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Abstract
By enabling correct differentiation in stochastic
computation graphs (SCGs), the infinitely differ-
entiable Monte-Carlo estimator (DiCE) can gen-
erate correct estimates for the higher order gradi-
ents that arise in, e.g., multi-agent reinforcement
learning and meta-learning. However, the base-
line term in DiCE that serves as a control variate
for reducing variance applies only to first order
gradient estimation, limiting the utility of higher-
order gradient estimates. To improve the sample
efficiency of DiCE, we propose a new baseline
term for higher order gradient estimation. This
term may be easily included in the objective, and
produces unbiased variance-reduced estimators
under (automatic) differentiation, without affect-
ing the estimate of the objective itself or of the
first order gradient estimate. It reuses the same
baseline function (e.g., the state-value function in
reinforcement learning) already used for the first
order baseline. We provide theoretical analysis
and numerical evaluations of this new baseline,
which demonstrate that it can dramatically reduce
the variance of DiCE’s second order gradient esti-
mators and also show empirically that it reduces
the variance of third and fourth order gradients.
This computational tool can be easily used to esti-
mate higher order gradients with unprecedented
efficiency and simplicity wherever automatic dif-
ferentiation is utilised, and it has the potential to
unlock applications of higher order gradients in
reinforcement learning and meta-learning.
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1. Introduction
Machine learning problems with intractable stochasticity
often yield objectives that are not directly differentiable. In
reinforcement learning, for example, the expected return
involves an expectation over the stochasticity induced by
both the policy and the environment dynamics. As a re-
sult, the gradient of this objective with respect to the policy
parameters cannot be directly calculated.

Instead, we must construct Monte Carlo estimates of the
gradient from samples, and then apply gradient-based op-
timisation methods. In such problems, the score function
trick (Fu, 2006) may be used to easily define estimates of
the first order gradients of the stochastic objective. However,
to calculate these gradient estimates in practice, we need to
leverage the powerful toolbox of automatic differentiation.
To this end, Schulman et al. (2015) introduce the surrogate
loss (SL) within the formalism of stochastic computation
graphs (SCG). Single differentiation of the SL produces an
unbiased gradient estimator for the first order gradient of
the primary objective.

However, in many settings this is not sufficient because it
might also be essential to estimate higher order gradients of
these stochastic objectives. For example, in the multi-agent
learning method learning with opponent-learning aware-
ness (LOLA) (Foerster et al., 2018a), the expected return
of one agent is differentiated through the learning step of
another agent. Similarly, when gradient-based approaches
to meta-learning are applied to reinforcement learning prob-
lems, (Finn et al., 2017; Al-Shedivat et al., 2017), the objec-
tive function is repeatedly differentiated through a hierarchy
of learning processes. Furthermore, higher order gradients
are used directly by some optimisation algorithms, such as
the quasi-Newton algorithm (Wright & Nocedal, 1999).

Estimating higher order gradients accurately and efficiently
in such applications is challenging because such estimators
are complex to construct and often have extremely high
variance. It is therefore critical to develop methods that
produce low variance estimates of higher order gradients
while also being easy to use in practice through automatic
differentiation.
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Given an objective function with random variables, the naive
approach is to derive the corresponding higher order gradi-
ent estimators analytically. Al-Shedivat et al. (2017) apply
the score function trick repeatedly to obtain estimators for
higher order gradients in a meta-learning setting. Foerster
et al. (2018a) combine this approach with a Taylor expansion
to generate higher order gradient estimators in a multi-agent
setting. However, this approach is incompatible with auto-
matic differentiation and is thus error prone and difficult to
generalise to arbitrary objective functions.

