
Computing Convex Coverage Sets for
Multi-Objective Coordination Graphs

Diederik M. Roijers1, Shimon Whiteson1, and Frans A. Oliehoek2

1 Informatics Institute, University of Amsterdam, the Netherlands
{d.m.roijers,s.a.whiteson}@uva.nl

2 Dept. of Knowledge Engineering, Maastricht University, the Netherlands
frans.oliehoek@maastrichtuniversity.nl

Abstract. Many real-world decision problems require making trade-offs between
multiple objectives. However, in some cases, the relative importance of the ob-
jectives is not known when the problem is solved, precluding the use of single-
objective methods. Instead, multi-objective methods, which compute the set of
all potentially useful solutions, are required. This paper proposes new multi-
objective algorithms for cooperative multi-agent settings. Following previous ap-
proaches, we exploit loose couplings, as expressed in graphical models, to coordi-
nate efficiently. Existing methods, however, calculate only the Pareto coverage set
(PCS), which we argue is inappropriate for stochastic strategies and unnecessar-
ily large when the objectives are weighted in a linear fashion. In these cases, the
typically much smaller convex coverage set (CCS) should be computed instead.
A key insight of this paper is that, while computing the CCS is more expensive
in unstructured problems, in many loosely coupled settings it is in fact cheaper
to compute because the local solutions are more compact. We propose convex
multi-objective variable elimination, which exploits this insight. We analyze its
correctness and complexity and demonstrate empirically that it scales much better
in the number of agents and objectives than alternatives that compute the PCS.

Keywords: Multi-agent systems, Multi-objective optimization, Game theory, Co-
ordination graphs

1 Introduction

In cooperative multi-agent systems, agents must coordinate their behavior in order to
maximize their common utility. Key to making coordination efficient is exploiting the
loose couplings common to such tasks: each agent’s actions directly affect only a sub-
set of the other agents. Such independence can be captured in a graphical model called
a coordination graph, and exploited using methods such as variable elimination [8,
9]. This paper considers how to address cooperative multi-agent systems in which the
agents have multiple objectives, i.e., the utility is vector-valued. Many real-world prob-
lems have multiple objectives, e.g., maximizing performance of a computer network
while minimizing power consumption [16].

The presence of multiple objectives does not in itself necessitate special solution
methods. In many cases, the vector-valued utility function can be scalarized, i.e., con-
verted to a scalar function. Subsequently, the original problem may be solvable with
existing single-objective methods. However, this approach is not applicable when the

2 Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek

parameters of the scalarization are not known in advance. For example, consider a
company that produces different resources whose market prices vary. If there is not
enough time to re-solve the decision problem for each price change, then we need multi-
objective methods that compute a set of solutions optimal for all possible scalarizations.

This paper focuses on one-shot decision-making problems, for which several meth-
ods [5, 6, 12] have been developed. For instance Rollón [14] introduces an algorithm
that we refer to as multi-objective variable elimination (MOVE), which solves multi-
objective coordination graphs by iteratively solving local problems to eliminate agents
from the graph. However, these methods all compute the Pareto coverage set (PCS),
i.e., the Pareto front, of deterministic strategies.

In this paper, we argue that the PCS is often not the most appropriate solution con-
cept. In the common case where the scalarization function is linear, the PCS is typically
much larger than necessary. In addition, when joint strategies can be stochastic, the PCS
is inadequate, even if the scalarization function is nonlinear.

To address these issues, we propose new methods that compute an alternative solu-
tion concept, the convex coverage set (CCS). The CCS is the exact solution set when the
scalarization function is linear, and often much smaller than the PCS. In addition, it is
a sufficient set of deterministic strategies from which to construct all optimal stochastic
strategies. A key insight of this paper is that, while the CCS is more costly to compute
than the PCS for nongraphical problems, it is often less costly to compute for loosely
coupled problems because the local CCSs are much smaller than the local PCSs.

Thus, the main contribution of this paper is that it shows—both theoretically and
empirically—that large speedups can be obtained when solving multi-objective coor-
dination graphs by using the CCS as the solution concept. In particular, we 1) analyti-
cally show that the local CCSs can be much smaller than local PCSs, 2) present convex
MOVE (CMOVE), an extension to MOVE that efficiently computes the CCS, 3) analyze
the correctness and complexity of CMOVE in terms of the size of the coverage sets, and
4) demonstrate empirically that CMOVE scales much better than previous algorithms.3

2 Multi-Objective Coordination Graphs

We formalize our problem setting as a multi-objective extension to coordination graphs
[8]. In particular, a multi-objective coordination graph (MO-CoG) is a tuple 〈D,A,U〉:
D = {1, ..., n} is the set of n agents; A = Ai × ... ×An is the joint action space (the
Cartesian product of the finite action spaces of all agents) and U =

{
u1, ...,uρ

}
is the

set of ρ, d-dimensional local payoff functions. The total team payoff is the (vector) sum
of local payoffs, with a limited scope e, i.e., the subset of agents that participate in it:
u(a) =

∑ρ
e=1 u

e(ae). We use ui to indicate the value of the i-th objective.
A team strategy π is a probability distribution over joint actions A → [0,1]. In

general strategies are stochastic. Every joint action gets assigned a probability 0 ≤
π(a) ≤ 1, and the probabilities for all joint actions together sum to 1,

∑
a∈A π(a) = 1.

