first attempts to tackle the generalized version, wherein
wind in the helicopter’s environment varies greatly from one
SDP to the next.

This paper describes and analyzes several neuroevolution-
ary strategies for tackling the generalized helicopter hovering
problem. We present the simple model-free strategy that
won first place in the 2008 competition by evolving spe-
cialized neural network controllers for each SDP available
in the training set. For each testing SDP, the model-free
approach automatically determines which specialized con-
troller is most appropriate. We also describe more complex
model-based approaches in which the agent uses flight data
gathered in early episodes to estimate a model of the envi-
ronment and then evolves a controller off-line.

Our empirical analysis demonstrates that evolution is ef-
fective at optimizing the weights of controllers represented
as fixed-topology multi-layer perceptrons. However, neu-
roevolution is not able to evolve topologies that outperform



the best ones manually constructed by human experts. Our
results also show that linear regression is faster and more
effective than evolution for estimating models from flight
data. Finally, our results demonstrate that model-based
approaches can outperform the simple model-free strategy,
though the size of the performance difference depends on
how much prior knowledge about the environment is em-
ployed during model learning.

The rest of this paper is organized as follows. Section 2
formalizes the notion of generalized domains and Section 3
describes the generalized helicopter hovering problem. Sec-
tions 4 and 5 compare different approaches to evolving neu-
ral network controllers and learning models, respectively, for
a given helicopter hovering SDP. Section 6 compares model-
free and model-based approaches to generalized helicopter
hovering. Section 7 discusses these results and Section 8
outlines opportunities for future work.

2. GENERALIZED DOMAINS

To discourage participants from overfitting to a single
SDP and to encourage them to develop methods capable
of robust, on-line learning, several events in the 2008 RL
Competition used generalized domains. In a generalized do-
main, the SDPs available for training and testing can differ
from each other in particular ways. Defining a generalized
domain involves specifying the dimensions along which these
SDPs can vary and selecting a distribution over the resulting
space. The training and testing SDPs are then formed by
drawing independent samples from this distribution. For-
mally, a generalized domain G = (©, F, P) consists of:

e O, a set of possible parameter vectors. Each parame-
ter specifies something about the dynamics or reward
structure of the SDP.

e F, afunction mapping parameter vectors to SDPs; i.e.,
a particular SDP is defined by F(6), where 6 € ©, and

e P: 0 — [0,1], a probability distribution over the set
of possible parameter vectors.

Given a generalized domain G, a training set is formed by
sampling k times from P and applying F to each sampled
parameter vector, yielding the set {F(01),...,F(0x)}. A
testing set can be generated in the same way. At the time of
the competition, neither F, ©, nor P were known to the par-
ticipants. Instead, they observed F(6;) indirectly from the
trajectories of observations and rewards that it generated.

To excel in a generalized domain, a learner must be ro-
bust to the variation represented by © and P. Except in
degenerate cases, no fixed control policy will perform well
across many settings in ©. Consequently, for strong perfor-
mance, real learning is required during testing. No matter
how much learning is done on the training set, the agent
must still learn on each test run which SDP it faces and
therefore what policy will perform well.

3. GENERALIZED HELICOPTER
HOVERING

In the helicopter hovering domain, an RL agent seeks
a control policy (i.e., a mapping from observations to ac-
tions) for a 3-dimensional simulated XCell Tempest heli-
copter. The goal is to make the helicopter hover as close
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Table 1: The 12-dimensional state and observation
space in the helicopter hovering domain.

a1 | longitudinal cyclic pitch (aileron)
a2 | latitudinal cyclic pitch (elevator)

as | tail rotor collective pitch (rudder)
a4 | main rotor collective pitch

Table 2: The 4-dimensional action space in the he-
licopter hovering domain.

as possible to a fixed position for the duration of an episode.
Helicopter hovering is challenging for several reasons. First,
the transition dynamics (i.e., how the true state of the agent’s
environment changes in response to its actions) are com-
plex. Second, both the observation and action spaces are
continuous and high-dimensional. The latter is particularly
problematic as many traditional RL algorithms, e.g., tempo-
ral difference methods [19], require enumerating the action
space in order to select a maximizing action. Third, the
domain involves high risk, as bad policies can crash the heli-
copter, incurring catastrophic negative reward. As a result,
the process of exploration, in which new policies are evalu-
ated, must be conducted with extreme care. Below we give
a brief description of the helicopter hovering problem; more
details can be found in [3, 14].