Schulman et al. (2015) argue that the gradient estimate pro-
duced by differentiating an SL objective may be treated
as an objective itself, and a new SL can be built to esti-
mate higher order gradients. Unfortunately, this approach
can produce incorrect higher order gradient estimates (Fo-
erster et al., 2018b) because it treats cost terms as fixed
samples in the SL and thus does not maintain all necessary
dependencies in the SCG after differentiation. By contrast,
the infinitely differentiable Monte-Carlo estimator (DiCE)
(Foerster et al., 2018b) estimates higher order gradients cor-
rectly while maintaining ease of use by leveraging automatic
differentiation. DiCE consists of a single objective that can
be differentiated an arbitrary number of times in order to
generate higher order gradient estimators.

One strategy that DiCE uses to reduce variance is to in-
troduce control variates or baselines (Paisley et al., 2012;
Tucker et al., 2017; Grathwohl et al., 2017). While DiCE’s
baseline is effective for first order gradients, its higher order
gradient estimates still have high variance.

In this paper, we propose a novel baseline term for any-
order gradient estimation in DiCE. This term can be easily
included in the original objective without changing the es-
timate of the objective itself or of the first order gradients.
Nonetheless, repeated differentiation of the modified objec-
tive automatically produces appropriate control variates for
the higher order gradients.

Furthermore, the new baseline term includes an additional
dependence that properly captures the causal relationship
between stochastic nodes in an SCG. However, this baseline
term can be constructed using the same baseline function
already used for the first order baseline. Using DiCE, we
can preserve these dependencies through differentiation.

We prove that adding our new baseline term to the DiCE
objective leaves all gradient estimators of DiCE unbiased,
while reducing variance. We also explicitly derive the sec-
ond order gradients of the DiCE objective with our baseline
term in order to demonstrate how it introduces control vari-
ates for higher order gradient estimates.

Finally, we conduct a series of numerical evaluations to
verify the correctness of our baseline term and empirically
show its effectiveness for variance reduction of gradient

estimates of up to fourth order. By evaluating on the tasks
of the original DiCE paper, we show that we can reduce
sample complexity by two orders of magnitude compared
to the original DiCE formulation.

We believe that this new baseline term is a key component
that can make DiCE a powerful and practical tool for easily
obtaining low-variance higher order gradient estimators for
reinforcement learning and meta-learning applications.

2. Background
Suppose x is a random variable distributed as x ∼ p(x; θ),
and f(x) is a deterministic function of x. We assume
that f(x) is independent of θ so that ∇nθ f = 0 for
n ∈ {1, 2, . . . }. Suppose we have the objective function
L(θ) = Ex[f(x)] and we need to compute the gradients of
the expectation,∇θEx[f(x)], in order to use gradient-based
optimisation methods. An unbiased gradient estimator g is
a random variable such that E[g(f)] = ∇θ E[f(x)]. The
score function estimator (Fu, 2006) is an unbiased estimator
given by

Ex[f(x)∇θ log p(x; θ)] = ∇θ Ex[f(x)]. (1)

The control variates method is a variance reduction tech-
nique for improving the efficiency of Monte Carlo estima-
tors. A control variate is a function c(x) whose value can
be easily obtained, and whose expectation E[c(x)] is known.
Using the control variate, we can construct a new estimator

z(f) = g(f)− α
[
c(x)− Ex[c(x)]

]
, (2)

where α ∈ R is a parameter. The expectation of z(f) is

E[z(f)] = Ex[g(f)]− αEx[c(x)] + αEx[c(x)] = Ex[f(x)].

Consequently, if g(f) is an unbiased estimator of the gradi-
ent, so is z(f). However, if g(f) and c(x) are sufficiently
correlated, then there exists a setting of α such that the vari-
ance of z(f) is lower than that of g(f) (Grathwohl et al.,
2017). The optimal α is typically difficult to estimate so
in practice it is common to set α = 1 and design c(x) to
be positively correlated with g(f). In the case of the score
function estimator it is straight forward to see that we can
construct a positively correlated c(x) by considering the
average cost, V = Ex[f(x)]:

c(x) = V∇θ log p(x; θ) (3)

The variance reduced gradient estimator is then:

z(f) =
(
f(x)− V

)
∇θ log p(x; θ). (4)

Note that this c(x) is zero-mean by construction, so the
adjustment term −Ex[c(x)] is missing. Due to its practical
importance and simplicity we will be using this general
form of variance reduction throughout the paper.
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2.1. Stochastic Computation Graphs

A stochastic computation graph (SCG) (Schulman et al.,
2015) is a directed and acyclic graph that consists of three
types of nodes:

1. Input nodes Θ: an input node θ ∈ Θ contains pa-
rameters set externally. We may be interested in the
dependence of an objective function on these nodes,
and will differentiate the objective with respect to their
parameters.

