
Journal of Artificial Intelligence Research 46 (2013) 449–509 Submitted 9/12; published 03/13

Incremental Clustering and Expansion for Faster

Optimal Planning in Decentralized POMDPs

Frans A. Oliehoek frans.oliehoek@maastrichtuniversity.nl
Maastricht University
Maastricht, The Netherlands

Matthijs T.J. Spaan m.t.j.spaan@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Christopher Amato camato@csail.mit.edu
Massachusetts Institute of Technology
Cambridge, MA, USA

Shimon Whiteson s.a.whiteson@uva.nl

University of Amsterdam

Amsterdam, The Netherlands

Abstract

This article presents the state-of-the-art in optimal solution methods for decentralized
partially observable Markov decision processes (Dec-POMDPs), which are general models for
collaborative multiagent planning under uncertainty. Building off the generalized multia-
gent A* (GMAA*) algorithm, which reduces the problem to a tree of one-shot collaborative
Bayesian games (CBGs), we describe several advances that greatly expand the range of Dec-
POMDPs that can be solved optimally. First, we introduce lossless incremental clustering
of the CBGs solved by GMAA*, which achieves exponential speedups without sacrificing
optimality. Second, we introduce incremental expansion of nodes in the GMAA* search
tree, which avoids the need to expand all children, the number of which is in the worst case
doubly exponential in the node’s depth. This is particularly beneficial when little clustering
is possible. In addition, we introduce new hybrid heuristic representations that are more
compact and thereby enable the solution of larger Dec-POMDPs. We provide theoretical
guarantees that, when a suitable heuristic is used, both incremental clustering and incre-
mental expansion yield algorithms that are both complete and search equivalent. Finally,
we present extensive empirical results demonstrating that GMAA*-ICE, an algorithm that
synthesizes these advances, can optimally solve Dec-POMDPs of unprecedented size.

1. Introduction

A key goal of artificial intelligence is the development of intelligent agents that interact with
their environment in order to solve problems, achieve goals, and maximize utility. While such
agents sometimes act alone, researchers are increasingly interested in collaborative multiagent
systems, in which teams of agents work together to perform all manner of tasks. Multiagent
systems are appealing, not only because they can tackle inherently distributed problems, but
because they facilitate the decomposition of problems too complex to be tackled by a single

c©2013 AI Access Foundation. All rights reserved.

Oliehoek, Spaan, Amato, & Whiteson

agent (Huhns, 1987; Sycara, 1998; Panait & Luke, 2005; Vlassis, 2007; Buşoniu, Babuška, &
De Schutter, 2008).

One of the primary challenges of multiagent systems is the presence of uncertainty. Even
in single-agent systems, the outcome of an action may be uncertain, e.g., the action may fail
with some probability. Furthermore, in many problems the state of the environment may be
uncertain due to limited or noisy sensors. However, in multiagent settings these problems
are often greatly exacerbated. Since agents have access only to their own sensors, typically a
small fraction of those of the complete system, their ability to predict how other agents will
act is limited, complicating cooperation. If such uncertainties are not properly addressed,
arbitrarily bad performance may result.

In principle, agents can use communication to synchronize their beliefs and coordinate
their actions. However, due to bandwidth constraints, it is typically infeasible for all agents
to broadcast the necessary information to all other agents. In addition, in many realistic
scenarios, communication may be unreliable, precluding the possibility of eliminating all un-
certainty about other agents’ actions.

Especially in recent years, much research has focused on approaches to (collaborative)
multiagent systems that deal with uncertainty in a principled way, yielding a wide variety
of models and solution methods (Pynadath & Tambe, 2002; Goldman & Zilberstein, 2004;
Seuken & Zilberstein, 2008). This article focuses on the decentralized partially observable
Markov decision process (Dec-POMDP), a general model for collaborative multiagent plan-
ning under uncertainty. Unfortunately, solving a Dec-POMDP, i.e., computing an optimal
plan, is generally intractable (NEXP-complete) (Bernstein, Givan, Immerman, & Zilberstein,
2002) and in fact even computing solutions with absolutely bounded error (i.e., ǫ-approximate
solutions) is also NEXP-complete (Rabinovich, Goldman, & Rosenschein, 2003). In particular,
the number of joint policies grows exponentially with the number of agents and observations
and doubly exponentially with respect to the horizon of the problem.1 Though these com-
plexity results preclude methods that are efficient on all problems, developing better optimal
solution methods for Dec-POMDPs is nonetheless an important goal, for several reasons.

First, since the complexity results describe only the worst case, there is still great potential
to improve the performance of optimal methods in practice. In fact, there is evidence that
many problems can be solved much faster than the worst-case complexity bound indicates
(Allen & Zilberstein, 2007). In this article, we present experiments that clearly demonstrate
this point: on many problems, the methods we propose scale vastly beyond what would be
expected for a doubly-exponential dependence on the horizon.

Second, as computer speed and memory capacity increase, a growing set of small and
medium-sized problems can be solved optimally. Some of these problems arise naturally while
others result from the decomposition of larger problems. For instance, it may be possible
to extrapolate optimal solutions of problems with shorter planning horizons, using them as
the starting point of policy search for longer-horizon problems as in the work of Eker and
Akın (2013), or to use such shorter-horizon, no-communication solutions inside problems with
communication (Nair, Roth, & Yohoo, 2004; Goldman & Zilberstein, 2008). More generally,
optimal policies of smaller problems can potentially be used to find good solutions for larger
problems. For instance, transfer planning (Oliehoek, 2010; Oliehoek, Whiteson, & Spaan,

1. Surprisingly, the number of states in a Dec-POMDP is less important, e.g., brute-force search depends on
the number of states only via its policy evaluation routine, which scales linearly in the number of states.

450

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

2013) employs optimal solutions to problems with few agents to better solve problems with
many agents. By performing (approximate) influence-based abstraction and influence search
(Witwicki, 2011; Oliehoek, Witwicki, & Kaelbling, 2012), optimal solutions of component
problems can potentially be used to find (near-)optimal solutions of larger problems.

Third, optimal methods offer important insights into the nature of specific Dec-POMDP
problems and their solutions. For instance, the methods introduced in this article enabled the
discovery of certain properties of the BroadcastChannel benchmark problem that make
it much easier to solve.

Fourth, optimal methods provide critical inspiration for principled approximation meth-
ods. In fact, almost all successful approximate Dec-POMDP methods are based on optimal
ones (see, e.g., Seuken & Zilberstein, 2007b, 2007a; Dibangoye, Mouaddib, & Chai-draa, 2009;
Amato, Dibangoye, & Zilberstein, 2009; Wu, Zilberstein, & Chen, 2010a; Oliehoek, 2010) or
locally optimal ones (Velagapudi, Varakantham, Scerri, & Sycara, 2011)2, and the cluster-
ing technique presented in this article forms the basis of a recently introduced approximate
clustering technique (Wu, Zilberstein, & Chen, 2011).

Finally, optimal methods are essential for benchmarking approximate methods. In recent
years, there have been huge advances in the approximate solution of Dec-POMDPs, leading
to the development of solution methods that can deal with large horizons, hundreds of agents
and many states (e.g., Seuken & Zilberstein, 2007b; Amato et al., 2009; Wu et al., 2010a;
Oliehoek, 2010; Velagapudi et al., 2011). However, since computing even ǫ-approximate
solutions is NEXP-complete, any method whose complexity is not doubly exponential cannot
have any guarantees on the absolute error of the solution (assuming EXP 6=NEXP). As such,
existing effective approximate methods have no quality guarantees.3

Consequently, it is difficult to meaningfully interpret their empirical performance without
the upper bounds optimal methods supply. While approximate methods can also be bench-
marked against lower bounds (e.g., other approximate methods), such comparisons cannot
detect when a method fails to find good solutions. Doing so requires benchmarking against
upper bounds and, unfortunately, upper bounds that are easier to compute, such as QMDP
and QPOMDP, are too loose to be helpful (Oliehoek, Spaan, & Vlassis, 2008). As such,
benchmarking with respect to optimal solutions is an important part of the verification of any
approximate algorithm. Since existing optimal methods can only tackle very small problems,
scaling optimal solutions to larger problems is a critical goal.

1.1 Contributions

This article presents the state-of-the-art in optimal solution methods for Dec-POMDPs. In
particular, it describes several advances that greatly expand the horizon to which many Dec-
POMDPs can be solved optimally. In addition, it proposes and evaluates a complete algorithm
that synthesizes these advances. Our approach is based on the generalized multiagent A*
(GMAA*) algorithm (Oliehoek, Spaan, & Vlassis, 2008), which makes it possible to reduce
the problem to a tree of one-shot collaborative Bayesian games (CBGs). The appeal of this

2. The method by Velagapudi et al. (2011) repeatedly computes best responses in a way similar to DP-JESP
(Nair, Tambe, Yokoo, Pynadath, & Marsella, 2003). The best response computation, however, exploits
sparsity of interactions.

3. Note that we refer to methods without quality guarantees as approximate rather than heuristic to avoid
confusion with heuristic search, which is used throughout this article and is exact.

451

Oliehoek, Spaan, Amato, & Whiteson

approach is the abstraction layer it introduces, which has led to various insights into Dec-
POMDPs and, in turn, to the improved solution methods we describe.

The specific contributions of this article are:4

1. We introduce lossless clustering of CBGs, a technique to reduce the size of the CBGs
for which GMAA* enumerates all possible solutions, while preserving optimality. This
can exponentially reduce the number of child nodes in the GMAA* search tree, leading
to huge increases in efficiency. In addition, by applying incremental clustering (IC) to
GMAA*, our GMAA*-IC method can avoid clustering exponentially sized CBGs.

2. We introduce incremental expansion (IE) of nodes in theGMAA* search tree. Although
clustering may reduce the number of children of a search node, this number is in the
worst case still doubly exponential in the node’s depth. GMAA*-ICE, which applies
IE to GMAA*-IC, addresses this problem by creating a next child node only when it
is a candidate for further expansion.

3. We provide theoretical guarantees for both GMAA*-IC and GMAA*-ICE. In partic-
ular, we show that, when using a suitable heuristic, both algorithms are both complete
and search equivalent.

4. We introduce an improved heuristic representation. Tight heuristics like those based
on the underlying POMDP solution (QPOMDP) or the value function resulting from
assuming 1-step-delayed communication (QBG) are essential for heuristic search meth-
ods like GMAA* (Oliehoek, Spaan, & Vlassis, 2008). However, the space needed to
store these heuristics grows exponentially with the problem horizon. We introduce hy-
brid representations that are more compact and thereby enable the solution of larger
problems.

5. We present extensive empirical results that show substantial improvements over the
current state-of-the-art. Whereas Seuken and Zilberstein (2008) argued that GMAA*
can at best optimally solve Dec-POMDPs only one horizon further than brute-force
search, our results demonstrate that GMAA*-ICE can do much better. In addition, we
provide a comparative overview of the results of competitive optimal solution methods
from the literature.

The primary aim of the techniques introduced in this article is to improve scalability
with respect to the horizon. Our empirical results confirm that these techniques are highly
successful in this regard. As an added bonus, our experiments also demonstrate improvement
in scalability with respect to the number of agents. In particular, we present the first optimal
results on general (non-special case) Dec-POMDPs with more than three agents. Extensions
of our techniques to achieve further improvements with respect to the number of agents,
as well as promising ways to combine the ideas behind our methods with state-of-the-art
approximate approaches, are discussed under future work in Section 7.

4. This article synthesizes and extends research that was already reported in two conference papers (Oliehoek,
Whiteson, & Spaan, 2009; Spaan, Oliehoek, & Amato, 2011).

452

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

1.2 Organization

The article is organized as follows. Section 2 provides background on the Dec-POMDP model,
the GMAA* heuristic search solution method, as well as suitable heuristics. In Section 3, we
introduce lossless clustering of the CBGs and its integration into GMAA*. Section 4 intro-
duces the incremental expansion of search nodes. The empirical evaluation of the proposed
techniques is reported in Section 5. We give a treatment of related work in Section 6. Future
work is discussed in Section 7 and conclusions are drawn in Section 8.

2. Background

In a Dec-POMDP, multiple agents must collaborate to maximize the sum of the common
rewards they receive over multiple timesteps. Their actions affect not only their immediate
rewards but also the state to which they transition. While the current state is not known to
the agents, at each timestep each agent receives a private observation correlated with that
state.

Definition 1. A Dec-POMDP is a tuple
〈
D,S,A, T,O, O,R, b0, h

〉
, where

• D = {1, . . . ,n} is the finite set of agents.

• S =
{
s1, . . . ,s|S|

}
is the finite set of states.

• A = ×iAi is the set of joint actions a = 〈a1, . . . , an〉, where Ai is the finite set of actions
available to agent i.

• T is a transition function specifying the state transition probabilities Pr(s′|s,a).

• O = ×iOi is the finite set of joint observations. At every stage one joint observation
o = 〈o1,...,on〉 is received. Each agent i observes only its own component oi.

• O is the observation function, which specifies observation probabilities Pr(o|a,s′).

• R(s,a) is the immediate reward function mapping (s,a)-pairs to real numbers.

• b0 ∈ ∆(S) is the initial state distribution at time t = 0, where ∆(S) denotes the infinite
set of probability distributions over the finite set S.

• h is the horizon, i.e., the number of stages. We consider the case where h is finite.

At each stage t = 0 . . . h− 1, each agent takes an individual action and receives an individual
observation.

Example 1 (Recycling Robots). To illustrate the Dec-POMDP model, consider a team of robots tasked
with removing trash from an office building, depicted in Fig. 1. The robots have sensors to find marked
trash cans, motors to move around in order to look for cans, as well as gripper arms to grasp and carry
a can. Small trash cans are light and compact enough for a single robot to carry, but large trash cans
require multiple robots to carry them out together. Because more people use them, the larger trash
cans fill up more quickly. Each robot must also ensure that its battery remains charged by moving
to a charging station before it expires. The battery level for a robot degrades due to the distance the
robot travels and the weight of the item being carried. Each robot knows its own battery level but not
that of the other robots and only the location of other robots within sensor range. The goal of this
problem is to remove as much trash as possible in a given time period.

This problem can be represented as a Dec-POMDP in a natural way. The states, S, consist of
the different locations of each robot, their battery levels and the different amounts of trash in the
cans. The actions, Ai, for each robot consist of movements in different directions as well as decisions

453

Oliehoek, Spaan, Amato, & Whiteson

Figure 1: Illustration of the Recycling Robots example, in which two robots have to remove
trash in an office environment with three small (blue) trash cans and two large (yellow) ones.
In this situation, the left robot might observe that the large trash can next to it is full, and
the other robot that the small trash can is empty. However, none of them is sure of the trash
cans’ state due to limited sensing capabilities, nor do they see the state of trash cans further
away. In particular, one robot has no knowledge regarding the observations of the other robot.

to pick up a trash can or recharge the battery (when in range of a can or a charging station). The
observations, Oi, of each robot consist of its own battery level, its own location, the locations of other
robots in sensor range and the amount of trash in cans within range. The rewards, R, could consist of
a large positive value for a pair of robots emptying a large (full) trash can, a small positive value for
a single robot emptying a small trash can and negative values for a robot depleting its battery or a
trash can overflowing. An optimal solution is a joint policy that leads to the expected behavior (given
that the rewards are properly specified). That is, it ensures that the robots cooperate to empty the
large trash cans when appropriate and the small ones individually while considering battery usage.

For explanatory purposes, we also consider a much simpler problem, the so-called decen-
tralized tiger problem (Nair et al., 2003).

Example 2 (Dec-Tiger). The Dec-Tiger problem concerns two agents that find themselves in a hall-
way with two doors. Behind one door, there is a treasure and behind the other is a tiger. The state
describes which door the tiger is behind—left (sl) or right (sr)—each occurring with 0.5 probability
(i.e., the initial state distribution b0 is uniform). Each agent can perform three actions: open the left
door (aOL), open the right door (aOR) or listen (aLi). Clearly, opening the door to the treasure will
yield a reward, but opening the door to the tiger will result in a severe penalty. A greater reward
is given for both agents opening the correct door at the same time. As such, a good strategy will
probably involve listening first. The listen actions, however, also have a minor cost (negative reward).
At every stage the agents get an observation. The agents can either hear the tiger behind the left
(oHL) or right (oHR) door, but each agent has a 15% chance of hearing it incorrectly (getting the wrong
observation). Moreover, the observation is informative only if both agents listen; if either agent opens
a door, both agents receive an uninformative (uniformly drawn) observation and the problem resets to
sl or sr with equal probability. At this point the problem just continues, such that the agents may be
able to open the door to the treasure multiple times. Also note that, since the only two observations
the agents can get are oHL, oHR, the agents have no way of detecting that the problem has been reset:
if one agent opens the door while the other listens, the other agent will not be able to tell that the
door was opened. For a complete specification, see the discussion by Nair et al. (2003).

Given a Dec-POMDP, the agents’ common goal is to maximize the expected cumulative
reward or return. The planning task entails finding a joint policy π = 〈π1, . . . ,πn〉 from the
space of joint policies Π, that specifies an individual policy πi for each agent i. Such an

454

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

individual policy in general specifies an individual action for each action-observation history
(AOH) ~θ t

i = (a0i ,o
1
i , . . . ,a

t−1
i ,oti), e.g., πi(~θ

t
i) = ati. However, it is possible to restrict our

attention to deterministic or pure policies, in which case πi maps each observation history
(OH) (o1i , . . . ,o

t
i) = ~o t

i ∈
~Ot
i to an action, e.g., πi(~o

t
i) = ati. The number of such policies is

|Ai|
(|Oi|

h−1)/(|Oi|−1) and the number of joint policies is therefore

O
(
|A∗|

n|O∗|
h−1

|O∗|−1

)
, (2.1)

where A∗ and O∗ denote the largest individual action and observation sets. The quality of a
particular joint policy is expressed by the expected cumulative reward it induces, also referred
to as its value.

Definition 2. The value V (π) of a joint policy π is

V (π) , E
[h−1∑

t=0

R(st,at)
∣∣∣π,b0

]
, (2.2)

where the expectation is over sequences of states, actions and observations.

The planning problem for a Dec-POMDP is to find an optimal joint policy π∗, i.e., a joint
policy that maximizes the value: π∗ = argmaxπ V (π).

Because an individual policy πi depends only on the local information ~oi available to an
agent, the on-line execution phase is truly decentralized: no communication takes place other
than that modeled via actions and observations. The planning itself however, may take place
in an off-line phase and be centralized. This is the scenario that we consider in this article. For
a more detailed introduction to Dec-POMDPs see, e.g., the work of Seuken and Zilberstein
(2008) and Oliehoek (2012).

2.1 Heuristic Search Methods

In recent years, numerous Dec-POMDP solution methods have been proposed. Most of these
methods fall into one of two categories: dynamic programming and heuristic search methods.
Dynamic programming methods take a backwards or ‘bottom-up’ perspective by first consid-
ering policies for the last time step t = h − 1 and using them to construct policies for stage
t = h− 2, etc. In contrast, heuristic search methods take a forward or ‘top-down’ perspective
by first constructing plans for t = 0 and extending them to later stages.

In this article, we focus on the heuristic search approach that has shown state-of-the-art
results. As we make clear in this section, this method can be interpreted as searching over a
tree of collaborative Bayesian games (CBGs). These CBGs provide a convenient abstraction
layer that facilitates the explanation of the techniques introduced in this article.

This section provides some concise background on heuristic search methods. For a more
detailed description, see the work of Oliehoek, Spaan, and Vlassis (2008). For a further de-
scription of dynamic programming methods and their relationship to heuristic search methods,
see the work of Oliehoek (2012).

2.1.1 Multiagent A*

Szer, Charpillet, and Zilberstein (2005) introduced a heuristically guided policy search method
called multiagent A* (MAA*). It performs an A* search over partially specified joint policies,

455

Oliehoek, Spaan, Amato, & Whiteson

aOL

aOL

aOL

aLiaLiaLi

aLi

oHLoHL

oHL

oHRoHR

oHR

t = 0

t = 1

t = 2

ϕ2
i

δ0i

δ1i

δ2i

γτ=2
i

γτ=1
i

Figure 2: An arbitrary policy for the Dec-Tiger problem. The figure illustrates the different
types of partial policies used in this paper. The shown past policy ϕ2

i consists of two decision
rules δ0i , δ

1
i . Also shown are two sub-tree policies γτ=1

i , γτ=2
i (introduced in Section 3.1.2).

pruning joint policies that are guaranteed to be worse than the best (fully specified) joint policy
found so far. Oliehoek, Spaan, and Vlassis (2008) generalized the algorithm by making explicit
the expand and selection operators performed in the heuristic search. The resulting algorithm,
generalized MAA* (GMAA*) offers a unified perspective of MAA* and the forward sweep
policy computation method (Emery-Montemerlo, 2005), which differ in how they implement
GMAA*’s expand operator: forward sweep policy computation solves (i.e., finds the best
policy for) collaborative Bayesian games, whileMAA* finds all policies for those collaborative
Bayesian games, as we describe in Section 2.1.2.

The GMAA* algorithm considers joint policies that are partially specified with respect
to time. These partially specified policies can be formalized as follows.

Definition 3. A decision rule δti for agent i’s decision for stage t is a mapping from action-

observation histories for stage t to actions δti :
~Θt
i → Ai.

In this article, we consider only deterministic policies. Since such policies need to condition
their actions only on observation histories, they are made up of decision rules that map length-
t observation histories to actions: δti :

~Ot
i → Ai. A joint decision rule δt = 〈δt1, . . . ,δ

t
n〉 specifies

a decision rule for each agent. Fig. 2 illustrates this concept, as well as that of a past policy,
which we introduce shortly. As discussed below, decision rules allow partial policies to be
defined and play a crucial role in GMAA* and the algorithms developed in this article.

Definition 4. A partial or past policy for stage t, ϕt
i, specifies the part of agent i’s policy

that relates to stages t′ < t. That is, it specifies the decision rules for the first t stages:
ϕt
i = (δ0i ,δ

1
i , . . . ,δ

t−1
i). A past policy for stage h is just a regular, or fully specified, policy

ϕh
i = πi. A past joint policy ϕt = (δ0,δ1, . . . ,δt−1) specifies joint decision rules for the first t

stages.