In each timestep, the agent receives a 12-dimensional ob-
servation vector (see Table 1) consisting of a noisy descrip-
tion of its true state, which is also 12-dimensional. It re-
sponds by specifying a 4-dimensional action (see Table 2).

At each timestep, the agent also receives an immediate
reward that is the sum, over all state features, of the squared
difference between that state feature and the fixed target
position in which the helicopter wishes to hover:

R=— Z(SZ — ti)z
i
where s; and ¢; are the current value and the target value,
respectively, of the ith state feature.

A helicopter episode consists of 6000 timesteps, each last-
ing 0.1 seconds, resulting in episodes of 10 minutes. The
episode ends prematurely if the helicopter crashes, which
occurs if the velocity along any of the main axes exceeds
5m/s, the position is off by more than 20m, the angular rate
around any of the main axes exceeds 2 * 27 rad/s or the ori-
entation is more than 30 degrees from the target orientation.
Crashing results in a large reward penalty equal to the most
negative reward achievable for the remaining time. The goal
of the agent is to find a control policy that maximizes the
average reward it receives per episode.



The original helicopter hovering problem has been well
studied [3, 14]. However, the 2008 RL Competition featured
a new, generalized version of the domain in which wind was
added to the helicopter simulator. After the competition,
the software was made public!, revealing exactly how wind
affects the helicopter dynamics. The set of possible param-
eter vectors is:

0 = {{windy, wind,) : —=5bm/s < wind,,wind, < 5m/s}

where wind,, and wind, control the velocity of wind in the x-
and y-axes, respectively. The probability distribution P over
this set is uniform. The presence of wind changes the way
the helicopter responds to the agent’s actions, thus altering
the control policy needed to hover. Therefore, to excel in
the generalized version of the problem, an agent must reason
about the level of wind in each SDP it faces and adapt its
behavior accordingly.

4. EVOLVING HELICOPTER POLICIES

Before addressing the challenges of the generalized version
of helicopter hovering, we first consider how to learn poli-
cies for a single helicopter SDP with fixed wind parameters.
This process is a central component in each of the meth-
ods presented in Section 6 for tackling the full, generalized
problem. We consider a neuroevolutionary approach [25],
which uses evolutionary computation [6] to optimize a pop-
ulation of neural networks. Given its numerous successes
in noisy, continuous control problems [8, 9, 13, 17, 23, 24],
neuroevolution is well-suited to this task.

In the helicopter problem, each neural network generated
by evolution represents a different policy mapping observa-
tions to actions. To find a good policy, we employ a sim-
ple steady-state neuroevolutionary method that does not use
generations; instead, only one member of the population
is changed at a time. Table 3 lists the parameters of this
algorithm, along with the settings used in all our experi-
ments. These settings were chosen after an informal param-
eter search. However, we found that performance was not
highly sensitive to these parameters and was similar at other
reasonable settings.

pop_size 50 mutate_weight_prob 0.1
crossover_prob | 0.5 replace_gene_prob 0.25
averaging_prob [ 0.5 mutate_std 0.8
mutate_prob 0.75 plateau_threshold 1000

Table 3: Neuroevolution parameter settings.

Each neural network is encoded as a genome consisting
of a vector of the network’s weights and an initial popu-
lation of size pop_size is formed by repeatedly applying
weight mutations to a given prototype network. The prob-
ability of a given weight being mutated is given by mu-
tate_weight_prob. When weight mutations occur, their
magnitude is sampled from a Gaussian distribution with
mean 0.0 and standard deviation mutate_stand_dev. With
probability replace_gene_prob, the weight is replaced by
this value instead of added to it.