2. Deterministic nodes D: a deterministic node d ∈ D
is a deterministic function of its parent nodes.

3. Stochastic nodes S: a stochastic node w ∈ S is a
random variable whose distribution is conditioned on
its parent nodes.

Additionally, cost nodes C can be added into the formalism
of an SCG without loss of generality. A cost node c ∈ C is
a deterministic function of its parent nodes that produces a
scalar value. The set of cost nodes C are those associated
with an objective function L = E[

∑
c∈C c]. In an SCG,

(v, w) is a directed edge that connects node v and non-input
node w, where v is a parent node of w. The notation v ≺ w
means there is a path from node v to node w, i.e., node v
influences node w.

2.2. DiCE

In order to estimate higher order gradients correctly and
efficiently within the formalism of SCGs, the infinitely dif-
ferentiable Monte-Carlo estimator (DiCE) (Foerster et al.,
2018b) uses the magic box operator. The input to is
a set of stochastic nodesW , and is designed to have the
following properties:

1. (W) � 1,

2. ∇θ (W) = (W)
∑
w∈W ∇θ log p(w; θ).

Here � means “evaluates to”, which is different from
“equals to”, =, i.e., full equality including equality of all
derivatives. In the context of a computation graph, � de-
notes a forward pass evaluation. By contrast, the second
property describes the behaviour of under differentiation.
The righthand side of this equality can in turn be evaluated
to estimate gradients as described below, or differentiated
further. These properties are easily satisfied with the follow-
ing implementation:

(W) = exp(τ −⊥(τ)),

where τ =
∑
w∈W ∇θ log p(w; θ) and ⊥ is a ‘stop-grad’

operator that sets the derivative to zero, ∇x⊥(x) = 0, and
is commonly available in auto-differentiation libraries.

For a node w in an SCG, we use Sw to denote the set of
stochastic nodes that influence the nodew and are influenced
by θ, i.e., Sw = {s|s ∈ S, s ≺ w, θ ≺ s}. Using , the
DiCE objective is

L =
∑
c∈C

(Sc)c. (5)

Under repeated differentiation, the DiCE objective generates
arbitrary order gradient estimators (Foerster et al., 2018b,
Theorem 1): E[∇nθL ] � ∇nθL, for n ∈ {0, 1, 2, . . . }.

2.3. Variance Reduction with DiCE

L by itself already implements a simple form of variance
reduction by respecting causality. In gradient estimates,
each cost node c is multiplied by the sum of gradients of log-
probabilities of only upstream nodes Sc that can influence
c. This reduces variance compared to using the log joint
probability of all stochastic nodes, which would still create
an unbiased gradient estimate.

However, DiCE further reduces variance for first-order gra-
dient estimation by including a baseline

B(1)
=
∑
w∈S

(1− ({w}))bw, (6)

where bw is a function of the set NONINFLUENCED(w) =
{v|w ⊀ v}, i.e., the set of nodes that does not influ-
ence w.1 Here bw may be chosen to reduce variance, and
a common choice for bw is the average cost-to-go, i.e.,
E[Rw|NONINFLUENCED(w))], where Rw =

∑
c∈Cw c,

where Cw = {c|c ∈ C, w ≺ c}, i.e., the set of cost nodes
that depend on node w.2 In order to maintain unbiased gra-
dient estimates, the baseline factor bw should be a function
that is independent of the stochastic node w. Greensmith
et al. (2004) provide an overview of variance reduction tech-
niques for gradient estimators, including the use of this type
of baseline. The baseline term B(1) can be added to the
DiCE objective to obtain

Lb1 = L + B(1)
. (7)

Lb1 evaluates to the same value as L because (1 −
(W)) � 0.