The value of a strategy uπ is the expected (vector-valued) utility of the strategy uπ =∑
a∈A π(a)u(a). A deterministic strategy is a special case of a strategy in which one

3 A preliminary version of this work was presented in [13].

Computing Convex Coverage Sets for Multi-Objective Coordination Graphs 3

joint action a has probability 1 and the rest probability 0. We refer to the set of all
vectors for all possible strategies as V .4

 3 1 2 3

u u 1 2

 1 2 1

f

 4

a b c

f

f

 3 1

Fig. 1: (a) A MO-CoG factor graph, (b) after eliminating agent 3 by adding f3, and (c) after
eliminating agent 2 by adding f4.

The decomposition of u(a) into local payoff functions can be represented as a factor
graph containing agents (variables) and local payoff functions (factors), with edges
connecting local payoff functions to the agents in their scope. Figure 1a shows a factor
graph for the payoff function u(a) =

∑ρ
e=1 u

e(ae) = u1(a1, a2) + u2(a2, a3).
We assume there exists a scalarization function f that converts uπ to a scalar pay-

off uπw = f(uπ,w). This function is parameterized by a weight vector w, which is
unknown when the MO-CoG is solved but known when the agents must select a strat-
egy. The solution to a MO-CoG is the coverage set (CS) [2], i.e., all strategies π and
associated values uπ that are optimal for some w:

CS(V) =
{
uπ : uπ∈V ∧ ∃w∀π′ uπw ≥ uπ

′

w

}
.

For convenience, we assume that the coverage set contains both the values and asso-
ciated strategies. What the CS looks like depends on what strategies are allowed, and
what we know about the scalarization function.

A minimal assumption about the scalarization function is that it is monotonically
increasing in all objectives (i.e., if the value for one objective increases while the val-
ues for the other objectives stay constant, the scalarized value cannot go down). This
assumption ensures that objectives are actually objectives, i.e., having more of them is
better. In this case, the CS is called the Pareto coverage set (PCS) or Pareto front:

PCS(V) =
{
uπ : uπ∈V ∧ ¬∃π′ uπ

′
�P uπ

}
,

where�P indicates Pareto dominance (P-dominance): greater or equal in all objectives
and strictly greater in at least one objective. Note that computing P-dominance5 requires
only comparing pairs of vectors [7].

A highly prevalent scenario is that, in addition to knowing that the scalarization
function is monotonically increasing, we also know that it is linear, f = w ·uπ . This is

4 MO-CoGs are similar to the multi-objective weighted constraint satisfaction problems (MO-
WCSPs) considered in [15]. However, MO-WCSPs consider only deterministic strategies and
bounded, integer-valued payoffs. In addition, they consider constraints, the absence of which
in Mo-CoGs has important implications for our complexity analysis (see Section 6).

5 P-dominance is often called pairwise dominance in the POMDP literature.

4 Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek

the case in, e.g., clinical trials [11] or resource gathering [1]. In this case, all we need is
the convex coverage set (CCS):6

CCS(V) =
{
uπ : uπ∈V ∧ ∃w∀π′ w · uπ ≥ w · uπ

′
}
.

Vectors not in the CCS are C-dominated. In contrast to P-domination, C-domination
cannot be tested for with pairwise comparisons because it can (in the setting of deter-
ministic strategies) take two or more vectors to C-dominate a vector: a vector can be
dominated over the entire weight-space, but not necessarily always by the same vector,
as indicated in Figure 2 (right). The CCS contains all strategies that could be optimal
for some weight in a linear scalarization, i.e., all strategies that are not C-dominated.
Anything in the PCS but not in the CCS is C-dominated and cannot be useful given
the assumption of a linear scalarization function. Because we assume the linear scalar-
ization is monotonically increasing, we can represent it without loss of generality as a
convex combination of the objectives: i.e., the weights are positive and sum to 1. Since
such linear functions are a subset of monotonically increasing functions, the CCS is a
subset of the PCS.

