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Abstract
Centralised training with decentralised execution is an important setting for coop-
erative deep multi-agent reinforcement learning due to communication constraints
during execution and computational tractability in training. In this paper, we
analyse value-based methods that are known to have superior performance in
complex environments [43]. We specifically focus on QMIX [40], the current
state-of-the-art in this domain. We show that the representational constraints on the
joint action-values introduced by QMIX and similar methods lead to provably poor
exploration and suboptimality. Furthermore, we propose a novel approach called
MAVEN that hybridises value and policy-based methods by introducing a latent
space for hierarchical control. The value-based agents condition their behaviour on
the shared latent variable controlled by a hierarchical policy. This allows MAVEN
to achieve committed, temporally extended exploration, which is key to solving
complex multi-agent tasks. Our experimental results show that MAVEN achieves
significant performance improvements on the challenging SMAC domain [43].

1 Introduction
Cooperative multi-agent reinforcement learning (MARL) is a key tool for addressing many real-world
problems such as coordination of robot swarms [22] and autonomous cars [6]. However, two key
challenges stand between cooperative MARL and such real-world applications. First, scalability
is limited by the fact that the size of the joint action space grows exponentially in the number of
agents. Second, while the training process can typically be centralised, partial observability and
communication constraints often mean that execution must be decentralised, i.e., each agent can
condition its actions only on its local action-observation history, a setting known as centralised
training with decentralised execution (CTDE).

While both policy-based [13] and value-based [40, 48, 46] methods have been developed for CTDE,
the current state of the art, as measured on SMAC, a suite of StarCraft II micromanagement benchmark
tasks [43], is a value-based method called QMIX [40]. QMIX tries to address the challenges
mentioned above by learning factored value functions. By decomposing the joint value function
into factors that depend only on individual agents, QMIX can cope with large joint action spaces.
Furthermore, because such factors are combined in a way that respects a monotonicity constraint, each
agent can select its action based only on its own factor, enabling decentralised execution. However,
this decentralisation comes with a price, as the monotonicity constraint restricts QMIX to suboptimal
value approximations.

QTRAN[44], another recent method, performs this trade-off differently by formulating multi-agent
learning as an optimisation problem with linear constraints and relaxing it with L2 penalties for
tractability.

In this paper, we shed light on a problem unique to decentralised MARL that arises due to inefficient
exploration. Inefficient exploration hurts decentralised MARL, not only in the way it hurts single agent
RL[33] (by increasing sample inefficiency[31, 30]), but also by interacting with the representational
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constraints necessary for decentralisation to push the algorithm towards suboptimal policies. Single
agent RL can avoid convergence to suboptimal policies using various strategies like increasing the
exploration rate (ε) or policy variance, ensuring optimality in the limit. However, we show, both
theoretically and empirically, that the same is not possible in decentralised MARL.

Furthermore, we show that committed exploration can be used to solve the above problem. In com-
mitted exploration [36], exploratory actions are performed over extended time steps in a coordinated
manner. Committed exploration is key even in single-agent exploration but is especially important
in MARL, as many problems involve long-term coordination, requiring exploration to discover
temporally extended joint strategies for maximising reward. Unfortunately, none of the existing
methods for CTDE are equipped with committed exploration.

To address these limitations, we propose a novel approach called multi-agent variational exploration
(MAVEN) that hybridises value and policy-based methods by introducing a latent space for hierar-
chical control. MAVEN’s value-based agents condition their behaviour on the shared latent variable
controlled by a hierarchical policy. Thus, fixing the latent variable, each joint action-value function
can be thought of as a mode of joint exploratory behaviour that persists over an entire episode.
Furthermore, MAVEN uses mutual information maximisation between the trajectories and latent
variables to learn a diverse set of such behaviours. This allows MAVEN to achieve committed explo-
ration while respecting the representational constraints. We demonstrate the efficacy of our approach
by showing significant performance improvements on the challenging SMAC domain.

2 Background

Figure 1: Classification of
MARL problems.

We model the fully cooperative multi-agent task as a Dec-POMDP [34],
which is formally defined as a tuple G = 〈S,U, P, r, Z,O, n, γ〉. S is
the state space of the environment. At each time step t, every agent
i ∈ A ≡ {1, ..., n} chooses an action ui ∈ U which forms the joint
action u ∈ U ≡ Un. P (s′|s,u) : S × U × S → [0, 1] is the state
transition function. r(s,u) : S ×U → R is the reward function shared
by all agents and γ ∈ [0, 1) is the discount factor. We consider partially
observable settings, where each agent does not have access to the full state
and instead samples observations z ∈ Z according to observation function
O(s, i) : S ×A → Z. The action-observation history for an agent i is τ i ∈ T ≡ (Z ×U)∗ on which
it can condition its policy πi(ui|τ i) : T × U → [0, 1]. We use u−i to denote the action of all the
agents other than i and follow a similar convention for the policies π−i. The joint policy π is based on
action-value function: Qπ(st,ut) = Est+1:∞,ut+1:∞