GMAA* performs a heuristic search over such partial joint policies ϕt by constructing
a search tree as illustrated in Fig. 3a. Each node q = 〈ϕt, v̂〉 in the search tree specifies a
past joint policy ϕt and heuristic value v̂. This heuristic value v̂ of the node represents an
optimistic estimate of the past joint policy V̂ (ϕt), which can be computed via

V̂ (ϕt) = V 0...t−1(ϕt) +Ht...h−1(ϕt), (2.3)

456

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

δ0

δ0′

δ0′′

δ1 δ1′

. . .

. . .

ϕ0

ϕ1 ϕ1′ ϕ1′′

ϕ2 ϕ2′

(a) The MAA* perspective.

β0

β0′

β0′′

β1 β1′

. . .

. . .

B(ϕ0)

B(ϕ1) B(ϕ1′) B(ϕ1′′)

B(ϕ2) B(ϕ2′)

(b) The CBG perspective.

Figure 3: Generalized MAA*. Associated with every node is a heuristic value. The search
trees for the two perspectives shown are equivalent under certain assumptions on the heuristic,
as explained in Section 2.2.

where Ht...h−1 is a heuristic value for the remaining h− t stages and V 0...t−1(ϕt) is the actual
expected reward ϕt achieves over the first t stages (for its definition, see Appendix A.3).
Clearly, when Ht...h−1 is an admissible heuristic—a guaranteed overestimation—so is V̂ (ϕt).5

Algorithm 1 illustrates GMAA*. It starts by creating a node q0 for a completely unspec-
ified joint policy ϕ0 and placing it in an open list L. Then, it selects nodes (Algorithm 2) and
expands them (Algorithm 3), repeating this process until it is certain that it has found the
optimal joint policy.

The Select operator returns the highest ranked node, as defined by the following com-
parison operator.

Definition 5. The node comparison operator < is defined for two nodes q = 〈ϕt,v̂〉, q′ =
〈ϕt′,v̂′〉 as follows:

q < q′ =

v̂ < v̂′ , if v̂ 6= v̂′

depth(q) < depth(q′) , otherwise if depth(q) 6= depth(q′)

ϕt < ϕt′ , otherwise.

(2.4)

That is, the comparison operator first compares the heuristic values. If those are equal,
it compares the depth of the nodes. Finally, if nodes have equal value and equal depth, it
lexically compares the past joint policies. This ranking leads to A* behavior (i.e., selecting the
node from the open list with the highest heuristic value) of GMAA*, as well as guaranteeing
the same selection order in our incremental expansion technique (introduced in Section 4).
Ranking nodes with greater depth higher in case of equal heuristic value helps find tight
lower bounds early by first expanding deeper nodes (Szer et al., 2005) and is also useful in
incremental expansion.

5. More formally, H should not underestimate the value. Note that, unlike classical A* applications such as
path planning–in which an admissible heuristic should not overestimate–in our setting we maximize reward,
rather than minimize cost.

457

Oliehoek, Spaan, Amato, & Whiteson

Algorithm 1 Generalized multiagent A*.
Input: a Dec-POMDP, an admissible heuristic H , an empty open list L
Output: an optimal joint policy π∗

1: vGMAA ← −∞
2: q0 ← 〈ϕ0 = (), v̂ = +∞〉
3: L.insert(q0)
4: repeat

5: q ← Select(L)
6: QExpand ← Expand(q,H)
7: if depth(q) = h− 1 then

8: { QExpand contains fully specified joint policies, we only are interested in the best one }
9: 〈π, v〉 ← BestJointPolicyAndValue(QExpand)

10: if v > vGMAA then

11: π∗ ← π {found a new best joint policy}
12: vGMAA ← v
13: L.Prune(vGMAA) {(optionally) prune the open list}
14: end if

15: else

16: L.insert(
{
q′ ∈ QExpand | q

′.v̂ > vGMAA
}
) {add expanded children to open list}

17: end if

18: PostProcessNode(q,L)
19: until L is empty
20: return π∗

Algorithm 2 Select(L): Return the highest ranked node from the open list.

Input: open list L, total order on nodes <
Output: the highest ranked node q∗

1: q∗ ← q ∈ L s.t. ∀q′∈L (q′ 6= q =⇒ q′ < q)
2: return q∗

The Expand operator constructs QExpand, the set of all child nodes. That is, given a node
that contains partial joint policy ϕt = (δ0,δ1, . . . ,δt−1), it constructs Φt+1, the set of all
ϕt+1 = (δ0,δ1, . . . ,δt−1,δt), by appending all possible joint decision rules δt for the next time
step t. For all these ϕt+1, a heuristic value is computed and a node is constructed.

After expansion, the algorithm checks (line 7) if the expansion resulted in fully specified
joint policies. If not, all children with sufficient heuristic value are placed in the open list

Algorithm 3 Expand(q,H). The expand operator of plain MAA*.

Input: q = 〈ϕt, v̂〉 the search node to expand, H the admissible heuristic.
Output: QExpand the set containing all expanded child nodes.
1: QExpand ← {}
2: Φt+1 ← {ϕt+1 | ϕt+1 = (ϕt, δt)}
3: for ϕt+1 ∈ Φt+1 do

4: V̂ (ϕt+1)← V 0...t(ϕt+1) +H(ϕt+1)

5: q′ ← 〈ϕt+1, V̂ (ϕt+1)〉 {create child node}
6: QExpand.Insert(q

′)
7: end for

8: return QExpand

458

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Algorithm 4 PostProcessNode(q,L)

Input: q the expanded parent node, L the open list.
Output: the expanded node is removed.
1: L.Pop(q)

(line 16). If the children are fully specified, BestJointPolicyAndValue returns only the best
joint policy (and its value) from QExpand (see Algorithm 12 in Appendix A.1 for details of
BestJointPolicyAndValue). GMAA* also maintains a lower bound vGMAA which corre-
sponds to the actual value of the best fully-specified joint policy found so far. If the newly
found joint policy has a higher value this lower bound is updated (lines 11 and 12). Also, any
nodes for partial joint policies ϕt+1 with an upper bound that is lower than the best solution
so far, V̂ (ϕt+1) < vGMAA, can be pruned (line 13). This pruning takes additional time, but
can save memory. Finally, PostProcessNode simply removes the parent node from the open
list (this procedure is augmented for incremental expansion in Section 4). The search ends
when the list becomes empty, at which point an optimal joint policy has been found.

GMAA* is complete, i.e., it will search until it finds a solution. Therefore, in theory,
GMAA* is guaranteed to eventually produce an optimal joint policy (Szer et al., 2005).
However, in practice, this is often infeasible for larger problems. A major source of complexity
is the full expansion of a search node. The number of joint decision rules for stage t that can
form the children of a node at depth t in the search tree6 is

O
(
|A∗|

n(|O∗|t)
)
, (2.5)

which is doubly exponential in t. Comparing (2.1) with (2.5), we see that the worst case
complexity of expanding a node for the deepest level in the tree t = h − 1 is comparable to
that of brute force search for the entire Dec-POMDP. Consequently, Seuken and Zilberstein
(2008) conclude that MAA* “can at best solve problems whose horizon is only 1 greater than
those that can already be solved by näıve brute force search.”

2.1.2 The Bayesian Game Perspective

GMAA* makes it possible to interpret MAA* as the solution of a collection of collaborative
Bayesian games (CBGs). We employ this approach throughout this article, as it facilitates
the improvements to GMAA* that we introduce, each of which results in significant advances
in the state-of-the-art in Dec-POMDP solutions.

A Bayesian game (BG) models a one-shot interaction between a number of agents. It is
an extension of the well-known strategic game (also known as a normal form game) in which
each agent holds some private information (Osborne & Rubinstein, 1994). A CBG is a BG
in which the agents receive identical payoffs. In the Bayesian game perspective, each node q
in the GMAA* search tree, along with its corresponding partial joint policy ϕt, defines a
CBG (Oliehoek, Spaan, & Vlassis, 2008). That is, given state distribution b0, for each ϕt,
it is possible to construct a CBG B(b0,ϕt) that represents the decision-making problem for
stage t given that ϕt was followed for the first t stages starting from b0. When it is clear what
b0 is, we simply write B(ϕt).

6. We follow the convention that the root has depth 0.

459

Oliehoek, Spaan, Amato, & Whiteson

Definition 6. A collaborative Bayesian game (CBG) B(b0,ϕt) = 〈D,A,Θ,Pr(·), u〉 modeling
stage t of a Dec-POMDP, given initial state distribution b0 and past joint policy ϕt, consists
of:

• D, the set of agents {1 . . . n},

• A, the set of joint actions,

• Θ, the set of their joint types, each of which specifies a type for each agent θ =
〈θ1, . . . ,θn〉,

• Pr(·), a probability distribution over joint types,

• u, a (heuristic) payoff function mapping joint type and action to a real number: u(θ,a).

In any Bayesian game, the type θi of an agent i represents the private information it holds.
For instance, in a Bayesian game modeling of a job recruitment scenario, the type of an agent
may indicate whether that agent is a hard worker. In a CBG for a Dec-POMDP, an agent’s
private information is its individual AOH. Therefore, the type θi of an agent i corresponds to
~θ t
i , its history of actions and observations: θi ↔ ~θ t

i . Similarly, a joint type corresponds to a

joint AOH: θ ↔ ~θt.
Consequently, u should provide a (heuristic) estimate for the long-term payoff of each

(~θt,a)-pair. In other words, the payoff function corresponds to a heuristic Q-value: u(θ,a)↔
Q̂(~θt,a). We discuss how to compute such heuristics in Section 2.2. Given ϕt, b0, and the
correspondence of joint types and AOHs, the probability distribution over joint types is:

Pr(θ) , Pr(~θt|b0,ϕt), (2.6)

where the latter probability is the marginal of Pr(s,~θt|b0,ϕt) as defined by (A.2) used in the
computation of the value of a partial joint policy V 0...t−1(ϕt) in Appendix A.3. Note that due
to the correspondence between types and AOHs, the size of a CBG B(b0,ϕt) for a stage t is
exponential in t.

In a CBG, each agent uses a Bayesian game policy βi that maps individual types to actions:
βi(θi) = ai. Because of the correspondence between types and AOHs, a (joint) policy for the
CBG β corresponds to a (joint) decision rule: β ↔ δt. In the remainder of this article, we
assume deterministic past joint policies ϕt, which implies that only one ~θt will have non-zero
probability given the observation history ~o t. Thus, β effectively maps observation histories
to actions. The number of such β for B(b0,ϕt) is given by (2.5). The value of a joint CBG
policy β for a CBG B(b0,ϕt) is:

V̂ (β) =
∑

~θt

Pr(~θt|b0,ϕt)Q̂(~θt,β(~θt)), (2.7)

where βt(~θt) = 〈βi(~θ
t
i)〉i=1...n denotes the joint action that results from application of the

individual CBG-policies to the individual AOH ~θ t
i specified by ~θt.

Example 3. Consider a CBG for Dec-Tiger given the past joint policy ϕ2 that specifies to lis-
ten at the first two stages. At stage t = 2, each agent has four possible observation histories:
~O2
i = {(oHL,oHL), (oHL,oHR), (oHR,oHL), (oHR,oHR)} that correspond directly to its possible types. The

probabilities of these joint types given ϕ2 are listed in Fig. 4a. Since the joint OHs together with
ϕ2 determine the joint AOHs, they also correspond to so-called joint beliefs : probability distributions
over states (introduced formally in Section 2.2). Fig. 4b shows these joint beliefs, which can serve as
the basis for the heuristic payoff function (as further discussed in Section 2.2).

460

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

~o 2
2

~o 2
1 (oHL,oHL) (oHL,oHR) (oHR,oHL) (oHR,oHR)

(oHL,oHL) 0.261 0.047 0.047 0.016
(oHL,oHR) 0.047 0.016 0.016 0.047
(oHR,oHL) 0.047 0.016 0.016 0.047
(oHR,oHR) 0.016 0.047 0.047 0.261

(a) The joint type probabilities.

~o 2
2

~o 2
1 (oHL,oHL) (oHL,oHR) (oHR,oHL) (oHR,oHR)

(oHL,oHL) 0.999 0.970 0.970 0.5
(oHL,oHR) 0.970 0.5 0.5 0.030
(oHR,oHL) 0.970 0.5 0.5 0.030
(oHR,oHR) 0.5 0.030 0.030 0.001

(b) The induced joint beliefs. Listed is the probability Pr(sl|~θ
2,b0) of

the tiger being behind the left door.

Figure 4: Illustration for the Dec-Tiger problem with a past joint policy ϕ2 that specifies
only listen actions for the first two stages.

Algorithm 5 Expand-CBG(q,H). The expand operator of GMAA* that makes use of CBGs.

Input: q = 〈ϕt, v̂〉 the search node to expand.

Input: H the admissible heuristic that is of the form Q̂(~θ,a).
Output: QExpand the set containing all expanded child nodes.

1: B(b0,ϕt)← ConstructBG(b0,ϕt, Q̂) {as explained in Section 2.1.2}
2: QExpand ← GenerateAllChildrenForCBG(B(b0,ϕt))
3: return QExpand

A solution to the CBG is a β that maximizes (2.7). A CBG is equivalent to a team
decision process and finding a solution is NP-complete (Tsitsiklis & Athans, 1985). However,
in the Bayesian game perspective of GMAA*, illustrated in Fig. 3b, the issue of solving a
CBG (i.e., finding the highest payoff β) is not so relevant because we need to expand all β.
That is, the Expand operator enumerates all β and appends them to ϕt to form the set of
extended joint policies

Φt+1 =
{
(ϕt,β) | β is a joint CBG policy of B(b0,ϕt)

}

and uses this set to construct QExpand, the set of child nodes. The heuristic value of such a
child node q ∈ QExpand that specifies ϕt+1 = (ϕt,β) is given by

V̂ (ϕt+1) = V 0...t−1(ϕt) + V̂ (β). (2.8)

The Expand operator that makes use of CBGs is summarized in Algorithm 5, which uses the
GenerateAllChildrenForCBG subroutine (Algorithm 13 in Appendix A.1). Fig. 3b illustrates
the Bayesian game perspective of GMAA*.

461

Oliehoek, Spaan, Amato, & Whiteson

2.2 Heuristics

To perform heuristic search, GMAA* defines the heuristic value V̂ (ϕt) using (2.3). In con-
trast, the Bayesian game perspective uses (2.8). These two formulations are equivalent when
the heuristic Q̂ faithfully represents the expected immediate reward (Oliehoek, Spaan, & Vlas-
sis, 2008). The consequence is that GMAA* via CBGs is complete (and thus finds optimal
solutions) as stated by the following theorem.

Theorem 1. When using a heuristic of the form

Q̂(~θt,a) = Est[R(st,a) | ~θt] +E~θt+1 [V̂ (~θt+1) | ~θt,a], (2.9)

where V̂ (~θt+1) ≥ Qπ∗(~θt+1,π∗(~θt+1)) is an overestimation of the value of an optimal joint
policy π∗, GMAA* via CBGs is complete.

Proof. See appendix.

In this theorem, Qπ(~θ
t,a) is the Q-value, i.e., the expected future cumulative reward of

performing a from ~θt under joint policy π (Oliehoek, Spaan, & Vlassis, 2008). The expectation
of the immediate reward will also be written as R(~θt,a) =

∑
s∈S R(s,a) Pr(s|~θt,b0). It can be

computed using Pr(s|~θt,b0), a quantity we refer to as the joint belief resulting from ~θt and
that we also denote as b. The joint belief itself can be computed via repeated application of
Bayes’ rule (Kaelbling, Littman, & Cassandra, 1998), or as the conditional of (A.2).

The rest of this subsection reviews several heuristics that have been used for GMAA*.

2.2.1 QMDP

One way to obtain an admissible heuristic Q̂(~θ,a) is to solve the underlying MDP, i.e., to
assume the joint action is chosen by a single ‘puppeteer’ agent that can observe the true
state. This approach, known as QMDP (Littman, Cassandra, & Kaelbling, 1995), uses the
MDP value function Qt,∗

M (st,a), which can be computed using standard dynamic programming

techniques (Puterman, 1994). In order to transform the Qt,∗
M (st,a)-values to Q̂M(~θt,a)-values,

we compute:

Q̂M(~θt,a) =
∑

s∈S

Qt,∗
M (s,a) Pr(s|~θt,b0). (2.10)

Solving the underlying MDP has time complexity that is linear in h, which makes it,
especially compared to the Dec-POMDP, easy to compute. In addition, it is only necessary
to store a value for each (s,a)-pair, for each stage t. However, the bound it provides on the
optimal Dec-POMDP Q∗-value function is loose (Oliehoek & Vlassis, 2007).

2.2.2 QPOMDP

Similar to the underlying MDP, one can define the underlying POMDP of a Dec-POMDP,
i.e., assuming the joint action is chosen by a single agent with access to the joint observation.7

7. Alternatively one can view this POMDP as a multiagent POMDP in which the agents can instantaneously
broadcast their private observations.

462

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

t = 0

t = 1

t = 2

t = 3

Tree Vector

Figure 5: Visual comparison of tree and vector-based Q representations.

The resulting solution can be used as a heuristic, called QPOMDP (Szer et al., 2005; Roth,
Simmons, & Veloso, 2005). The optimal QPOMDP value function satisfies:

Q∗
P(b

t,a) = R(bt,a) +
∑

ot+1∈O

P (ot+1|bt,a)max
at+1

Q∗
P(b

t+1,at+1), (2.11)

where bt is the joint belief, R(bt,a) =
∑

s∈S R(s,a)bt(s) is the immediate reward, and bt+1 is
the joint belief resulting from bt by action a and joint observation ot+1. To use QPOMDP, for

each ~θt, we can directly use the value for the induced joint belief: Q̂P(~θ
t,a) , Qt

P(b
~θt

,a).

There are two approaches to computing QPOMDP. One is to construct the ‘belief MDP
tree’ of all joint beliefs, illustrated in Fig. 5 (left). Starting with b0 (corresponding to the
empty joint AOH ~θ0), for each a and o we compute the resulting ~θ1 and corresponding

belief b
~θ1

and continue recursively. Given this tree, it is possible to compute values for all the
nodes by standard dynamic programming.

Another possibility is to apply vector-based POMDP techniques (see Fig. 5 (right)). The
Q-value function for a stage Qt

P(b,a) can be represented using a set of vectors for each joint
action Vt = {Vt1, . . . ,V

t
|A|} (Kaelbling et al., 1998). Qt

P(b,a) is then defined as the maximum
inner product:

Qt
P(b,a) , max

vt
a
∈Vt

a

b · vta.

Given Vh−1, the vector representation of the last stage, we can compute Vh−2, etc. In order
to limit the growth of the number of vectors, dominated vectors can be pruned.

Since QMDP is an upper bound on the POMDP value function (Hauskrecht, 2000), QPOMDP

provides a tighter upper bound to Q∗ than QMDP. However, it is also more costly to compute
and store: both the tree-based and the vector-based approach may need to store a number of
values exponential in h.

463

Oliehoek, Spaan, Amato, & Whiteson

2.2.3 QBG

A third heuristic, called QBG, assumes that each agent in the team has access only to its
individual observation but it can communicate with a 1-step delay.8 We define QBG as

Q∗
B(
~θt,a) = R(~θt,a) + max

β

∑

ot+1∈O

Pr(ot+1|~θt,a)Q∗
B(
~θt+1,β(ot+1)), (2.12)

where β = 〈β1(o
t+1
1),...,βn(o

t+1
n)〉 is a tuple of individual policies βi : Oi → Ai for the CBG

constructed for ~θt,a. Like QPOMDP, QBG can also be represented using vectors (Varaiya &
Walrand, 1978; Hsu & Marcus, 1982; Oliehoek, Spaan, & Vlassis, 2008) and the same two
manners of computation (tree and vector based) apply. It yields a tighter heuristic than
QPOMDP, but its computation has an additional exponential dependence on the maximum
number of individual observations (Oliehoek, Spaan, & Vlassis, 2008), which is particularly
troubling for the vector-based computation, since it precludes effective application of incre-
mental pruning (A. Cassandra, Littman, & Zhang, 1997). To overcome this problem, Oliehoek
and Spaan (2012) introduce novel tree-based pruning methods.

3. Clustering

GMAA* solves Dec-POMDPs by repeatedly constructing CBGs and expanding all the joint
BG policies β for them. However, the number of such β is equal to the number of regular
MAA* child nodes given by (2.5) and thus grows doubly exponentially with the horizon h.
In this section, we propose a new approach for improving scalability with respect to h by
clustering individual AOHs. This reduces the number of β and therefore the number of
constructed child nodes in the GMAA* search tree.9

Previous research has also investigated such clustering: Emery-Montemerlo, Gordon,
Schneider, and Thrun (2005) propose clustering types based on the profiles of the payoff
functions of the CBGs. However, the resulting method is ad hoc. Even given bounds on the
error of clustering two types in a CBG, no guarantees can be made about the quality of the
Dec-POMDP solution, as the bound is with respect to a heuristic payoff function.

In contrast, we propose to cluster histories based on the probability these histories induce
over histories of the other agents and over states. The critical advantage of this criterion,
which we call probabilistic equivalence (PE), is that the resulting clustering is lossless: the
solution for the clustered CBG can be used to construct the solution for the original CBG and
the values of the two CBGs are identical. Thus, the criterion allows for clustering of AOHs
in CBGs that represent Dec-POMDPs while preserving optimality.10

In Section 3.1, we describe how histories in Dec-POMDPs can be clustered using the
notions of probabilistic and best-response equivalence. This allows histories to be clustered

8. The name QBG stems from the fact that such a 1-step delayed communication scenario can be modeled
as a CBG. Note, however, that the CBGs used to compute QBG are of a different form than the B(b0,ϕt)
discussed in Section 2.1.2: in the latter, types correspond to length-t (action-) observation histories; in the
former, types correspond to length-1 observation histories.