3. Method
To provide intuition for our new baseline, we first consider
explicitly the effect of the first order baseline on the first or-

1b(NONINFLUENCED(w)) in (Schulman et al., 2015).
2We use the Rw notation to correspond with a return for readers

familiar with reinforcement learning, a key use case. The cost
notation for nodes is kept to maintain consistency with Schulman
et al. (2015).
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der gradient estimates. The estimates without and with base-
line are as follows (derivations are given in Appendix A):

∇θL �
∑
w∈S

Rw∇θ log p(w; θ),

∇θLb1 �
∑
w∈S

(Rw − bw)∇θ log p(w; θ). (8)

For each stochastic node w ∈ S , the term bw∇θ log p(w; θ)
works as a control variate to reduce the variance of
the term Rw∇θ log p(w; θ). To ensure the appropriate
correlations, bw may be a function trained to estimate
E[Rw|NONINFLUENCED(w))]. As a result, ∇θLb1
is a first order gradient estimator with lower variance
than ∇θL . Additionally, ∇θLb1 is unbiased because

E[∇θB(1)
] � 0 (see Appendix A).

In (8) we have omitted a term,
∑
c∈C ∇θc, that arises when

the cost nodes depend directly on θ. In most use cases this
term does not appear, as the costs are sampled from an un-
parameterised process, such as the unknown environment
in reinforcement learning. This straight-through contribu-
tion to the gradient estimate is also typically much lower
variance than the contribution estimated using the score
function trick. Due to these considerations, we assume that
the costs are independent of θ in the remainder of this work,
although the remaining terms for both first and second order
are derived in the appendix.

Next, we consider second-order gradient estimation using
the objective Lb1 , including the first order baseline. The sec-
ond order gradient of the DiCE objective can be evaluated
as follows (derivations are given in Appendix B):

∇2
θL �

∑
w∈S

Rw
∇2
θp(w; θ)

p(w; θ)
+ SUM, (9)

∇2
θL

b1 �
∑
w∈S

(Rw − bw)
∇2
θp(w; θ)

p(w; θ)
+ SUM, (10)

where

SUM = 2
∑
w∈S

Rw∇θ log p(w; θ)

[ ∑
v∈S,v≺w

∇θ log p(v; θ)

]
.

The baseline objective function Lb1 still implements a par-
tial variance reduction of the second order gradient esti-
mates, by providing a control variate for the first term in
(10). However, the Rv in the second term are not paired
with suitable control variates. As a result, the variance of
this term could be extremely high. In fact, due to the nested
summations over the high-variance Rv , this term can domi-
nate the variance of the total gradient estimate. We explore
this empirically in Section 4, where we observe that B(1) is
of little use for reducing the overall variance of the second
order gradient estimates.

3.1. A Second Order Baseline

Before proposing an any order baseline (Section 3.2), we
first introduce a second-order baseline with the goal of re-
ducing variance for the following term:

2
∑
v∈S

Rv∇θ log p(v; θ)

[ ∑
w∈S,w≺v

∇θ log p(w; θ)

]
.

To this end, we want to pair the Rv term with a baseline
−bv, similar to the first order gradients variance reduction.
At the same time, the zeroth and first order gradients must
remain unaffected by the second order baseline.

We thus have the following requirements for our second
order baseline, B(2):

1. B(2) evaluates to 0: B(2) � 0

2. The gradient of B(2) evaluates to 0: ∇θB(2) � 0

3. The second derivative of B(2) evaluates to the variance
reduction for the second order gradient.

The third requirement imposes the following condition on
our second order baseline:

∇2
θB

(2) �

− 2
∑
w∈S

bw∇θ log p(w; θ)

[ ∑
v∈S,v≺w

∇θ log p(v; θ)

]
.

