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ABSTRACT
Recent advances in reinforcement learning have yielded sev-
eral PAC-MDP algorithms that, using the principle of opti-
mism in the face of uncertainty, are guaranteed to act near-
optimally with high probability on all but a polynomial num-
ber of samples. Unfortunately, many of these algorithms,
such as R-MAX, perform poorly in practice because their
initial exploration in each state, before the associated model
parameters have been learned with confidence, is random.
Others, such as Model-Based Interval Estimation (MBIE)
have weaker sample complexity bounds and require careful
parameter tuning. This paper proposes a new PAC-MDP
algorithm called V-MAX designed to address these prob-
lems. By restricting its optimism to future visits, V-MAX
can exploit its experience early in learning and thus obtain
more cumulative reward than R-MAX. Furthermore, doing
so does not compromise the quality of exploration, as we
prove bounds on the sample complexity of V-MAX that are
identical to those of R-MAX. Finally, we present empiri-
cal results in two domains demonstrating that V-MAX can
substantially outperform R-MAX and match or outperform
MBIE while being easier to tune, as its performance is in-
variant to conservative choices of its primary parameter.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms

Keywords
Reinforcement learning, Sample complexity

1. INTRODUCTION
In reinforcement learning (RL) [17], an agent must learn

an optimal policy for maximising its expected long-term re-
ward in an initially unknownMarkov decision process (MDP)
[1]. Since a wide range of realistic problems, from game play-
ing to robot control, can be naturally formulated as MDPs,
effective reinforcement-learning algorithms are critical to the
development of intelligent agents.
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A central challenge in RL is how best to balance explo-
ration, in which the agent tries various actions to learn about
their effects, and exploitation, in which it uses what it has
already learned to select actions that maximise expected re-
turn. Traditional RL algorithms such as Q-Learning [21]
rely on ad-hoc exploration mechanisms that ensure each
state-action pair is experienced infinitely often. As a result,
the convergence of such algorithms to the optimal policy is
guaranteed only in the limit.

Fortunately, methods have recently been developed that
explore more efficiently and thus obtain guarantees based
on the probably approximately correct (PAC) [20] framework.
Instead of converging to the optimal policy, PAC-MDP algo-
rithms are guaranteed to act near-optimally with high prob-
ability on all but a polynomial number of samples.

R-MAX [2], the most well known PAC-MDP method, for-
malises the principle of optimism in the face of uncertainty.
If n, the number of times a state-action pair has been visited,
is less than a threshold m, it is assumed to have maximal
value. Planning on the resulting model yields a policy that
either leads the agent to unfamiliar state-action pairs or ex-
ploits familiar ones of high value.

Despite its PAC guarantees, R-MAX often performs poorly
in practice because its initial exploration is random: until
a state-action pair has been visited m times, the agent’s
experience with it is ignored. Model-Based Interval Estima-
tion (MBIE) [16] avoids this problem by computing confi-
dence intervals that quantify the agent’s optimism. While
MBIE has been shown to outperform R-MAX empirically,
the bounds on its sample complexity are not as strong [16].

This paper describes V-MAX, a novel PAC-MDP method
designed to overcome the weaknesses of both R-MAX and
MBIE. Like R-MAX, V-MAX is optimistic about state-action
pairs experienced fewer than m times. However, like MBIE,
its optimism is tempered by experience. Rather than assum-
ing such state-action pairs have maximal value, it assumes
only that the remaining m− n visits will yield maximal re-
turn. Thus, its estimate of the state-action pair’s value is
a weighted average of the expected return based on the n
visits and that of the m− n optimistic future visits.

In this way, V-MAX can exploit its experience early in
learning and thus obtain more cumulative reward than R-
MAX. Furthermore, this additional exploitation does not
make exploration less efficient. On the contrary, we prove
bounds on the sample complexity of V-MAX that are iden-
tical to those of R-MAX. This result shows for the first time
that it is possible to employ tempered optimism like that of
MBIE but without compromising the resulting PAC bounds.



This paper also presents empirical results comparing the
performance of V-MAX to MBIE, R-MAX, and MoR-MAX,
another PAC-MDPmethod, on two tasks: a standard bench-
mark task from the PAC-MDP literature and a new task
containing multiple local optima that is designed to be chal-
lenging for PAC-MDP methods. The results on both tasks
demonstrate that V-MAX can substantially outperform both
R-MAX and MoR-MAX. They also demonstrate that V-
MAX, unlike MBIE, performs well in the presence of multi-
ple local optima. Even when such local optima are absent,
V-MAXmatches the performance of MBIE and in both cases
proves substantially easier to tune, as its performance is in-
variant for conservative choices of m.

The rest of this paper is organized as follows. Section 2
provides background on RL, PAC, and PAC-MDP methods.
Section 3 presents V-MAX and a proof of its sample com-
plexity. Section 4 describes our experimental results while
Section 5 concludes and suggests directions for future work.

2. BACKGROUND
A Markov decision process can be described as a five-

tuple (S,A,R, T, γ), where S is the state space, A is the
action space, R(s, a) is the reward function describing the
expected reward given state s and action a, T (s, a, s′) is the
transition function describing the probability of arriving in
state s′ given s and a, and 0 ≤ γ < 1 is the discount factor
used when summing an infinite sequence of rewards. An
agent’s policy π : S → A specifies what action to take in
each state. An optimal policy π∗ maximises the expected γ-
discounted long-term cumulative reward, also known as the
expected discounted return [17].