9. While CBGs are not essential for clustering, they provide a convenient level of abstraction that simplifies
exposition of our techniques. Moreover, this level of abstraction makes it possible to employ our results
concerning CBGs outside the context of Dec-POMDPs.

10. The probabilistic equivalence criterion and lossless clustering were introduced by Oliehoek et al. (2009).
This article presents a new, simpler proof of the optimality of clustering based on PE.

464

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

when it is rational to always choose the same action. In Section 3.2, we describe the application
of these results to GMAA*. Section 3.3 introduces improved heuristic representations that
allow for the computation over longer horizons.

3.1 Lossless Clustering in Dec-POMDPs

In this section, we discuss lossless clustering based on the notion of probabilistic equivalence.
We show that this clustering is lossless by demonstrating that probabilistic equivalence implies
best response equivalence, which describes the conditions that a rational agent will select the
same action for two of its types. To prove this implication, we show that the best response
depends only on the multiagent belief (i.e., the probability distribution over states and policies
of the other agents), which is the same for two probabilistically equivalent histories. Relations
to other equivalence notions are discussed in Section 6.

3.1.1 Probabilistic Equivalence Criterion

We first introduce the probabilistic equivalence criterion, which can be used to decide whether
two individual histories ~θ a

i ,
~θ b
i can be clustered without loss in value.

Criterion 1 (Probabilistic Equivalence). Two AOHs ~θ a
i ,
~θ b
i for agent i are probabilistically

equivalent (PE), written PE(~θ a
i ,
~θ b
i), when the following holds:

∀~θ 6=i
∀s Pr(s,~θ 6=i|~θ

a
i) = Pr(s,~θ 6=i|~θ

b
i). (3.1)

These probabilities can be computed as the conditional of Pr(s,~θt|b0,ϕt), defined by (A.2).
In subsections 3.1.2–3.1.4, we formally prove that PE is a sufficient criterion to guarantee

that clustering is lossless. In the remainder of Section 3.1.1 we discuss some key properties of
the PE criterion in order to build intuition.

Note that the criterion can be decomposed into the following two criteria:

∀~θ 6=i
Pr(~θ 6=i|~θ

a
i) = Pr(~θ 6=i|~θ

b
i), (3.2)

∀~θ 6=i
∀s Pr(s|~θ 6=i,~θ

a
i) = Pr(s|~θ 6=i,~θ

b
i). (3.3)

These criteria give a natural interpretation: the first says that the probability distribution
over the other agents’ AOHs must be identical for both ~θ a

i and ~θ b
i . The second demands that

the resulting joint beliefs are identical.
The above probabilities are not well defined without the initial state distribution b0 and

past joint policy ϕt. However, since we consider clustering of histories within a particular CBG
(for some stage t) constructed for a particular b0,ϕt, they are implicitly specified. Therefore
we drop these arguments, clarifying the notation.

Example 4. In Example 3, the types (oHL,oHR) and (oHR,oHL) of each agent are PE. To see this, note
that the rows (columns for the second agent) for these histories are identical in both Fig. 4a and
Fig. 4b. Thus, they specify the same distribution over histories of the other agents (cf. equation (3.2))
and the induced joint beliefs are the same (cf. equation (3.3)).

Probabilistic equivalence has a convenient property that our algorithms exploit: if it holds
for a particular pair of histories, then it will also hold for all identical extensions of those
histories, i.e., it propagates forwards regardless of the policies of the other agents.

465

Oliehoek, Spaan, Amato, & Whiteson

Definition 7 (Identical extensions). Given two AOHs ~θ a,t
i ,~θ b,t

i , their respective extensions
~θ a,t+1
i = (~θ a,t

i ,ai,oi) and ~θ b,t+1
i = (~θ b,t

i ,a′i,o
′
i) are called identical extensions if and only if

ai = a′i and oi = o′i.

Lemma 1 (Propagation of PE). Given ~θ a,t
i ,~θ b,t

i that are PE, regardless of the decision rule
the other agents use (δt6=i), identical extensions are also PE:

∀ati∀ot+1
i
∀δt6=i
∀st+1∀~θt+1

6=i

Pr(st+1,~θ
t+1

6=i |
~θ a,t
i ,ati,o

t+1
i ,δt6=i) = Pr(st+1,~θ

t+1

6=i |
~θ b,t
i ,ati,o

t+1
i ,δt6=i) (3.4)

Proof. The proof is listed in the appendix, but holds intuitively because if the probabilities
described above were the same before, they will also be the same after taking the same action
and seeing the same observation.

Note that, while the probabilities defined in (3.1) superficially resemble beliefs used in
POMDPs, they are substantially different. In a POMDP, the single agent can compute its
individual belief using only its AOH. It can then use this belief to determine the value of
any future policy, as it is a sufficient statistic of the history to predict the future rewards
(Kaelbling et al., 1998; Bertsekas, 2005). Thus, it is trivial to show equivalence of AOHs
that induce the same individual belief in a POMDP. Unfortunately, Dec-POMDPs are more
problematic. The next section elaborates on this issue by discussing the relation to multiagent
beliefs.

3.1.2 Sub-Tree Policies, Multiagent Beliefs and Expected Future Value

To describe the relationship between multiagent beliefs and probabilistic equivalence, we
must first discuss the policies an agent may follow and their resulting values. We begin
by introducing the concept of sub-tree policies. As illustrated in Fig. 2 (on page 456), a
(deterministic) policy πi can be represented as a tree with nodes labeled using actions and
edges labeled using observations: the root node corresponds to the first action taken, other
nodes specify the action for the observation history encoded by the path from the root node.
As such, it is possible to define sub-tree policies, γi, which correspond to sub-trees of agent
i’s policy πi (also illustrated in Fig. 2). In particular, we write

πi
w�

~o t
i

= γτ=h−t
i (3.5)

for the sub-tree policy of πi corresponding to observation history ~o t
i that specifies the actions

for the last τ = h − t stages. We refer to
w� as the policy consumption operator, since it

‘consumes’ the part of the policy corresponding to ~o t
i . Similarly we write γτ=k

i

w�
~o l
i

= γτ=k−l
i

(note that in (3.5), πi is just a τ = h-steps-to-go sub-tree policy) and use similar notation,
γτ=k, for joint sub-tree policies. For a more extensive treatment of these different forms of
policy, we refer to the discussion by Oliehoek (2012).

Given these concepts, we can define the value of a τ = k-stages-to-go joint policy starting
from state s:

V (s,γτ=k) = R(s,a) +
∑

s′

∑

o

Pr(s′,o|s,a)V (s′,γτ=k
w�

o
). (3.6)

Here, a is the joint action specified by the roots of the individual sub-tree policies specified
by γτ=k for stage t = h− k.

466

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

From this definition, it follows directly that the probability distribution over states s and
sub-tree policies over other agents γ 6=i is sufficient to predict the value of a sub-tree policy γi.
In fact, such a distribution is known as a multiagent belief bi(s,γ 6=i) (Hansen, Bernstein, &
Zilberstein, 2004). Its value is given by

V (bi) = max
γi

∑

s

∑

γ 6=i

bi(s,γ 6=i)V (s,〈γi,γ 6=i〉), (3.7)

and we refer to the maximizing γi as agent i’s best response for bi. This illustrates that a
multiagent belief is a sufficient statistic: it contains sufficient information to predict the value
of any sub-tree policy γi.

It is possible to connect action observation histories to multiagent beliefs by fixing the
policies of the other agents. Given that the other agents will act according to a profile of
policies π 6=i, agent i has a multiagent belief at the first stage of the Dec-POMDP: bi(s,π 6=i) =
b0(s). Moreover, agent i can maintain such a multiagent belief during execution. As such,
given π 6=i, each history ~θi induces a multiagent belief, which we will write as bi(s,γ 6=i|~θi,π 6=i)

to make the dependence on ~θi,π 6=i explicit. The multiagent belief for a history is defined as

bi(s,γ 6=i|~θi,π 6=i) , Pr(s,γ 6=i|~θi, b
0,π 6=i), (3.8)

and induces a best response via (3.7):

BR(~θi|π 6=i) , argmax
γi

∑

s

∑

γ 6=i

bi(s,γ 6=i|~θi,π 6=i)V (s,γ 6=i,γi). (3.9)

From this we can conclude that two AOHs ~θ a
i ,
~θ b
i can be clustered together if they induce the

same multiagent belief.
However, this notion of multiagent belief is clearly quite different from the distributions

used in our notion of PE. In particular, to establish whether two AOHs induce the same
multiagent belief, we need a full specification of π 6=i. Nevertheless, we show that two AOHs
that are PE are also best response equivalent and that we can therefore cluster them. The
crux is that we can show that, if Criterion 1 is satisfied, the AOHs will always induce the
same multiagent beliefs for any π 6=i (consistent with the current past joint policy ϕ 6=i).

3.1.3 Best-Response Equivalence Allows Lossless Clustering of Histories

We can now relate probabilistic equivalence and the multiagent belief as follows.

Lemma 2 (PE implies multiagent belief equivalence). For any π 6=i, probabilistic equivalence
implies multiagent belief equivalence:

PE(~θ a
i ,
~θ b
i) ⇒ ∀s,γ6=i

(
bi(s,γ 6=i|~θ

a
i ,π 6=i) = bi(s,γ 6=i|~θ

b
i ,π 6=i)

)
(3.10)

Proof. See appendix.

This lemma shows that if two AOHs are PE, they produce the same multiagent belief.
Intuitively, this gives us a justification to cluster such AOHs together: since a multiagent
belief is a sufficient statistic we should act the same when we have the same multiagent belief,
but since Lemma 2 shows that ~θ a

i ,
~θ b
i induces the same multiagent beliefs for any π 6=i when

they are PE, we can conclude that we will always act the same in those histories. Formally,
we prove that ~θ a

i ,
~θ b
i are best-response equivalent if they are PE.

467

Oliehoek, Spaan, Amato, & Whiteson

Theorem 2 (PE implies best-response equivalence). Probabilistic equivalence implies best-
response equivalence. That is

PE(~θ a
i ,
~θ b
i) ⇒ ∀π 6=i

(
BR(~θ a

i |π 6=i) = BR(~θ b
i |π 6=i)

)

Proof. Assume any arbitrary π 6=i, then

BR(~θ a
i |π 6=i) = argmax

γi

∑

s

∑

γ 6=i

bi(s,γ 6=i|~θ
a
i)V (s,γ 6=i,γi)

= argmax
γi

∑

s

∑

γ 6=i

bi(s,γ 6=i|~θ
b
i)V (s,γ 6=i,γi) = BR(~θ b

i |π 6=i),

where Lemma 2 is employed to assert the equality of bi(·|~θ
a
i) and bi(·|~θ

b
i).

This theorem is key because it demonstrates that when two AOHs ~θ a
i ,
~θ b
i of an agent are

PE, then that agent need not discriminate between them now or in the future. Thus, when
searching the space of joint policies, we can restrict our search to those that assign the same
sub-tree policy γi to ~θ a

i and ~θ b
i . As such, it directly provides intuition as to why lossless

clustering is possible. Formally, we define the clustered joint policy space as follows.

Definition 8 (Clustered joint policy space). Let ΠC ⊆ Π be the subset of joint policies that
is clustered: i.e., each πi that is part of a π ∈ ΠC assigns the same sub-tree policy to action
observation histories that are probabilistically equivalent.

Corollary 1 (Existence of an optimal clustered joint policy). There exists an optimal joint
policy in the clustered joint policy space:

max
π∈ΠC

V (π) = max
π∈Π

V (π) (3.11)

Proof. It is clear that the left hand side of (3.11) is upper bounded by the right hand side,
since ΠC ⊆ Π. Now suppose that π∗ = argmaxπ∈Π V (π) has strictly higher value than the
best clustered joint policy. For at least one agent i and one pair of PE histories ~θ a

i ,
~θ b
i , π

∗ must
assign different sub-tree policies γai 6= γbi (otherwise π∗ would be clustered). Without loss of
generality we assume that there is only one such pair. It follows directly from Theorem 2 that
from this policy we can construct a clustered policy πC ∈ ΠC (by assigning either γai or γbi
to both ~θ a

i ,
~θ b
i) that is guaranteed to have value no less than π∗, thereby contradicting the

assumption that π∗ has strictly higher value than the best clustered joint policy.

This formally proves that we can restrict our search to ΠC , the space of clustered joint
policies, without sacrificing optimality.

3.1.4 Clustering with Commitment in CBGs

Though it is now clear that two AOHs that are PE can be clustered, making this result
operational requires an additional step. To this end, we use the abstraction layer provided
by Bayesian games. Recall that in the CBG for a stage, the AOHs correspond to types.

468

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Therefore, we want to cluster these types in the CBG. To accomplish the clustering of two
types θai ,θ

b
i , we introduce a new type θci to replace them, by defining:

∀θ 6=i
Pr(θci ,θ 6=i) , Pr(θai ,θ 6=i) + Pr(θbi ,θ 6=i) (3.12)

∀j∀a u(〈θci ,θ 6=i〉 ,a) ,
Pr(θai ,θ 6=i)u(〈θ

a
i ,θ 6=i〉 ,a) + Pr(θbi ,θ 6=i)u(

〈
θbi ,θ 6=i

〉
,a)

Pr(θai ,θ 6=i) + Pr(θbi ,θ 6=i)
. (3.13)

Theorem 3 (Reduction through commitment). Given that agent i in collaborative Bayesian
game B is committed to selecting a policy that assigns the same action for two of its types
θai ,θ

b
i , i.e., to selecting a policy βi such that βi(θ

a
i) = βi(θ

b
i), the CBG can be reduced without

loss in value for any agents. That is, the result is a new CBG B′ in which agent i employs a
policy β′

i that reflects the clustering and whose expected payoff is the same as in the original
CBG: V B′

(β′
i,β 6=i) = V B(βi,β 6=i).

Proof. See appendix.

This theorem shows that, given that agent i is committed to taking the same action for
its types θai ,θ

b
i , we can reduce the collaborative Bayesian game B to a smaller one B′ and

translate the joint CBG-policy β′ found for B′ back to a joint CBG-policy β in B. This does
not necessarily mean that β =

(
βi,β 6=i

)
is also a solution for B, because the best-response of

agent i against β 6=i may not select the same action for θai ,θ
b
i . Rather βi is the best-response

against β 6=i given that the same action needs to be taken for θai ,θ
b
i .
11

Even though Theorem 3 only gives a conditional statement that depends on an agent being
committed to select the same action for two of its types, the previous subsection discussed
when a rational agent can make such a commitment. Combining these results gives the
following corollary.

Corollary 2 (Lossless Clustering with PE). Probabilistically equivalent histories ~θ a
i ,
~θ b
i can

be clustered without loss in heuristic value by merging them into a single type in a CBG.

Proof. Theorem 3 shows that, given that an agent i is committed to take the same action
for two of its types, those types can be clustered without loss in value. Since ~θ a

i ,
~θ b
i are PE,

they are best-response equivalent, which means that the agent is committed to use the same
sub-tree policy γi and hence the same action ai. Therefore we can directly apply clustering
without loss in expected payoff, which in a CBG for a stage of a Dec-POMDP means no loss
in expected heuristic value as given by (2.7).

Intuitively, the maximizing action is the same for ~θ a
i and ~θ b

i regardless of what (future)
joint policies π 6=i the other agents will use and hence we can cluster them without loss in
heuristic value. Note that this does not depend on which heuristic is used and hence also
holds for an optimal heuristic (i.e., when using an optimal Q-value function that gives the
true value). This directly relates probabilistic equivalence with equivalence in optimal value.12

11. Although we focus on CBGs, these results generalize to BGs with individual payoff functions. Thus, they
could potentially be exploited by algorithms for general-payoff BGs. Developing methods that do so is an
interesting avenue for future work.

12. The proof originally provided by Oliehoek et al. (2009) is based on showing that histories that are PE will
induce identical Q-values.

469

Oliehoek, Spaan, Amato, & Whiteson

Algorithm 6 ClusterCBG(B)

Input: CBG B
Output: Losslessly clustered CBG B
1: for each agent i do
2: for each individual type θi ∈ B.Θi do

3: if Pr(θi) = 0 then

4: B.Θi ← B.Θi\θi {Prune θi from B:}
5: continue
6: end if

7: for each individual type θ′i ∈ B.Θi do

8: isProbabilisticallyEquivalent← true
9: for all 〈s,θ 6=i〉 do

10: if Pr(s,θ 6=i|θi) 6= Pr(s,θ 6=i|θ′i) then
11: isProbabilisticallyEquivalent← false
12: break
13: end if

14: end for

15: if isProbabilisticallyEquivalent then
16: B.Θi ← B.Θi\θ′i {Prune θ′i from B:}
17: for each a ∈A do

18: for all θ 6=i do

19: u(θi,θ 6=i,a)← min(u(θi,θ 6=i,a),u(θ
′
i,θ 6=i,a)) { take the lowest upper bound }

20: Pr(θi,θ 6=i)← Pr(θi,θ 6=i) + Pr(θ′i,θ 6=i)
21: Pr(θ′i,θ 6=i)← 0
22: end for

23: end for

24: end if

25: end for

26: end for

27: end for

28: return B

Note that this result establishes a sufficient, but not necessary condition for lossless clustering.
In particular, given policies for the other agents, many types are best-response equivalent and
can be clustered. However, as far as we know, the criterion must hold in order to guarantee
that two histories have the same best-response against any policy of the other agents.

3.2 GMAA* with Incremental Clustering

Knowing which individual histories can be clustered together without loss of value has the
potential to speed up many Dec-POMDP methods. In this article, we focus on its application
within the GMAA* framework.

Emery-Montemerlo et al. (2005) showed how clustering can be incorporated at every stage
in their algorithm: when the CBG for a stage t is constructed, a clustering of the individual
histories (types) is performed first and only afterwards is the (reduced) CBG solved. The same
approach can be employed within GMAA* by modifying the Expand procedure (Algorithm 5)
to cluster the CBG before calling GenerateAllChildrenForCBG.

Algorithm 6 shows the clustering algorithm. It takes as input a CBG and returns the
clustered CBG. It performs clustering by performing pairwise comparison of all types of each

470

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Algorithm 7 ConstructExtendedBG(B,βt−1, Q̂)

Input: A CBG B for stage t− 1, and the joint BG policy followed βt−1.
Input: An admissible heuristic of the form Q̂(~θ,a).
Output: CBG B′ for stage t.
1: B′ ← B {make a copy of B that we subsequently alter}
2: for each agent i do
3: B′.Θi = ConstructExtendedTypeSet(i) {overwrite the individual type sets}
4: end for

5: B′.Θ← ×i∈DΘi {the new joint type set (does not have to be explicitly stored)}
6: for each joint type θ = (θt−1,at−1,ot) ∈ B′.Θ do

7: for each state st ∈ S do

8: Compute Pr(st|θ) {from Pr(st−1|θt−1) via Bayes’ rule }
9: end for

10: Pr(θ)← Pr(ot|θt−1,at−1) Pr(θt−1)
11: for each a ∈A do

12: q ←∞
13: for each history ~θt represented by θ do

14: q ← min(q,Q̂(~θt,a)) { if Q∗ ≤ Q̂ we can take the lowest upper bound }
15: end for

16: B′.u(θ,a)← q
17: end for

18: end for

19: return B′

agent to see if they satisfy the criterion, yielding O(|Θi|
2) comparisons for each agent i. Each

comparison involves looping over all 〈s,θ 6=i〉 (line 9). If there are many states, some efficiency
could be gained by first checking (3.2) and then checking (3.3). Rather than taking the
average as in (3.13), on line 19 we take the lowest payoff, which can be done if we are using
upper bound heuristic values.

The following theorem demonstrates that, when incorporating clustering into GMAA*,
the resulting algorithm is still guaranteed to find an optimal solution.

Theorem 4. When using a heuristic of the form (2.9) and clustering the CBGs in GMAA*
using the PE criterion, the resulting search method is complete.

Proof. Applying clustering does not alter the computation of lower bound values. Also,
heuristic values computed for the expanded nodes are admissible and in fact unaltered as
guaranteed by Corollary 2. Therefore, the only difference with regular GMAA* is that the
class of considered joint policies is restricted to ΠC , the class of clustered joint policies: not
all possible child nodes are expanded, because clustering effectively prunes away policies that
would specify different actions for AOHs that are PE and thus clustered. However, Corollary 1
guarantees that there exists an optimal joint policy in this restricted class.

The modification of the Expand proposed above is rather naive. To construct B(b0,ϕt)
it must first construct all |Oi|

t possible AOHs for agent i (given the past policy ϕt
i). The

subsequent clustering involves pairwise comparison of all these exponentially many types.
Clearly, this is not tractable for later stages.

However, because PE of AOHs propagates forwards (i.e., identical extensions of PE histo-
ries are also PE), a more efficient approach is possible. Instead of clustering this exponentially

471

Oliehoek, Spaan, Amato, & Whiteson

Algorithm 8 Expand-IC(q,H). The expand operator for GMAA*-IC.

Input: q = 〈ϕt, v̂〉 the search node to expand.

Input: H the admissible heuristic that is of the form Q̂(~θ,a).
Output: QExpand the set containing expanded child nodes.