As with the first order baseline, we can satisfy the first
requirement by constructing the baseline of the form (1− ),
for an arbitrary input X:

B(2)
= (1− (X))

� (1− 1) = 0.

Similarly, we can satisfy the second requirement by con-
structing the baseline as a product of two terms of the form
(1− ), for arbitrary inputs X and Y :

B(2)
=
(
1− (X)

)(
1− (Y )

)
∇θB(2)

=
(

(X)− 1
)
∇θ (Y )−∇θ (X)

(
1− (Y )

)
� 0 + 0 = 0

The second order derivative contains both terms of the form
(1 − )∇2

θ , which evaluate to zero, and one term of the
form:

2∇θ (X)∇θ (Y ). (11)
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From the third requirement it is clear that B(2) has to be a
sum of terms involving the different bw, each of which is of
the form given above:

B(2)
= −

∑
w∈S

bw
(
1− (Xw)

)(
1− (Yw)

)
(12)

Using the definition of DiCE:

∇θ (X)→
∑
x∈X
∇θ log p(x; θ), (13)

we can now expand the second derivative:

∇θB(2) → −
∑
w∈S

bw2∇θ (Xw)∇θ (Yw) (14)

= −
∑
w∈S

bw
∑
x∈Xw

∇θ log p(x; θ)
( ∑
y∈Yw

∇θ log p(y; θ)
)
.

(15)

Finally, by inspecting the second derivative term above and
our third requirement, we set Xw = {w} and Yw = Sw to
obtain:

B(2)
= −

∑
w∈S

(
1− ({w})

)(
1− (Sw)

)
bw. (16)

As we will show below, this baseline term produces the
appropriate variance reduction required for the second order
gradient terms mentioned above, when differentiated twice.
Note that B(2) � 0 because (1− ({w})) � 0 and (1−

(Sw)) � 0, and bw is the same as that used in B(1).

3.2. Any Order Baseline

We can now produce our final baseline by adding B(1) and

B(2):

B = B(1)
+ B(2) (17)

=
∑
w∈S

bw
(
1− ({w})

)(
1−

(
1− (Sw)

))
(18)

B =
∑
w∈S

bw
(
1− ({w})

)
· (Sw). (19)

This baseline has a very intuitive interpretation: It is the
original B(1) which now includes the (Sw) term which
captures the causes of each of the variance reduction terms.
Using the DiCE mechanism, this small change produces the
correct variance reduction for higher order derivatives under
automatic differentiation. Below we show this analytically
for the first and second order gradients, in the supplementary
material we also show a partial proof for variance reduction

of some of the terms for any order gradients. In the experi-
mental section we empirically verify variance reduction for
up to fourth order gradients.

The new DiCE objective function becomes: Lb2 = L +

B . Since B(1) � 0 and B(2) � 0, L , Lb1 , and Lb2
all evaluate to the same estimate of the original objective.
Furthermore, all derivatives of our modified objective Lb2
are unbiased estimators of the derivatives of the original
objective, but now containing suitable control variates for
variance reduction. We now show how this baseline term
indeed reduces variance while remaining unbiased for the
higher order derivatives of our objective.

3.3. Bias and Variance Analysis

In the DiCE objective L , for each cost node c ∈ C, the
corresponding (Sc) reflects the dependency of c on all
stochastic nodes that influence it (and depend on θ). By
contrast, the baseline term B(1) only includes ({w}), con-
sidering each stochastic node w separately. This simple
approach results in variance reduction for first order gradi-
ents, as shown in (8). However, the failure to capture the
dependence of stochastic nodes on each other in the simple
baseline prevents it from reducing the variance of the cross
terms that arise in second order derivatives (the final term in
(10)). To capture these relationships properly, we include

(Sw) in the definition of B(2), i.e., an additional depen-
dence on the stochastic nodes that influence w. Use of the

operator ensures that these dependencies are preserved
through differentiation.