[∑∞
k=0 γ

krt+k|st,ut
]
. The goal of the problem

is to find the optimal action value function Q∗. During centralised training, the learning algorithm
has access to the action-observation histories of all agents and the full state. However, each agent can
only condition on its own local action-observation history τ i during decentralised execution (hence
the name CTDE). For CTDE methods factoring action values over agents, we represent the individual
agent utilities by qi, i ∈ A. An important concept for such methods is decentralisability (see IGM in
[44]) which asserts that ∃qi, such that ∀s,u:

argmax
u

Q∗(s,u) =
(
argmaxu1 q1(τ

1, u1) . . . argmaxun qn(τ
n, un)

)′
, (1)

Fig. 1 gives the classification for MARL problems. While the containment is strict for partially
observable setting, it can be shown that all tasks are decentralisable given full observability and
sufficient representational capacity.

QMIX [40] is a value-based method that learns a monotonic approximation Qqmix for the joint
action-value function. Figure 8 in Appendix A illustrates its overall setup, reproduced for convenience.
QMIX factors the joint-action Qqmix into a monotonic nonlinear combination of individual utilities
qi of each agent which are learnt via a utility network. A mixer network with nonnegative weights
is responsible for combining the agent’s utilities for their chosen actions ui into Qqmix(s,u). This
nonnegativity ensures that ∂Qqmix(s,u)

∂qi(s,ui) ≥ 0, which in turn guarantees Eq. (1). This decomposition
allows for an efficient, tractable maximisation as it can be performed in O(n|U |) time as opposed to
O(|U |n). Additionally, it allows for easy decentralisation as each agent can independently perform
an argmax. During learning, the QMIX agents use ε-greedy exploration over their individual utilities
to ensure sufficient exploration. For VDN [46] the factorization is further restrained to be just the
sum of utilities: Qvdn(s,u) =

∑
i qi(s, u

i).
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QTRAN [44] is another value-based method. Theorem 1 in the QTRAN paper guarantees optimal
decentralisation by using linear constraints between agent utilities and joint action values, but it
imposes O(|S||U |n) constraints on the optimisation problem involved, where | · | gives set size.
This is computationally intractable to solve in discrete state-action spaces and is impossible given
continuous state-action spaces. The authors propose two algorithms (QTRAN-base and QTRAN-alt)
which relax these constraints using two L2 penalties. While QTRAN tries avoid QMIX’s limitations,
we found that it performms poorly in practice on complex MARL domains (see Section 5) as it
deviates from the exact solution due to these relaxations.

3 Analysis
In this section, we analyse the policy learnt by QMIX in the case where it cannot represent the true
optimal action-value function. Our analysis is not restricted to QMIX and can easily be extended
to similar algorithms like VDN [46] whose representation class is a subset of QMIX. Intuitively,
monotonicity implies that the optimal action of agent i does not depend on the actions of the other
agents. This motivates us to characterise the class of Q-functions that cannot be represented by
QMIX, which we call nonmonotonic Q functions.

Definition 1 (Nonmonotonicity). For any state s ∈ S and agent i ∈ A given the actions of the other
agents u−i ∈ Un−1, the Q-values Q(s, (ui, u−i)) form an ordering over the action space of agent
i. Define C(i, u−i) := {(ui1, ..., ui|U |)|Q(s, (uij , u

−i)) ≥ Q(s, (uij+1, u
−i)), j ∈ {1, . . . , |U |}, uij ∈

U, j 6= j′ =⇒ uij 6= ui
j′
}, as the set of all possible such orderings over the action-values. The

joint-action value function is nonmonotonic if ∃i ∈ A, u−i1 6= u−i2 s.t. C(i, u−i1 ) ∩ C(i, u−i2 ) = ∅.

A simple example of a nonmonotonic Q-function is given by the payoff matrix of the two-player
three-action matrix game shown on Table 1(a). Table 1(b) shows the values learned by QMIX under
uniform visitation, i.e., when all state-action pairs are explored equally.

A B C

A 10.4 0 10
B 0 10 10
C 10 10 10

(a)

A B C

A 6.08 6.08 8.95
B 6.00 5.99 8.87
C 8.99 8.99 11.87

(b)
Table 1: (a) An example of a nonmonotonic payoff matrix, (b) QMIX values under uniform visitation.

Of course, the fact that QMIX cannot represent the optimal value function does not imply that the
policy it learns must be suboptimal. However, the following analysis establishes the suboptimality of
such policies.

Theorem 1 (Uniform visitation). For n-player, k ≥ 3-action matrix games (|A| = n, |U | = k),
under uniform visitation, Qqmix learns a δ-suboptimal policy for any time horizon T , for any

0 < δ ≤ R
[√

a(b+1)
a+b − 1

]
for the payoff matrix (n-dimensional) given by the template below, where

b =
∑k−2
s=1

(
n+s−1

s

)
, a = kn − (b+ 1), R > 0:

R+ δ 0 . . . R

0 . .
.

... . .
. ...