1: B(ϕt−1)← ϕt−1.CBG {retrieve previous CBG, note ϕt = (ϕt−1,βt−1)}

2: B(ϕt)← ConstructExtendedBG(B(ϕt−1),βt−1, Q̂)
3: B(ϕt)← ClusterBG(B(ϕt))
4: ϕt.CBG← B(ϕt) {store pointer to this CBG}
5: QExpand ← GenerateAllChildrenForCBG(B(ϕt))
6: return QExpand

growing set of types, we can simply extend the already clustered types of the previous stage’s
CBG, as shown in Algorithm 7. That is, given Θi, the set of types of agent i at the previous
stage t− 1, and βt−1

i the policy agent i took at that stage, the set of types at stage t, Θ′
i, can

be constructed as

Θ′
i =

{
θ′i = (θi,β

t−1
i (θi),o

t
i) | θi ∈ Θi,o

t
i ∈ Oi

}
. (3.14)

This means that the size of this newly constructed set is |Θ′
i| = |Θi| · |Oi| . If the type set Θi at

the previous stage t−1 was much smaller than the set of all histories |Θi| ≪ |Oi|
t−1, then the

new type set Θ′
i is also much smaller: |Θ′

i| ≪ |Oi|
t. In this way, we bootstrap the clustering

at each stage and spend significantly less time clustering. We refer to the algorithm that
implements this type of clustering as GMAA* with Incremental Clustering (GMAA*-IC).
This approach is possible only because we perform an exact, value-preserving clustering for
which Lemma 1 guarantees that identical extensions will also be clustered without loss in
value. When performing the same procedure in a lossy clustering scheme (e.g., as in Emery-
Montemerlo et al., 2005), errors might accumulate, and a better option might be to re-cluster
from scratch at every stage.

Expansion of a GMAA*-IC node takes exponential time with respect to both the number
of agents and types, as there are O(|A∗|

n|Θ∗|) joint CBG-policies and thus child nodes in the
GMAA*-IC search tree (A∗ is the largest action set and Θ∗ is the largest type set). Clustering
involves a pairwise comparison of all types of each agent and each of these comparisons needs
to check O(|Θ∗|

n−1 |S|) numbers for equality to verify (3.1). The total cost of clustering can
therefore be written as

O(n |Θ∗|
2 |Θ∗|

n−1 |S|),

which is only polynomial in the number of types. When clustering decreases the number of
types |Θ∗|, it can therefore significantly reduce the number of child nodes and thereby the
overall time needed. However, when no clustering is possible, some overhead will be incurred.

3.3 Improved Heuristic Representation

Since clustering can reduce the number of types, GMAA*-IC has the potential to scale to
larger horizons. However, doing so has important consequences for the computation of the
heuristics. Previous research has shown that the upper bound provided by QMDP is often
too loose for effective heuristic search (Oliehoek, Spaan, & Vlassis, 2008). However, the
space needed to store tighter heuristics such as QPOMDP or QBG grows exponentially with the
horizon. Recall from Section 2.2.2 (see Fig. 5) that there are two approaches to computing

472

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Algorithm 9 Compute Hybrid Q̂ with minimum size.

1: Qh−1 ← {R1, . . . ,R|A|} {vector representation of last stage}
2: z ← |A| × |S| {the size of the |A| vectors}
3: for t = h− 2 to 0 do

4: y ← |~Θt| × |A| {size of AOH representation}
5: if z < y then

6: V ← VectorBackup(Qt+1)
7: V ′ ← Prune(V)
8: Qt ← V ′

9: z ← |V ′| × |S|
10: end if

11: if z ≥ y then

12: Qt ← TreeBackup(Qt+1) {From now on z ≥ y}
13: end if

14: end for

QPOMDP or QBG. The first constructs a tree of all joint AOHs and their heuristic values, which
is simple to implement but requires storing a value for each (~θt,a)-pair, the number of which
grows exponentially with t. The second approach maintains a vector-based representation, as
is common for POMDPs. Though pruning can provide leverage, in the worst case, no pruning
is possible and the number of maintained vectors grows doubly exponentially with h− t, the
number of stages-to-go. Similarly, the initial belief and subsequently reachable beliefs can be
used to reduce the number of vectors retained at each stage, but as the number of reachable
beliefs is exponential in the horizon the exponential complexity remains.

t = 0

t = 1

t = 2

t = 3

Hybrid

Figure 6: An illustration of
the hybrid representation.

Oliehoek, Spaan, and Vlassis (2008) used a tree-based rep-
resentation for the QPOMDP and QBG heuristics. Since the
computational cost of solving the Dec-POMDP was the bot-
tleneck, the inefficiencies in the representation could be over-
looked. However, this approach is no longer feasible for the
longer horizons made possible by GMAA*-IC.

To mitigate this problem, we propose a hybrid represen-
tation for the heuristics, as illustrated in Fig. 6. The main
insight is that the exponential growth of the two existing rep-
resentations occurs in opposite directions. Therefore, we can
use the low space-complexity side of both representations: the
later stages, which have fewer vectors, use a vector-based rep-
resentation, while the earlier stages, which have fewer histo-
ries, use a history-based representation. This is similar to
the idea of utilizing reachable beliefs to reduce the size of the
vector representation described above but, rather than stor-
ing vectors for the appropriate AOHs at each step, only the
values are needed when using the tree-based representation.

Algorithm 9 shows how, under mild assumptions, a minimally-sized representation can be
computed. Starting from the last stage, the algorithm performs vector backups, switching to
tree backups when they become the smaller option. For the last time step h− 1, we represent

473

Oliehoek, Spaan, Amato, & Whiteson

Qt by the set of immediate reward vectors13, and variable z (initialized on line 2) keeps track
of the number of parameters needed to represent Qt as vectors for the time step at hand.
Note that z depends on how effective the vector pruning is, i.e., how large the parsimonious
representation of the piecewise linear and convex value function is. Since this is problem
dependent, z can be updated only after pruning has actually been performed (line 9). By
contrast y, the number of parameters in a tree representation, can be computed directly from
the Dec-POMDP (line 4). When z > y, the algorithm switches to tree backups.14

4. Incremental Expansion

The clustering technique presented in the previous section has the potential to significantly
speed up planning if much clustering is possible. However, if little clustering is possible, the
number of children in theGMAA* search tree will still grow super-exponentially. This section
presents incremental expansion, a complementary technique to deal with this problem.

Incremental expansion exploits recent improvements in effectively solving CBGs. First
note that during the expansion of the last stage t = h− 1 for a particular ϕh−1, we are only
interested in the best child (ϕh−1,δh−1,∗), which corresponds to the optimal solution of the
Bayesian game δh−1,∗ ↔ β∗. As such, for this last stage, we can use new methods for solving
CBGs (Kumar & Zilberstein, 2010b; Oliehoek, Spaan, Dibangoye, & Amato, 2010) that can
provide speedups of multiple orders of magnitude over brute force search (enumeration).15

Unfortunately, the improvements to GMAA* afforded by this approach are limited: in order
to guarantee optimality, it still relies on expansion of all (child nodes corresponding to all)
joint CBG-policies β for the intermediate stages, thus necessitating a brute-force approach.
However, many of the expanded child nodes may have low heuristic values V̂ and may therefore
never be selected for further expansion.

Incremental expansion overcomes this problem because it exploits the following key ob-
servation: if we can generate the children in decreasing heuristic order using an admissible
heuristic, we do not have to expand all the children. As before, an A* search is performed
over partially specified policies and each new CBG is constructed by extending the CBG for
the parent node. However, rather than fully expanding (i.e., enumerating all the CBG policies
of and thereby constructing all children for) each search node, we instantiate an incremental
CBG solver for the corresponding CBG. This incremental solver returns only one joint CBG
policy at a time, which is then used to construct a single child ϕt+1 = (ϕt,β). By revisiting
the nodes, only the promising child nodes are expanded incrementally.

Below, we describe GMAA*-ICE, an algorithm that combines GMAA*-IC with incre-
mental expansion. We establish theoretical guarantees and describe the modifications to
BaGaBaB, the CBG solver that GMAA*-ICE employs, that are necessary to deliver the
child nodes in decreasing order.

13. Only in exceptional cases where a short horizon is combined with large state and action spaces will repre-
senting the last time step as vectors not be minimal. In such cases, the algorithm can be trivially adapted.

14. This assumes that the vector representation will not shrink again for earlier stages. Although unlikely in
practice, such cases would prevent the algorithm from computing a minimal representation.

15. Kumar and Zilberstein (2010b) tackle a slightly different problem; they introduce a weighted constraint sat-
isfaction approach to solving the point-based backup in dynamic programming for Dec-POMDPs. However,
this point-based backup can be interpreted as a collection of CBGs (Oliehoek et al., 2010).

474

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

4.1 GMAA* with Incremental Clustering and Expansion

We begin by formalizing incremental expansion and incorporating it into GMAA*-IC, yield-
ing GMAA* with incremental clustering and expansion (GMAA*-ICE). At the core of
incremental expansion lies the following lemma:

Lemma 3. Given two joint CBG policies β,β′ for a CBG B(b0,ϕt), if V̂ (β) ≥ V̂ (β′), then
for the corresponding child nodes V̂ (ϕt+1) ≥ V̂ (ϕt+1′).

Proof. This holds directly by the definition of V̂ (ϕt) as given by (2.8):

V̂ (ϕt+1) = V 0...(t−1)(ϕt) + V̂ (β)

≥ V 0...(t−1)(ϕt) + V̂ (β′) = V̂ (ϕt+1′).

It follows directly that, if for B(b0,ϕt) we use a CBG solver that can generate a sequence
of policies β,β′, . . . such that

V̂ (β) ≥ V̂ (β′) ≥ . . .

then, for the sequence of corresponding children

V̂ (ϕt+1) ≥ V̂ (ϕt+1′) ≥

Exploiting this knowledge, we can expand only the first child ϕt+1 and compute its heuristic
value V̂ (ϕt+1) using (2.8). Since all the unexpanded siblings will have heuristic values less
than or equal to that, we can modify GMAA*-IC to reinsert the node q into the open list L
to act as a placeholder for all its non-expanded children.

Definition 9. A placeholder is a node for which at least one child has been expanded. A
placeholder has a heuristic value equal to its last expanded child.

Thus, after expansion of a search node q’s child, we update q.v̂, the heuristic value of the
node, to V̂ (ϕt+1), the value of the expanded child, i.e., we set q.v̂ ← V̂ (ϕt+1). As such, we
can reinsert q into L as a placeholder. As mentioned above, this is correct because all the
unexpanded siblings (for which the parent node q now is a placeholder) have heuristic values
lower than or equal to V̂ (ϕt+1). Therefore the next sibling q′ represented by the placeholder
is always expanded in time: q′ is always created before nodes with lower heuristic value are
selected for further expansion. We keep track of whether a node is a previously expanded
placeholder or not.

As before, GMAA*-ICE performs an A* search over partially specified policies. As in
GMAA*-IC, each new CBG is constructed by extending the CBG for the parent node and
then applying lossless clustering. However, rather than expanding all children, GMAA*-ICE
requests only the next solution β of an incremental CBG solver, from which a single child
ϕt+1 = (ϕt,β) is constructed. In principle GMAA*-ICE can use any CBG solver that is able
to incrementally deliver all β in descending order of V̂ (β). We propose a modification of the
BaGaBaB algorithm (Oliehoek et al., 2010), briefly discussed in Section 4.3.

Fig. 7 illustrates the process of incremental expansion in GMAA*-ICE, with ϕt indexed
by letters. First, a CBG solver for the root node 〈a, 7〉 is created, and the optimal solution β∗ is
computed, with value 6. This results in a child 〈b, 6〉, and the root is replaced by a placeholder
node 〈a, 6〉. As per Definition 5 (the node comparison operator), b appears before a in the

475

Oliehoek, Spaan, Amato, & Whiteson

t

t+ 1

t+ 2

ϕt

v̂

Legend:

a a a a

b b b d

c c

β∗

β∗

β′

〈a, 7〉

7

〈b, 6〉

6

6 6

〈a, 6〉

〈a, 6〉 〈c, 4〉
〈c, 4〉

4 4

4 4

〈b, 4〉
〈b, 4〉

〈d, 5.5〉

5.5

〈a, 5.5〉
〈ϕt, v̂〉
in open list

Root node

New B(a), V̂=6

New B(b), V̂=4

Next solution of
B(a), V̂=5.5

5.5

Figure 7: Illustration of incremental expansion, with the nodes in the open list at the bottom.
Past joint policies ϕt are indexed by letters. Placeholder nodes are indicated by dashes.

open list and hence is selected for expansion. Its best child 〈c, 4〉 is added and 〈b, 6〉 is replaced
by placeholder 〈b, 4〉. Now the search returns to the root node, and the second best solution β′

is obtained from the CBG solver, leading to child 〈d, 5.5〉. Placeholder nodes are retained as
long as they have unexpanded children; only their values are updated.

When using GMAA*-ICE, we can derive lower and upper bounds for the CBG solution,
which can be exploited by the incremental CBG solver. The incremental CBG solver for
B(ϕt) can be initialized with lower bound

vCBG = vGMAA − V 0...(t−1)(ϕt), (4.1)

where vGMAA is the value of the current best solution, and V 0...(t−1)(ϕt) is the true expected
value of ϕt over the first t stages. Therefore, vCBG is the minimum value that a candidate
must generate over the remaining h− t stages in order to beat the current best solution. Note
that each time the incremental CBG solver is queried for a solution, vCBG is re-evaluated
(using (4.1)), because vGMAA may have changed.

When the used heuristic faitfully represents the immediate reward (i.e., is of the form
(2.9)), then, for the last stage t = h− 1, we can also specify an upper bound for the solution
of the CBG

v̄CBG = V̂ (ϕh−1)− V 0...(h−2)(ϕh−1). (4.2)

If this upper bound is attained, no further solutions will be required from the CBG solver.
The upper bound holds since by (2.8)

V̂ (β) , V̂ (ϕh)− V 0...(h−2)(ϕh−1)

= V (ϕh)− V 0...(h−2)(ϕh−1)

≤ V̂ (ϕh−1)− V 0...(h−2)(ϕh−1).

In the first step, V̂ (ϕh) = V (ϕh), because ϕh is a fully specified policy and the heuristic value
given by (2.8) equals the actual value when a heuristic that faithfully represents the expected

476

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Algorithm 10 Expand-ICE(q,H). The expand operator for GMAA*-ICE.

Input: q = 〈ϕt, v̂〉 the search node to expand.

Input: H the admissible heuristic that is of the form Q̂(~θ,a).
Output: QExpand the set containing 0 or 1 expanded child nodes.
1: if IsPlaceholder(q) then

2: B(ϕt)← ϕt.CBG {reuse stored CBG}
3: else

4: B(ϕt−1)← ϕt−1.CBG {retrieve previous CBG, note ϕt = (ϕt−1,βt−1)}

5: B(ϕt)← ConstructExtendedBG(B(ϕt−1),βt−1, Q̂)
6: B(ϕt)← ClusterBG(B(ϕt))
7: B(ϕt).Solver← CreateSolver(B(ϕt))
8: ϕt.CBG← B(ϕt) {store pointer to this CBG}
9: end if

10: vCBG = vGMAA − V 0...(t−1)(ϕt) {set lower bound for CBG solution}
11: if t = h− 1 then

12: v̄CBG = V̂ (ϕh−1)− V 0...(h−2)(ϕh−1) {upper bound only used for last stage CBG}
13: else

14: v̄CBG = +∞
15: end if

16: 〈βt, V̂ (βt)〉 ← B(ϕt).Solver.NextSolution(vCBG,v̄CBG) {compute next CBG solution}
17: if βt then

18: ϕt+1 ← (ϕt,βt) {create partial joint policy}

19: V̂ (ϕt+1)← V 0...t−1(ϕt) + V̂ (βt) {compute heuristic value}

20: q′ ← 〈ϕt+1, V̂ (ϕt+1)〉 {create child node}
21: QExpand ← {q′}
22: else

23: QExpand ← ∅ {fully expanded: exists no solution s.t. V (βh−1) ≥ vCBG}
24: end if

25: return QExpand

Algorithm 11 PostProcessNode-ICE(q,L): Post processing of a node in GMAA*-ICE.

Input: q the last expanded node, L the open list.
Output: q is either removed or updated.
1: L.Pop(q)
2: if q is fully expanded or depth(q) = h− 1 then

3: Cleanup q {delete the node and the associated CBG and Solver}
4: return

5: else

6: c← last expanded child of q
7: q.v̂ ← c.v̂ {update heuristic value of parent node}
8: IsPlaceholder(q)← true {remember that q is a placeholder}
9: L.Insert(q) {reinsert at appropriate position}

10: end if

477

Oliehoek, Spaan, Amato, & Whiteson

immediate reward is used. This implies that V̂ (β) itself is a lower bound. In the second step
V (ϕh) ≤ V̂ (ϕh−1), because V̂ (ϕh−1) is admissible. Therefore, we can stop expanding when
we find a β with (lower bound) heuristic value equal to the upper bound v̄CBG. This applies
only to the last stage because only then the first step is valid.

GMAA*-ICE can be implemented by replacing the Expand and the PostProcessNode

procedures of Algorithms 8 and 4 by Algorithms 10 and 11, respectively. Expand-ICE first
determines if a placeholder is being used and either reuses the previously constructed incre-
mental CBG solver or constructs a new one. Then, new bounds are calculated and the next
CBG solution is obtained. Subsequently, only a single child node is generated (rather than
expanding all children as in Algorithm 13). PostProcessNode-ICE removes the last node
that was returned by Select only when all its children have been expanded. Otherwise, it
updates that node’s heuristic value and reinserts it in the open list. See Appendix A.2 for
GMAA*-ICE shown as a single algorithm.

4.2 Theoretical Guarantees

In this section, we prove thatGMAA*-IC andGMAA*-ICE are search-equivalent. As a direct
result we establish that GMAA*-ICE is complete, which means that integrating incremental
expansion preserves the optimality guarantees of GMAA*-IC.

Definition 10. We call two GMAA* variants search-equivalent if they select exactly the
same sequence of non-placeholder nodes corresponding to past joint policies to expand in the
search tree using the Select operator.

For GMAA*-IC and GMAA*-ICE we show that the set of selected nodes are the same.
However, the set of expanded nodes can be different; in fact, it is precisely these differences
that incremental expansion exploits.

Theorem 5. GMAA*-ICE and GMAA*-IC are search-equivalent.

Proof. Proof is listed in Section A.4 of the appendix.

Note that Theorem 5 does not imply that the computational and space requirements
of GMAA*-ICE and GMAA*-IC are identical. On the contrary, for each expansion,
GMAA*-ICE generates only one child node to be stored on the open list. In contrast,
GMAA*-IC generates a number of child nodes that is, in the worst case, doubly exponential
in the depth of the selected node.16 However, GMAA*-ICE is not guaranteed to be more
efficient than GMAA*-IC. For example, in the case where all child nodes still have to be
generated, GMAA*-ICE will be slower due to the overhead it incurs.

Corollary 3. When using a heuristic of the form (2.9) GMAA*-ICE is complete.

Proof. Under the stated conditions, GMAA*-IC is complete (see Theorem 4). Since
GMAA*-ICE is search equivalent to GMAA*-IC, it is also complete.

16. When a problem allows clustering, the number of child nodes grows less dramatically (see Section 3).

478

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

4.3 Incremental CBG Solvers

Implementing GMAA*-ICE requires a CBG solver that can incrementally deliver all β in
descending order of V̂ (β). To this end, we propose to modify the Bayesian game Branch and
Bound (BaGaBaB) algorithm (Oliehoek et al., 2010). BaGaBaB performs an A*-search
over (partially specified) CBG policies. Thus, when applied withinGMAA*-ICE, it performs
a second, nested A* search. To expand each node in the GMAA* search tree, a nested A*
search computes the next CBG solution.17 This section briefly summarizes the main ideas
behind BaGaBaB (for more information, see Oliehoek et al., 2010) and our modifications.

BaGaBaB works by creating a search tree in which the nodes correspond to partially
specified joint CBG policies. In particular, it represents a β as a joint action vector, a vector
〈β(θ1), . . . ,β(θ|Θ|)〉 of the joint actions that β specifies for each joint type. Each node g in the
BaGaBaB search tree represents a partially specified vector and thus a partially specified
joint CBG policy. For example, a completely unspecified vector 〈·, · , . . . ,·〉 corresponds to
the root node, while an internal node g at depth d (root being at depth 0) specifies joint
actions for the first d joint types g =

〈
β(θ1), . . . ,β(θd), · , · , . . . ,·

〉
. The value of a node V (g)

is the value of the best joint CBG-policy consistent with it. Since this value is not known in
advance, BaGaBaB performs an A* search guided by an optimistic heuristic.

In particular, we can compute an upper bound on the value achievable for any such
partially specified vector by computing the maximum value of the complete information joint
policy that is consistent with it (i.e., a non-admissible joint policy that selects the maximizing
joint actions for the remaining joint types). Since this value is a guaranteed upper bound on
the maximum value achievable by a consistent joint CBG policy, it is an admissible heuristic.

We propose a modification to BaGaBaB to allow solutions to be incrementally delivered.
The main idea is to retain the search tree after a first call of BaGaBaB on a particular CBG
B(ϕt) and update it during subsequent calls, thereby saving computational effort.

Standard A* search terminates when a single optimal solution has been found. This
behavior is the same when incremental BaGaBaB is called for the first time on a B(ϕt).
However, during standard A*, nodes whose upper bound is lower than the best known lower
bound can be safely deleted, as they will never lead to an optimal solution. In contrast, in
an incremental setting such nodes cannot be pruned, as they could possibly result in the k-th
best solution and therefore might need to be expanded during subsequent calls to BaGaBaB.
Only nodes returned as solutions are pruned in order to avoid returning the same solution
twice. This modification requires more memory but does not affect the A* search process
otherwise.

When asked it for the k-th solution, BaGaBaB resets its internal lower bound to the value
of the next-best solution that was previously found but not returned (or to vCBG as defined in
(4.1) if no such solution was found). Then it starts an A* search initialized using the search
tree resulting from the (k− 1)-th solution. In essence, this method is similar to searching for
the best k solutions, where k can be incremented on demand. Recently it was shown that, for
fixed k, such a modification preserves all the theoretical guarantees (soundness, completeness,

17. While GMAA*-ICE could also use any other incremental CGB solver, there are few that avoid enumerating
all β before providing the first result and thus have the potential to work incrementally. An exception may
be the method of Kumar and Zilberstein (2010b), which employs AND/OR branch and bound search with
the EDAC heuristic (and is thus limited to the two-agent case). As a heuristic search method, it may be
amenable to an incremental implementation though to our knowledge this has not been attempted.