If both the reward and transition functions are known,
then an agent can compute π∗ using a planning method
such as value iteration (VI) [1]. VI computes the optimal
action-value function Q∗ by iteratively solving the Bellman
optimality equation (1), until for each state-action pair (s, a),
subsequent computations of Q∗(s, a) yield a difference less
than some tolerance ǫ. Given Q∗, an optimal policy can be
easily derived: π∗(s) = argmaxa∈A Q∗(s, a).

Q∗(s, a)← R(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′) (1)

If the reward and/or transition functions are unknown,
then the agent can learn Q∗ from experience. Model-based
RL methods do so indirectly by learning R̂ and T̂ , maximum
likelihood estimates of the reward and transition functions,
and planning on the resulting MDP: (S,A, R̂, T̂ , γ).

Learning R̂ and T̂ is complicated by the need to explore
the environment to collect samples. If the agent explores
too little, it may not learn the dynamics of the MDP ac-
curately. If it explores too much, it may not accumulate
enough reward. While it is possible in principle to compute
a Bayes-optimal exploration strategy, doing so is typically
intractable [3]. As a result, ad-hoc strategies such as ǫ-
greedy exploration are often used in practice. The probably
approximately correct (PAC) learning framework offers a
middle ground: tractable algorithms that, while not Bayes-
optimal, have upper bounds on their sample complexity :

Definition 1. For any fixed ǫ > 0, the sample complexity
of exploration of an algorithm A is the number of timesteps
t such that the policy at time t, At, satisfies V At(st) <
V ∗(st)− ǫ [8].

A PAC-MDP method is one that is guaranteed to have,
with high probability, a polynomial sample complexity:

Definition 2. An algorithm A is PAC-MDP (Probably
Approximately Correct in Markov Decision Processes) if,
for any ǫ > 0 and 0 < δ < 1, the sample complexity of
A is less than some polynomial in the relevant quantities
(|S|, |A|, Rmax, 1/ǫ, 1/δ, 1/(1 − γ)) for any MDP M , with
probability at least 1 − δ, where Rmax is an upper bound
on the reward function of M [13].1

R-MAX [2], described in Algorithm 1, is the simplest and
most well known PAC-MDP algorithm. In addition to S,
A, γ, and Rmax, it takes as input two parameters: m, the
number of times each state-action pair must be experienced
before R̂ and T̂ are considered near-accurate, and ǫ1, the
accuracy required from VI during the planning step.

Algorithm 1: R-MAX

Input: S, A, γ, m, ǫ1, Rmax

1 S̄ ← S ∪ {z}, where z is an arbitrary fictitious state

2 foreach (s, a) ∈ S̄ × A do
3 n(s, a)← 0
4 r(s, a)← 0

5 Q̃(s, a)← Rmax/(1− γ)

6 R̃(s, a)← Rmax

7 foreach s′ ∈ S do
8 n(s, a, s′)← 0

9 T̃ (s, a, s′)← 0
10 end
11 n(s, a, z)← 0

12 T̃ (s, a, z)← 1
13 end
14 for t = 1, 2, 3, . . . do
15 Observe current state s

16 Execute action a := argmaxa′∈A Q̃(s, a′)
17 Observe immediate reward r and next state s′

18 if n(s, a) < m then
19 n(s, a)← n(s, a) + 1
20 r(s, a)← r(s, a) + r
21 n(s, a, s′)← n(s, a, s′) + 1
22 if n(s, a) = m then

23 R̃(s, a)← r(s, a)/m

24 foreach s′′ ∈ S̄ do T̃ (s, a, s′′)← n(s, a, s′′)/m

25 Q̃← Solve (S̄, A, R̃, T̃ , γ, ǫ1) using VI
26 end
27 end
28 end

R-MAX adds a fictitious maximally rewarding state z to
the MDP and initially assumes that all state-action pairs
(s, a) (including all (z, a)) yield the maximum reward Rmax

and transition with probability 1 to z.2 We use R̃ and T̃ to
denote these initially optimistic reward and transition func-
tions. In addition, Q̃, the optimistic value function, is initial-
ized to the maximum possible value, i.e., Q̃(s, a) = Vmax =
Rmax/(1 − γ) for all s and a. Once some (s, a) has been

experienced m times, R̃(s, a) and T̃ (s, a) are set to R̂(s, a)

and T̂ (s, a), respectively, and the Q̃-values are updated with
VI. Thus, R-MAX automatically explores state-action pairs
that it is uncertain about and exploits otherwise. Once some
(s, a) has been experienced m times, R-MAX assumes the

1This definition is slightly modified in that it allows the
bounds to also depend on Rmax since, unlike [13], we do not
assume that Rmax = 1. In addition, we do not consider the
space and computational complexity.
2We use z for ease of comparison to V-MAX, but R-MAX
can also be implemented by initialising all state-action pairs
to have self-transitions with probability 1.



reward and transition functions for (s, a) are near-accurate
and stops learning them. The tightest known upper bounds
on R-MAX’s sample complexity, due to [13], are:3

O

(

|S||A|R3
max

ǫ3(1− γ)6

(

|S|+ ln
|S||A|

δ

)

ln
1

δ
ln

Rmax

ǫ(1− γ)

)

.