Each network in the initial population is then evaluated
using the fitness function. In the helicopter hovering do-
main, the fitness function consists of the reward that the

! Available at http://rl-competition.googlecode. com.
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Figure 1: The manually designed topology of a neu-
ral network helicopter controller, indicating which
nodes use sigmoid activation functions and which
use linear summations.

agent accrues during a single episode when using the policy
specified by the network. We also tried using longer fit-
ness evaluations in which reward is averaged over multiple
episodes but found no performance improvement.

After evaluating the entire initial population, the worst-
performing network is repeatedly replaced with a new in-
dividual. With probability crossover_prob, the new in-
dividual is formed via crossover between two parents se-
lected via roulette wheel selection. During crossover, each
offspring weight is set to the average of its parents’ weights
with probability averaging_prob. Otherwise, it is set equal
to the weight of one of the two parents, selected randomly.
With probability mutate_prob, weight mutations are then
applied in the same manner as in the initial population.
If crossover does not occur, the new individual is created
by applying such weight mutations to a single parent, also
chosen with roulette wheel selection. Evolution continues
until no new population champion has been discovered in
plateau_threshold evaluations.

We consider four approaches to evolving neural networks
using this method. In the first approach, we evolve fully-
connected single-layer perceptrons (SLPs), i.e., neural net-
works without any hidden nodes. In the initial prototype
network, all weights are set to 0.0.

In the second approach, we evolve SLPs but starting from
a prototype network whose weights correspond to a base-
line controller provided with the competition software. This
baseline controller is robust in that it never causes the heli-
copter to crash. However, its performance is quite weak, as
it is unable to consistently hover near the target point.

In the third approach, we evolve multi-layer perceptrons
(MLPs) using a topology manually constructed by human
experts [14], The topology, shown in Figure 1, employs both
sigmoid and linear activation functions.

In the fourth approach, we evolve MLPs but using initial
weights that make it equivalent to the baseline controller.
To implement the linear baseline controller in this nonlinear
topology, all links from the hidden nodes to the outputs
are set either to 1.0, to propagate the input signal without
modification, or to 0.0, so that they have no influence on the
network’s output.

All networks have nine inputs, corresponding to the first
nine observation features described in Table 1, and four out-
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Figure 2: Average performance of the population
champion over time (lower is better).

puts, one for each action feature. The angular rates (p, ¢
and r) are omitted because they can be derived from the
other nine observation features.

In all of these approaches, evolution optimizes only the
weights of fixed-topology networks. However, we also tested
two neuroevolutionary methods, NeuroEvolution of Aug-
menting Topologies (NEAT) [17] and Alternating Extension
and Optimization of Neural Networks (AEONN) [11], that
can simultaneously optimize network topologies and weights.
Unfortunately, neither of these methods discovered topolo-
gies that outperformed the manually designed topology. We
suspect this result is due to both the quality of the topology,
which was highly engineered, and the size of the topology
space, which makes it difficult for evolution to search.

To compare these four approaches, we conducted 10 in-
dependent runs of each approach in each of the 10 training
SDPs, i.e., 100 runs per approach and 400 runs total. The re-
sults, averaged over all 100 runs for each method, are shown
in Figure 2.

The results demonstrate that the baseline controller, by
enabling evolution to begin in a relatively fit region of the
search space, can significantly speed evolution. The results
also show that, when the baseline controller is used, the
manually designed MLP performs substantially better than
the SLP. This is not surprising since the topology was care-
fully engineered for helicopter control. More surprising is the
poor performance of the MLLP when beginning from scratch,
without the aid of the baseline controller. This strategy
appears to perform the worst. However, a closer examina-
tion of the individual runs revealed that the vast majority
achieve performance similar to the MLP using the baseline
controller, albeit more slowly. The remaining few runs con-
verge prematurely, performing badly enough to greatly skew
the average.