479

Oliehoek, Spaan, Amato, & Whiteson

optimal efficiency) of the A* algorithm (Dechter, Flerova, & Marinescu, 2012), but the results
trivially transfer to the setting where k is allowed to increase.

5. Experiments

In this section, we empirically test and validate all the proposed techniques: lossless clustering
of joint histories, incremental expansion of search nodes, and hybrid heuristic representations.
After introducing the experimental setup, we compare the performance of GMAA*-IC and
GMAA*-ICE to that of GMAA* on a suite of benchmark problems from the literature.
Next, we compare the performance of the proposed methods with state-of-the-art optimal
and approximate Dec-POMDP methods, followed by a case study of the scaling behavior
with respect to the number of agents. Finally, we compare memory requirements of the
hybrid heuristic representation to those of the tree and vector representations.

5.1 Experimental Setup

The most well-known Dec-POMDP benchmarks are the Dec-Tiger (Nair et al., 2003) and
BroadcastChannel (Hansen et al., 2004) problems. Dec-Tiger was discussed extensively
in Section 2. In BroadcastChannel, two agents have to transmit messages over a commu-
nication channel, but when both agents transmit at the same time a collision occurs that is
noisily observed by the agents. The FireFighting problem models a team of n firefighters
that have to extinguish fires in a row of nh houses (Oliehoek, Spaan, & Vlassis, 2008). Each
agent can choose to move to any of the houses to fight fires at that location; if two agents are
in the same house, they will completely extinguish any fire there. The (negative) reward of
the team of firefighters depends on the intensity of the fire at each house; when all fires have
been extinguished, reward of zero is received. In the Hotel 1 problem (Spaan & Melo, 2008),
travel agents need to assign customers to hotels with limited capacity. They can also send a
customer to a resort but this yields lower reward. In addition, we also use the following prob-
lems: Recycling Robots (Amato, Bernstein, & Zilberstein, 2007), a scaled-down version of
the problem described in Section 2; GridSmall with two observations (Amato, Bernstein, &
Zilberstein, 2006) and Cooperative Box Pushing (Seuken & Zilberstein, 2007a), a larger
two-robot benchmark. Table 1 summarizes these problems numerically, listing the number of
joint policies for different planning horizons.

Experiments were run on an Intel Core i5 CPU running Linux, andGMAA*, GMAA*-IC,
and GMAA*-ICE were implemented in the same code-base using the MADP Toolbox (C++)
(Spaan & Oliehoek, 2008). The vector-based QBG representation is computed using a varia-
tion of Incremental Pruning (adapted for computing Q-functions instead of regular value func-
tions), corresponding to the NaiveIP method as described by Oliehoek and Spaan (2012).
To implement the pruning, we employ Cassandra’s POMDP-solve software (A. R. Cassandra,
1998).

For the results in Sections 5.2 and 5.3, we limited each process to 2Gb RAM and a
maximum CPU time of 3,600s. Reported CPU times are averaged over 10 independent runs
and have a resolution of 0.01s. Timings are given only for the MAA* search processes, since

480

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

problem primitives num. π for h

n |S| |Ai| |Oi| 2 4 6

Dec-Tiger 2 2 3 2 7.29e2 2.06e14 1.31e60

BroadcastChannel 2 4 2 2 6.40e1 1.07e9 8.51e37

GridSmall 2 16 5 2 1.563e4 9.313e20 1.175e88

Cooperative Box Pushing 2 100 4 5 1.68e7 6.96e187 1.96e4703

Recycling Robots 2 4 3 2 7.29e2 2.06e14 1.31e60

Hotel 1 2 16 3 4 5.90e4 1.29e81 3.48e1302

FireFighting 2 432 3 2 7.29e2 2.06e14 1.31e60

Table 1: Benchmark problem sizes and number of joint policies for different horizons.

computation of the heuristic is the same for both methods and can be amortized over multiple
runs.18 All problem definitions are available via http://masplan.org.

5.2 Comparing GMAA*, GMAA*-IC, and GMAA*-ICE

We compared GMAA*, GMAA*-IC, and GMAA*-ICE using the hybrid QBG representa-
tion. While all methods compute an optimal policy, we expectGMAA*-IC to be more efficient
than GMAA* when lossless clustering is possible. Furthermore, we expect GMAA*-ICE to
provide further improvements in terms of speedup and scaling to longer planning horizons.

The results are shown in Table 2. For all entries where we report results, the QBG heuristics
could be computed, thanks to the hybrid representation. Consequently, the performance of
GMAA*-IC is much better than all previously reported results, including those of Oliehoek
et al. (2009), who were often required to resort to QMDP for larger problems and/or horizons.
The entries marked by ‘§’ show the limits when using QMDP instead of QBG: in most of these
problems we can reach longer horizons with QBG. Only for FireFighting can GMAA*-ICE
with QMDP compute solutions for higher h than is possible with QBG (hence the missing “§”,
and showing that GMAA*-ICE is more efficient using a loose heuristic than GMAA*-IC).
Furthermore, the “†” entries indicate that the horizon to which we can solve a problem with
a tree-based QBG representation is often much shorter.

These results clearly illustrate that GMAA*-IC leads to a significant improvement in
performance. In all problems, GMAA*-IC was able to produce a solution more quickly and
to increase the largest solvable horizon over GMAA*. In some cases, GMAA*-IC is able to
drastically increase the solvable horizon.

Furthermore, the results clearly demonstrate that incremental expansion allows for sig-
nificant additional improvements. In fact, the table demonstrates that GMAA*-ICE signifi-
cantly outperforms GMAA*-IC, especially in problems where little clustering is possible.

The results in Table 2 also illustrate the efficacy of a hybrid representation. For problems
like GridSmall, Cooperative Box Pushing, FireFighting and Hotel 1 neither the
tree nor vector representation is able to provide a compact QBG heuristic for the longer hori-

18. The heuristics’ computation time ranges from less than a second to hours (for high h in some difficult
problems). Table 4 presents some heuristic computation time results.

481

Oliehoek, Spaan, Amato, & Whiteson

h V ∗ TGMAA*(s) TIC(s) TICE(s)

Dec-Tiger

2 −4.000000 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 5.190812 §≤ 0.01 ≤ 0.01 ≤ 0.01
4 4.802755 563.09 §0.27 ≤ 0.01
5 7.026451 − †21.03 §†0.02
6 10.381625 − 46.43
7 ∗

FireFighting 〈nh = 3,nf = 3〉

2 −4.383496 0.09 ≤ 0.01 ≤ 0.01
3 −5.736969 §3.05 §0.11 0.10
4 −6.578834 1001.53 †950.51 1.00
5 −7.069874 − − †4.40
6 −7.175591 0.08 0.07
7 # #

GridSmall

2 0.910000 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 1.550444 §0.90 §0.10 ≤ 0.01
4 2.241577 * †1.77 §†≤ 0.01
5 2.970496 − 0.02
6 3.717168 − 0.04
7 # #

Hotel 1

2 10.000000 §≤ 0.0 ≤ 0.01 ≤ 0.01
3 16.875000 * ≤ 0.01 ≤ 0.01
4 22.187500 §†≤ 0.01 §†≤ 0.01
5 27.187500 ≤ 0.01 ≤ 0.01
6 32.187500 ≤ 0.01 ≤ 0.01
7 37.187500 ≤ 0.01 ≤ 0.01
8 42.187500 ≤ 0.01 ≤ 0.01
9 47.187500 0.02 ≤ 0.01

10 # #

Cooperative Box Pushing

2 17.600000 §0.02 ≤ 0.01 ≤ 0.01
3 66.081000 ∗ §†0.11 †≤ 0.01
4 98.593613 ∗ §313.07
5 # #

h V ∗ TGMAA*(s) TIC(s) TICE(s)

Recycling Robots

2 7.000000 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 10.660125 §≤ 0.01 ≤ 0.01 ≤ 0.01
4 13.380000 713.41 ≤ 0.01 ≤ 0.01
5 16.486000 − †≤ 0.01 †≤ 0.01
6 19.554200 ≤ 0.01 ≤ 0.01

10 31.863889 ≤ 0.01 ≤ 0.01
15 47.248521 §≤ 0.01 ≤ 0.01
18 56.479290 ≤ 0.01 §≤ 0.01
20 62.633136 ≤ 0.01 ≤ 0.01
30 93.402367 0.08 0.05
40 124.171598 0.42 0.25
50 154.940828 2.02 1.27
60 185.710059 9.70 6.00
70 216.479290 − 28.66
80 − −

BroadcastChannel

2 2.000000 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 2.990000 ≤ 0.01 ≤ 0.01 ≤ 0.01
4 3.890000 §≤ 0.01 ≤ 0.01 ≤ 0.01
5 4.790000 1.27 ≤ 0.01 ≤ 0.01
6 5.690000 − ≤ 0.01 ≤ 0.01
7 6.590000 †≤ 0.01 †≤ 0.01

10 9.290000 ≤ 0.01 ≤ 0.01
20 18.313228 ≤ 0.01 ≤ 0.01
25 22.881523 ≤ 0.01 ≤ 0.01
30 27.421850 ≤ 0.01 ≤ 0.01
40 36.459724 ≤ 0.01 ≤ 0.01
50 45.501604 ≤ 0.01 ≤ 0.01
53 48.226420 §≤ 0.01 §≤ 0.01

100 90.760423 ≤ 0.01 ≤ 0.01
250 226.500545 0.06 0.07
500 452.738119 0.81 0.94
600 543.228071 11.63 13.84
700 633.724279 0.52 0.63
800 − −
900 814.709393 9.57 11.11

1000 − −

Table 2: Experimental results comparing regular GMAA*, GMAA*-IC, and GMAA*-ICE.
Listed are the computation times of GMAA* (TGMAA*), GMAA*-IC (TIC), and
GMAA*-ICE (TICE), using the hybrid QBG representation. We use the following symbols:
‘−’ memory limit violations, ‘∗’ time limit overruns, ‘#’ heuristic computation exceeded mem-
ory or time limits, ‘§’ maximum planning horizon using QMDP, ‘†’ maximum planning horizon
using tree-based QBG. Bold entries indicate that only the methods proposed in this article
have computed these results.

zons. Apart from Dec-Tiger and FireFighting, computing and storing QBG (or another
tight heuristic) for longer horizons is the bottleneck to further scalability.

Together, these algorithmic improvements lead to the first optimal solutions for many
problem horizons. In fact, for the vast majority of problems tested, we provide results for
longer horizons than any previous work (the bold entries). These improvements are quite sub-

482

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

h |BGh−1| |cBGt|

Dec-Tiger

2 4 1.0, 4.0
3 16 1.0, 4.0, 9.0
4 64 1.0, 4.0, 9.0, 23.14
5 256 1.0, 4.0, 9.0, 16.0, 40.43

FireFighting 〈nh = 3,nf = 3〉

2 4 1.0, 4.0
3 16 1.0, 4.0, 16.0
4 64 1.0, 4.0, 16.0, 64.0
5 256 1.0, 4.0, 16.0, 64.0, 256.0
6 1024 1.0, 1.0, 2.0, 3.0, 6.0, 10.0

GridSmall

2 4 1.0, 4.0
3 16 1.0, 4.0, 10.50
4 64 1.0, 4.0, 10.50, 20.0

Hotel 1

2 16 1.0, 4.0
3 256 1.0, 4.0, 16.0
4 4096 1.0, 4.0, 8.0, 16.0
5 65536 1.0, 4.0, 4.0, 8.0, 16.0
6 1.05e6 1.0, 4.0, . . . , 4.0, 8.0, 16.0
7 1.68e7 1.0, 4.0, . . . , 4.0, 8.0, 16.0
8 2.68e8 1.0, 4.0, . . . , 4.0, 8.0, 16.0
9 4.29e9 1.0, 4.0, . . . , 4.0, 8.0, 16.0

Cooperative Box Pushing

2 25 1.0, 4.0
3 625 1.0, 4.0, 25.0

h |BGh−1| |cBGt|

Recycling Robots

2 4 1.0, remaining stages ≤ 4.0
3 16 1.0, remaining stages ≤ 4.0
4 64 1.0, remaining stages ≤ 4.0
5 256 1.0, remaining stages ≤ 4.0

10 262144 1.0, remaining stages ≤ 4.0
15 2.68e8 1.0, remaining stages ≤ 4.0
18 1.72e10 1.0, remaining stages ≤ 4.0
20 2.75e11 1.0, remaining stages ≤ 4.0
30 2.88e17 1.0, remaining stages ≤ 4.0
40 1.0, remaining stages ≤ 4.0
50 1.0, remaining stages ≤ 4.0
60 1.0, remaining stages ≤ 4.0

BroadcastChannel

2 4 1.0 (for all t)
3 16 1.0 (for all t)
4 64 1.0 (for all t)
5 256 1.0 (for all t)
6 1024 1.0 (for all t)
7 4096 1.0 (for all t)

10 262144 1.0 (for all t)
20 2.75e11 1.0 (for all t)
25 2.81e14 1.0 (for all t)
30 2.88e17 1.0 (for all t)
40 1.0 (for all t)
50 1.0 (for all t)

100 1.0 (for all t)
900 1.0 (for all t)

Table 3: Experimental results detailing the effectiveness of clustering. Listed are the size of
the CBGs for t = h− 1 without clustering (|BGh−1|), and the average CBG size for all stages
with clustering (|cBGt|).

stantial, especially given that lengthening the horizon by one increases the problem difficulty
exponentially (cf. Table 1).

5.2.1 Analysis of Clustering Histories

Table 3 provides additional details about the performance of GMAA*-IC, by listing the
number of joint types in the GMAA*-IC search, |cBGt|, for each stage t. These are averages
since the algorithm forms CBGs for different past policies, leading to clusterings of different
sizes.19 To see the impact of clustering, the table also lists |BGh−1|, the number of joint types
in the CBGs constructed for the last stage without clustering, which is constant.

In Dec-Tiger, the time needed by GMAA*-IC is more than 3 orders of magnitude less
than that of GMAA* for horizon h = 4. For h = 5, this test problem has 3.82e29 joint
policies, and no other method has been able to optimally solve it. GMAA*-IC, however,
is able to do so in reasonable time. In Dec-Tiger, there are clear symmetries between the

19. Note that in some problem domains we report smaller clusterings than Oliehoek et al. (2009). Due to an
implementation mistake, their clustering was overly conservative, and did not in all cases treat two histories
as probabilistically equivalent, when in fact they were.

483

Oliehoek, Spaan, Amato, & Whiteson

observations that allow for clustering, as demonstrated by Fig. 4. Another key property is
that opening the door resets the problem, which may also facilitate clustering.

In FireFighting, for short planning horizons no lossless clustering is possible at any
stage, and as such, the clustering incurs some overhead. However, GMAA*-IC is still faster
than GMAA* because constructing the BGs using bootstrapping from the previous CBG
takes less time than constructing a CBG from scratch. Interesting counterintuitive results
occur for h = 6, which was solved within memory limits, in contrast to h = 5. In fact, using
QMDP we could compute optimal values V ∗ for h > 6, and it turns out that these are equal
to that for h = 6. The reason is that the optimal joint policy is guaranteed to extinguish all
fires in 6 stages. For subsequent stages, all the rewards will be 0. While this itself does not
influence clustering, the further analysis of Table 3 reveals that the CBG instances encountered
during the h = 6 search happen to cluster much better than those in h = 5, which is possible
because the heuristics vary with the horizon. In fact, π∗ for h = 6 sends both agents to the
middle house at t = 0, while for h = 5, agents are dispatched to different houses. When both
agents fight fires at the same house, the fire is extinguished completely, and resulting joint
observations do not provide any new information. As a result, different joint types lead to the
same joint belief, which means they can be clustered. If agents visit different houses, their
observations do convey information, leading to different possible joint beliefs (which cannot
be clustered).

Hotel 1 allows for a large amount of clustering, and GMAA*-IC outperforms GMAA*
by a large margin, with the former reaching h = 9 and the latter h = 2. This problem
is transition and observation independent (Becker, Zilberstein, Lesser, & Goldman, 2003;
Nair, Varakantham, Tambe, & Yokoo, 2005; Varakantham, Marecki, Yabu, Tambe, & Yokoo,
2007), which facilitates clustering, as we further discuss in Section 5.5. Unlike methods
specifically designed to exploit transition and observation independence, GMAA*-IC exploits
this structure without requiring a predefined explicit representation of it. Further scalability
is limited by the computation of the heuristic.

For BroadcastChannel, GMAA*-IC achieves an even more dramatic increase in per-
formance, allowing the solution of up to horizon h = 900. Analysis reveals that the CBGs
constructed for all stages are fully clustered: they contain only one type for each agent. The
reason is as follows. When constructing a CBG for t = 1, there is only one joint type for the
previous CBG so, given β0, the solution for the previous CBG, there is no uncertainty with
respect to the previous joint action a0. The crucial property of BroadcastChannel is that
the (joint) observation reveals nothing about the new state, but only about what joint action
was taken (e.g., ‘collision’ if both agents chose to ‘send’). As a result, the different individual
histories can be clustered. In a CBG constructed for stage t = 2, there is again only one joint
type in the previous game. Therefore, given the past policy, the actions of the other agents
can be perfectly predicted. Again the observation conveys no information so this process re-
peats. Thus, the problem has a special property which could be described as non-observable
given the past joint policy. GMAA*-IC automatically exploits this property. Consequently,
the time needed to solve each CBG does not grow with the horizon. The solution time, how-
ever, still increases super-linearly because of the increased amount of backtracking. As in
FireFighting, performance is not monotonic in the planning horizon. In this case however,
clustering is clearly not responsible for the difference. Rather, the only explanation is that
for certain horizons, there are many near-optimal joint policies, leading to more backtracking
and a higher search cost.

484

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

0 1 2 3 4
10

0

10
5

10
10

t
N

od
es

 a
t d

ep
th

 t

Dec−Tiger, h=6 − Full Exp.
Dec−Tiger, h=6 − Inc. Exp.
GridSmall, h=6 − Full Exp.
GridSmall, h=6 − Inc. Exp.
FireFighting, h=5 − Full Exp.
FireFighting, h=5 − Inc. Exp.

Figure 8: Number of expanded partial joint policies ϕt for intermediate stages t = 0, . . . ,h−2
(in log scale).

5.2.2 Analysis of Incremental Expansion

In Dec-Tiger for h = 5, GMAA*-ICE achieves a speedup of three orders of magnitude and
can compute a solution for h = 6, unlike GMAA*-IC. For GridSmall, it achieves a large
speedup for h = 4 and fast solutions for h = 5 and 6, where GMAA*-IC runs out of mem-
ory. Similar positive results are obtained for FireFighting, Cooperative Box Pushing
and Recycling Robots. In fact, when using QMDP, GMAA*-ICE is able to compute
solutions well beyond h = 1000 for the FireFighting problem, which stands in stark con-
trast to GMAA*-IC that only computes solutions to h = 3 with this heuristic. Note that
BroadcastChannel is the only problem for which GMAA*-IC is (slightly) faster than
GMAA*-ICE. Because this problem exhibits clustering to a single joint type, the overhead
of incremental expansion does not pay off.

To further analyze incremental expansion, we examined its impact on the number of nodes
expanded for intermediate stages t = 0, . . . ,h−2. Fig. 8 shows the number of nodes expanded
in GMAA*-ICE and the number that would be expanded for GMAA*-IC (which can be
easily computed since they are search-tree equivalent). There is a clear relationship between
the results from Fig. 8 and Table 2, illustrating, e.g., why GMAA*-IC runs out of memory on
GridSmall h = 6. The plots confirm our hypothesis that, in practice, only a small number
of child nodes are queried.

5.2.3 Analysis of Hybrid Heuristic Representation

Fig. 9 illustrates the memory requirements in terms of number of parameters (i.e., real num-
bers) for the tree, vector, and hybrid representations for QBG, where the latter is computed
following Algorithm 9. Results for the vector representation are omitted when those represen-
tations grew beyond limits. The effectiveness of the vector pruning depends on the problem
and the complexity of the value function, which can increase suddenly, as for instance hap-
pens in Fig. 9c. These results show that, for several benchmark Dec-POMDPs, the hybrid
representation allows for significant savings in memory, allowing the computation of tight
heuristics for longer horizons.

485

Oliehoek, Spaan, Amato, & Whiteson

h MILP DP-LPC DP-IPG GMAA — QBG

IC ICE heur

BroadcastChannel, ICE solvable to h = 900
2 0.38 ≤ 0.01 0.09 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 1.83 0.50 56.66 ≤ 0.01 ≤ 0.01 ≤ 0.01
4 34.06 ∗ * ≤ 0.01 ≤ 0.01 ≤ 0.01
5 48.94 ≤ 0.01 ≤ 0.01 ≤ 0.01

Dec-Tiger, ICE solvable to h = 6
2 0.69 0.05 0.32 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 23.99 60.73 55.46 ≤ 0.01 ≤ 0.01 ≤ 0.01
4 ∗ − 2286.38 0.27 ≤ 0.01 0.03
5 − 21.03 0.02 0.09

FireFighting (2 agents, 3 houses, 3 firelevels), ICE solvable to h ≫ 1000
2 4.45 8.13 10.34 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 − − 569.27 0.11 0.10 0.07
4 − 950.51 1.00 0.65

GridSmall, ICE solvable to h = 6
2 6.64 11.58 0.18 0.01 ≤ 0.01 ≤ 0.01
3 ∗ − 4.09 0.10 ≤ 0.01 0.42
4 77.44 1.77 ≤ 0.01 67.39

Recycling Robots, ICE solvable to h = 70
2 1.18 0.05 0.30 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 * 2.79 1.07 ≤ 0.01 ≤ 0.01 ≤ 0.01
4 2136.16 42.02 ≤ 0.01 ≤ 0.01 0.02
5 − 1812.15 ≤ 0.01 ≤ 0.01 0.02

Hotel 1, ICE solvable to h = 9
2 1.92 6.14 0.22 ≤ 0.01 ≤ 0.01 0.03
3 315.16 2913.42 0.54 ≤ 0.01 ≤ 0.01 1.51
4 − − 0.73 ≤ 0.01 ≤ 0.01 3.74
5 1.11 ≤ 0.01 ≤ 0.01 4.54
9 8.43 0.02 ≤ 0.01 20.26
10 17.40 # #
15 283.76

Cooperative Box Pushing (QPOMDP), ICE solvable to h = 4
2 3.56 15.51 1.07 ≤ 0.01 ≤ 0.01 ≤ 0.01
3 2534.08 − 6.43 0.91 0.02 0.15
4 − 1138.61 * 328.97 0.63

Table 4: Comparison of runtimes with other methods. Total time of the GMAA* methods
is given by taking the time from the method column (‘IC’ or ‘ICE’) and adding the heuristic
computation time (‘heur’). We use the following symbols: ‘−’ memory limit violations, ‘*’
time limit overruns, ‘#’ heuristic computation exceeded memory or time limits.