Modified R-MAX (MoR-MAX) [19] is similar to R-MAX
except that, once a state-action pair (s, a) has been expe-
rienced m times, it restarts the sample collection for (s, a).
For every m such samples that MoR-MAX collects, it cre-
ates a trial model consisting of the reward and transition
functions based on the m most recent samples of (s, a). It

then uses VI to compute Q̃′ based on the trial model and,
if Q̃′(s, a) ≤ Q̃(s, a), then it replaces the reward and transi-
tion functions for (s, a) with those of the trial model. In this
way, MoR-MAX continues learning throughout the agent’s
lifetime, unlike R-MAX. Note that each time MoR-MAX
replaces the reward and transition functions using m new
samples, the previous m samples are discarded. With prob-
ability 1− δ, the sample complexity of MoR-MAX is:

O

(

|S||A|R2
max

ǫ2(1− γ)6
ln
|S||A|Rmax

δǫ(1− γ)
ln2 Rmax

ǫ(1− γ)

)

.

Ignoring log factors, the sample complexity bounds for MoR-
MAX are better than R-MAX in terms of |S|, Rmax, and 1/ǫ,
and the same in terms of |A| and 1/(1− γ).

Model-based Interval Estimation (MBIE) [16] improves on
the empirical performance of R-MAX by computing confi-
dence intervals on the reward and transition functions.4 Like
R-MAX, MBIE initialises all Q̃-values to Vmax. Thereafter,
at each timestep, it computes the Q̃-values using VI with
the following equation in place of the Bellman optimality
equation:

Q̃(s, a)← R̂(s, a)+γ
∑

s′∈S

T̂ (s, a, s′)max
a′∈A

Q̃(s′, a′)+
β

√

n(s, a)
,

where β is an input parameter controlling the balance be-
tween exploration and exploitation. Thus, MBIE provides
an exploration bonus that drives the agent towards state-
action pairs that have been visited fewer times. With prob-
ability 1− δ, the sample complexity of MBIE is:

O

(

|S||A|R3
max

ǫ3(1− γ)6

(

|S|+ ln
|S||A|Rmax

δǫ(1− γ)

)

ln
1

δ
ln

Rmax

ǫ(1− γ)

)

.

The bounds for MBIE are similar to those of R-MAX, except
in log factors, where they are worse in terms of Rmax, 1/ǫ,
and 1/(1 − γ).

3. METHOD
A critical weakness of R-MAX is that it performs poorly

early in learning: since state-action pairs are indistinguish-
able until they have been experienced m times, R-MAX can
only explore randomly during this phase. In essence, this
poor performance is due to excessive optimism. To illus-
trate this point, consider the following example: an MDP

3There are minor differences in the bounds we state, since
[13] assume that Rmax = 1. Also, their bounds include the
use of an admissible heuristic for initialising Q-values.
4We describe a variant of MBIE that Strehl and Littman call
MBIE with exploration bonus. We consider only this variant
because it is simpler and refer to it as MBIE for conciseness.

with a single state s and two actions a1 and a2, which
always yield rewards of 0 and Rmax, respectively. Sup-
pose that at some timestep t, both (s, a1) and (s, a2) have
been experienced n times each, where n < m.5 Since R-
MAX is still uncertain about both state-action pairs, it as-
sumes that R̃t(s, a1) = R̃t(s, a2) = Rmax and thus chooses
an action randomly. However, given that the n experi-
ences of (s, a1) produced a reward of 0, R-MAX is clearly
overly optimistic about R(s, a1). Even if a1 always gener-

ates a reward of Rmax in the future, R̂(s, a1) will be at most
(0 ∗n+(m−n) ∗Rmax)/m = (m−n)Rmax/m by the end of

learning, while R̂(s, a2) can obviously be as high as Rmax.
The key idea behind V-MAX, our novel PAC-MDP al-

gorithm, is to exploit this insight to temper the excessive
optimism of R-MAX. Rather than assuming all state-action
pairs visited fewer than m times have maximal value, V-
MAX assumes only that the remaining m−n visits will yield
maximal return. Hence, V-MAX remains optimistic but can
more quickly exploit what it learns. In our example, V-MAX
would only need to choose a1 once to know it is sub-optimal,
thereby improving performance early in learning. In the re-
mainder of this section, we formalise the V-MAX algorithm
and prove bounds on its sample complexity.

3.1 The V-MAX Algorithm
V-MAX initialises Q̃, R̃, and T̃ exactly as R-MAX does.

Unlike R-MAX, however, V-MAX updates R̃ and T̃ at each
timestep, using the following equations:

R̃(s, a) =
n(s, a)R̂(s, a) + (m− n(s, a))Rmax

m
(2)

T̃ (s, a, s′) =















n(s, a)T̂ (s, a, s′)

m
if s′ 6= z

m− n(s, a)

m
if s′ = z.

(3)

Thus, both the reward and transition function updates mix
the observed rewards and transitions with the optimistic as-
sumption that future samples will involve transitions to the
maximally rewarding state z. V-MAX also updates Q̃ at
each timestep, using VI on the MDP (S ∪ {z}, A, R̃, T̃ , γ),

and then simply follows a greedy policy with respect to Q̃.
A simpler alternative implementation can be derived that

uses the empirical reward and transition functions R̂ and T̂
to compute Q̃ directly, thus eliminating the need to compute
R̃ and T̃ and explicitly represent z. Substituting Equations
2 and 3 into the Bellman optimality equation (and omitting
(s, a) in the notation for brevity), yields:

Q̃ =
nR̂ + (m− n)Rmax

m
+ γ
(m− n

m
max
a′∈A

Q̃(z, a′)

+
∑

s′∈S

nT̂ (s′)

m
max
a′∈A

Q̃(s′, a′)
)

=
n

m

(

R̂ + γ
∑

s′∈S

T̂ (s′)max
a′∈A

Q̃(s′, a′)
)

+
(m− n

m

)(

Rmax + γmax
a′∈A

Q̃(z, a′)
)

=
n

m

(

R̂ + γ
∑

s′∈S

T̂ (s′)max
a′∈A

Q̃(s′, a′)
)

+
(

1−
n

m

)

Vmax.