R . . . R


Proof. see Appendix B.1

We next consider ε-greedy visitation, in which each agent uses an ε-greedy policy and ε decreases
over time. Below we provide a probabilistic bound on the maximum possible value of δ for QMIX to
learn a suboptimal policy for any time horizon T .
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Theorem 2 (ε-greedy visitation). For n-player, k ≥ 3-action matrix games, under ε-greedy
visitation ε(t), Qqmix learns a δ-suboptimal policy for any time horizon T with probability

≥ 1−
(
exp(−Tυ

2

2 )+(kn−1) exp(− Tυ2

2(kn−1)2 )
)

, for any 0 < δ ≤ R

[√
a
(

υb
2(1−υ/2)(a+b) + 1

)
−1

]
for the payoff matrix given by the template above, where b =

∑k−2
s=1

(
n+s−1

s

)
, a = kn − (b + 1),

R > 0 and υ = ε(T ).

Proof. see Appendix B.2

The reliance of QMIX on ε-greedy action selection prevents it from engaging in committed exploration
[36], in which a precise sequence of actions must be chosen in order to reach novel, interesting parts
of the state space. Moreover, Theorems 1 and 2 imply that the agents can latch onto suboptimal
behaviour early on, due to the monotonicity constraint. Theorem 2 in particular provides a surprising
result: For a fixed time budget T , increasing QMIX’s exploration rate lowers its probability of
learning the optimal action due to its representational limitations. Intuitively this is because the
monotonicity constraint can prevent the Q-network from correctly remembering the true value of
the optimal action (currently perceived as suboptimal). We hypothesise that the lack of a principled
exploration strategy coupled with these representational limitations can often lead to catastrophically
poor exploration, which we confirm empirically.

4 Methodology

Figure 2: Architecture for MAVEN.

In this section, we propose
multi-agent variational explo-
ration (MAVEN), a new method
that overcomes the detrimen-
tal effects of QMIX’s mono-
tonicity constraint on exploration.
MAVEN does so by learning a di-
verse ensemble of monotonic ap-
proximations with the help of a
latent space. Its architecture con-
sists of value-based agents that
condition their behaviour on the
shared latent variable z controlled
by a hierarchical policy that off-
loads ε-greedy with committed ex-
ploration. Thus, fixing z, each
joint action-value function is a
monotonic approximation to the
optimal action-value function that
is learnt with Q-learning. Furthermore, each such approximation can be seen as a mode of committed
joint exploratory behaviour. The latent policy over z can then be seen as exploring the space of joint
behaviours and can be trained using any policy learning method. Intuitively, the z space should map
to diverse modes of behaviour. Fig. 2 illustrates the complete setup for MAVEN. We first focus on
the lefthand side of the diagram, which describes the learning framework for the latent space policy
and the joint action values. We parametrise the hierarchical policy by θ, the agent utility network
with η, the hypernet map from latent variable z used to condition utilities by φ, and the mixer net
with ψ. η can be associated with a feature extraction module per agent and φ can be associated with
the task of modifying the utilities for a particular mode of exploration. We model the hierarchical
policy πz(·|s0; θ) as a transformation of a simple random variable x ∼ p(x) through a neural network
parameterised by θ; thus z ∼ gθ(x, s0), where s0 is initial state. Natural choices for p(x) are uniform
for discrete z and uniform or normal for continuous z.

We next provide a coordinate ascent scheme for optimising the parameters. Fixing z gives a joint
action-value function Q(u, s; z, φ, η, ψ) which implicitly defines a greedy deterministic policy
πA(u|s; z, φ, η, ψ) (we drop the parameter dependence wherever its inferable for clarity of pre-
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sentation). This gives the corresponding Q-learning loss:

LQL(φ, η, ψ) = EπA [(Q(ut, st; z)− [r(ut, st) + γmax
ut+1

Q(ut+1, st+1; z)])
2],

where t is the time step. Next, fixing φ, η, ψ, the hierarchical policy over πz(·|s0; θ) is trained on the
cumulative trajectory rewardR(τ , z|φ, η, ψ) =

∑
t rt where τ is the joint trajectory.

Algorithm 1 MAVEN

Initialize parameter vectors υ, φ, η, ψ, θ
Learning rate← α, D ← {}
for each episodic iteration do
s0 ∼ ρ(s0), x ∼ p(x), z ∼ gθ(x; s0)
for each environment step t do
ut ∼ πA(u|st; ; z, φ, η, ψ)
st+1 ∼ p(st+1|st,ut)
D ← D ∪ {(st,ut, r(st,ut), rzaux(ut, st), st+1)}

end for
for each gradient step do
φ← φ+ α∇̂φ(λMIJV − λQLLQL) (Hypernet update)
η ← η + α∇̂η(λMIJV − λQLLQL) (Feature update)
ψ ← ψ + α∇̂ψ(λMIJV − λQLLQL) (Mixer update)
υ ← υ + α∇̂υλMIJV (Variational update)
θ ← θ + α∇̂θJRL (Latent space update)

end for
end for

Thus, the hierarchical policy objective for z, freezing the parameters ψ, η, φ is given by:

JRL(θ) =
∫
R(τA|z)pθ(z|s0)ρ(s0)dzds0.