486

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

1 2 3 4 5 6
10

0

10
5

10
10

Horizon

M
em

or
y

re
qu

ire
d

Tree
Vector
Hybrid

(a) Dec-Tiger.

1 2 3 4 5 6
10

0

10
5

10
10

Horizon

M
em

or
y

re
qu

ire
d

Tree
Vector
Hybrid

(b) FireFighting.

1 2 3 4 5 6 7 8 9
10

0

10
10

10
20

Horizon

M
em

or
y

re
qu

ire
d

Tree
Vector
Hybrid

(c) Hotel 1.

1 2 3 4 5 6 7 8 9 10
10

0

10
5

10
10

10
15

Horizon

M
em

or
y

re
qu

ire
d

Tree
Vector
Hybrid

(d) Recycling Robots.

1 2 3 4 5 6 7 8 9 10
10

0

10
5

10
10

10
15

Horizon

M
em

or
y

re
qu

ire
d

Tree
Vector
Hybrid

(e) BroadcastChannel.

1 2 3 4 5 6
10

0

10
5

10
10

10
15

Horizon

M
em

or
y

re
qu

ire
d

Tree
Vector
Hybrid

(f) GridSmall.

Figure 9: Hybrid heuristic representation. The y-axis shows number of real numbers stored
for different representations of QBG for several benchmark problems (in log scale).

5.3 Comparing to Other Methods

In this section, we compare GMAA*-IC and GMAA*-ICE to other methods from the lit-
erature. We begin by comparing the runtimes of our methods against the following state-of-
the-art optimal Dec-POMDP methods: MILP20 (Aras & Dutech, 2010) converts the Dec-
POMDP to a mixed integer linear program, for which numerous solvers are available. We
have used MOSEK version 6.0. DP-LPC21 (Boularias & Chaib-draa, 2008) performs dy-
namic programming with lossless policy compression, with CPLEX 12.4 as the LP solver.
DP-IPG (Amato et al., 2009) performs exact dynamic programing with incremental policy

20. The results reported here deviate from those reported by Aras and Dutech (2010). For a number of
problems, Aras et al. employed a solution method that solves the MILP as a series (a tree) of smaller
MILPs by branching on the continuous realization weight variables for earlier stages. That is, for each past
joint policy ϕt for some stage t, they solve a different MILP involving the subset of consistent sequences.
Additionally, for FireFighting and GridSmall, we use the benchmark versions standard to the literature
(Oliehoek, Spaan, & Vlassis, 2008; Amato et al., 2006), whereas Aras and Dutech (2010) use non-standard
versions. This explains the difference between our results and the ones reported in their article (personal
communication, Raghav Aras).

21. The goal of Boularias and Chaib-draa (2008) was to find non-dominated joint policies for all initial beliefs.
The previously reported results concerned run-time to compute the non-dominated joint policies, without
performing pruning on the full-length joint policies. In contrast, we report the time needed to compute the
actual optimal Dec-POMDP policy (given b0). This additionally requires the final round of pruning and
subsequently computing the value for each of the remaining joint policies for the initial belief. This addi-
tional overhead explains the differences in run time between what we report here and what was previously
reported (personal communication, Abdeslam Boularias).

487

Oliehoek, Spaan, Amato, & Whiteson

Problem h m VMBDP V ∗

Dec-Tiger 6 7 9.91 10.38
Cooperative Box Pushing 3 3 53.04 66.08
GridSmall 5 3 2.32 2.97

Table 5: Comparison of optimal (V ∗) and approximate (VMBDP) values.

generation that exploits known start state and knowledge about what states are reachable in
doing the DP backup.

Table 4, which shows the results of the comparison, demonstrates that, in almost all cases,
the total time of GMAA*-ICE (given by the sum of heuristic computation time and the time
for the GMAA*-phase) is significantly less than that of any other state-of-the-art methods.
Moreover, as demonstrated in Table 2, GMAA*-ICE can compute solutions for longer hori-
zons for all these problems, except for Cooperative Box Pushing and Hotel 1.22 For
these problems, it is not possible to compute QBG for longer horizons. Overcoming this
problem could enable GMAA*-ICE to scale to further horizons as well.

The DP-LPC algorithm proposed by Boularias and Chaib-draa (2008) also improves the
efficiency of optimal solutions by a form of compression. The performance of their algorithm,
however, is weaker than that of GMAA*-IC. There are two main explanations for the perfor-
mance difference. First, DP-LPC uses compression to more compactly represent the values
for sets of useful sub-tree policies, by using sequence form representation. The policies them-
selves, however, are not compressed: they still specify actions for every possible observation
history (for each policy it needs to select an exponential amount of sequences that make up
that policy). Hence, it cannot compute solutions for long horizons. Second, GMAA*-IC can
exploit knowledge of the initial state distribution b0.

Overall, GMAA*-ICE substantially improves the state-of-the-art in optimally solving
Dec-POMDPs. Previous methods typically improved the feasible solution horizon by just
one (or only provided speed-ups for horizons that could already be solved). By contrast,
GMAA*-ICE dramatically extends the feasible solution horizon for many problems.

We also consider MBDP-based approaches, the leading family of approximate algorithms.
Table 5, which reports the VMBDP values produced by PBIP-IPG (Amato et al., 2009) (with
typical ‘maxTrees’ parameter settingm), demonstrates that the optimal solutions produced by
GMAA*-IC or GMAA*-ICE are of higher quality. PBIP-IPG was chosen because all other
MBDP algorithms with the same parameters achieve at most the same value. While not
exhaustive, this comparison illustrates that even the best approximate Dec-POMDP methods
in practice provide inferior joint policies on some problems. Conducting such analysis is
possible only if optimal solutions can be computed. Clearly, the more data that becomes
available, the more thorough the comparisons that can be made. Therefore, scalable optimal
solution methods such as GMAA*-ICE are critical for improving these analyses.

488

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

problem primitives num. π for h

n |S| |A| |O| 2 4 6

2 27 4 4 64 1.07e9 8.50e37

3 81 8 8 512 3.51e13 7.84e56

4 243 16 16 4.09e3 1.15e18 7.23e75

5 729 32 32 3.27e4 3.77e22 6.67e94

6 2187 64 64 2.62e5 9.80e55 6.15e113

Table 6: FireFightingGraph: the number of joint policies for different numbers of agents
and horizons, with 3 possible fire levels.

5.4 Scaling to More Agents

All of the benchmark problems in our results presented so far were limited to two agents. Here,
we present a case study on FireFightingGraph (Oliehoek, Spaan, Whiteson, & Vlassis,
2008), a variation of FireFighting allowing for more agents, in which each agent can only
fight fires at two houses, instead of at all of them. Table 6 highlights the size of these
problems, including the total number of joint policies for different horizons. We compared
GMAA*, GMAA*-IC, GMAA*-ICE (all using a QMDP heuristic), BruteForceSearch,
and DP-IPG, with a maximum run-time of 12 hours and running on an Intel Core i7 CPU,
averaged over 10 runs. BruteForceSearch is a simple optimal algorithm that enumerates
and evaluates all joint policies, and was implemented in the same codebase as the GMAA*
variations. DP-IPG results use the original implementation and were run on an Intel Xeon
computer. Hence, while the timing results are not directly comparable, the overall trends are
apparent. Also, since the DP-IPG implementation is limited to 2 agents, no results are shown
for more agents.

Fig. 10 shows the computation times for FireFightingGraph across different numbers of
of agents and planning horizons, while Table 7 lists the optimal values obtained. As expected,
the baseline BruteForceSearch performs very poorly, only scaling beyond h = 2 for 2
agents, while DP-IPG can only reach h = 4. On the other hand, regular GMAA* performs
relatively well, scaling to a maximum of 5 agents. However, GMAA*-IC and GMAA*-ICE
improve the efficiency of GMAA* by 1–2 orders of magnitude. As such, they substantially
outperform the other three methods, and scale up to 6 agents. The benefit of incremental ex-
pansion is clear for n = 3,4, whereGMAA*-ICE can reach a higher horizon thanGMAA*-IC.
Hence, although this article focuses on scalability in the horizon, these results show that the
methods we propose can also improve scalability in the number of agents.

5.5 Discussion

Overall, the empirical results demonstrate that incremental clustering and expansion offers
dramatic performance gains on a diverse set of problems. In addition, the results on Broad-

22. In Hotel 1, DP-IPG performs particularly well because the problem structure has limited reachability.
That is, each agent can fully observe its local state (but not that of the other agent) and in all local states
except one there is one action that dominates all others. As a result, DP-IPG can generate a small number
of possibly optimal policies.

489

Oliehoek, Spaan, Amato, & Whiteson

23456
2

3
4

5
6

7
8

9
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

h

#agents

co
m

pu
ta

tio
n

tim
e

(s
)

(a) GMAA* results.

23456
2

3
4

5
6

7
8

9
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

h

#agents

co
m

pu
ta

tio
n

tim
e

(s
)

(b) GMAA*-IC results.

23456
2

3
4

5
6

7
8

9
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

h

#agents

co
m

pu
ta

tio
n

tim
e

(s
)

(c) GMAA*-ICE results.

23456
2

3
4

5
6

7
8

9
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

h

#agents

co
m

pu
ta

tio
n

tim
e

(s
)

(d) BruteForceSearch results.

23456
2

3
4

5
6

7
8

9
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

h

#agents

co
m

pu
ta

tio
n

tim
e

(s
)

(e) DP-IPG results.

Figure 10: Comparison of GMAA*, GMAA*-IC, GMAA*-ICE, BruteForceSearch,
and DP-IPG on the FireFightingGraph problem. Shown are computation time (in log
scale) for various number of agents and horizons. Missing bars indicate that the method
exceeded time or memory limits. However, the DP-IPG implementation only supports 2
agents.

h n = 2 n = 3 n = 4 n = 5 n = 6

2 −4.394252 −5.213685 −6.027319 −6.846752 −7.666185
3 −5.806354 −6.654551 −7.391423
4 −6.626555 −7.472568 −8.000277
5 −7.093975
≥ 6 −7.196444

Table 7: Value V ∗ of optimal solutions to the FireFightingGraph problem, for different
horizons and numbers of agents.

castChannel illustrate a key advantage of our approach: when a problem possesses a prop-
erty that makes a large amount of clustering possible, our clustering method exploits this
property automatically, without requiring a predefined explicit representation of it.

490

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Of course, not all problems admit great reductions via clustering. One domain property
that allows for clustering is when the past joint policy encountered duringGMAA* makes the
observations superfluous, as with BroadcastChannel and FireFighting. In Dec-Tiger,
we see that certain symmetries can lead to clustering. However clustering can occur even
without these properties. In fact, for all problems and nearly all horizons that we tested, the
size of the CBGs can be reduced. Moreover, in accordance with the analysis of Section 3.2,
the improvements in planning efficiency are huge, even for modest reductions in CBG size.

One class of problems where we can say something a priori about the amount of clustering
that is possible is the class of Dec-POMDPs with transition and observation independence
(Becker et al., 2003). In such problems, the agents have local states and the transitions are
independent, which for two agents can be expressed as

Pr(s′1, s
′
2|s1, s2, a1, a2) = Pr(s′1|s1, a1) Pr(s

′
2|s2, a2). (5.1)

Similarly, the observations are assumed to be independent, which means that for each agent
the observation probability depends only on its own action and local state: Pr(oi|ai, s

′
i). For

such problems, the probabilistic equivalence criterion (3.1) factors too. In particular, due to
transition and observation independence23, (3.2) holds true for any ~θ a

i ,
~θ b
i . Moreover, (3.3)

factors as the product Pr(s1, s2|~θ1, ~θ2) = Pr(s1|~θ1) Pr(s2|~θ2) and thus holds if Pr(s1|~θ
a
1) =

Pr(s1|~θ
b
1). That is, two histories can be clustered if they induce the same ‘local belief’. As

such, the size of the CBGs directly corresponds to the product of the number of reachable local
beliefs. Since the transition and observation independent Hotel 1 problem is also locally
fully observable, and the local state spaces consist of four states, there are only four possible
local beliefs (which is consistent with the CBG size of 16 from Table 3). Moreover, we see
that this maximum size is typically only reached at the end of search. This is because good
policies defer sending customers to the hotel and thus do not visit local states where the hotel
is filled in the earlier stages.

In more general classes of problems, even other weakly coupled models (e.g., Becker,
Zilberstein, & Lesser, 2004; Witwicki & Durfee, 2010), the criterion (3.1) does not factor,
and hence there is no direct correspondence to the number of local beliefs. As such, only
by applying our clustering algorithm can we determine how well such a problem clusters.
This is analogous to, e.g., state aggregation in MDPs (e.g., discussed in Givan, Dean, &
Greig, 2003) where it is not known how to predict a priori how large a minimized model will
be. Fortunately, our empirical results demonstrate that, in domains that admit little or no
clustering, the overhead is small.

As expected, incremental expansion is most helpful for problems which do not allow for
much clustering. However, the results for, e.g., Dec-Tiger illustrate that there is a limit to
the amount of scaling that the method can currently provide. The bottleneck is the solution
of the large CBGs for the later stages: the CBG solver has to solve these large CBGs when
returning the first solution in order to guarantee optimality, but this takes takes a long time.
We expect that further improvements to CBG solvers can directly add to the efficacy of
incremental expansion.

Our experiments also clearly demonstrate that the Dec-POMDP complexity results, while
important, are only worst-case results. In fact, the scalability demonstrated in our experiments
clearly show that in many problems we successfully scale dramatically beyond what would be

23. This assumes no ‘external’ state variable s0.

491

Oliehoek, Spaan, Amato, & Whiteson

expected for a doubly-exponential dependence on the horizon. Even for the smallest problems,
a doubly-exponential scaling in the horizon implies that it is impossible to compute solutions
beyond h = 4 at all, as indicated by the following simple calculation: let n = 2, |Ai| = 2
actions, |Oi| = 2| observations, then

|Ai|
(n∗(|Oi|

5))/|Ai|
(n∗(|Oi|

4)) = 4.2950e9.

Thus, even in the simplest possible case, we see an increase of a factor 4.2950e09 from h = 4
to h = 5. Similarly, the next increment, from h = 5 to h = 6, increases the size of the search
space by a factor 1.8447e19. However, our experiments clearly indicate that in almost all
cases, things are not so dire. That is, even though matters look bleak in the light of the
complexity results, we are in many cases able to perform substantially better than this worst
case.

6. Related Work

In this section, we discuss a number of methods that are related to those proposed in this
article. Some of these methods have already been discussed in earlier sections. In Section 3, we
indicated that our clustering method is closely related to the approach of Emery-Montemerlo
et al. (2005) but is also fundamentally different because our method is lossless. In Section 5.3,
we discussed connections to the approach of Boularias and Chaib-draa (2008) which clusters
policy values. This contrasts with our approach which clusters the histories and thus the
policies themselves, leading to greater scalability.

In Section 3.1.2, we discussed the relationship between our notion of probabilistic equiva-
lence (PE) and the multiagent belief. However, there is yet another notion of belief, employed
in the JESP solution method (Nair et al., 2003), that is superficially more similar to the PE
distribution. A ‘JESP belief’ for an AOH ~θi is a probability distribution Pr(s,~o6=i|

~θi, b
0,π 6=i)

over states and observation histories of other agents given a (deterministic) full policy of all
the other agents. It is a sufficient statistic, since it induces a multiagent belief, thus it also
allows for the clustering of histories. The crucial difference with, and the utility of, PE lies in
the fact that the PE criterion is specified over states and AOHs given only a past joint policy.
That is, (3.1) does not induce a multiagent belief.

Our clustering approach also resembles a number of methods that employ other equivalence
notions. First, several approaches exploit the notion of behavioral equivalence (Pynadath &
Marsella, 2007; Zeng et al., 2011; Zeng & Doshi, 2012). They consider, from the perspective
of a protagonist agent i, the possible models of another agent j. Since j affects i only through
its actions, i.e., its behavior, agent i can cluster together all the models of agent j that lead
to the same policy πj for that agent. That is, it can cluster all models of agent j that are
behaviorally equivalent. In contrast, we do not cluster models of other agents j, but histories
of this agent i if all the other agents, as well as the environment, are guaranteed to behave the
same in expectation, thus leading to the same best response of agent i. That is, our method
could be seen as clustering histories that are ‘expected environmental behavior equivalent’.

The notion of utility equivalence (Pynadath & Marsella, 2007; Zeng et al., 2011) is closer to
PE because it also takes into account the (value of the) best-response of agent i (in particular,
it clusters two models mj and m′

j if using BR(mj)—the best response against mj— achieves
the same value against m′

j). However, it remains a form of behavior equivalence in that it
clusters models of other agents, not histories of the protagonist agent.

492

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

There are also connections between PE and work on influence-based abstraction (Becker et
al., 2003; Witwicki & Durfee, 2010; Witwicki, 2011; Oliehoek et al., 2012), since the influence
(or point in parameter space, Becker et al., 2003) is a compact representation of the other
agents’ policies. Models of the other agents can be clustered if they lead to the same influence
on agent i. However, though more fine-grained, this is ultimately still a form of behavioral
equivalence.

A final relation to our equivalence notion is the work by Dekel, Fudenberg, and Morris
(2006), which constructs a distance measure and topology on the space of types with the
goal of approximating the infinite universal type space (the space of all possible beliefs about
beliefs about beliefs, etc.) for one-shot Bayesian games. Our setting, however, considers a
simple finite type space where the types directly correspond to the private histories (in the
form of AOHs) in a sequential problem. Thus, we do not need to approximate the universal
type space; instead we want to know which histories lead to the same future dynamics from
the perspective of an agent. Dekel et al.’s topology does not address this question.

Our incremental expansion technique is related to approaches extending A∗ to deal with
large branching factors in the context of multiple sequence alignment (Ikeda & Imai, 1999;
Yoshizumi, Miura, & Ishida, 2000). However, our approach is different because we do not
discard unpromising nodes but rather provide a mechanism to generate only the necessary
ones. Also, when proposing MAA*, Szer et al. (2005) developed a superficially similar ap-
proach that could be applied only to the last stage. In particular, they proposed generating
the child nodes one by one, each time checking if a child is found with value equal to its
parent’s heuristic value. Since the value of such a child specifies a full policy, its value is
a lower bound and therefore expansion of any remaining child nodes can be skipped. Un-
fortunately, a number of issues prevent this approach from providing substantial leverage in
practice. First, it cannot be applied to intermediate stages 0 ≤ t < h−1 since no lower bound
values for the expanded children are available. Second, in many problems it is unlikely that
such a child node exists. Third, even if it does, Szer et al. did not specify an efficient way of
finding it. Incremental expansion overcomes all of these issues, yielding an approach that, as
our experiments demonstrate, significantly increases the size of the Dec-POMDPs that can
be solved optimally.

This article focuses on optimal solutions for Dec-POMDPs over a finite horizon. As part
of our evaluation, we compare against the MILP approach (Aras & Dutech, 2010), DP-
ILP (Boularias & Chaib-draa, 2008) and DP-IPG (Amato et al., 2009), an extension of the
exact dynamic programming algorithm (Hansen et al., 2004). Research on finite-horizon Dec-
POMDPs has considered many other approaches such as bounded approximations (Amato,
Carlin, & Zilberstein, 2007), locally optimal solutions (Nair et al., 2003; Varakantham, Nair,
Tambe, & Yokoo, 2006) and approximate methods without guarantees (Seuken & Zilberstein,
2007b, 2007a; Carlin & Zilberstein, 2008; Eker & Akın, 2010; Oliehoek, Kooi, & Vlassis, 2008;
Dibangoye et al., 2009; Kumar & Zilberstein, 2010b; Wu et al., 2010a; Wu, Zilberstein, &
Chen, 2010b).

In particular, much research has considered the optimal and/or approximate solution of
subclasses of Dec-POMDPs. One such subclass contains only Dec-POMDPs in which the
agents have local states that other agents cannot influence. The resulting models, such as the
TOI-Dec-MDP (Becker et al., 2003; Dibangoye, Amato, Doniec, & Charpillet, 2013) and ND-
POMDP (Nair et al., 2005; Varakantham et al., 2007; Marecki, Gupta, Varakantham, Tambe,
& Yokoo, 2008; Kumar & Zilberstein, 2009), can be interpreted as independent (PO)MDPs for

493

Oliehoek, Spaan, Amato, & Whiteson

each agent that are coupled through the reward function (and possibly an unaffectable state
feature). On the other hand, event-driven interaction models (Becker et al., 2004) consider
agents that have individual rewards but can influence each other’s transitions.

More recently, models that allow for limited transition and reward dependence have been
introduced. Examples are interaction-driven Markov games (Spaan & Melo, 2008), Dec-
MDPs with sparse interactions (Melo & Veloso, 2011), distributed POMDPs with coordina-
tion locales (Varakantham et al., 2009; Velagapudi et al., 2011), event-driven interactions with
complex rewards (EDI-CR) (Mostafa & Lesser, 2011), and transition decoupled Dec-POMDPs
(Witwicki & Durfee, 2010; Witwicki, 2011). While the methods developed for these models of-
ten exhibit better scaling behavior than methods for standard Dec-(PO)MDPs, they typically
are not suitable when agents have extended interactions, e.g., to collaborate in transporting
an item. Also, there have been specialized models that consider the timing of actions whose
ordering is already determined (Marecki & Tambe, 2007; Beynier & Mouaddib, 2011).