5We assume the agent does not know that the MDP is de-
terministic, and thus m > 1.



The resulting implementation of V-MAX, described in Al-
gorithm 2, initialises Q̃(s, a) to Vmax for all (s, a) ∈ S ×

A. At each timestep, it updates Q̃ using VI on the MDP
(S,A, R̂, T̂ , γ) but with the following equation in place of the
Bellman optimality equation:

Q̃(s, a) =
n(s, a)

m

(

R̂(s, a) + γ
∑

s′∈S

T̂ (s, a, s′)max
a′∈A

Q̃(s′, a′)

)

+

(

1−
n(s, a)

m

)

Vmax.

(4)
Finally, the agent follows a greedy policy with respect to

Q̃. The name V-MAX is inspired by this implementation, as
it computes an optimistic value function directly from Vmax.

Algorithm 2: V-MAX

Input: S, A, γ, m, ǫ1, Rmax

1 Vmax ← Rmax/(1 − γ)
2 foreach (s, a) ∈ S × A do
3 n(s, a)← 0
4 r(s, a)← 0
5 foreach s′ ∈ S do n(s, a, s′)← 0

6 Q̃(s, a)← Vmax

7 end
8 for t = 1, 2, 3, . . . do
9 Observe current state s

10 Execute action a := argmaxa′∈A Q̃(s, a′)
11 Observe immediate reward r and next state s′

12 if n(s, a) < m then
13 n(s, a)← n(s, a) + 1
14 r(s, a)← r(s, a) + r
15 n(s, a, s′)← n(s, a, s′) + 1

16 R̂(s, a)← r(s, a)/n(s, a)

17 foreach s′ ∈ S do T̂ (s, a, s′)← n(s, a, s′)/n(s, a)
18 repeat
19 ∆← 0
20 foreach (s, a) ∈ S ×A do
21 if n(s, a) > 0 then

22 q ← Q̃(s, a)

23 Q← R̂(s, a) +

γ
∑

s′∈S T̂ (s, a, s′)maxa′∈A Q̃(s′, a′)

24 Q̃(s, a)←
(n(s, a)/m)Q + (1− n(s, a)/m)Vmax

25 ∆← max(∆, |q − Q̃(s, a)|)

26 end
27 end
28 until ∆ ≤ ǫ1
29 end
30 end

3.2 Sample Complexity of V-MAX
Section 4 will demonstrate that V-MAX can substantially

outperform performance R-MAX. Here, we show that these
empirical advantages do not come at the expense of its the-
oretical properties, by proving upper bounds on its sample
complexity identical to those of R-MAX. As the example in
Section 3 illustrates, V-MAX can explore less than R-MAX.
Thus, the bounds we prove here are critical for ensuring that
V-MAX’s tempered optimism does not increase the chance
of converging to a suboptimal model.

We begin with supporting lemmas showing that the value
function used by V-MAX decreases monotonically and is
always at most Vmax. We then prove the main result in
Theorem 1, using techniques similar to [13] and [16].

In the following, let the value iteration step (vstep) i be
the ith value iteration update (Lines 23-24 of Algorithm 2)

since t = 1. Let n[i], Q̃[i], R̂[i], and T̂[i] denote the values of

n, Q̃, R̂, and T̂ , respectively, at vstep i. Finally, let (s[i], a[i])

be the state-action pair whose Q̃-value is updated at vstep
i. As with other PAC-MDP algorithms, we assume that all
rewards are non-negative, and are upper bounded by Rmax.

Lemma 1. For all (s, a) ∈ S × A, and for all policies π
and timesteps t:

Q̃π
t (s, a) ≤ Vmax.

Proof. Using weak induction on the vsteps i, we prove
that for all (s, a) ∈ S × A and for all policies π, Q̃π

[i](s, a) ≤

Vmax. The base case, that Q̃π
[0](s, a) = Vmax for all (s, a) ∈

S ×A, holds because all Q̃-values are initialised to Vmax. In
the inductive step, we assume that, for all (s, a) ∈ S × A,

Q̃π
[k](s, a) ≤ Vmax and must prove that Q̃π

[k+1](s, a) ≤ Vmax.
Note that (s[k+1], a[k+1]) is the only state-action pair whose

value is updated at vstep k+1, so Q̃π
[k+1](s

′, a′) = Q̃π
[k](s

′, a′)

for all other (s′, a′) 6= (s[k+1], a[k+1]). Thus, by the induc-

tive hypothesis, Q̃π
[k+1](s

′, a′) ≤ Vmax. Consequently, we
only need to prove that:

Q̃π
[k+1](s[k+1], a[k+1]) ≤ Vmax

This can be derived from Equation 4 as follows (omitting
(s[k+1], a[k+1]) in the notation for brevity).

Q̃π
[k+1] =

n[k+1]

m

(

R̂[k+1] + γ
∑

s′∈S

T̂[k+1](s
′)Q̃π

[k](s
′, π(s′))

)

+

(

1−
n[k+1]

m

)

Vmax

≤
n[k+1]

m

(

Rmax + γ
∑

s′∈S

T̂[k+1](s
′)Vmax

)

+

(

1−
n[k+1]

m

)

Vmax

≤
n[k+1]

m
Vmax +

(

1−
n[k+1]

m

)

Vmax

≤ Vmax

Lemma 2. For all (s, a) ∈ S × A, and for all policies π
and timesteps t > 0:

Q̃π
t (s, a) ≤ Q̃π

t−1(s, a).