However, the formulation so far does not encourage diverse behaviour corresponding to different
values of z and all the values of z could collapse to the same joint behaviour. To prevent this, we
introduce a mutual information (MI) objective between the observed trajectories τ , {(ut, st)},
which are representative of the joint behaviour and the latent variable z. The actions ut in the
trajectory are represented as a stack of agent utilities and σ is an operator that returns a per-agent
Boltzmann policy w.r.t. the utilities at each time step t, ensuring the MI objective is differentiable and
helping train the network parameters (ψ, η, φ). We use an RNN [20] to encode the entire trajectory
and then maximise MI(σ(τ ), z). Intuitively, the MI objective encourages visitation of diverse
trajectories τ while at the same time making them identifiable given z, thus elegantly separating the
z space into different exploration modes. The MI objective is:

JMI = H(σ(τ ))−H(σ(τ )|z) = H(z)−H(z|σ(τ )),

where H is the entropy. However, neither the entropy of σ(τ ) nor the conditional of z given the
former is tractable for nontrivial mappings, which makes directly using MI infeasible. Therefore, we
introduce a variational distribution qυ(z|σ(τ )) [50, 3] parameterised by υ as a proxy for the posterior
over z, which provides a lower bound on JMI (see Appendix B.3).

JMI ≥ H(z) + Eσ(τ ),z[log(qυ(z|σ(τ )))].

We refer to the righthand side of the above inequality as the variational MI objective JV (υ, φ, η, ψ).
The lower bound matches the exact MI when the variational distribution equals p(z|σ(τ )), the true
posterior of z. The righthand side of Fig. 2 gives the network architectures corresponding to the
variational MI loss. Since

Eτ ,z[log(qυ(z|σ(·)))] =Eτ [−KL(p(z|σ(·))||qυ(z|σ(·))]−H(z|σ(·)),

where the nonnegativity of the KL divergence on the righthand side implies that a bad variational
approximation can hurt performance as it induces a gap between the true objective and the lower
bound [32, 2]. This problem is especially important if z is chosen to be continuous as for discrete
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distributions the posterior can be represented exactly as long as the dimensionality of υ is greater than
the number of categories for z. The problem can be addressed by various state-of-the-art developments
in amortised variational inference [42, 41]. The variational approximation can also be seen as a
discriminator/critic that induces an auxiliary reward field rzaux(τ ) = log(qυ(z|σ(τ )))− log(p(z))
on the trajectory space. Thus the overall objective becomes:

max
υ,φ,η,ψ,θ

JRL(θ) + λMIJV (υ, φ, η, ψ)− λQLLQL(φ, η, ψ),

where λMI , λQL are positive multipliers. For training (see Algorithm 1), at the beginning of each
episode we sample an x and obtain z and then unroll the policy until termination and train ψ, η, φ, υ
on the Q-learning loss corresponding to greedy policy for the current exploration mode and the
variational MI reward. The hierarchical policy parameters θ can be trained on the true task return
using any policy optimisation algorithm. At test time, we sample z at the start of an episode and then
perform a decentralised argmax on the corresponding Q-function to select actions. Thus, MAVEN
achieves committed exploration while respecting QMIX’s representational constraints.

5 Experimental Results
We now empirically evaluate MAVEN on various new and existing domains.
5.1 m-step matrix games
To test the how nonmonotonicity and exploration interact, we introduce a simple m-step matrix game.
The initial state is nonmonotonic, zero rewards lead to termination, and the differentiating states are
located at the terminal ends; there are m − 2 intermediate states. Fig. 3(a) illustrates the m-step
matrix game for m = 10. The optimal policy is to take the top left joint action and finally take the
bottom right action, giving an optimal total payoff of m+3. As m increases, it becomes increasingly
difficult to discover the optimal policy using ε-dithering and a committed approach becomes necessary.
Additionally, the initial state’s nonmonotonicity provides inertia against switching the policy to the
other direction. Fig. 3(b) plots median returns for m = 10. QMIX gets stuck in a suboptimal policy
with payoff 10, while MAVEN successfully learns the true optimal policy with payoff 13. This
example shows how representational constraints can hurt performance if they are left unmoderated.

(a) (b)
Figure 3: (a) m-step matrix game for m = 10 case (b) median return of MAVEN and QMIX method on 10-step
matrix game for 100k training steps, averaged over 20 random initializations (2nd and 3rd quartile is shaded).

5.2 StarCraft II
StarCraft Multi-Agent Challenge We consider a challenging set of cooperative StarCraft II maps
from the SMAC benchmark [43] which Samvelyan et al. have classified as Easy, Hard and Super
Hard. Our evaluation procedure is similar to [40, 43]. We pause training every 100000 time steps
and run 32 evaluation episodes with decentralised greedy action selection. After training, we report
the median test win rate (percentage of episodes won) along with 2nd and 3rd quartiles (shaded in
plots). We use grid search to tune hyperparameters. Appendix C.1 contains additional experimental
details. We compare MAVEN, QTRAN, QMIX, COMA [13] and IQL [48] on several SMAC maps.