To verify that our proposed baseline indeed captures these
dependencies appropriately, we now consider its impact on
the gradient estimates. The first and second order gradi-
ents of the baseline term B(2) can be evaluated as follows
(derivations given in Appendix B):

∇θB(2) � 0,

∇2
θB

(2) � −2
∑
w∈S
∇θ log p(w; θ)SUM1

w, (20)

where SUM1
w =

∑
v∈S,w≺v bv∇θ log p(v; θ).

The first order gradient estimates remain unchanged: as
∇θB(2) � 0,∇θLb2 evaluates to the same value as∇θLb1 .
The second order gradient estimate of our full objective,
∇2
θL

b2 , is as follows:

∇2
θL

b2 �
∑
w∈S

(Rw − bw)
∇2
θp(w; θ)

p(w; θ)

+ 2
∑
w∈S
∇θ log p(w; θ)SUM2

w, (21)

where SUM2
w =

∑
v∈S,w≺v(Rv − bv)∇θ log p(v; θ).
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Control variates have been introduced for the terms in the
second part of (21), when using our new baseline term
B(2). Here we assume that Rw and bw are correlated by
design, as they should be for variance reduction of the first
order gradients. As a result, the estimator ∇2

θL
b2 could

have significantly lower variance compared with ∇2
θL

b1

and ∇2
θL , as we verify empirically in Section 4.

Furthermore, we verify that our baseline does not change
the expected estimate of second order derivatives.

Theorem 1. E
[
∇2
θL

b2
]
� ∇2

θ E
[
L
]
.

Proof. First, we can prove that E[∇2
θB

(1)
] � 0 and

E[∇2
θB

(2)
] � 0 (see Appendix). Since ∇2

θL is an un-
biased estimator of ∇2

θ E
[
L
]
, i.e., ∇2

θL � ∇2
θ E
[
L
]
,

then:

E
[
∇2
θL

b2
]

= E
[
∇2
θL

]
+ E

[
∇2
θB

(1)]
+ E

[
∇2
θB

(2)]
� ∇2

θ E
[
L
]
.

Thus, ∇2
θLb is an unbiased second order gradient estimator

of the original objective E
[
L
]
.

For simplicity we only carry out this analysis analytically
for the second order gradients, which happen to be the most
common use case. However, in Section 4 and Appendix C
we show that our baseline also substantially reduces the
variance of third and fourth order gradients, which converge
to the true derivatives with increasing numbers of samples.

3.4. Reinforcement Learning

We now consider the particular case of reinforcement learn-
ing. Given a policy π, we can generate an episode of horizon
T :

τ = (s0, a0, r0, . . . , sT , aT , rT ).

The discounted return at time step t is the discounted sum of
future rewards, Rt(τ) =

∑T
k=t γ

k−trt, where γ ∈ [0, 1] is
a discount factor. When the reinforcement learning problem
is formalised as an SCG, the cost nodes are the discounted
rewards and the objective function is L = E[

∑T
t=0 γ

trt].
The corresponding DiCE objective function is:

L =

T∑
t=0

(at′≤t) · γtrt, (22)

where at′≤t is the set of all previous actions at time step
t, i.e., at′≤t = {a0, a1, . . . , at}. Clearly, these are the
stochastic nodes that influence the reward at time t. We
choose the baseline b(st) to be a function of state st; it must
be independent of the action at. In particular, we choose

b(st) = γtV̂ (st), where V̂ (st) is an estimate of the state
value function V π(st) = E[Rt|st]. First order variance
reduction may now be achieved with the baseline term:

B(1)
=

T∑
t=0

(1− (at))b(st). (23)

To reduce the variance of any-order gradient estimators, we
can use our novel baseline term:

B(2)
= −

T∑
t=0

(
1− (at)

)
· (at′<t)b(st). (24)

These baseline terms can be added to our original objective.
As in the general case, the corresponding DiCE objectives
with baselines are Lb1 = L + B(1) and Lb = L + B .