Proof. Using strong induction on the vsteps i, we prove
that, for all (s, a) ∈ S × A, Q̃π

[i](s, a) ≤ Q̃π
[i−1](s, a), i.e.,

Q̃π(s, a) never increases as the number of value iteration

updates increases. For the base case, Q̃π
[0](s, a) = Vmax for

all (s, a) ∈ S × A since all Q̃-values are initialised to Vmax.

Also, from Lemma 1, Q̃π
[1](s, a) ≤ Vmax. Thus Q̃π

[1](s, a) ≤

Q̃π
[0](s, a). For the inductive step, we assume that, for all

(s, a) ∈ S×A, and for all j such that 0 < j ≤ k, Q̃π
[j](s, a) ≤

Q̃π
[j−1](s, a). We need to prove that Q̃π

[k+1](s, a) ≤ Q̃π
[k](s, a).

Note that (s[k+1], a[k+1]) is the only state-action pair whose

value is updated at vstep k+1, so Q̃π
[k+1](s

′, a′) = Q̃π
[k](s

′, a′)

for all other (s′, a′) 6= (s[k+1], a[k+1]). Now, let τ be the vstep

prior to k + 1 at which Q̃(s[k+1], a[k+1]) was last updated.
6

6If Q̃(s[k+1], a[k+1]) was never updated, then

Q̃π
[k+1](s[k+1], a[k+1]) = Q̃π

[k](s[k+1], a[k+1]).



Since τ ≤ k, and Q̃π(s[k+1], a[k+1]) is unchanged between
vsteps τ and k + 1, we need only prove that:

Q̃π
[k+1](s[k+1], a[k+1]) ≤ Q̃π

[τ ](s[k+1], a[k+1]).

Let cn be the number of times n(s[k+1], a[k+1]) is updated

between vsteps τ and k + 1.7 For the cn updates, let cR
be the total (undiscounted) reward accumulated and cT (s

′)
be the number of times that s′ is the next state observed.
Again omitting (s[k+1], a[k+1]), we can write:

n[k+1] = n[τ ] + cn (5)

R̂[k+1] =
n[τ ]R̂[τ ] + cR

n[τ ] + cn
(6)

T̂[k+1](s
′) =

n[τ ]T̂[τ ](s
′) + cT (s

′)

n[τ ] + cn
for all s′ ∈ S. (7)

Letting Ṽ π
[i](s

′) denote Q̃π
[i](s

′, π(s′)), we use Equations 5–
7 to reduce Equation 4:

Q̃π
[k+1] =

(

1−
n[k+1]

m

)

Vmax +
n[k+1]

m

(

R̂[k+1]

+ γ
∑

s′∈S

T̂[k+1](s
′)Ṽ π

[k](s
′)

)

=

(

1−
n[τ ] + cn

m

)

Vmax +
n[τ ] + cn

m

(

n[τ ]R̂[τ ] + cR

n[τ ] + cn

+ γ
∑

s′∈S

n[τ ]T̂[τ ](s
′) + cT (s

′)

n[τ ] + cn
Ṽ π
[k](s

′)

)

=

(

1−
n[τ ]

m
−

cn
m

)

Vmax +
1

m

(

n[τ ]R̂[τ ] + cR

+ γ
∑

s′∈S

(

n[τ ]T̂[τ ](s
′) + cT (s

′)
)

Ṽ π
[k](s

′)

)

=
n[τ ]

m

(

R̂[τ ] + γ
∑

s′∈S

T̂[τ ](s
′)Ṽ π

[k](s
′)

)

+

(

1−
n[τ ]

m

)

Vmax

+
1

m

(

cR − cnVmax + γ
∑

s′∈S

cT (s
′)Ṽ π

[k](s
′)

)

.

We know that cR ≤ cnRmax and
∑

s′∈S cT (s
′) = cn. Also,

since τ − 1 < k, the inductive hypothesis implies that for all
s′ ∈ S, Ṽ π

[k](s
′) ≤ Ṽ π

[τ−1](s
′). Lastly, Lemma 1 implies that

Ṽ π
[k](s

′) ≤ Vmax for all s′ ∈ S. We use these facts to further

reduce Q̃π
[k+1]:

≤
n[τ ]

m

(

R̂[τ ] + γ
∑

s′∈S

T̂[τ ](s
′)Ṽ π

[τ−1](s
′)

)

+

(

1−
n[τ ]

m

)

Vmax

+
1

m

(

cnRmax − cnVmax + γ
∑

s′∈S

cT (s
′)Vmax

)

≤ Q̃π
[τ ] +

1

m

(

cnRmax − cnVmax + γ
∑

s′∈S

cT (s
′)Vmax

)

≤ Q̃π
[τ ]

7While cn ∈ {0, 1} for V-MAX, it could be larger if full VI
was not performed at each timestep.

Theorem 1. Suppose that 0 < ǫ < Vmax and 0 < δ < 1
are two real numbers and M = (S,A,R, T, γ) is any MDP.