(a) corridor Super Hard (b) 6h_vs_8z Super Hard (c) 2s3z Easy

Figure 4: The performance of various algorithms on three SMAC maps.
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Here we present the results for two Super Hard maps corridor & 6h_vs_8z and an Easy map
2s3z. The corridor map, in which 6 Zealots face 24 enemy Zerglings, requires agents to make
effective use of the terrain features and block enemy attacks from different directions. A properly
coordinated exploration scheme applied to this map would help the agents discover a suitable unit
positioning quickly and improve performance. 6h_vs_8z requires fine grained ’focus fire’ by the
allied Hydralisks. 2s3z requires agents to learn “focus fire" and interception. Figs. 4(a) to 4(c)
show the median win rates for the different algorithms on the maps; additional plots can be found in
Appendix C.2. The plots show that MAVEN performs substantially better than all alternate approaches
on the Super Hard maps with performance similar to QMIX on Hard and Easy maps.Thus MAVEN
performs better as difficulty increases. Furthermore, QTRAN does not yield satisfactory performance
on most SMAC maps (0% win rate). The map on which it performs best is 2s3z (Fig. 4(c)), an Easy
map, where it is still worse than QMIX and MAVEN. We believe this is because QTRAN enforces
decentralisation using only relaxed L2 penalties that are insufficient for challenging domains.

(a) 2_corridors (b) Shorter corridor closed
at 5mil steps

(c) zealot_cave (d) zealot_cave depth 3 (e) zealot_cave depth 4

Figure 5: State exploration and policy robustness
Exploration and Robustness Although SMAC domains are challenging, they are not specially
designed to test state-action space exploration, as the units involved start engaging immediately after
spawning. We thus introduce a new SMAC map designed specifically to assess the effectiveness
of multi-agent exploration techniques and their ability to adapt to changes in the environment. The
2-corridors map features two Marines facing an enemy Zealot. In the beginning of training, the
agents can make use of two corridors to attack the enemy (see Fig. 5(a)). Halfway through training,
the short corridor is blocked. This requires the agents to adapt accordingly and use the long corridor
in a coordinated way to attack the enemy. Fig. 5(b) presents the win rate for MAVEN and QMIX
for 2-corridors when the gate to short corridor is closed after 5 million steps. While QMIX
fails to recover after the closure, MAVEN swiftly adapts to the change in the environment and starts
using the long corridor. MAVEN’s latent space allows it to explore in a committed manner and
associate use of the long corridor with a value of z. Furthermore, it facilitates recall of the behaviour
once the short corridor becomes unavailable, which QMIX struggles with due to its representational
constraints. We also introduce another new map called zealot_cave to test state exploration,
featuring a tree-structured cave with a Zealot at all but the leaf nodes (see Fig. 5(c)). The agents
consist of 2 marines who need to learn ‘kiting’ to reach all the way to the leaf nodes and get extra
reward only if they always take the right branch except at the final intersection. The depth of the
cave offers control over the task difficulty. Figs. 5(d) and 5(e) give the average reward received by
the different algorithms for cave depths of 3 and 4. MAVEN outperforms all algorithms compared.

Figure 6: tsne plot for s0 labelled with z (16 categories), initial
(left) to final (right), top 3s5z, bottom micro_corridor

Representability The optimal
action-value function lies outside of
the representation class of the CTDE
algorithm used for most interesting
problems. One way to tackle this is-
sue is to find local approximations to
the optimal value function and choose
the best local approximation given
the observation. We hypothesise that
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MAVEN enables application of this
principle by mapping the latent space
z to local approximations and using
the hierarchical policy to choose the best such approximation given the initial state s0, thus offering
better representational capacity while respecting the constraints requiring decentralization. To
demonstrate this, we plot the t-SNE [29] of the initial states and colour them according to the latent
variable sampled for it using the hierarchical policy at different time steps during training. The top
row of Fig. 6 gives the time evolution of the plots for 3s5z which shows that MAVEN learns to
associate the initial state clusters with the same latent value, thus partitioning the state-action space
with distinct joint behaviours. Another interesting plot in the bottom row for micro_corridor
demonstrates how MAVEN’s latent space allows transition to more rewarding joint behaviour which
existing methods would struggle to accomplish.

(a) (b)

(c) (d)
Figure 7: (a) & (b) investigate uniform hierarchical policy. (c) & (d) investigate effects of MI loss.