Many multi-objective methods, e.g., [5, 6, 12, 14] simply assume that the PCS is
the appropriate solution set. However, which CS one should use depends what one
can assume about how utility is defined with respect to the multiple objectives, i.e.,
which scalarization function is used to scalarize the vector-valued payoffs. We argue
that in many situations, one can assume that the scalarization function will be linear.
For example, when the different objectives are products and/or resources that need to
be bought and sold on a market, every objective will be associated with a current unit
price on the market, leading to linear trade-offs. In such cases one should use the CCS.

In addition, the choice of solution concept also depends on whether only determinis-
tic strategies are considered or whether stochastic ones are also permitted. We consider
this issue in the next section.

3 Deterministic versus Stochastic Strategies

When we allow only deterministic strategies, i.e., one joint action is chosen with prob-
ability 1, the PCS and CCS can be quite different. In Figure 2 (left) the values of de-
terministic strategies are represented as points in value-space, for a two-objective MO-
CoG. The strategyA is in both the CCS and the PCS.B, however, is in the PCS, but not
the CCS, because there is no weight for which a linear scalarization of B’s value would
be optimal, as shown in Figure 2 (right), where the scalarized value of the strategies are
plotted as a function of the weight on the first objective (w2 = 1− w1). C is in neither
the CCS nor the PCS: it is Pareto-dominated by A. We refer to the deterministic PCS
as the PCS of deterministic strategies, i.e., the PCS when only deterministic strategies
are allowed. We refer similarly to the deterministic CCS.

As discussed in Section 2, stochastic strategies are linear combinations of determin-
istic strategies. The value of a stochastic strategy is thus also a linear combination of the

6 The convex coverage set is often called the convex hull. We avoid this term because it is
imprecise: the convex hull (a term from graphics) is a superset of the convex coverage set.

Computing Convex Coverage Sets for Multi-Objective Coordination Graphs 5

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

u1

u 2

B
A

C

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

A

B

C

Fig. 2: The CCS (filled circles at left, and solid black lines at right) versus the PCS (filled cir-
cles and squares at left, and both dashed and solid black lines at right) for twelve random 2-
dimensional payoff vectors.

value vectors of the deterministic strategies it is a mixture of: uπ =
∑

a∈A π(a)u(a).
Therefore, the optimal values (for both linear and nonlinear monotonically increasing
scalarization functions [17]) lay on the convex upper surface spanned by the strate-
gies in the deterministic CCS, as indicated by the black lines in Figure 2 (left). In the
stochastic case, the PCS and CCS are thus identical. Furthermore, the values for the
stochastic PCS/CCS can be constructed from the values in the deterministic CCS. The
stochastic PCS/CCS is thus very different from the deterministic PCS and the determin-
istic CCS. While the deterministic PCS and deterministic CCS contain finite numbers
of strategies, the stochastic PCS/CCS contains inifinitely many strategies.

However, when we know that the scalarization function is linear, we do not actually
need the entire stochastic CCS: for each weight, there exists a deterministic strategy that
is optimal. For every optimal strategy in the stochastic CCS there exists a deterministic
strategy that is just as good, because a linear combination of the values of two or more
deterministic strategies never yields a larger scalarized utility for any w, than one of
the constituent deterministic strategies: w · uπ =

∑
a π(a)(w · u(a)). By contrast,

when the scalarization function is monotonically increasing (but not necessarily linear),
the full stochastic PCS is required. This is a problem, because it contains infinitely
many strategies. However, all values on the stochastic PCS can be attained by making
a stochastic mixture from the strategies on the deterministic CCS [17]. Note that these
mixtures (all points on the black lines in Figure 2 (left)) dominate all points, like B,
that are in the deterministic PCS but not the deterministic CCS. Therefore the CCS can
be used to create all possible values on the PCS of stochastic strategies, and is more
compact than the deterministic PCS.

It might of course be the case that the problem setting is restricted to deterministic
solutions. For example in the medical domain [11], it can be unethical to treat patients
based on a stochastic strategy. However, in most settings, stochasticity is permissable
and the aim is to optimize the expected return.

Therefore, in this paper we present methods for computing the strategies in the
deterministic CCS because it is an appropriate solution concept, not only when the
scalarization function is linear, but also any time stochastic strategies are considered,
even if the scalarization function is nonlinear, as shown in Table 1. For brevity, in the
rest of the paper, we refer to the deterministic CCS as simply the CCS, to deterministic
strategies as joint actions, and to the set of values of all deterministic strategies as V .

6 Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek

Linear scalarization functions Monotonically increasing
scalarization functions

Deterministic
strategies

Deterministic CCS Deterministic PCS

Stochastic
strategies

Deterministic CCS Deterministic CCS

Table 1: Motivating scenarios.