In (at′<t), we need to have strict inequality t′ < t, which
captures the causality from all previous actions. The agent
is able to look backward at its past actions but excludes its
current action. Since there is no previous action at t = 0, at
this time step we are evaluating (at′<t) on the empty set,
which simply equals 1.

In our formulation, the second order baseline reuses the
same state-value function that is also used for the first or-
der baseline in the original formulation of the DiCE ob-
jective. The main benefit is that state-value function base-
lines do not change the expected gradients of the objective.
This value function baseline has a strong empirical track
record and is used in virtually all policy gradient methods,
in particular in large scale applications such as A3C and
PPO (Mnih et al., 2016; Schulman et al., 2017). However,
action-dependent baselines are currently an active area of
investigation (Tucker et al., 2018). While action-dependent
baselines in general introduce bias, in some settings that
bias can be exactly or approximately removed. In addition,
Tucker et al. (2018) show that variance decomposition can
be used to improve performance, which could be combined
with our approach in future work.

C D
C −1 0
−1 −3

D −3 −2
0 −2

Table 1. The payoff matrix of prisoner’s dilemma. Numbers in a
cell correspond to the utilities of the player with the same colour.

4. Experiments
First, we numerically verify that DiCE with our new baseline
term Lb2 can generate correct estimators of the Hessians in
an SCG using a set of randomly initialised fixed policies in
the iterated prisoner’s dilemma.
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(a) Flattened Hessian (green) of Lb1,1. Correlation coeff.: 0.29. (b) Flattened Hessian (blue) of Lb2,1. Correlation coeff.: 0.97.

Figure 1. Flattened true (Red) and estimated Hessian of agent 1 for the iterated prisoner’s dilemma. The sample size is 1000.

Figure 2. Correlation coefficients of the exact Hessian and the
estimated Hessian generated from the multi-agent DiCE objective
function with (orange) and without (blue) the second order baseline
term B(2),i. The error bars show the standard deviation.

To demonstrate the improvement of our baseline on the orig-
inal DiCE, we use the same setting as Foerster et al. (2018b)
to reproduce their experimental results for comparison.

In this setting, two agents play the game of the prisoner’s
dilemma iteratively. At each round, there are two possible
actions for each agent, which are Cooperate (C) and Defect
(D). As a result, there are four possible outcomes, CC, CD,
DC, and DD at each round, which are the observation at the
next time step. The payoff matrix is given in Table 1.

4.1. Multi-agent DiCE

The objective function for agent i is Li = E[
∑T
t=0 γ

trit].
The per-agent DiCE objective Li is a simple extension of
(22), replacing rt by the per-agent reward rit, and at by the
joint action aj∈{1,2}t . For correct higher order gradients it
is essential to consider the dependence of the reward on the
actions of both agents in this way. We require per-agent

Figure 3. Mean correlation of first to fourth order true gradients
with gradient estimators using no baseline (-), a first order baseline
(B1), or our new combined baseline (B), given 1000 samples. The
black error bars indicate the standard deviation.

baseline factors bi(st) to then form per-agent baseline terms
Bi,(1) and Bi,(2) in analogy with (23, 24). Again, the single-
agent action at each timestep is replaced by the joint action.

Using DiCE, the dependencies between the returns and
parameters of the two agents are accounted for, and first and
second order gradients can be estimated efficiently using
automatic differentiation.

We empirically test and compare the performance of Lb1,i

and Lb,i in gradient estimation up to fourth order. Foerster
et al. (2018a) derive the value function of the IPD analyti-
cally, which we use as ground truth to verify the correctness
of our estimator. Figures 1(a) and 1(b) show the flattened
Hessians, i.e., reshaped into a 100 dimensional vector, of
Lb1,1 and Lb2,1, compared to the true flattened Hessian.
These results show that our novel baseline term dramatically
improves the estimation of second order gradients.