There exist m = O
(

(|S|+ln(|S||A|/δ))R2

max

ǫ2(1−γ)4

)

and ǫ1 = O(ǫ)

such that if V-MAX is executed on M with inputs m and ǫ1,
then the following holds. Let At denote V-MAX’s policy at
time t, and let st denote the state at time t. With probability
at least 1− δ, V At

M (st) ≥ V ∗
M (st)− ǫ is true for all but

O

(

|S||A|R3
max

ǫ3(1− γ)6

(

|S|+ ln
|S||A|

δ

)

ln
1

δ
ln

Rmax

ǫ(1− γ)

)

timesteps t.

Proof. Let m = O
(

(|S|+ln(|S||A|/δ))R2

max

ǫ2
1
(1−γ)4

)

and let Kt be

the set of state-action pairs experienced at least m times
by timestep t. Let H = ⌈ 1

1−γ
ln Rmax

ǫ1(1−γ)
⌉ and EM be the

event that a state-action pair not in Kt is encountered in a
trial generated by starting from st and following At for H
timesteps in M . We consider two mutually exclusive cases.

In the first case, Pr(EM) ≥ ǫ1/Vmax. We treatH timesteps
in M as one toss of a weighted coin, and EM as the event
that it shows heads. If we see m|S||A| heads, then all
(s, a) ∈ S×A are in K. As a result of the Chernoff-Hoeffding
bound, with probability 1−δ, after j tosses, m|S||A| or more

heads are seen, for some j = O(m|S||A|Vmax

ǫ1
ln 1

δ
). Since each

toss is equivalent toH timesteps inM , with probability 1−δ,

all state-action pairs are in K after O(m|S||A|HRmax

ǫ1(1−γ)
ln 1

δ
)

timesteps. Also, Pr(EM ) = 0 once all state-action pairs are
in K. Thus, given m and H , Pr(EM ) < ǫ1/Vmax after

O

(

|S||A|R3
max

ǫ31(1− γ)6

(

|S|+ ln
|S||A|

δ

)

ln
1

δ
ln

Rmax

ǫ1(1− γ)

)

timesteps.
In the second case, Pr(EM ) < ǫ1/Vmax. Recall that for

some policy At on the MDP M , V At

M denotes the true value
function. Let V (s, T ) denote the T -step value of s. Given
H and Lemma 2 of [9]:

V At

M (st) ≥ V At

M (st,H).

Let z be a fictitious state, and let S̄ = S ∪ {z}. Let M̄ =
(S̄, A, R̄, T̄ , γ) be an MDP, where for all (s, a, s′) ∈ S×A×S,
R̄(s, a) = R(s, a), T̄ (s, a, s′) = T (s, a, s′), and T̄ (s, a, z) = 0.
R̄(z, .) and T̄ (z, ., .) are set arbitrarily. Since st 6= z and the
reward and transition functions in M and M̄ are equal on
S × A× S, V At

M (st,H) = V At

M̄
(st,H). Thus:

V At

M (st) ≥ V At

M̄
(st,H).

Let MK = (S̄, A,RK , TK , γ) be an MDP with RK = R̄

and TK(.) = T̄ (.) for state-action pairs inKt, while RK = R̃t

and TK(.) = T̃t(.) for state-action pairs not in Kt, where R̃t

and T̃t are defined with Equations 2 and 3. Let EM̄ be the
event that a state-action pair not in Kt is encountered in a
trial generated by starting from st and following At for H
timesteps in M̄ . Lemma 8 of [15] implies that V At

M̄
(st,H) ≥

V At

MK
(st,H)−VmaxPr(EM̄ ). However, since M and M̄ differ

only on z, which is never encountered, Pr(EM̄) = Pr(EM ) <
ǫ1/Vmax. It follows that:

V At

M (st) ≥ V At

MK
(st,H)− ǫ1.

From Lemma 2 of [9], V At

MK
(st,H) ≥ V At

MK
(st)− ǫ1. Thus:

V At

M (st) ≥ V At

MK
(st)− 2ǫ1.



Let M̂K = (S̄, A, R̂K , T̂K , γ) be an MDP with R̂K = R̂t

and T̂K(.) = T̂t(.) for state-action pairs in Kt, while R̂K =

R̃t and T̂K(.) = T̃t(.) for state-action pairs not in Kt. Note

that M̂K and MK have equal reward and transition func-
tions for all state-action pairs not in Kt. Thus, given m,
Lemma 15 of [13] implies8 that with probability at least
1 − δ, V At

MK
(s) ≥ V At

M̂K

(s) − ǫ1 for all s ∈ S. Consequently,

with probability at least 1− δ:

V At

M (st) ≥ V At

M̂K

(st)− 3ǫ1.

Now, let M̂t = (S,A, R̂t, T̂t, γ) be the MDP that is learned
by V-MAX using maximum likelihood estimation. We know
that R̂t = R̃K and T̂t(.) = T̃K(.) for state-action pairs not
in Kt. For these pairs, the derivation in Section 3.1 implies
that computing Q̃-values using Equation 4 for VI in M̂t is
equivalent to computing Q-values using the Bellman opti-
mality equation for VI in M̂K . Furthermore, for state-action
pairs in Kt, Equation 4 reduces to the Bellman optimality
equation. Thus, for all s ∈ S, V At

M̂K

(s) = Ṽ At

M̂t

(s). Hence,

with probability at least 1− δ:

V At

M (st) ≥ Ṽ At

M̂t

(st)− 3ǫ1.

Since At is greedy with respect to Q̃M̂t
, for all s ∈ S, and

all policies π, Ṽ At

M̂t

(s) ≥ Ṽ π
M̂t

(s). Let π∗ denote the optimal

policy for M . Thus, with probability at least 1− δ:

V At

M (st) ≥ Ṽ π∗

M̂t
(st)− 3ǫ1.