4 Nongraphical Convex Approach

One way to compute the CCS, is to ignore the graphical structure, calculate the set of all
possible payoffs for all joint actions V , and prune away the C-dominated joint actions.
To determine the set V , we first translate the problem to a set of value set factors (VSFs),
F . Each VSF f is a function mapping local joint actions to sets of payoff vectors.
Initially, the VSFs are constructed from the local payoff functions such that fe(ae) =
{ue(ae)}, i.e., each VSF maps a local joint action to the singleton set containing only
that action’s local payoff. We can now define V in terms of F using the cross-sum
operator over all VSFs in F for each joint action a: V(F) =

⋃
a

⊕
fe∈F f

e(ae).7 The
CCS can now be calculated by applying a pruning operator CPrune (described below)
that removes all C-dominated vectors from a set of value vectors, to V:

CCS(V(F)) = CPrune(V(F)) = CPrune(
⋃
a

⊕
fe∈F

fe(ae))

The CCS contains the all the vectors that are maximizing for some w:

∀a
(
∃w s.t. a = arg max

a∈A
w · u(a)

)
=⇒ u(a) ∈ CCS(V(F)) (1)

This is exactly the same problem as in partially observable Markov decision processes
(POMDPs) [7], where the optimal α-vectors (corresponding to the value vectors uπ)
for all beliefs (corresponding to the weight vectors w) must be found. Therefore, we
can use pruning operators from the POMDP literature. Algorithm 1 describes our im-
plementation of CPrune, which is based on [7] with the modification that, in order to
improve runtime guarantees, we first pre-prune to the PCS using the PPrune operator
shown in Algorithm 2, which computes the (deterministic) PCS in O(d|Vdet||PCS|)
by running pairwise comparisons.

Next, we maintain a partial CCS (U∗), which is constructed as follows: we select a
random vector u from the set of candidate vectors U ′and test whether there is a weight
vector w for which it is better than the vectors in U∗ by solving the linear program
shown in Algorithm 3. If so, we find the best vector v for w in U ′ and move v to
U∗. If there is no weight for which u is better, we remove u from U ′ (because it is
C-dominated).

The runtime of the CPrune operator we use isO(d|Vdet||PCS|+|PCS|P (d|CCS|)),
where P (d|CCS|) is a polynomial in the size of the CCS and the number of objectives

7 The cross-sum of two sets A and B contains all possible vectors that can be made by summing
one payoff vector from each set: A⊕B = {a+ b : a ∈ A ∧ b ∈ B}.

Computing Convex Coverage Sets for Multi-Objective Coordination Graphs 7

d, which is the runtime of the linear program that tests for C-domination (Algorithm 3).

Algorithm 1: CPrune(U)

U ′ = PPrune(U)
U∗ = ∅
while notEmpty(U ′) do

select random u from U ′
w← findWeight(u,U∗)
if w=null then

remove u from U ′

else
move best v for weight w from U ′ to
U∗

return U∗

Algorithm 2: PPrune(U)
U∗ ← ∅
while U 6= ∅ do

u← the first element of U
foreach v ∈ U do

if v �P u then
u ← v // Continue with v in-
stead of u

Remove u, and all vectors Pareto-
dominated by it, from U
Add u to U∗

return U∗

5 Exploiting Loose Couplings

In the previous section, we showed that, for the nongraphical approach, computing the
CCS is more expensive than computing the PCS. In this section, we show that, by
exploiting the MO-CoG’s graphical structure, we can often compute the CCS much
more efficiently. In particular, we solve the MO-CoG as a series of local subproblems,
by iteratively eliminating agents, and thereby manipulating F . The key idea is, for each
agent elimination, to compute a local CCS (LCCS), pruning away as many vectors
as possible at the lowest possible level. This minimizes the number of payoff vectors
that are calculated at the global level, which can greatly speed computation. Here we
describe the elim operator for eliminating agents used by CMOVE in Section 6.

To eliminate agent i, we define Fi, the set of relevant VSFs with i in scope. Then,
for each possible local joint action of ni, agent i’s neighbors, we define an LCCS
that contains the payoffs of the C-undominated responses of agent i to the given lo-
cal joint action of ni. In other words, it is the CCS of the subproblem that arises
when considering only Fi and fixing a specific local joint action of ni. To compute
the LCCS, we must consider all payoff vectors and prune the dominated ones. If we
fix all actions in ani except ai, the set of all payoff vectors for this subproblem is:
Vi(Fi,ani

) =
⋃
ai

⊕
fe∈Fi

fe(ae), where ae is formed from ai and the appropriate
part of ani

. The corresponding LCCS is thus the undominated subset of Vi(Fi,ani
):

LCCSi(Fi,ani
) = CCS(Vi(Fi,ani

)).

Using these LCCSs we can define a new VSF, fnew conditioned on the actions of
the agents in ni: ∀ani

fnew(ani
),LCCSi(Fi,ani

). The elim operator replaces the
VSFs in Fi in F by this new factor:

elim(F ,i) = (F \ Fi) ∪ {fnew(ani
)}.