Foerster et al. (2018b) needed a sample size of 100k to
obtain second order gradient estimates with a correlation
coefficient 0.97. Our baseline term reduces the required
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sample size by two orders of magnitude, to 1k3. Figure 2
shows the correlation coefficients of the exact Hessian and
the estimated Hessian using different sample sizes. These
results demonstrate that our baseline term is important for
estimating second order gradients accurately and efficiently
when using DiCE.

Figure 3 extends the empirical analysis to higher order gra-
dients by showing the correlation of first to fourth order
gradient estimators with the true gradients given the dif-
ferent baselines. For higher order gradients, the first order
baseline does not substantially improve the correlation with
the true gradients. By contrast, our new combined baseline
substantially improves correlation for all higher order gra-
dients shown. In particular, without the new baseline, the
fourth order gradient estimator is not significantly correlated
with the true gradient.

4.2. LOLA-DiCE

In LOLA-DiCE (Foerster et al., 2018b) agents differentiate
through the learning step of other agents, using the DiCE
objective to calculate higher order derivatives:

L1(θ1, θ2)LOLA = Eπθ1 ,πθ2+∆θ2(θ1,θ2)[

T∑
t=0

γtr1
t ],

where ∆θ2(θ1, θ2) = α2∇θ2 Eπθ1 ,πθ2 [
∑T
t=0 γ

tr2
t ] and α2

is a step size.

We use a tabular policy and value function, initialised from
a normal distribution with unit variance and zero mean. The
discount factor, γ = 0.96, and the episodes are truncated
after 150 steps. Our experiments use a batch size of 32, a
learning rate of 0.05 for the policy, and a lookahead step
size, α = 0.3. To allow for proper variance reduction, we
train two value functions, one for the inner loop and one for
the outer loop, which are pre-trained over 200 training steps.
To ensure that the value function closely tracks the value
under the changing policy, we carry out 10 training steps
of the value functions with a learning rate of 0.1 for each
policy update.

Figure 4 shows the performance of LOLA-DiCE with and
without our second order baseline. Without the second order
baseline, agents fail to learn, yielding an average per-step
return of around −1.6, close to that of a random policy,
which achieves −1.5. By halving the batch size (32 vs
64), performance is comparable to that of the original work.
However, our results using the first order baseline are much
worse than what is reported in the original work, albeit at
a smaller batch size. In communication with the authors
we established that those results were produced by making

3The computation associated with applying and differentiat-
ing the magic box operator is negligible compared to the other
computations.

Figure 4. The performance of the LOLA-DiCE algorithm on the
IPD with (blue) and without (red) the new second order baseline.
Shading indicates the error of the mean.

the rewards at each timestep zero-mean within each batch,
rather than relying on the first order baseline.

In settings where the value function is mostly independent
of the state, which happens to be the case in the IPD with
a large γ, this simple trick can produce variance reduction
similar to what we achieve with our second order baseline.
However, this ad-hoc normalisation would fail in settings
with sparser rewards or in any setting where the value func-
tion strongly depends on the current state.

5. Conclusion
Recent progress in multi-agent reinforcement learning and
meta-learning has lead to a variety of approaches that em-
ploy second order gradient estimators. While these are easy
to construct with the DiCE objective (Foerster et al., 2018b),
the high variance of higher order gradient estimators has pre-
vented their widespread application in practice. By reusing
the DiCE formalism, we introduce a baseline for second
order gradient estimators in stochastic computation graphs.
Similar to DiCE, this baseline is automatically constructed
from user-defined objectives using automatic differentiation
frameworks, making it straightforward to use in practice.
Our baseline does not change the expected value of any
derivatives. We demonstrate empirically that our new base-
line dramatically improves higher order gradient estimation
in a multi-agent task, reducing the required sample size
by two orders of magnitude. We believe that low-variance
higher order gradient estimators will unlock a variety of
reinforcement learning and meta-learning applications in
the future. Furthermore, we would like to extend the ap-
proach to deal with settings where the costs depend directly
on the parameters. Lastly, we are interested in extending
our framework to a baseline-generating term for any-order
gradient estimators.
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