All the approaches described in this section evolve policies
only for a single training SDP, with no attempt to general-
ize across SDPs with different wind settings. To determine
the robustness of the resulting policies, we compared their
average performance across all 10 training SDPs to their per-
formance on the particular SDP for which they were trained.
Specifically, we selected the best single-layer and multi-layer
policy evolved for each SDP and tested it for 10 episodes in
every training SDP. The results are shown in Table 4.

This comparison demonstrates that the MLP policies are

Topology r o rg og
SLP -496.22 | 25.00 | -2.508e6 | 2.345e5
MLP -132.60 | 2.17 | -2001.89 46.43

Table 4: Performance of the best SLP and MLP poli-
cies: average reward (r) and standard deviation (o)
on the particular SDPs for which they were trained
and average reward (rg) and standard deviation (og)
across all training SDPs.

far more robust, achieving much better average performance
and lower variance across the training SDPs. In fact, no
specialized multi-layer policy crashes the helicopter on any
of the 10 SDPs. By contrast, the single-layer policies fre-
quently crash on SDPs other than those they trained on,
with catastrophic effects on average reward. Nonetheless,
even the MLPs see an order of magnitude performance drop
when tested across all training SDPs. This result under-
scores the challenges of achieving high performance in the
generalized version of the task, for which we consider several
approaches in Section 6.

5. LEARNING HELICOPTER MODELS

The results presented above demonstrate that neuroevo-
lution can discover effective policies for helicopter hovering.
However, doing so has high sample complexity, i.e., it re-
quires evaluating tens of thousands of policies through inter-
actions with the environment. Many of these policies yield
poor reward or even crash the helicopter. Consequently,
evolving policies on-line is infeasible for the competition be-
cause participants are evaluated on the cumulative reward
their agents accrue during learning.

One way to reduce sample complexity is to learn a model
of the environment. Given an observation at timestep ¢,
a model predicts the observation and reward at timestep
t + 1. If the agent can learn a model from flight data for
each testing SDP early in the run, that model can simu-
late the fitness function required by neuroevolution. Thus,
once a model has been learned, evolution can proceed off-
line without increasing sample complexity. Doing so allows
the agent to employ a good policy much earlier in the run,
thus increasing its cumulative reward.

This section presents several strategies for learning models
in the generalized helicopter hovering domain. Section 5.1
describes approaches for learning a complete model based on
a linear representation from the helicopter literature, using
either evolution or linear regression to optimize the weights.
These approaches rely only on information that was publicly
available to participants during the competition. Section 5.2
considers how to learn models given additional information
gleaned from the post-competition release of the simulator
software, which revealed how different wind settings affect
the helicopter dynamics. Given this information, we con-
sider strategies for estimating wind settings in a given SDP
using either evolution or linear regression.

5.1 Learning Complete Models

During the competition, the details of the helicopter en-
vironment were hidden. However, helicopter dynamics have
been well studied. In particular, Abbeel et al. [1] developed
a representation of the transition function of a hovering he-
licopter that uses a set of linear equations to predict accel-



erations given an observation and action at time ¢.

Ut41 — Us Cutit + gu + Dy + wa
vip1 — v = Covr + g + Dy +wy
Wit —we = Cupwi+ guw + Cayaar + Doy + Wy
pry1—pt = Cppr 4+ Cayare + Dp + wp
gi+1 — @ = Cqqt + Caya2t + Dy + wy
rigr —1re = Crri+ Cazase + Dr + wr

The accelerations depend on the values of the g vector,
which represent gravity (9.81m/s) expressed in the heli-
copter frame. The values of W are zero-mean Gaussian ran-
dom variables that represent perturbations in acceleration
due to noise.