Let M̂x = (S,A, R̂x, T̂x, γ) be an MDP where R̂x and

T̂x are maximum likelihood estimates of R and T at some
timestep x ≥ t, such that all (s, a) ∈ S × A are in Kx.
Then, Lemma 2 implies that for all s ∈ S and all policies
π, Ṽ π

M̂t
(s) ≥ Ṽ π

M̂x
(s). Equation 4 reduces to the Bellman

optimality equation for all (s, a) ∈ Kx, implying that for

all s ∈ S, and for all policies π, Ṽ π
M̂x

(s) = V π
M̂x

(s). Conse-

quently, with probability at least 1− δ:

V At

M (st) ≥ V ∗
M̂x

(st)− 3ǫ1.

Given our choice of m, an application of Lemma 15 of
[13] yields that with probability at least 1 − δ, V ∗

M̂x
(s) ≥

V ∗
M (s) − ǫ1, for all s ∈ S. Thus, with probability at least

1− δ:
V At

M (st) ≥ V ∗
M (st)− 4ǫ1.

Setting ǫ1 = ǫ/4 yields the desired result.

4. EXPERIMENTS
We evaluate the empirical performance of V-MAX on two

tasks. As comparisons, we use R-MAX and MoR-MAX,
because of their close relationship to V-MAX, and MBIE,
because of its strong empirical track record: no other PAC-
MDP method has been shown to substantially outperform
it. On the contrary, it has greatly outperformed E3 [9], R-
MAX, and Delayed Q-Learning [13] and matched the per-
formance of Optimistic Initial Model (OIM) [18].9

Since our goal is to show that V-MAX advances the PAC-
MDP state of the art, we restrict our analysis to PAC-MDP

8While lemma 15 of [13] is stated for R-MAX, the same
result holds for V-MAX, from an application of Lemmas 13
and 14 of [13] in lemma 2 of [16].
9OIM also has substantially weaker sample complexity
bounds than R-MAX, V-MAX, and MBIE.

algorithms. Comparisons to efficient-exploration algorithms
developed under other frameworks, such as regret [5] and
knows what it knows (KWIK) [11], are left to future work.

Following [14] and [16], we use cumulative (undiscounted)
reward as our evaluation metric. Even though maximising
the cumulative reward is not the goal of PAC-MDPmethods,
it is a suitable metric for our experiments because it shows
that V-MAX can accrue more reward while matching the
sample complexity of R-MAX.

For each algorithm, performance is affected by the value
of its critical parameters: ǫ1 and m for R-MAX, MoR-MAX,
and V-MAX and ǫ1 and C (where β = CVmax) for MBIE.
For all algorithms, we set ǫ1 to 0.01, at which VI finds the
optimal policy. For each MDP, we first measure the aver-
age cumulative reward after 25,000 timesteps over 100 runs
on each MDP across a large range of values for m and C.
Using the results, we select a smaller range of parameter val-
ues likely to perform well. For our final results, we measure
the average cumulative reward over 1000 runs across this
selected range. For more timesteps, our results are qualita-
tively similar. For significantly fewer timesteps, none of the
algorithms learn the optimal policy, thus biasing the results.

For each algorithm, if two or more actions have the same
value, the agent takes the action that has been tried fewer
times. Remaining ties are broken by choosing actions in as-
cending order, e.g., action 0 is chosen before action 1. This
action-selection method is a simple way to ensure all algo-
rithms try lower-valued actions before discovering the opti-
mal action in the highest-valued state, without giving any
algorithm an advantage.

Figure 1: SixArms and Anchor MDPs. Each vertex de-

notes a state and each edge a state transition. A tuple

(a, p, r) indicates that action a causes the given transi-

tion with probability p and reward r and causes a self-

transition with probability 1− p and reward 0.

4.1 SixArms
The SixArms MDP in Figure 1 (top) was used to show

that MBIE can outperform R-MAX, which in turn outper-
forms both E3 and ǫ-greedy exploration [14, 16]. Thus, it is
an important benchmark test for V-MAX. The agent starts
in state 0 and chooses between 6 actions, each of which may



Figure 2: Average cumulative reward (left) and average reward per timestep (right) on SixArms.
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lead to states 1-6. Once there, the agent can remain and
receive a reward at each timestep or return to state 0. The
optimal policy is to try to reach state 6 and then repeatedly
choose action 5. Since the probability of reaching state 6 is
small, the agent typically must try each action several times
to discover the optimal policy. The discount factor is 0.95.

Figure 2 (left) shows the average cumulative reward over
a range of parameter values for each algorithm (C for MBIE,
andm for the other algorithms). V-MAX vastly outperforms
R-MAX and MoR-MAX and matches the performance of
MBIE. In addition, Figure 2 (right), which shows the average
reward per timestep for each algorithm at optimal parameter
values, demonstrates that V-MAX is the only algorithm able
to consistently achieve the maximum reward per timestep.
MBIE obtains similar cumulative reward by gaining higher
rewards in the initial phases of the experiment.