Theorem 1. elim preserves the CCS: ∀i ∀F CCS(V(F)) = CCS(V(elim(F ,i))).

Proof sketch. The linear scalarization function distributes over the local payoff func-
tions: w · u(a) = w ·

∑
e u

e(ae) =
∑
ew · ue(ae). Thus, when eliminating agent

8 Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek

Algorithm 3: findWeight(u,U)

max
x,w

x

subject to w · (u− u′)− x ≥ 0, ∀u′ ∈ U
d∑

i=1

wi = 1

if x > 0 return w else return null

Algorithm 4: elim(F ,i, prune1, prune2)

U∗, ni ← ∅, set of neighboring agents of i
Fi ← the subset of f functions involving i
fnew(ani)← a new factor
foreach ani ∈ Ani do

fnew(ani)← LCCSi(Fi,ani , prune1,
prune2).

F ← F \ Fi ∪ {fnew}
return V∗

i, we divide the set of VSFs into non-neighbors (nn), in which agent i does not par-
ticipate, and neighbors (ni) such that: w · u(a) =

∑
e∈nnw · ue(ae) +

∑
e∈niw ·

ue(ae). Now, following (1), the CCS contains maxa∈Aw · u(a) for all w. elim
pushes this maximization in: maxa∈Aw · u(a) = maxa−i∈A−i

∑
e∈nnw · ue(ae) +

maxai∈Ai

∑
e∈niw · ue(ae). elim replaces the agent-i factors by a term fnew(ani

)
that satisfies w · fnew(ani

) = maxai
∑
e∈ni

w · ue(ae) per definition, thus preserving
the maximum for all w and thereby preserving the CCS.

Since LCCS⊆ LPCS⊆ Vi, where LPCS is the local PCS, elim not only reduces the
problem size, it can do so more than is possible when considering only P-dominance.
Consequently, focusing on the CCS can lead to considerable speedups.

6 Convex MOVE
We now present Convex Multi-Objective Variable Elimination (CMOVE), which im-
plements elim using pruning operators, iteratively applies it to compute the CCS, and
outputs the correct joint actions for each payoff vector in the CCS. It is an extension to
Rollón’s Pareto-based MOVE (which we denote PMOVE) [14].

Like PMOVE, CMOVE eliminates agents in sequence, solving local subproblems
along the way. The most important difference is that CMOVE computes the CCS, which
can lead to smaller subproblems and thus much better computational efficiency. In ad-
dition, we identify three places where pruning can take place, yielding a more flexible
algorithm with different trade-offs. Finally, we use a tagging scheme instead of the
backwards pass employed by Rollón, which greatly simplifies the algorithm without
effecting its runtime.

CMOVE is also related to multi-objective methods for GAI networks [6] and influ-
ence diagrams [12]. However, like PMOVE, these methods compute only the PCS.

6.1 Algorithm

We first present an abstract version of CMOVE, which leaves the pruning operators un-
specified. The choice of these operators leads to specific variants with different trade-
offs between pruning effort and local problem sizes. As before, CMOVE first translates
the problem into a set of vector-set factors (VSFs), F . Next, it iteratively eliminates
agents using elim. The elimination order can be determined using techniques devised
for regular VE [10]. Algorithm 4 shows our implementation of elim, parameterized

Computing Convex Coverage Sets for Multi-Objective Coordination Graphs 9

with two pruning operators, prune1 and prune2, corresponding to two different prun-
ing locations inside LCCSi(Fi,ani

, prune1, prune2), which is implemented as fol-
lows. First we define a new cross-sum-and-prune operator A⊕̂B = prune1(A ⊕ B),
which we can apply sequentially in the definition of the LCCS operator:

LCCSi(Fi,ani
, prune1, prune2) = prune2(

⋃
ai

⊕̂
fe∈Fi

fe(ae)).

Applying prune1 to each cross-sum of two sets, via the ⊕̂ operator, leads to incremental
pruning [4]; prune2 prunes at a coarser level, after the union.

CMOVE applies elim iteratively until no agents remain, resulting in the CCS. An
example of how this works is presented in Section 6.3.

Pruning can also be applied at the very end, after all agents have been eliminated,
which we call prune3. In increasing level of coarseness, we thus have three pruning
operators: incremental pruning (prune1), pruning after the union over actions of the
eliminated agent (prune2), and pruning after all agents have been eliminated (prune3).