Integrating the accelerations produces an estimate of the
velocities at time t + 1. These velocities describe half the
observation at time ¢t + 1. The remaining half, which de-
scribes the helicopter’s position, is estimated by adding the
velocities at time ¢ to the position at time ¢. As described in
Section 3, reward is a simple function of the helicopter’s cur-
rent state, which can be approximated using the observation
estimated with these equations.

Because this model representation was not designed for
the generalized version of the problem, it does not explic-
itly consider the presence of wind. Nonetheless, it can still
produce accurate models if the amount of wind in the heli-
copter frame remains approximately constant, i.e., when the
helicopter position and orientation remain fixed. Since heli-
copters in the hovering problem aim to keep the helicopter
as close to the target position as possible, this assumption
holds in practice. Therefore, wind can be treated as a con-
stant and learning a complete model requires only estimating
values for the weights C, D, and .

We consider three different approaches to learning these
weights. In the first approach, we use evolutionary compu-
tation to search for weights that minimize the error in the
reward that the model predicts a given policy will accrue
during one episode. This approach directly optimizes the
model for its true purpose: to serve as an accurate fitness
function when evolving helicopter policies. To do so, we ap-
ply the same steady-state evolutionary method described in
Section 4. Fitness is based on the error in total estimated
reward per episode using a single policy trained on an SDP
with no wind, which we call the generic policy.

In the second approach, we use evolutionary computation
to search for weights that minimize error in the model’s one-
step predictions. In other words, fitness is based on the
average accuracy, across all timesteps t in an episode, of the
observation predicted at time ¢t + 1. Again we use the same
steady-state evolutionary method and compute fitness using
the generic policy.

In the third approach, we still try to minimize error in
one-step predictions but use linear regression in place of
evolutionary computation. Linear regression computes the
weight settings that minimize the least squared error given
one episode of data gathered with the generic policy.

For both the second and third approaches, the flight data
must first be preprocessed by dividing it into pairs of con-
secutive observations and subtracting gravity g from the ob-
servation at ¢ + 1. After preprocessing, evolution or linear
regression is used to estimate C and D. The noise param-

Complete Model Learning
Method t T'm Ta o
EC-MER 562.94 | -1.55e4 | -1.184e6 | 3.268e6
EC-MENO [ 611.10 | -223.19 | -4988.82 | 6722.97
LR 2.05 | -142.25 | -974.24 | 305.68

Wind Model Learning
Method € t T'm Ta o
EC-MER 0.009 | 6506.26 | -126.26 | -136.53 | 38.72
EC-MENO | 0.018 25.88 | -129.66 | -142.98 | 40.80
LR 0.009 1.65 | -131.42 | -141.01 | 35.35

Table 5: Performance of complete and wind models
learned via evolutionary computation to minimize
error in reward (EC-MER) or in the next obser-
vation (EC-MENO), or via linear regression (LR).
Results compare error in the learned weights (¢), av-
erage computation time (¢) in seconds to learn the
model and the median (r..), average (r,) and stan-
dard deviation (o) of the reward of the best policy
evolved with the model and tested in the SDP for
which the model was trained.

eters W are approximated using the average of the squared
prediction errors of the learned model on the flight data.

We evaluated each of these approaches by using them
to learn models for each of the 100 test SDPs that were
released after the competition ended. Then we used the
learned model to evolve policies in the manner described in
Section 4. Finally, we took the best policy discovered in
each evolutionary run and averaged its performance over 5
episodes in the SDP on which the corresponding model was
trained.

Results are shown in the top part of Table 5. Note that
error in learned weights cannot be computed for the com-
plete models because they do not explicitly consider wind;
thus, there are no “true” weights for comparison. The re-
sults demonstrate that minimizing error in one-step predic-
tions yields much more useful models. They also demon-
strate that, when minimizing one-step error, linear regres-
sion is more effective than evolution. Furthermore, linear
regression requires vastly less computation time than evo-
lution. This difference is not surprising since evolution re-
quires on average approximately 2000 evaluations to evolve
a model. By contrast, linear regression requires only one
sweep through the flight data to estimate model weights.