Another body of work addresses infinite-horizon problems (Amato, Bernstein, & Zilber-
stein, 2010; Amato, Bonet, & Zilberstein, 2010; Bernstein, Amato, Hansen, & Zilberstein,
2009; Kumar & Zilberstein, 2010a; Pajarinen & Peltonen, 2011), in which it is not possible to
represent a policy as a tree. These approaches represent policies using finite-state controllers
that are then optimized in various ways. Also, since the infinite-horizon case is undecidable
(Bernstein et al., 2002), the approaches are approximate or optimal given a particular con-
troller size. While there exists a boundedly optimal approach that can theoretically construct
a controller within any ǫ of optimal, it is only feasible for very small problems or a large ǫ
(Bernstein et al., 2009).

There has also been great interest in Dec-POMDPs that explicitly take into account com-
munication. Some approaches try to optimize the meaning of communication actions without
semantics (Xuan, Lesser, & Zilberstein, 2001; Goldman & Zilberstein, 2003; Spaan, Gordon,
& Vlassis, 2006; Goldman, Allen, & Zilberstein, 2007) while others use fixed semantics (e.g.,
broadcasting the local observations) (Ooi & Wornell, 1996; Pynadath & Tambe, 2002; Nair et
al., 2004; Roth et al., 2005; Oliehoek, Spaan, & Vlassis, 2007; Roth, Simmons, & Veloso, 2007;
Spaan, Oliehoek, & Vlassis, 2008; Goldman & Zilberstein, 2008; Becker, Carlin, Lesser, & Zil-
berstein, 2009; Williamson, Gerding, & Jennings, 2009; Wu et al., 2011). Since models used
in the first category (e.g., the Dec-POMDP-Com) can be converted to normal Dec-POMDPs
(Seuken & Zilberstein, 2008), the contributions of this article are applicable to those settings.

Finally, there are numerous models closely related to Dec-POMDPs, such as POSGs
(Hansen et al., 2004), interactive POMDPs (I-POMDPs) (Gmytrasiewicz & Doshi, 2005),
and their graphical counterparts (Doshi, Zeng, & Chen, 2008). These models are more gen-
eral in the sense that they consider self-interested settings where each agent has an individual
reward function. I-POMDPs are conjectured to also require doubly exponential time (Seuken
& Zilberstein, 2008). However, for the I-POMDP there have been a number of recent advances
(Doshi & Gmytrasiewicz, 2009). The current paper makes a clear link between best-response
equivalence of histories and the notion of best-response equivalence of beliefs in I-POMDPs.
In particular, this article demonstrates that two PE action-observation histories (AOHs) in-
duce, given only a past joint policy, a distribution over states and AOHs of other agents, and
therefore will induce the same multiagent belief for any future policies of other agents. These
induced multiagent beliefs, in turn, can be interpreted as special cases of I-POMDP beliefs
where the model of the other agents are sub-intentional models in the form of a fixed policy
tree. Rabinovich and Rosenschein (2005) introduced a method that, rather than optimizing

494

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

the expected value of a joint policy, selects coordinated actions under uncertainty by tracking
the dynamics of an environment. This approach, however, requires a model of the ideal system
dynamics as input and in many problems, such as those considered in this article, identifying
such dynamics is difficult.

7. Future Work

Several avenues for future work are made possible by the research presented in this article.
Perhaps the most promising is the development of new approximate Dec-POMDP algorithms.
While this article focused on optimal methods, GMAA*-ICE can also be seen as a frame-
work for approximate methods. Such methods could be derived by limiting the amount of
backtracking, employing approximate CBG solvers (Emery-Montemerlo, Gordon, Schneider,
& Thrun, 2004; Kumar & Zilberstein, 2010b; Wu et al., 2010a), integrating GMAA* meth-
ods for factored Dec-POMDPs (Oliehoek, Spaan, Whiteson, & Vlassis, 2008; Oliehoek, 2010;
Oliehoek et al., 2013), performing lossy clustering (Emery-Montemerlo, 2005; Wu et al., 2011)
or using bounded approximations for the heuristics. In particular, it seems promising to com-
bine approximate clustering with approximate factored GMAA* methods.

Lossy clustering could be achieved by generalizing the probabilistic equivalence criterion,
which is currently so strict that little or no clustering may be possible in many problems. An
obvious approach is to cluster histories for which the distributions over states and histories of
other agents are merely similar, as measured by, e.g., Kullback-Leibler divergence. Alternately,
histories could be clustered if they induce the same individual belief over states:

Pr(s|~θi) =
∑

~θ 6=i

Pr(s,~θ 6=i|~θi). (7.1)

While individual beliefs are not sufficient statistics for history, we hypothesize that they
constitute effective metrics for approximate clustering. Since the individual belief simply
marginalizes out the other agents’ histories from the probabilities used in the probabilistic
equivalence criterion, it is an intuitive heuristic metric for approximate clustering.

While this article focuses on increasing scalability with respect to the horizon, developing
techniques to deal with larger number of agents is an important direction of future work. We
plan to further explore performing GMAA* using factored representations (Oliehoek, Spaan,
Whiteson, & Vlassis, 2008). In that previous work, we could only exploit the factorization at
the last stage, since earlier stages required full expansions to guarantee optimality. However,
for such larger problems, the number of joint BG policies (i.e., number of child nodes) is
directly very large (earlier stages are more tightly coupled); therefore incremental expansion
is crucial to improving the scalability of optimal solution methods with respect to the number
of agents.

Another avenue for future work is to further generalize GMAA*-ICE. In particular, it
may be possible to flatten the two nested A∗ searches into a single A∗ search. Doing so
could lead to significant savings as it would obviate the need to solve an entire CBG before
expanding the next one. In our work, we employed the plain A∗ algorithm as a basis, but a
promising direction of future work is to investigate what A∗ enhancements from the literature
(Edelkamp & Schrödl, 2012) can benefit GMAA* most. In particular, as we described in
our experiments, different past joint policies can lead to CBGs of different sizes. One idea

495

Oliehoek, Spaan, Amato, & Whiteson

is to first expand parts of the search tree that lead to small CBGs, by biasing the selection
operator (but not the pruning operator, so as to maintain optimality).

Yet another important direction for future work is the development of tighter heuristics.
Though few researchers are addressing this topic, the results presented in this article under-
score how important such heuristics are for solving larger problems. Currently, the heuristic
is the bottleneck in four out of the seven problems we considered. Moreover, two of the
problems where this is not the bottleneck can already be solved for long (h > 50) horizons.
Therefore, we believe that computing tight heuristics for longer horizons is the single most
important research direction for further improving the scalability of optimal Dec-POMDP
solution methods with respect to the horizon.

A different direction is to employ our theoretical results on clustering beyond the Dec-
POMDP setting to develop new solution methods for CBGs. For instance, a well-known
method for computing a local optimum is alternating maximization (AM): starting from an
arbitrary joint policy, compute a best response for some agent given that other agents keep
their policies fixed and then select another agent’s policy to improve, etc. One idea is to start
with a ‘completely clustered’ CBG, where all agents’ types are clustered together and thus
a random joint CBG policy has a simple form: each agent just selects a single action. Only
when improving the policy of an agent do we consider all its actual possible types to compute
its best response. Subsequently, we cluster together all types for which that agent selects the
same action and proceed to the next agent. In addition, since our clustering results are not
restricted to the collaborative setting, it may also be possible to employ them, using a similar
approach, to develop new solution methods for general-payoff BGs.

Finally, two of our other contributions can have a significant impact beyond the problem of
optimally solving Dec-POMDPs. First, the idea of incrementally expanding nodes introduced
in GMAA*-ICE can be applied in other A∗ search methods. Incremental expansion is most
useful when children can be generated in order of decreasing heuristic value without prohibitive
computational effort, and in problems with a large branching factor such as multiple sequence
alignment problems in computational biology (Carrillo & Lipman, 1988; Ikeda & Imai, 1999).
Second, representing PWLC value functions as a hybrid of a tree and a set of vectors can have
wider impact as well, e.g., in online search for POMDPs (Ross, Pineau, Paquet, & Chaib-draa,
2008).

8. Conclusions

This article presented a set of methods that advance the state-of-the-art in optimal solution
methods for Dec-POMDPs. In particular, we presented several advances that aim to extend
the horizon over which optimal solutions can be found. These advances build off the GMAA*
heuristic search approach and include lossless incremental clustering of the CBGs solved by
GMAA*, incremental expansion of nodes in the GMAA* search tree, and hybrid heuristic
representations. We provided theoretical guarantees that, when a suitable heuristic is used,
both incremental clustering and incremental expansion yield algorithms that are both com-
plete and search equivalent. Finally, we presented extensive empirical results demonstrating
that GMAA*-ICE can optimally solve Dec-POMDPs of unprecedented size. We significanty
increase the planning horizons that can be tackled—in some cases by more than an order of
magnitude. Given that an increase of the horizon by one results in an exponentially larger
search space, this constitutes a very large improvement. Moreover, our techniques also im-

496

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

prove scalability with respect to the number of agents, leading to the first ever solutions of
general Dec-POMDPs with more than three agents. These results also demonstrated how
optimal techniques can yield new insights about particular Dec-POMDPs, as incremental
clustering revealed properties of BroadcastChannel that make it much easier to solve. In
addition to facilitating optimal solutions, we hope these advances will inspire new principled
approximation methods, as incremental clustering has already done (Wu et al., 2011), and
enable them to be meaningfully benchmarked.

Acknowledgments

We thank Raghav Aras and Abdeslam Boularias for making their code available to us. Re-
search supported in part by AFOSR MURI project #FA9550-09-1-0538 and in part by NWO
CATCH project #640.005.003. M.S. is funded by the FP7 Marie Curie Actions Individual
Fellowship #275217 (FP7-PEOPLE-2010-IEF).

Appendix A. Appendix

A.1 Auxiliary algorithms

Algorithm 12 implements the BestJointPolicyAndValue function, which prunes all child
nodes that are not fully specified. Algorithm 13 generates all children of a particular CBG.

Algorithm 12 BestJointPolicyAndValue(QExpand): Prune fully expanded nodes from a set
of nodes QExpand returning only the best one and its value.

Input: QExpand a set of nodes for fully specified joint policies.
Output: the best full joint policy in the input set and its value.
1: v∗ = −∞
2: for q ∈ QExpand do

3: QExpand.Remove(q)
4: 〈π, v̂〉 ← q
5: if v > v∗ then

6: v∗ ← v
7: π∗ ← π

8: end if

9: end for

10: return 〈π∗, v∗〉

A.2 Detailed GMAA*-ICE algorithm

The complete GMAA*-ICE algorithm is shown in Algorithm 14.

A.3 Computation of V 0...t−1(ϕt)

The quantity V 0...t−1(ϕt) is defined recursively via:

V 0...t−1(ϕt) = V 0...t−2(ϕt−1) +E
st−1,~θt−1 [R(st−1,δt−1(~θt−1)) | b0,ϕt]. (A.1)

497

Oliehoek, Spaan, Amato, & Whiteson

Algorithm 13 GenerateAllChildrenForCBG(B(ϕt)).

Input: CBG B(ϕt).
Output: QExpand the set containing all expanded child nodes for this CBG.
1: QExpand ← {}
2: for all joint CBG policies β for B do

3: V̂ (β)←
∑

θ
Pr(θ)u(θ,β(θ))

4: ϕt+1 ← (ϕt,βt) {create partial joint policy}

5: V̂ (ϕt+1)← V 0...t−1(ϕt) + V̂ (βt) {compute heuristic value}

6: q′ ← 〈ϕt+1, V̂ (ϕt+1)〉 {create child node}
7: QExpand.Insert(q

′)
8: end for

9: return QExpand

The expectation is taken with respect to the joint probability distribution over states and
joint AOHs that is induced by ϕt:

Pr(st,~θt|b0,ϕt) =
∑

st−1∈S

Pr(ot|at−1,st) Pr(st|st−1,at−1) Pr(at−1|ϕt,~θt−1) Pr(st−1,~θt−1|b0,ϕt).

(A.2)
Here, ~θt = (~θt−1,at−1,ot) and Pr(at−1|ϕt,~θt−1) is the probability that ϕt specifies at−1 for
AOH ~θt−1 (which is 0 or 1 in case of deterministic past joint policy ϕt).

A.4 Proofs

Proof of Theorem 1

Substituting (2.9) in (2.7) yields

V̂ (β) = V̂ (δt) =
∑

~θt

Pr(~θt|b0,ϕt)Q̂(~θt,δt(~θt))

=
∑

~θt

Pr(~θt|b0,ϕt)
(
Est [R(st,δt(~θt)) | ~θt] +E~θt+1 [V̂ (~θt+1) | ~θt, δt(~θt)]

)

= E
st,~θt [R(st,δt(~θt) | b0,ϕt] +E~θt+1 [V̂ (~θt+1) | b0,ϕt, δt]

≥ E
st,~θt [R(st,δt(~θt) | b0,ϕt] +E~θt+1 [Qπ∗(~θt+1,π∗(~θt+1)) | b0,ϕt+1 = (ϕt, δt)]

= E
st,~θt [R(st,δt(~θt) | b0,ϕt] +H∗,t+1...h−1(ϕt+1),

where H∗ is an optimal admissible heuristic. Substituting this into (2.8) we obtain

V̂ (ϕt+1 = (ϕt, δt)) = V 0...t−1(ϕt) +Est,~θt [R(st,δt(~θt) | b0,ϕt] +E~θt+1 [V̂ (~θt+1) | b0,ϕt, δt]

≥ V 0...t−1(ϕt) +Est,~θt [R(st,δt(~θt)) | b0,ϕt+1] +H∗,t+1...h−1(ϕt+1)

{via (A.1)} = V 0...t(ϕt+1) +H∗,t+1...h−1(ϕt+1),

which demonstrates that the heuristic value V̂ (ϕt) used by GMAA* via CBGs using heuristic
of a form (2.9) is admissible, as it is lower bounded by the actual value for the first t plus
an admissible heuristic. Since it performs heuristic search with this admissible heuristic, this
algorithm is also complete.

498

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Algorithm 14 GMAA*-ICE

1: vGMAA ← −∞
2: ϕ0 ← ()
3: v̂ ← +∞
4: q0 ← 〈ϕ0, v̂〉
5: LIE ← {q0}
6: repeat

7: q ← Select(LIE) {q = 〈ϕt, v̂〉}
8: LIE.pop(q)
9: if IsPlaceholder(q) then

10: B(ϕt)← ϕt.CBG {reuse stored CBG}
11: else

12: {Construct extended BG and solver:}
13: B(ϕt−1)← ϕt−1.CBG {note ϕt = (ϕt−1,βt−1)}
14: B(ϕt)← ConstructExtendedBG(B(ϕt−1),βt−1)
15: B(ϕt)← ClusterBG(B(ϕt))
16: B(ϕt).Solver← CreateSolver(B(ϕt))
17: ϕt.CBG← B(ϕt)
18: end if

19: {Expand a single child:}
20: vCBG = vGMAA − V 0...(t−1)(ϕt)
21: v̄CBG = +∞
22: if last stage t = h− 1 then

23: v̄CBG = V̂ (ϕh−1)− V 0...(h−2)(ϕh−1)
24: end if

25: 〈βt, V̂ (βt)〉 ← B(ϕt).Solver.NextSolution(vCBG,v̄CBG)
26: if not βt then

27: {fully expanded: no solution s.t. V (βh−1) ≥ vCBG}
28: delete q (and its CBG + solver)
29: continue {(i.e. goto line 8)}
30: end if

31: ϕt+1 ← (ϕt,βt)

32: V̂ (ϕt+1)← V 0...t−1(ϕt) + V̂ (βt)
33: if last stage t = h− 1 then

34: {Note that π = ϕt+1, V (π) = V̂ (ϕt+1) }
35: if V (π) > vGMAA then

36: vGMAA ← V (π) {found new lower bound}
37: π⋆ ← π

38: LIE.prune(vGMAA)
39: end if

40: delete q (and its CBG + solver)
41: else

42: q′ ← 〈ϕt+1, V̂ (ϕt+1)〉
43: LIE.insert(q′)

44: q ← 〈ϕt, V̂ (ϕt+1)〉 { Update parent node q, which now is a placeholder }
45: LIE.insert(q)
46: end if

47: until LIE is empty

499

Oliehoek, Spaan, Amato, & Whiteson

Proof of Lemma 1

Proof. Assume an arbitrary ati,o
t+1
i , δt6=i,s

t+1 and ~θ
t+1

6=i = (~θ
t

6=i,a
t
6=i,o

t+1
6=i)). We have that

Pr(st+1,~θ
t+1

6=i ,o
t+1
i |

~θ a,t
i ,ati,δ

t
6=i)

=
∑

st

Pr(ot+1
i ,ot+1

6=i |a
t
i,a

t
6=i,s

t+1) Pr(st+1|st,ati,a
t
6=i) Pr(a

t
6=i|~θ

t

6=i,δ
t
6=i) Pr(s

t,~θ
t

6=i|
~θ a,t
i)

=
∑

st

Pr(ot+1
i ,ot+1

6=i |a
t
i,a

t
6=i,s

t+1) Pr(st+1|st,ati,a
t
6=i) Pr(a

t
6=i|~θ

t

6=i,δ
t
6=i) Pr(s

t,~θ
t

6=i|
~θ b,t
i)

= Pr(st+1,~θ
t+1

6=i ,o
t+1
i |

~θ b,t
i ,ati,δ

t
6=i)

Because we assumed an arbitrary st+1,~θ
t+1

6=i ,o
t+1
i , we have that

∀
st+1,~θ

t+1

6=i ,ot+1
i

Pr(st+1,~θ
t+1

6=i ,o
t+1
i |

~θ a,t
i ,ati,δ

t
6=i) = Pr(st+1,~θ

t+1

6=i ,o
t+1
i |

~θ b,t
i ,ati,δ

t
6=i) (A.3)

In general we have that

Pr(st+1,~θ
t+1

6=i |
~θ t
i ,a

t
i,o

t+1
i ,δt6=i) =

Pr(st+1,~θ
t+1

6=i ,o
t+1
i |

~θ t
i ,a

t
i,δ

t
6=i)

Pr(ot+1
i |

~θ t
i ,a

t
i,δ

t
6=i)

=
Pr(st+1,~θ

t+1

6=i ,o
t+1
i |

~θ t
i ,a

t
i,δ

t
6=i)

∑
st+1,~θ

t+1

6=i

Pr(st+1,~θ
t+1

6=i ,o
t+1
i |

~θ t
i ,a

t
i,δ

t
6=i)

Now, because of (A.3), both the numerator and denominator are the same when substituting
~θ a,t
i ,~θ b,t

i in this equation. Consequently, we can conclude that

Pr(st+1,~θ
t+1

6=i |
~θ a,t
i ,ati,o

t+1
i ,δt6=i) = Pr(st+1,~θ

t+1

6=i |
~θ b,t
i ,ati,o

t+1
i ,δt6=i)

Finally, because ati, o
t+1
i , δt6=i,s

t+1, and ~θ
t+1

6=i were all arbitrarily chosen, we can conclude that
(3.4) holds.

Proof of Lemma 2

Proof. Assume an arbitrary π 6=i,s and γ 6=i, then we have

bi(s,γ 6=i|~θ
a
i ,π 6=i) , Pr(s,γ 6=i|~θ

a
i ,π 6=i,b

0)

=
∑

~θ 6=i

Pr(s,γ 6=i,~θ 6=i|~θ
a
i ,π 6=i,b

0)

{factoring the joint distribution} =
∑

~θ 6=i

Pr(s,~θ 6=i|~θ
a
i ,π 6=i,b

0) Pr(γ 6=i|s,~θ 6=i, ~θ
a
i ,π 6=i,b

0)

500

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

{γ 6=i only depends on ~θ 6=i,π 6=i} =
∑

~θ 6=i

Pr(s,~θ 6=i|~θ
a
i ,π 6=i,b

0) Pr(γ 6=i|~θ 6=i,π 6=i)

{ s,~θ 6=i only depend on ϕ 6=i } =
∑

~θ 6=i

Pr(s,~θ 6=i|~θ
a
i ,ϕ 6=i,b

0) Pr(γ 6=i|~θ 6=i,π 6=i)

{due to PE} =
∑

~θ 6=i

Pr(s,~θ 6=i|~θ
b
i ,ϕ 6=i,b

0) Pr(γ 6=i|~θ 6=i,π 6=i)

= [...] = Pr(s,γ 6=i|~θ
b
i ,π 6=i,b

0) = bi(s,γ 6=i|~θ
b
i ,π 6=i)

We can conclude this holds for all π 6=i,s and γ 6=i.

Proof of Theorem 5 (Search Equivalence)

To prove search equivalence, we explicitly write a node as a tuple q = 〈ϕt, v̂,PH〉, where ϕt

is the past joint policy, v̂ the node’s heuristic value, and PH a boolean indicating whether
it is a placeholder. We consider the equivalence of the maintained open lists. The open list
L maintained by GMAA*-IC contains only non-expanded nodes q. In contrast, the open
list LIE of GMAA*-ICE contains both non-expanded nodes q and placeholders (previously
expanded nodes), q̄. We denote the ordered subset of LIE containing non-expanded nodes
with Q and that containing placeholders with Q̄. We treat these open lists as ordered sets of
heuristic values and their associated nodes.

Definition 11. L and LIE are equivalent, L ≡ LIE if:

1. Q ⊆ L.

2. The q’s have the same ordering: L.remove(L \Q) = Q.24

3. Nodes q in L but not Q have a placeholder q̄ that is the parent of and higher ranked
than q:

∀q=〈ϕt,v̂q,false〉∈(L\Q) ∃q̄=〈ϕt−1,v̂q̄ ,true〉∈Q̄ s.t. (ϕt = (ϕt−1,β) ∧ q < q̄).