There are several ways to implement the pruning operators that lead to correct in-
stantiations of CMOVE. One can use both PPrune (Algorithm 2) as well as CPrune

(Algorithm 1) as long as either prune2 or prune3 is CPrune. (Note that if prune2
computes the CCS, prune3 is not necessary.) In this paper, we consider Basic CMOVE,
which does not use prune1 and prune3 and only prunes at prune2 using CPrune, as
well as Incremental CMOVE, which uses CPrune at both prune1 and prune2.

6.2 Tagging Scheme
Once CMOVE computes the CCS, we need to retrieve the joint actions that generate
these values. In single-objective VE, this is typically done with a backwards pass that
constructs a joint action by iterating through the eliminated agents in reverse order.
However, doing so in the multi-objective setting is more complex, because the partial
joint actions in the LCCSs need to be matched with the different values in the CCS
instead of just backtracking a single optimal solution that automatically belongs to the
optimal value. Consequently, the backwards pass used in Rollón’s implementation of
PMOVE [14] is fairly complex. However, we can obviate the need for a backwards pass
by using a tagging scheme: when eliminating an agent i, CMOVE tags all the vectors
in the LCCSs with the appropriate action of this agent. The payoff vectors are stored as
a tuple containing both the payoff vector and a partial joint action. CMOVE combines
the tags of agent i with the tags already present in Fi. For example, in Figure 1, factor
f3 contains payoff vectors tagged with an action of agent 3 and factor f4 contains
tags with actions of both agents 2 and 3. Doing this for every agent in the elimination
sequence builds the complete joint action for each payoff vector in the CCS. Replacing
the backwards pass with this tagging scheme reduces by about half the number of lines
of pseudocode needed to describe the algorithm.

6.3 Example
Consider the example in Figure 1a, using the payoffs defined by Table 2. First, CMOVE
creates the VSFs f1 and f2 from u1 and u2 (not shown). To eliminate agent 3, it creates
a new factor f3(a2) by computing the LCCSs for every a2 and tagging each element
of each set with the action of agent 3 that generates it. For ȧ2, CMOVE first generates

10 Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek

the set {(3,1)ȧ3 , (1,3)ā3}. Since both of these vectors are optimal for some w, neither
is removed by pruning and thus f3(ȧ2) = {(3,1)ȧ3 , (1,3)ā3}. For ā2, CMOVE first
generates {(0,0)ȧ3 , (1,1)ā3}. CPrune determines that (0,0)ȧ3 is dominated and conse-
quently removes it, yielding f3(ȧ2) = {(1,1)ā3}. CMOVE then adds f3 to the graph
and removes f2 and agent 3, yielding the factor graph shown in Figure 1b.

ȧ2 ā2

ȧ1 (4,1) (0,0)
ā1 (1,2) (3,6)

ȧ3 ā3

ȧ2 (3,1) (1,3)
ā2 (0,0) (1,1)

Table 2: The two-dimensional pay-
off matrices for u1(a1, a2) (left) and
u2(a2, a3) (right).

CMOVE then eliminates agent 2 by combining
f1 and f3 to create f4. For f4(ȧ1), CMOVE must
calculate the LCCS of:

(f1(ȧ1,ȧ2)⊕ f3(ȧ2)) ∪ (f1(ȧ1,ā2)⊕ f3(ā2)).

The first cross sum is {(7,2)ȧ2ȧ3 , (5,4)ȧ2ā3} and the
second is {(1,1)ā2ā3}. Pruning their union yields
f4(ȧ1) = {(7,2)ȧ2ȧ3 , (5,4)ȧ2ā3}. Similarly, for
ā1 taking the union yields {(4,3)ȧ2ȧ3 , (2,5)ȧ2ā3
, (4,7)ā2ā3}, of which the LCCS is f4(ā1) = {(4,7)ā2ā3}. Adding f4 results in the
factor graph in Figure 1c.

Finally, CMOVE eliminates agent 1. Since there are no neighboring agents left, Ai
contains only the empty action. CMOVE takes the union of f4(ȧ1) and f4(ā1). Since
(7,2){ȧ1ȧ2ȧ3} and (4,7){ā1ā2ā3} dominate (5,4){ȧ1ȧ2ā3}, the latter is pruned, leaving
CCS = {(7,2){ȧ1ȧ2ȧ3}, (4,7){ā1ā2ā3}}.

6.4 Analysis
We now analyse the correctness and complexity of CMOVE.

Theorem 2. MOVE correctly computes the CCS.

Proof. The proof works by induction on the number of agents. The base case is the
original MO-CoG, where each fe(ae) from F is a singleton set. Then, since elim

preserves the CCS (see Theorem 1), no necessary vectors are lost. When the last agent
is eliminated, only one factor remains; since it is not conditioned on any agent actions
and is the result of an LCCS computation, it must contain one set: the CCS.