5.2 Learning Wind Models

After the competition ended, the source code was released,

revealing the exact helicopter dynamics and parameters. These

dynamics are based on the representation developed by Abbeel
et al., except for the addition of wind parameters in the first
two equations:

urpr —ue = Cu(ut + windy) + gu + Wu
vir1 — v = Cu(vr + windy) + go + Doy + wy

The competition simulator was modeled after one specific
helicopter type, an XCell Tempest whose dynamics are well
known. Thus, the parameters é, 5, and @ are known con-
stants and only wind values change across SDPs in the train-
ing and test sets. These values are generalized as described
in Section 3. Given this additional information, learning a



model of a particular SDP reduces to estimating the gener-
alized parameters, wind, and wind,.

To learn such wind models, we consider the same three
approaches used to learn complete models. The two evolu-
tionary approaches work in the same way, though now only
two weights need to be learned. Also, when evolving models
to minimize error in reward, the fitness function is based
on the average error across 10 policies, each optimized for
a different SDP in the training set. We found that, unlike
with the complete models, this fitness function resulted in
better performance than using only the generic policy. For
linear regression, estimating the wind parameters when the
others are known reduces to solving the first two equations
of the model with respect to wind:

wind, = ut+1071:tgu — Ut
wind, = Vit — v —go = Do — Ut
Cy
Since noise is modeled as zero-mean Gaussian random vari-
ables, the average noise will be zero and is thus omitted.

As with the complete models, we evaluated these approaches

by using them to learn models on the test SDPs, using those
models to evolve policies, and evaluating the best evolved
policies over 5 episodes in the SDP on which the model was
trained. The bottom part of Table 5 shows the results of
these comparisons. Unlike in the complete model case, min-
imizing error in reward now performs as well as the other
approaches in terms of both error and reward of evolved
policies. However, the need to evaluate weight settings on
10 different policies leads to much higher computation time.
Evolving weights that minimize one-step error now performs
as well as linear regression but remains an order of magni-
tude slower.

6. MODEL-FREE VS. MODEL-BASED
APPROACHES

In this section, we compare several strategies for tack-
ling the full generalized helicopter hovering problem from
the 2008 RL Competition. Each strategy uses the policy-
evolving and model-learning components presented in Sec-
tions 4 and 5 in different ways. The goal of each strategy is
to maximize the cumulative reward the agent accrues over
all evaluation episodes: 1000 episodes on every different test
SDP, each with different wind settings.

The robustness analysis presented in Section 4 shows that,
while it is possible to evolve a policy that will not crash on
an arbitrary SDP, such a policy will not perform as well as
one optimized for that SDP. Thus, excelling in the competi-
tion requires learning on-line in order to adapt to each test
SDP. At the same time, a good agent must avoid crashing
the helicopter and must minimize the time spent evaluating
suboptimal policies during learning.

Therefore, a naive strategy of evolving a new policy on-
line for each test SDP is impractical. As shown in Figure 2,
tens of thousands of evaluations are required to evolve a
strong policy. Even if evolution could find a good policy in
1000 episodes, it would accrue large negative reward along
the way. As mentioned in Section 5, models of the envi-
ronment learned from flight data can be used to reduce the
sample complexity of on-line learning. However, at the time
of the competition, we were unable to learn models accurate
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Figure 3: Cumulative reward accrued by competi-
tors in the generalized helicopter hovering event of
the 2008 RL Competition (lower is better). The test
SDP changes every 1000 episodes.

enough to serve as reliable fitness functions for evolution.

Instead, we devised a simple, sample-efficient model-free
approach. In advance of the competition, specialized policies
for each of the 10 training SDPs were evolved using the
procedure described in Section 4. Then, for each test SDP of
the competition, the first 10 episodes were spent evaluating
each of these specialized policies in that test SDP. Finally,
whichever specialized policy performed the best was used for
the remaining 990 episodes of that test SDP. This strategy
allows the agent to adapt on-line to each test SDP in a
sample-efficient way, without needing an accurate model.