Ablations We perform several ablations on the micro_corridor scenario with Z = 16 to try
and determine the importance of each component of MAVEN. We first consider using a fixed uniform
hierarchical policy over z. Fig. 7(a) shows that MAVEN with a uniform policy over z performs worse
than a learned policy. Interestingly, using a uniform hierarchical policy and no variational MI loss to
encourage diversity results in a further drop in performance, as shown in Fig. 7(b). Thus sufficient
diversification of the observed trajectories via an explicit agency is important to find good policies
ensuring sample efficiency. Fig. 7(b) is similar to Bootstrapped-DQN [36], which has no incentive to
produce diverse behaviour other than the differing initialisations depending on z. Thus, all the latent
variable values can collapse to the same joint behaviour. If we are able to learn a hierarchical policy
over z, we can focus our computation and environmental samples on the more promising variables,
which allows for better final performance. Fig. 7(c) shows improved performance relative to Fig. 7(b)
providing some evidence for this claim. Next, we consider how the different choices of variational
MI loss (per time step, per trajectory) affect performance in Fig. 7(d). Intuitively, the per time step
loss promotes a more spread out exploration as it forces the discriminator to learn the inverse map to
the latent variable at each step. It thus tends to distribute its exploration budget at each step uniformly,
whereas the trajectory loss allows the joint behaviours to be similar for extended durations and take
diversifying actions at only a few time steps in a trajectory, keeping its spread fairly narrow. However,
we found that in most scenarios, the two losses perform similarly. See Appendix C.2 for additional
plots and ablation results.

6 Related Work
In recent years there has been considerable work extending MARL from small discrete state spaces
that can be handled by tabular methods [51, 5] to high-dimensional, continuous state spaces that
require the use of function approximators [13, 28, 39]. To tackle computational intractability from
exponential blow-up of state-action space, Guestrin et al. [16, 17] use coordination graphs to factor
large MDPs for multi-agent systems and propose inter-agent communication arising from message
passing on the graphs. Similarly [45, 11, 23] model inter-agent communication explicitly. In
CTDE [26], [47] extend Independent Q-Learning [48] to use DQN to learn Q-values for each agent
independently. [12, 35] tackle the instability that arises from training the agents independently. Lin
et al.[27] first learn a centralised controller to solve the task, and then train the agents to imitate
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its behaviour. Sunehag et al. [46] propose Value Decomposition Networks (VDN), which learn the
joint-action Q-values by factoring them as the sum of each agent’s Q-values. QMIX [40] extends
VDN to allow the joint action Q-values to be a monotonic combination of each agent’s Q-Values
that can vary depending on the state. Section 4 outlines how MAVEN builds upon QMIX. QTRAN
[44] approaches the suboptimality vs. decentralisation tradeoff differently by introducing relaxed
L2 penalties in the RL objective. [15] maximise the empowerment between one agents actions
and the others future state in a competitive setting. Zheng et al. [52] allow each agent to condition
their policies on a shared continuous latent variable. In contrast to our setting, they consider the
fully-observable centralised control setting and do not attempt to enforce diversity across the shared
latent variable. Aumann [1] proposes the concept of a correlated equilibrium in non-cooperative
multi-agent settings in which each agent conditions its policy on some shared variable that is sampled
every episode.

In the single agent setting, Osband et al.[36] learn an ensemble of Q-value functions (which all
share weights except for the final few layers) that are trained on their own sampled trajectories to
approximate a posterior over Q-values via the statistical bootstrapping method. MAVEN without the
MI loss and a uniform policy over z is then equivalent to each agent using a Bootstrapped DQN. [37]
extends the Bootstrapped DQN to include a prior. [7] consider the setting of concurrent RL in which
multiple agents interact with their own environments in parallel. They aim to achieve more efficient
exploration of the state-action space by seeding each agent’s parametric distributions over MDPs
with different seeds, whereas MAVEN aims to achieve this by maximising the mutual information
between z and a trajectory.

Yet another direction of related work lies in defining intrinsic rewards for single agent hierarchical RL
that enable learning of diverse behaviours for the low level layers of the hierarchical policy. Florensa
et al. [10] use hand designed state features and train the lower layers of the policy by maximising MI,
and then tune the policy network’s upper layers for specific tasks. Similarly [14, 8] learn a mixture
of diverse behaviours using deep neural networks to extract state features and use MI maximisation
between them and the behaviours to learn useful skills without a reward function. MAVEN differs
from DIAYN [8] in the use case, and also enforces action diversification due to MI being maximised
jointly with states and actions in a trajectory. Hence, agents jointly learn to solve the task is many
different ways; this is how MAVEN prevents suboptimality from representational constraints, whereas
DIAYN is concerned only with discovering new states. Furthermore, DIAYN trains on diversity
rewards using RL whereas we train on them via gradient ascent. Haarnoja et al. [18] use normalising
flows [41] to learn hierarchical latent space policies using max entropy RL [49, 53, 9], which is
related to MI maximisation but ignores the variational posterior over latent space behaviours. In
a similar vein [21, 38] use auxiliary rewards to modify the RL objective towards a better tradeoff
between exploration and exploitation.
7 Conclusion and Future work
In this paper, we analysed the effects of representational constraints on exploration under CTDE.
We also introduced MAVEN, an algorithm that enables committed exploration while obeying such
constraints. As immediate future work, we aim to develop a theoretical analysis similar to QMIX for
other CTDE algorithms. We would also like to carry out empirical evaluations for MAVEN when z
is continuous. To address the intractability introduced by the use of continuous latent variables, we
propose the use of state-of-the-art methods from variational inference [24, 42, 41, 25]. Yet another
interesting direction would be to condition the latent distribution on the joint state space at each time
step and transmit it across the agents to get a low communication cost, centralised execution policy
and compare its merits to existing methods [45, 11, 23].
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A QMIX Architecture

(a) (b) (c)

Figure 8: The overall setup of QMIX, reproduced from the original paper [40] (a) Mixing network structure. In
red are the hypernetworks that produce the weights and biases for mixing network layers shown in blue. (b) The
overall QMIX architecture. (c) Agent network structure. Best viewed in colour.