Theorem 3. The computational complexity of CMOVE is

O(n |Amax|wa (wf R1 +R2) +R3), (2)

where wa is the induced agent width, i.e., the maximum number of neighboring agents
(connected via factors) of an agent when eliminated, wf is the induced factor width,
i.e., the maximum number of neighboring factors of an agent when eliminated, and R1,
R2 and R3 are the cost of applying the prune1, prune2 and prune3 operators.

Proof. CMOVE eliminates n agents and for each one computes a value (set) in a new
payoff function for each joint action of the eliminated agent’s neighbors. CMOVE com-
putes O(|Amax|w) fields per iteration, calling prune1 for each adjacent factor, and
prune2 once after taking the union over actions of the eliminated agent. prune3 is
called only once, after eliminating all agents.

Computing Convex Coverage Sets for Multi-Objective Coordination Graphs 11

Thus, unlike nongraphical approaches, CMOVE is exponential only in the induced
width, not the number of agents. In this respect, our results are similar to those for
PMOVE [14]. However, those earlier complexity results do not make the effect of prun-
ing explicit. Instead, the complexity bound makes use of problem constraints, which
limit the total number of possible different value vectors. However, in practice such
bounds are very loose or even impossible to define. Therefore, we instead give a de-
scription of the computational complexity that makes explicit the dependence on the
effectiveness of pruning. Even though such complexity bounds are not better in the
worst case (i.e., when no pruning is possible), they allow greater insight into the run-
times of the algorithms we evaluate, as is apparent in our analysis of the experimental
results in Section 7.

Theorem 3 demonstrates that the complexity of CMOVE heavily depends on the
runtime of its pruning operators, which in turn depends on the sizes of the input sets.
The input set of prune2 is the union of what is returned by a series of applications of
prune1, while prune3 uses the output of the last application of prune2. Therefore, we
need to balance the effort of the lower-level pruning operators with that of the higher-
level ones, which occur less often but are dependent on the output of the lower-level
pruning operators. The bigger the LCCSs, the more can be gained from lower-level
pruning. We compare different variants of CMOVE in the experimental section.

7 Experiments

In this section, we present an empirical analysis of CMOVE. The first goal of these
experiments is to show that CMOVE, by exploiting the graphical structure to compute
the CCS, can solve MO-CoGs substantially faster than both nongraphical methods and
those that compute the PCS. To this end, we compare Basic CMOVE and Incremental
CMOVE to the nongraphical method described in Section 4 and PMOVE.

We first present results on randomly generated MO-CoGs, in order to examine per-
formance on MO-CoGs with widely varying properties. We then present results on
Mining Day, a problem we propose as a MO-CoG benchmark, in order to establish
that CMOVE performs well on a MO-CoG derived from a realistic scenario. The exper-
iments use a C++ implementation that employs the lp solve library (v5.5) to solve
linear programs.

7.1 Random MO-CoGs
We employ a generation procedure for random MO-CoGs that is based on the following
inputs: n, the number of agents; d, the number of payoff dimensions; ρ the number
of local payoff functions; and |Ai|, the action space size of the agents, which is the
same for all agents. First, a fully connected graph with local payoff functions connected
to two agents is created. Then, local payoff functions are randomly removed, while
checking that the graph remains connected, until only ρ remain. The values in each
local payoff function are real numbers drawn independently and uniformly from the
interval [0,10]. All algorithms are tested on the same set of randomly generated MO-
CoGs for each value of n, d, ρ, and |Ai| that is considered.

To compare CMOVE, PMOVE, and the nongraphical method, we tested them on
random MO-CoGs with an increasing number of agents, with the average number of

12 Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek

10 15 20 25 30

1e
+0
2

1e
+0
4

1e
+0
6

number of agents

da
g[

, 7
]

Basic CMOVE
Incr. CMOVE
PMOVE
Non-graphical

2 3 4 5 6 7

1e
+0
2

1e
+0
4

1e
+0
6

number of dimensions

da
g[

1:
6,

 7
]

Basic CMOVE
Incr. CMOVE
PMOVE
Non-graphical

20 40 60 80 120

0
10
00
0

20
00
0

number of villages

da
g[

, 7
]

Basic CMOVE
Incr. CMOVE
PMOVE
Non-graphical

10 15 20 25 30

50
50
0

50
00

number of agents

da
g[

, 4
]

CCS size
PCS size

2 3 4 5 6 7

5
50

50
0
10
00
0

number of dimensions

da
g[

1:
6,

 4
]

CCS size
PCS size

20 40 60 80 120

0
20
0

60
0

10
00

number of villages

da
g[

, 4
]

CCS size
PCS size

Fig. 3: Runtimes (ms) for the nongraphical method, PMOVE and CMOVE with standard errors
(error bars) (top) and the corresponding number of vectors in the PCS and CCS (bottom).