Figure 3 shows the results of the generalized helicopter
hovering event at the 2008 RL Competition, in which this
model-free approach won first place. During the competition
only 15 SDPs from the total set of 100 test SDPs were used
for testing. Of the six teams that successfully completed test
runs, only one other team managed to avoid ever crashing
the helicopter, though it still incurred more negative reward.
Another team matched the performance of the model-free
approach for approximately the first third of the test run.
However, three subsequent crashes relegated this team to a
fourth place finish.

After the competition, we successfully implemented the
complete model-learning algorithms described in Section 5.1
and tested a model-based approach to generalized helicopter
hovering. Given some test SDP, one episode of flight data is
gathered using the generic policy, which avoids crashing but
may not achieve excellent reward on that SDP. Next, a com-
plete model of the test SDP is learned from the flight data
via linear regression, the best performing method. Then,
neuroevolution is used to evolve a policy optimized for this
SDP, using the model to compute the fitness function. Fi-
nally, the evolved policy controls the helicopter for all re-
maining episodes on that SDP.

We also tested an incremental model-based approach which
works the same way but continues to evolve new policies us-
ing updated models as more flight data is gathered. Specif-
ically, the incremental approach learns a new model at the
end of each episode using all the flight data gathered on that
SDP. Then, evolution is repeated using the latest model to
find a new policy for the next episode. Once the perfor-
mance of the policy in the SDP is at least as good as that
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Figure 4: Cumulative reward averaged over 100 test
SDPs of the model-free and model-based strategies
for generalized helicopter hovering.

predicted by the model, learning is halted and that policy
is employed for the remaining episodes. The incremental
approach is similar to traditional methods for model-based
RL (e.g., [20, 12]), but evolution, rather than dynamic pro-
gramming [5], is used to find a policy given the model. It
is also similar to apprenticeship learning [2], though the ini-
tial flight data is gathered by the generic policy instead of a
human expert.

Both the model-based and incremental model-based strate-
gies can also be implemented using the wind models de-
scribed in Section 5.2. Unlike the complete models, which
rely only on information publicly available during the com-
petition, the wind models are learnable only given infor-
mation gleaned from the post-competition software release.
Hence model-based approaches relying on wind models would
not have been feasible alternatives for the competition. None-
theless, we tested their performance to isolate the challenge
of generalizing across SDPs and to establish an upper bound
on performance (i.e., a lower bound in the graphs) for the
generalized helicopter hovering task.

To test these methods, we applied them to each of the 100
test SDPs and measured the average cumulative reward they
accrued over 1000 episodes. Figure 4 shows the results. The
model-free approach used in the competition gathers a lot of
negative reward in the first 10 episodes as it evaluates each
of the policies optimized for the training SDPs. Thereafter,
its cumulative negative reward grows more slowly, as it uses
only the best of these policies.

The model-based approach using a complete model per-
forms worse than the model-free approach. Due to noise in
the flight data, linear regression cannot always learn an ac-
curate model given only one episode of flight data. Thus,
the policies evolved using that model sometimes perform
poorly in the corresponding test SDP. However, the incre-
mental model-based approach using a complete model per-
forms better than the model-free approach. By continually
gathering flight data for learning, it reliably finds an accu-
rate model within a few episodes. Given more knowledge
about the helicopter dynamics, i.e., the equations shown in
Section 5.2, it is possible to learn more accurate models.
Hence, both model-based strategies using wind models out-
perform those using complete models, with the incremental
version performing marginally better.