Note that MoR-MAX, which has the strongest sample
complexity bounds, has the worst empirical performance.
To see why, consider state 0. A problematic scenario for
R-MAX, MoR-MAX, and V-MAX is where the agent never
transitions from state 0 to any of the states 2 and above.
Then, it will forever assume that, in state 0, all actions
other than 0 cause a self-transition. However, to avoid this
scenario, R-MAX and V-MAX need only ensure with high
probability that this does not happen in the first m samples
for each state-action pair. By contrast, MoR-MAX repeat-
edly collects batches of m samples per state-action pair and
discards them when new samples lead to a lower value for
that pair. Consequently, MoR-MAX must ensure with high
probability that this scenario does not occur on any batch
of m samples. In general, this requires higher values of m,
yielding too much initial exploration.

Overall, results on SixArms show that V-MAX can match
the empirical performance of MBIE while maintaining the
stronger theoretical guarantees of R-MAX. Furthermore, Fig-
ure 2 (left) shows that, as long as m is set conservatively, V-
MAX’s performance is invariant to it, essentially eliminating
the need for parameter tuning. In contrast, MBIE requires
careful tuning of C to match V-MAX’s performance.

4.2 Anchor
In SixArms, MBIE accrues more reward early in learning

by more often choosing relatively good, but suboptimal, ac-
tions in states 1-5. However, in this MDP, exploiting such
local optima has little cost, since the agent can at any time
deterministically return to state 0. Therefore, we hypothe-
size that MBIE will perform poorly in MDPs where choos-
ing locally optimal actions significantly impedes the agent’s
progress towards better state-action pairs.

To test this hypothesis, we use the Anchor MDP shown
in Figure 1 (bottom). The agent starts in state 0 and can
choose, in states 0-2, to remain and receive a sub-optimal
reward or try to reach state 3, where maximal reward is
available. Since the agent initially chooses actions in as-
cending order, it must try each action in each states 0-2 at
least once before discovering that action 3 in state 3 yields
reward Rmax = 100. The discount factor is 0.99.

The optimal policy is to choose action 3 in each state.
However, in each state 0-2, action 3 is the only one that
produces no reward. Furthermore, all actions in these states
usually produce self-transitions, with only action 3 tran-
sitioning to state 3 with low probability. Consequently,
to determine the optimal policy efficiently, an agent must
avoid being distracted by the sub-optimal rewards offered
by actions 0-2 and continue to attempt action 3. Unlike in
SixArms, the agent cannot deterministically escape the local
optima (in states 0-2), making efficient exploration crucial.

Figure 3 (left) shows the average cumulative reward for
each algorithm on Anchor. As in SixArms, V-MAX sub-
stantially outperforms both R-MAX and MoR-MAX. How-
ever, it also substantially outperforms MBIE, supporting the
hypothesis that MBIE is vulnerable to distraction by local
optima. In addition, as in SixArms, the performance of
V-MAX is invariant for large choices of m, whereas MBIE
again requires careful tuning of C.

In Figure 3 (left), the performance of both R-MAX and
MoR-MAX oscillates as m changes. We suspect this is a
result of R-MAX and MoR-MAX periodically cycling be-
tween the states 0 to 2 during exploration. Since m affects
how many timesteps they spend in each of these states, per-
formance can increase for values of m in which time expires
just before the agent cycles to the low reward states 0 and/or
1. However, since increasing m increases exploration, the
performance of R-MAX and MoR-MAX decreases overall,
despite the oscillations, as m is increased beyond 100.

Figure 3 (right) shows the average reward per timestep
in Anchor. Only V-MAX consistently accrues maximal re-
ward per timestep. Although MBIE gets close, it takes sig-
nificantly longer than V-MAX to do so. In addition, both
R-MAX and MoR-MAX remain in states 1 and 2 for a long
time, constantly receiving the sub-optimal rewards of 40 and
60, respectively. Though the effect is less extreme for MBIE,
its performance also dips in the same places.

Overall, the SixArms and Anchor experiments demon-
strate that 1) V-MAX can greatly outperform both R-MAX
and MoR-MAX, 2) V-MAX can match MBIE and, on prob-
lems with multiple local optima, substantially outperform
it, and 3) V-MAX, whose performance is invariant for large



Figure 3: Average cumulative reward (left) and average reward per timestep (right) on Anchor.
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m, essentially obviates the need for parameter tuning while
MBIE’s performance is sensitive to the choice of C.

5. FUTURE WORK AND CONCLUSIONS
The development of V-MAX creates several opportunities

for future work. We hope to extend our theoretical results
by proving that, for the same m, V-MAX strictly dominates
R-MAX on all MDPs in that it never makes an exploratory
mistake that R-MAX does not make, given the same R̂ and
T̂ . In addition to sample complexity, per-timestep computa-
tional complexity may also be important in large MDPs. In
such cases, techniques for reducing the computational cost
of PAC-MDP algorithms [4, 12] may benefit V-MAX as well.
Also, extensions to R-MAX that exploit problem structure,
such as Fitted R-MAX [6], R-MAXQ [7] and RAM-Rmax
[10], could be adapted to use V-MAX instead. Lastly, since
we suspect that the core idea of tempered optimism is ac-
tually orthogonal to the quality of the bounds, it could be
used to derive other PAC-MDP methods, e.g., MoV-MAX,
with strong empirical performance and even tighter bounds.

Overall, the theoretical and empirical results presented in
this paper demonstrate that V-MAX is a significant step for-
ward for PAC RL, since it can outperform state-of-the-art
PAC-MDP algorithms while maintaining attractive theoret-
ical guarantees. In addition, these guarantees show for the
first time that tempered optimism is possible without com-
promising sample complexity bounds. Finally, our experi-
ments suggest that V-MAX requires little or no parameter
tuning. Consequently, we hope that it will help make PAC-
MDP algorithms more accessible for general usage.
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