B Proofs
B.1 Uniform visitation
Theorem 1. For n player, k ≥ 3 action matrix games (|A| = n, |U | = k), under uniform visitation;

Qqmix learns a δ-suboptimal policy for any time horizon T , for any 0 < δ ≤ R
[√

a(b+1)
a+b − 1

]
for

the payoff matrix given by the template below, where b =
∑k−2
s=1

(
n+s−1

s

)
, a = kn − (b+ 1), R > 0:

R+ δ 0 . . . R

0 . .
.

... . .
. ...

R . . . R


Proof. For single state MDPs, under uniform visitation of the joint state-action space, QMIX can be
seen as minimising the mean squared error between the actual Q-values and the monotonic projection
Qqmix. Using the symmetry of the problem and an exchange argument, it can be shown that only the
monotonic projections of the following form need to be considered:

x3 x2 . . . x1

x2 . .
.

... . .
. ...

x1 . . . x1


where X , (x1, x2, x3). Consequently, there are two cases for the monotonic approximations. We
refer to them as M1 and M2 corresponding to x1 ≥ x2 ≥ x3 and x1 ≤ x2 ≤ x3 cases respectively.
The optimization problem for M1 is:

M1 :

minimise
X

a(x1 −R)2 + bx22 + (x3 − (R+ δ))2

s.t. x2 − x1 ≤ 0

x3 − x2 ≤ 0

where b =
∑k−2
s=1

(
n+s−1

s

)
, a = kn − (b + 1) are the coefficients corresponding to the number of

entries for the general n player, k action game (having kn entries). It is thus evident that the above
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problem is a quadratic program and is indeed convex [4] as the Hessian of the objective diag(a, b, 1)
is positive definite. The Largrangian is given by:

L(X,λ1, λ2) = a(x1 −R)2 + bx22 + (x3 − (R+ δ))2 + λ1(x2 − x1) + λ2(x3 − x2)

where λ1, λ2 are the dual variables. Moreover, the above problem also satisfies Slater’s conditions
which implies that KKT conditions are necessary and sufficient for finding the primal and dual
optimal. By setting∇XL = 0, we get:

λ1 = 2a(x1 −R)
λ2 = 2a(R+ δ − x3)

x2 =
λ2 − λ1

2b

Using primal and dual feasibility constraints along with complementary slackness, we can see that
x1 = R, x2 = x3 = R+δ

1+b is an optimal solution to M1 for δ ≤ bR with the optimal value for

the problem as OPT (M1) = b(R+δ)2

b+1 . By solving M2 in a similar way for the reversed primal
constraints x2 − x1 ≥ 0, x3 − x2 ≥ 0, we see that an optimal assignment is x1 = x2 = aR

b+a , x3 =

R+ δ with the optimal value given by OPT (M2) = R2ab
a+b . Note that the solution to M1 corresponds

to the suboptimal policy of picking action corresponding to payoff R, whereas the solution to M2
corresponds to that of picking the optimal action with payoff R + δ (as QMIX picks the action
corresponding to the maximal entry of a monotonic projection). For QMIX to learn the suboptimal
policy corresponding to M1, we require that OPT (M1) ≤ OPT (M2). Consequently,

b(R+ δ)2

b+ 1
≤ R2ab

a+ b

=⇒ δ ≤ R
[√a(b+ 1)

a+ b
− 1
]

(2)

B.2 ε-greedy visitation
Theorem 2. For n player, k ≥ 3 action matrix games, under ε-greedy visitation ε(t); Qqmix
learns a δ-suboptimal policy for any time horizon T with probability ≥ 1−

(
exp(−Tυ

2

2 ) + (kn −

1) exp(− Tυ2

2(kn−1)2 )
)

, for any 0 < δ ≤ R

[√
a
(

υb
2(1−υ/2)(a+b) + 1

)
−1

]
for the payoff matrix given

by the template above, where b =
∑k−2
s=1

(
n+s−1

s

)
, a = kn − (b+ 1), R > 0 and υ = ε(T ).