7. DISCUSSION

The results of our empirical analysis demonstrate that
evolutionary computation is effective at optimizing the weights
of neural network helicopter controllers. The superior per-
formance of evolution when seeded with the baseline con-
troller shows that evolution starting from scratch sometimes
becomes trapped in local maxima, though such effects could
potentially be reduced using fitness sharing [7] or other tech-
niques for preventing premature convergence. While the
neuroevolutionary methods we tested could not evolve topolo-
gies that outperformed the manually designed one, it is pos-
sible that other topology-evolving methods could do so. It
is more likely, however, that there is little room for improve-
ment in the manually designed topology, which was highly
engineered by human experts.

Our results also show that models trained to minimize
one-step error can produce more accurate fitness functions
for policy evolution than those trained to minimize error
in reward per episode. This is surprising since the latter
approach directly optimizes the model for its true purpose:
predicting a policy’s reward. However, learning is easier
in the former approach because it gets more training points
from the flight data: one per timestep instead of per episode.
Linear regression proves superior to evolution for optimizing
model weights, yielding accurate models in much less time.
However, in cases where a linear representation is inadequate
or no human expert can provide one, evolution may prove a
practical way to optimize model weights.

In addition, our results demonstrate the power of model-
based approaches to maximize cumulative reward in the
generalized problem, as these methods outperform even the
competition-winning model-free approach. However, the poor
performance of the (non-incremental) model-based approach
using a complete model underscores the importance of learn-
ing a reliable model. Policies evolved with an inaccurate
model perform worse than not using a model at all.

In comparing the model-free and model-based approaches,
we measure only cumulative reward, as this was the sole cri-
terion in the competition. However, in more realistic settings
computational constraints may also be important. In such
cases, the model-free approach is an appealing choice. The
method is simple to implement and its performance, though
inferior to that of the model-based based methods, is still
quite strong. Furthermore, because the evolutionary runs
are done off-line during training, only negligible computation
time is needed during testing. By contrast, the model-based
approaches are more complex to implement and involve con-
ducting multiple evolutionary runs during testing.

Two characteristics of the generalized problem, as defined
in the 2008 competition, are critical to the feasibility of the
approaches we consider here. First, the fitness of a policy
can be reliably estimated in a single episode. Stochasticity
in the transition function makes the fitness function noisy,
but in practice this noise is not large enough to necessi-
tate resampling [4, 16], i.e., averaging fitness estimates over
multiple episodes. If resampling were required, the model-
free approach would need more episodes to determine which
specialized policy to use in each test SDP, lengthening the
period in which it accrues a lot of negative reward. Resam-
pling would also greatly slow policy evolution, exacerbating
the computational expense of the model-based approaches.

Second, there exist policies, e.g., the generic policy, that
do not crash on any of the SDPs, regardless of the wind



setting. This characteristic greatly reduces the danger of
exploration. If such policies could not be discovered, the
model-free approach would be impractical, as it assumes
that each specialized policy, while potentially suboptimal,
will not incur catastrophic negative reward. Similarly, the
model-based approaches require a safe policy to gather flight
data for model learning.

8. FUTURE WORK

In the future, we intend to study a more broadly general-
ized version of the helicopter hovering domain, one in which
all of the model weights, not just those related to wind,
can differ between SDPs. We hypothesize that doing so will
eliminate the second characteristic mentioned above, as no
single policy will be able to reliably avoid crashing in such
disparate environments.

To tackle such a problem, we plan to develop evolutionary
methods for finding policies that minimize the risk of crash-
ing. One approach is to devise a fitness function based on
cross-validation, thus explicitly measuring each policy’s abil-
ity to generalize to previously unseen SDPs. Doing so can
minimize the negative reward incurred while testing policies
in the model-free approach or gathering flight data in the
model-based approach. Since such policies might still occa-
sionally crash or behave erratically, we may need to consider
more elaborate model representations, as the one employed
here is known to be unreliable outside the region in which
the helicopter strives to hover [1]. The more broadly gen-
eralized problem may also require more elaborate network
topologies that use recurrent links to mitigate the effects of
noise, as such topologies have proven useful for helicopter
maneuvers other than hovering [15].
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