4. There are no other placeholders.

Fig. 11 illustrates two equivalent lists in which the past joint policies are indexed with letters.
Note that the placeholders in LIE are ranked higher than the nodes in L that they represent.

Let us write IT-IC(L) and IT-ICE(LIE) for one iteration (i.e., one loop of the main repeat
in Algorithm 1) of the respective algorithms. Let IT-ICE* denote the operation that repeats
IT-ICE as long as a placeholder was selected (so it ends when a q is expanded).

Lemma 4. If L ≡ LIE, then executing IT-IC(L) and IT-ICE*(LIE) leads to new open lists
that are again equivalent: L ′ ≡ LIE′.

Proof. When IT-ICE* selects a placeholder q̄, it generates child q′ that was already present
in L (due to properties 3 and 4 of Definition 11) and inserts it. Insertion occurs at the
same relative location as IT-IC because both algorithms use the same comparison operator
(Definition 5). Together these facts guarantee that the insertion preserves properties 1 and 2.

24. A.remove(B) removes the elements of B from A without changing A’s ordering.

501

Oliehoek, Spaan, Amato, & Whiteson

L LIE

Q Q̄

V̂ ϕt V̂ ϕt V̂ ϕt

8 a ← placeholder for {c,e,j}
7 c
5 d 5 d ← same nodes: same position
4.5 e

4 b ← placeholder for {h,i}
3 f 3 f

}
consistent ordering

3 g 3 g for equal values
2.5 h
1 i
0.5 j

Figure 11: Illustration of equivalent lists. Past joint policies are indexed by letters. In this
example, a and b have been expanded earlier (but are not yet fully expanded in the ICE-case).

If there are remaining unexpanded children of q̄, IT-ICE* reinserts q̄ with an updated heuristic
value q̄.v̂ ← q′.v̂ that is guaranteed to be an upper bound on the value of unexpanded siblings
q′′ since q′.v̂ = V̂ (q′.ϕ) ≥ V̂ (q′′.ϕ) = q′′.v̂ (preserving properties 3 and 4).

When IT-ICE* finally selects a non-placeholder q, it is guaranteed to be the same q as
selected by IT-IC (due to properties 1 and 2). Expansion in ICE generates one child q′ (again
inserted at the same relative location as in IC) and inserts placeholder q̄ = 〈q.ϕ, q′.v̂, true〉 for
the other siblings q′′ (again preserving properties 3 and 4).

Proof of Theorem 5. The fact that GMAA*-ICE and GMAA*-IC are search-equivalent fol-
lows directly from Lemma 4. Search equivalence means that both algorithms select the same
non-placeholders q to expand. Since both algorithms begin with identical (and therefore triv-
ially equivalent) open lists, they maintain equivalent open lists throughout search. As such,
property 2 of Definition 11 ensures that every time IT-ICE* selects a non-placeholder, IT-IC
selects it too.

References

Allen, M., & Zilberstein, S. (2007). Agent influence as a predictor of difficulty for decentralized
problem-solving. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence.

Amato, C., Bernstein, D. S., & Zilberstein, S. (2006). Optimal fixed-size controllers for
decentralized POMDPs. In Proc. of the AAMAS Workshop on Multi-Agent Sequential
Decision Making in Uncertain Domains.

Amato, C., Bernstein, D. S., & Zilberstein, S. (2007). Optimizing memory-bounded controllers
for decentralized POMDPs. In Proc. of Uncertainty in Artificial Intelligence.

Amato, C., Bernstein, D. S., & Zilberstein, S. (2010). Optimizing fixed-size stochastic con-
trollers for POMDPs and decentralized POMDPs. Autonomous Agents and Multi-Agent
Systems, 21 (3), 293–320.

502

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Amato, C., Bonet, B., & Zilberstein, S. (2010). Finite-state controllers based on Mealy
machines for centralized and decentralized POMDPs. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence.

Amato, C., Carlin, A., & Zilberstein, S. (2007). Bounded dynamic programming for de-
centralized POMDPs. In Proc. of the AAMAS Workshop on Multi-Agent Sequential
Decision Making in Uncertain Domains.

Amato, C., Dibangoye, J. S., & Zilberstein, S. (2009). Incremental policy generation for
finite-horizon DEC-POMDPs. In Proc. of the International Conference on Automated
Planning and Scheduling.

Aras, R., & Dutech, A. (2010). An investigation into mathematical programming for finite
horizon decentralized POMDPs. Journal of Artificial Intelligence Research, 37 , 329–
396.

Becker, R., Carlin, A., Lesser, V., & Zilberstein, S. (2009). Analyzing myopic approaches for
multi-agent communication. Computational Intelligence, 25 (1), 31–50.

Becker, R., Zilberstein, S., & Lesser, V. (2004). Decentralized Markov decision processes with
event-driven interactions. In Proc. of the International Conference on Autonomous
Agents and Multi Agent Systems.

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. V. (2003). Transition-independent
decentralized Markov decision processes. In Proc. of the International Conference on
Autonomous Agents and Multi Agent Systems.

Bernstein, D. S., Amato, C., Hansen, E. A., & Zilberstein, S. (2009). Policy iteration for
decentralized control of Markov decision processes. Journal of Artificial Intelligence
Research, 34 , 89–132.

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of
decentralized control of Markov decision processes. Mathematics of Operations Research,
27 (4), 819–840.

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control (3rd ed., Vol. I). Athena
Scientific.

Beynier, A., & Mouaddib, A.-I. (2011). Solving efficiently decentralized MDPs with temporal
and resource constraints. Autonomous Agents and Multi-Agent Systems, 23 (3), 486–
539.

Boularias, A., & Chaib-draa, B. (2008). Exact dynamic programming for decentralized
POMDPs with lossless policy compression. In Proc. of the International Conference on
Automated Planning and Scheduling.

Buşoniu, L., Babuška, R., & De Schutter, B. (2008). A comprehensive survey of multi-agent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 38 (2), 156–172.

Carlin, A., & Zilberstein, S. (2008). Value-based observation compression for DEC-POMDPs.
In Proc. of the International Conference on Autonomous Agents and Multi Agent Sys-
tems.

503

Oliehoek, Spaan, Amato, & Whiteson

Carrillo, H., & Lipman, D. (1988). The multiple sequence alignment problem in biology.
SIAM Journal on Applied Mathematics, 48 (5), 1073–1082.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes. In Proc. of Uncertainty
in Artificial Intelligence.

Cassandra, A. R. (1998). Exact and Approximate Algorithms for Partially Observable Markov
Decision Processes. Unpublished doctoral dissertation, Brown University.

Dechter, R., Flerova, N., & Marinescu, R. (2012). Search algorithms for m best solutions for
graphical models. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence.

Dekel, E., Fudenberg, D., & Morris, S. (2006). Topologies on types. Theoretical Economics,
1 (3), 275–309.

Dibangoye, J. S., Amato, C., Doniec, A., & Charpillet, F. (2013). Producing efficient error-
bounded solutions for transition independent decentralized MDPs. In Proc. of the In-
ternational Conference on Autonomous Agents and Multi Agent Systems. (Submitted
for publication)

Dibangoye, J. S., Mouaddib, A.-I., & Chai-draa, B. (2009). Point-based incremental prun-
ing heuristic for solving finite-horizon DEC-POMDPs. In Proc. of the International
Conference on Autonomous Agents and Multi Agent Systems.

Doshi, P., & Gmytrasiewicz, P. (2009). Monte Carlo sampling methods for approximating
interactive POMDPs. Journal of Artificial Intelligence Research, 34 , 297–337.

Doshi, P., Zeng, Y., & Chen, Q. (2008). Graphical models for interactive POMDPs: represen-
tations and solutions. Autonomous Agents and Multi-Agent Systems, 18 (3), 376–416.

Edelkamp, S., & Schrödl, S. (2012). Heuristic search: theory and applications. Morgan
Kaufmann.

Eker, B., & Akın, H. L. (2010). Using evolution strategies to solve DEC-POMDP problems.
Soft Computing—A Fusion of Foundations, Methodologies and Applications, 14 (1), 35–
47.

Eker, B., & Akın, H. L. (2013). Solving decentralized POMDP problems using genetic
algorithms. Autonomous Agents and Multi-Agent Systems, 27 (1), 161–196.

Emery-Montemerlo, R. (2005). Game-Theoretic Control for Robot Teams. Unpublished
doctoral dissertation, Carnegie Mellon University.

Emery-Montemerlo, R., Gordon, G., Schneider, J., & Thrun, S. (2004). Approximate solu-
tions for partially observable stochastic games with common payoffs. In Proc. of the
International Conference on Autonomous Agents and Multi Agent Systems.

Emery-Montemerlo, R., Gordon, G., Schneider, J., & Thrun, S. (2005). Game theoretic
control for robot teams. In Proc. of the IEEE International Conference on Robotics and
Automation.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 14 (1–2), 163–223.

504

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in multi-agent
settings. Journal of Artificial Intelligence Research, 24 , 49–79.

Goldman, C. V., Allen, M., & Zilberstein, S. (2007). Learning to communicate in a decen-
tralized environment. Autonomous Agents and Multi-Agent Systems, 15 (1), 47–90.

Goldman, C. V., & Zilberstein, S. (2003). Optimizing information exchange in cooperative
multi-agent systems. In Proc. of the International Conference on Autonomous Agents
and Multi Agent Systems.

Goldman, C. V., & Zilberstein, S. (2004). Decentralized control of cooperative systems:
Categorization and complexity analysis. Journal of Artificial Intelligence Research, 22 ,
143–174.

Goldman, C. V., & Zilberstein, S. (2008). Communication-based decomposition mechanisms
for decentralized MDPs. Journal of Artificial Intelligence Research, 32 , 169–202.

Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for par-
tially observable stochastic games. In Proc. of the National Conference on Artificial
Intelligence.

Hauskrecht, M. (2000). Value-function approximations for partially observable Markov deci-
sion processes. Journal of Artificial Intelligence Research, 13 , 33–94.

Hsu, K., & Marcus, S. (1982). Decentralized control of finite state Markov processes. IEEE
Transactions on Automatic Control , 27 (2), 426–431.

Huhns, M. N. (Ed.). (1987). Distributed Artificial Intelligence. Pitman Publishing Ltd.

Ikeda, T., & Imai, H. (1999). Enhanced A* algorithms for multiple alignments: optimal
alignments for several sequences and k-opt approximate alignments for large cases. The-
oretical Computer Science, 210 (2), 341–374.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101 (1-2), 99–134.

Kumar, A., & Zilberstein, S. (2009). Constraint-based dynamic programming for decentralized
POMDPs with structured interactions. In Proc. of the International Conference on
Autonomous Agents and Multi Agent Systems.

Kumar, A., & Zilberstein, S. (2010a). Anytime planning for decentralized POMDPs using
expectation maximization. In Proc. of Uncertainty in Artificial Intelligence.

Kumar, A., & Zilberstein, S. (2010b). Point-based backup for decentralized POMDPs: Com-
plexity and new algorithms. In Proc. of the International Conference on Autonomous
Agents and Multi Agent Systems.

Littman, M., Cassandra, A., & Kaelbling, L. (1995). Learning policies for partially observ-
able environments: Scaling up. In Proc. of the International Conference on Machine
Learning.

Marecki, J., Gupta, T., Varakantham, P., Tambe, M., & Yokoo, M. (2008). Not all agents are
equal: scaling up distributed POMDPs for agent networks. In Proc. of the International
Conference on Autonomous Agents and Multi Agent Systems.

505

Oliehoek, Spaan, Amato, & Whiteson

Marecki, J., & Tambe, M. (2007). On opportunistic techniques for solving decentralized
Markov decision processes with temporal constraints. In Proc. of the International
Conference on Autonomous Agents and Multi Agent Systems.

Melo, F. S., & Veloso, M. (2011). Decentralized MDPs with sparse interactions. Artificial
Intelligence, 175 (11), 1757–1789.

Mostafa, H., & Lesser, V. (2011). A compact mathematical formulation for problems with
structured agent interactions. In Proc. of the AAMAS Workshop on Multi-Agent Se-
quential Decision Making in Uncertain Domains.

Nair, R., Roth, M., & Yohoo, M. (2004). Communication for improving policy computation in
distributed POMDPs. In Proc. of the International Conference on Autonomous Agents
and Multi Agent Systems.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D. V., & Marsella, S. (2003). Taming decentral-
ized POMDPs: Towards efficient policy computation for multiagent settings. In Proc.
of the International Joint Conference on Artificial Intelligence.

Nair, R., Varakantham, P., Tambe, M., & Yokoo, M. (2005). Networked distributed POMDPs:
A synthesis of distributed constraint optimization and POMDPs. In Proc. of the Na-
tional Conference on Artificial Intelligence.

Oliehoek, F. A. (2010). Value-Based Planning for Teams of Agents in Stochastic Partially Ob-
servable Environments. Amsterdam University Press. (Doctoral dissertation, University
of Amsterdam)

Oliehoek, F. A. (2012). Decentralized POMDPs. In M. Wiering & M. van Otterlo (Eds.),
Reinforcement learning: State of the art (Vol. 12). Springer Berlin Heidelberg.

Oliehoek, F. A., Kooi, J. F., & Vlassis, N. (2008). The cross-entropy method for policy search
in decentralized POMDPs. Informatica, 32 , 341–357.

Oliehoek, F. A., & Spaan, M. T. J. (2012). Tree-based solution methods for multiagent
POMDPs with delayed communication. In Proceedings of the Twenty-Sixth AAAI Con-
ference on Artificial Intelligence.

Oliehoek, F. A., Spaan, M. T. J., Dibangoye, J., & Amato, C. (2010). Heuristic search for iden-
tical payoff Bayesian games. In Proc. of the International Conference on Autonomous
Agents and Multi Agent Systems.

Oliehoek, F. A., Spaan, M. T. J., & Vlassis, N. (2007). Dec-POMDPs with delayed communi-
cation. In Proc. of the AAMAS Workshop on Multi-Agent Sequential Decision Making
in Uncertain Domains.

Oliehoek, F. A., Spaan, M. T. J., & Vlassis, N. (2008). Optimal and approximate Q-value
functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32 ,
289–353.

Oliehoek, F. A., Spaan, M. T. J., Whiteson, S., & Vlassis, N. (2008). Exploiting locality
of interaction in factored Dec-POMDPs. In Proc. of the International Conference on
Autonomous Agents and Multi Agent Systems.

Oliehoek, F. A., & Vlassis, N. (2007). Q-value functions for decentralized POMDPs. In Proc.
of the International Conference on Autonomous Agents and Multi Agent Systems.

506

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Oliehoek, F. A., Whiteson, S., & Spaan, M. T. J. (2009). Lossless clustering of histories
in decentralized POMDPs. In Proc. of the International Conference on Autonomous
Agents and Multi Agent Systems.

Oliehoek, F. A., Whiteson, S., & Spaan, M. T. J. (2013). Approximate solutions for fac-
tored Dec-POMDPs with many agents. In Proc. of the International Conference on
Autonomous Agents and Multi Agent Systems. (Submitted for publication)

Oliehoek, F. A., Witwicki, S., & Kaelbling, L. P. (2012). Influence-based abstraction for
multiagent systems. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence.

Ooi, J. M., & Wornell, G. W. (1996). Decentralized control of a multiple access broadcast
channel: Performance bounds. In Proc. of the 35th conference on decision and control.

Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. The MIT Press.

Pajarinen, J., & Peltonen, J. (2011). Efficient planning for factored infinite-horizon DEC-
POMDPs. In Proc. of the International Joint Conference on Artificial Intelligence.

Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11 (3), 387–434.

Puterman, M. L. (1994). Markov Decision Processes—Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc.

Pynadath, D. V., & Marsella, S. C. (2007). Minimal mental models. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence.

Pynadath, D. V., & Tambe, M. (2002). The communicative multiagent team decision problem:
Analyzing teamwork theories and models. Journal of Artificial Intelligence Research,
16 , 389–423.

Rabinovich, Z., Goldman, C. V., & Rosenschein, J. S. (2003). The complexity of multiagent
systems: the price of silence. In Proc. of the International Conference on Autonomous
Agents and Multi Agent Systems.

Rabinovich, Z., & Rosenschein, J. S. (2005). Multiagent coordination by extended Markov
tracking. In Proc. of the International Conference on Autonomous Agents and Multi
Agent Systems.

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. (2008). Online planning algorithms for
POMDPs. Journal of Artificial Intelligence Research, 32 , 664–704.

Roth, M., Simmons, R., & Veloso, M. (2005). Reasoning about joint beliefs for execution-
time communication decisions. In Proc. of the International Conference on Autonomous
Agents and Multi Agent Systems.

Roth, M., Simmons, R., & Veloso, M. (2007). Exploiting factored representations for decen-
tralized execution in multi-agent teams. In Proc. of the International Conference on
Autonomous Agents and Multi Agent Systems.

Seuken, S., & Zilberstein, S. (2007a). Improved memory-bounded dynamic programming for
decentralized POMDPs. In Proc. of Uncertainty in Artificial Intelligence.

507

Oliehoek, Spaan, Amato, & Whiteson

Seuken, S., & Zilberstein, S. (2007b). Memory-bounded dynamic programming for DEC-
POMDPs. In Proc. of the International Joint Conference on Artificial Intelligence.

Seuken, S., & Zilberstein, S. (2008). Formal models and algorithms for decentralized decision
making under uncertainty. Autonomous Agents and Multi-Agent Systems, 17 (2), 190–
250.

Spaan, M. T. J., Gordon, G. J., & Vlassis, N. (2006). Decentralized planning under uncer-
tainty for teams of communicating agents. In Proc. of the International Conference on
Autonomous Agents and Multi Agent Systems.

Spaan, M. T. J., & Melo, F. S. (2008). Interaction-driven Markov games for decentralized
multiagent planning under uncertainty. In Proc. of the International Conference on
Autonomous Agents and Multi Agent Systems.

Spaan, M. T. J., & Oliehoek, F. A. (2008). The MultiAgent Decision Process toolbox:
software for decision-theoretic planning in multiagent systems. In Proc. of the AAMAS
Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains.

Spaan, M. T. J., Oliehoek, F. A., & Amato, C. (2011). Scaling up optimal heuristic search in
Dec-POMDPs via incremental expansion. In Proc. of the International Joint Conference
on Artificial Intelligence.

Spaan, M. T. J., Oliehoek, F. A., & Vlassis, N. (2008). Multiagent planning under uncertainty
with stochastic communication delays. In Proc. of the International Conference on
Automated Planning and Scheduling.

Sycara, K. P. (1998). Multiagent systems. AI Magazine, 19 (2), 79–92.

Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search algorithm for
solving decentralized POMDPs. In Proc. of Uncertainty in Artificial Intelligence.

Tsitsiklis, J., & Athans, M. (1985). On the complexity of decentralized decision making and
detection problems. IEEE Transactions on Automatic Control , 30 (5), 440–446.

Varaiya, P., & Walrand, J. (1978). On delayed sharing patterns. IEEE Transactions on
Automatic Control , 23 (3), 443–445.

Varakantham, P., Kwak, J. young, Taylor, M. E., Marecki, J., Scerri, P., & Tambe, M. (2009).
Exploiting coordination locales in distributed POMDPs via social model shaping. In
Proc. of the International Conference on Automated Planning and Scheduling.

Varakantham, P., Marecki, J., Yabu, Y., Tambe, M., & Yokoo, M. (2007). Letting loose a
SPIDER on a network of POMDPs: Generating quality guaranteed policies. In Proc.
of the International Conference on Autonomous Agents and Multi Agent Systems.

Varakantham, P., Nair, R., Tambe, M., & Yokoo, M. (2006). Winning back the cup for dis-
tributed POMDPs: planning over continuous belief spaces. In Proc. of the International
Conference on Autonomous Agents and Multi Agent Systems.

Velagapudi, P., Varakantham, P., Scerri, P., & Sycara, K. (2011). Distributed model shaping
for scaling to decentralized POMDPs with hundreds of agents. In Proc. of the Interna-
tional Conference on Autonomous Agents and Multi Agent Systems.

Vlassis, N. (2007). A Concise Introduction to Multiagent Systems and Distributed Artificial
Intelligence. Morgan & Claypool Publishers.

508

Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs

Williamson, S. A., Gerding, E. H., & Jennings, N. R. (2009). Reward shaping for valuing com-
munications during multi-agent coordination. In Proc. of the International Conference
on Autonomous Agents and Multi Agent Systems.

Witwicki, S. J. (2011). Abstracting Influences for Efficient Multiagent Coordination Under
Uncertainty. Unpublished doctoral dissertation, University of Michigan, Ann Arbor,
Michigan, USA.

Witwicki, S. J., & Durfee, E. H. (2010). Influence-based policy abstraction for weakly-coupled
Dec-POMDPs. In Proc. of the International Conference on Automated Planning and
Scheduling.

Wu, F., Zilberstein, S., & Chen, X. (2010a). Point-based policy generation for decentralized
POMDPs. In Proc. of the International Conference on Autonomous Agents and Multi
Agent Systems.

Wu, F., Zilberstein, S., & Chen, X. (2010b). Rollout sampling policy iteration for decentralized
POMDPs. In Proc. of Uncertainty in Artificial Intelligence.

Wu, F., Zilberstein, S., & Chen, X. (2011). Online planning for multi-agent systems with
bounded communication. Artificial Intelligence, 175 (2), 487–511.

Xuan, P., Lesser, V., & Zilberstein, S. (2001). Communication decisions in multi-agent cooper-
ation: Model and experiments. In Proc. of the International Conference on Autonomous
Agents.

Yoshizumi, T., Miura, T., & Ishida, T. (2000). A* with partial expansion for large branching
factor problems. In Proc. of the National Conference on Artificial Intelligence.

Zeng, Y., & Doshi, P. (2012). Exploiting model equivalences for solving interactive dynamic
influence diagrams. Journal of Artificial Intelligence Research, 43 , 211–255.

Zeng, Y., Doshi, P., Pan, Y., Mao, H., Chandrasekaran, M., & Luo, J. (2011). Utilizing
partial policies for identifying equivalence of behavioral models. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence.

509