Proof. Given the exploration schedule ε(t), let ε(T ) = υ (which is the minimum value since ε(t) is
decreasing in T ). We reuse the machinery introduced in Appendix B.1 and provide an analysis which
is agnostic to the actions actually visited by considering the adversarial case for the maximum possible
δ for which Qqmix fails. This happens precisely when QMIX is provided with the "best opportunity"
for learning the optimal policy (so that it visits the optimal action with probability 1 − ε(t),∀t).
Therefore, the visitation frequencies we consider are : Tυ

kn−1 for any suboptimal action and T (1− υ)
for the optimal action. To compute the upper bound on δ, we modify the objective for the quadratic
program in Appendix B.1 as XT diag(a′, b′, 1))X where a′ ← aυ

(1−υ)(a+b) , b
′ ← bυ

(1−υ)(a+b) in
accordance with our visitations. Next, using the same reasoning as in Eq. (2), we get that QMIX
learns the suboptimal policy for

0 < δ ≤ R

[√√√√a

(
υb

(1− υ)(a+ b)
+ 1

)
− 1

]
. (3)

Note that the upper bound of δ in Eq. (3) is probabilistic in nature. Therefore, we provide a lower
bound on the probability of this by considering the RHS of Eq. (3) with υ ← υ/2 and bounding the
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probability of deviation from the worst case visitation frequencies. By making use of the Hoeffding’s
lemma, we derive that:

P
[
empirical frequency of optimal− υT ≥ Tυ

2

]
≤ exp(−Tυ

2

2
),

P
[
empirical frequency of suboptimal− Tυ

kn − 1
≤ − Tυ

2(kn − 1)

]
≤ exp(− Tυ2

2(kn − 1)2
).

Finally, by using the union bound, we conclude that with probability ≥ 1−
(
exp(−Tυ

2

2 ) + (kn −

1) exp(− Tυ2

2(kn−1)2 )
)

, QMIX fails to learn the optimal policy for

0 < δ ≤ R

[√√√√a

(
υb

2(1− υ/2)(a+ b)
+ 1

)
− 1

]

B.3 Variational Mutual Information lower bound
Let the posterior over z be given by log(p(z|σ(u, s))) and the variational approximation by
qυ(z|σ(u, s)))
JMI = H(σ(u, s))−H(σ(u, s)|z)

= H(z)−H(z|σ(u, s)) {MI is symmetric}
= H(z) + Eσ(u,s)[Ez[log(p(z|σ(u, s)))]] {Def. conditional entropy}

= H(z) + Eσ(u,s)[Ez[log(p(z|σ(u, s)))− log(qυ(z|σ(u, s)) + log(qυ(z|σ(u, s))]]
= H(z) + Eσ(u,s)[Ez[log(qυ(z|σ(u, s))]] + Eσ(u,s)[KL(p(z|σ(u, s))||qυ(z|σ(u, s))]
≥ H(z) + Eσ(u,s),z[log(qυ(z|σ(u, s)))] {KL is non negative}

C Experimental Setup
C.1 Architecture and Training
All agent are designed as Deep Recurrent Q-Networks [19]. At each time step, each agent network
receives a local observation as input, which is fed to a 64-dimensional fully-connected hidden layer,
followed by a GRU recurrent layer and a fully-connected layer with |U | outputs. To speed up
the learning, all agent networks share the same set of parameters. A one-hot encoded agent id is
concatenated to agent observations. The architectures for mixing and utility networks are the same as
in [40].

For all experiments we update the target networks after every 200 episodes. We set γ = 0.99. The
optimisation is conducted using RMSprop with a learning rate of 5× 10−4 and α = 0.99 with no
weight decay or momentum.

C.1.1 SMAC
Exploration for QMIX is performed during training during which each agent executes ε-greedy policy
over its own actions. ε is annealed from 1.0 to 0.05 or 0.005 over 50k time steps and is kept constant
afterwards.

We utilise a replay buffer of the most recent 5000 environment steps. A single training step for a
batch of size 32 entire episodes is performed after every episodes.

We set Z = 16 for all the experiments. We set λMI = 0.001 and λQL = 1. Unless otherwise men-
tioned, all MAVEN experiments use the trajectory-based MI loss. We use an entropy regularisation
term with a coefficient of 0.001 for the hierarchical policy. We set the final value of ε to 0.05 for
MAVEN ans QMIX.

All SMAC experiments use the default reward and observation settings of the SMAC benchmark
[43].

We run all methods for 10 million environmental steps. This takes approximately 36 hours on a
NVIDIA GTX 1080Ti GPU for 12 random initializations.
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(a) Varying the values for Z (b) Policy returns for different Z

Figure 9: Performance with varying the number of latent variable categories

C.1.2 m-step matrix games
All methods anneal ε from 1 to 0.01 over 100 timesteps and keep it constant afterwards.

A single training step for a batch of size 32 is conducted after every episode.

All methods are run for 100k timesteps.

For MAVEN we set Z = 16, λMI = 1, λQL = 1 and use an entropy regularisation term with a
coefficient of 0.001 for the hierarchical policy.

C.2 Additional plots & ablations
We also consider varying the number of categories for the discrete latent variable Fig. 9(a). While
the number of categories loosely correlates with performance, it was not always the case. For
micro_corridor, the results are inconclusive because they all use the same budget of gradient
updates, yielding two opposing factors that cancel out (more z’s vs. less training per z). Fig. 9(b)
gives the returns of the corresponding policies learnt.

(a) 2-corridors (b) 2s3z

(c) micro_corridor (d) micro_focus

Figure 10: Median test returns on SMAC scenarios.
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