factors per agent held at ρ = 1.5n and the number of dimensions d = 5. Figure 3 (top
left) shows the results, averaged over 85 MO-CoGs for each number of agents. These
results demonstrate that, as the number of agents grows, using MOVE becomes key
to containing the computational cost of solving the MO-CoG. CMOVE outperforms
the nongraphical method from 12 agents onwards. At 25 agents, Basic CMOVE is 38
times faster. CMOVE also does significantly better than PMOVE. Though it is one
order of magnitude slower with 10 agents (238ms (Basic) and 416ms (Incremental)
versus 33ms on average), its runtime grows much more slowly than that of PMOVE.
At 20 agents, both CMOVE variants are faster than PMOVE and at 28 agents, Basic
CMOVE is almost one order of magnitude faster (228s versus 1,650s on average), and
the difference increases with every agent.

While CMOVE’s runtime grows much more slowly than that of the nongraphical
method, it is still exponential in the number of agents, a counterintuitive result since the
worst-case complexity is linear in the number of agents. There are two reasons for this.
First, CMOVE is exponential in the induced width, which increases with the number
of agents, from 3.1 at n = 10 to 6.0 at n = 30 on average, as a result of the MO-
CoG generation procedure. Second, CMOVE’s runtime is polynomial in the size of the
CCS, and this size grows exponentially (Figure 3 (bottom left)). The fact that CMOVE
is much faster than PMOVE can be explained by the sizes of the PCS and CCS, as the
former grows much faster than the latter. At 10 agents, the average PCS size is 230 and
the average CCS size is 65. At 30 agents, the average PCS size has risen to 51,745 while
the average CCS size is only 1,575.

Figure 3 (top middle) compares the scalability of the algorithms in the number of
objectives, on random MO-CoGs with n = 20 and ρ = 30, averaged over 100 MO-
CoGs. CMOVE always outperforms the nongraphical method. Interestingly, the non-
graphical method is several orders of magnitude slower at d = 2, grows slowly until

Computing Convex Coverage Sets for Multi-Objective Coordination Graphs 13

d = 5, and then starts to grow with about the same exponent as Pareto MOVE. The rea-
son is that enumeration of all the joint actions and payoff vectors takes approximately
constant time while the time it takes to prune increases exponentially. When d = 2,
CMOVE is an order of magnitude slower than PMOVE (163ms (Basic) and 377 (In-
cremental) versus 30ms). However, when d = 5, both CMOVE variants are already
faster than PMOVE and at 7 dimensions they are respectively 3.7 and 2.7 times faster.
This happens because the CCS grows much more slowly than the PCS (Figure 3 (bot-
tom middle)). The difference between Incremental and Basic CMOVE decreases as the
number of dimensions increases, from a factor 2.3 at d = 2 to 1.3 at d = 7.

Overall, these results indicate that CMOVE shows large speedups over PMOVE for
more than a minimal number of agents. The runtime of Incremental CMOVE grows
more slowly than that of Basic CMOVE and seems favorable for large numbers of
agents and high dimensions.

7.2 Mining Day

In Mining Day, a mining company mines gold and silver (objectives) from a set of
mines (local payoff functions) spread throughout a geographical region (Figure 4). The
mine workers live in villages also spread throughout this region. The company has one
van in each village (agents) for transporting workers and must determine every morning
to which mine each van should go (actions). However, vans can only travel to nearby
mines (graph connectivity). Workers are more efficient if there are more workers at the
mine: there is a 3% efficiency bonus per worker such that the amount of each resource
mined per worker is x · 1.03w, where x is the base rate per worker and w is the number
of workers at the mine. The base rate of gold and silver are properties of a mine. Since
the company aims to maximize revenue, the best strategy depends on the prices of gold
and silver, which fluctuate and are not known when the plan must be computed.

village
mine

Fig. 4: The Mining Day problem.

To generate a Mining Day instance with v villages (agents), we randomly assign
2-5 workers to each village and connect it to 2-4 mines. Each village is only connected
to mines with a greater or equal index, i.e., if village i is connected to m mines, it is
connected to mines i to i+m− 1. The last village is connected to 4 mines and thus the
number of mines is v+ 3. The base rates per worker for each resource at each mine are
drawn uniformly and independently from [0,10].

The results for the mining day problem are shown in Figure 3 (top right). The run-
time of the nongraphical method grows exponentially with the number of agents. At
only 13 agents, the runtime is already more than 30s. By contrast, both CMOVE and

14 Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek

PMOVE are able to tackle problems with over 100 agents within that timeframe. In
addition, the runtime of PMOVE grows much more quickly than that of CMOVE. In
this two-dimensional setting, Basic CMOVE is better than Incremental CMOVE. Ba-
sic CMOVE and PMOVE both have runtimes of around 2.8s at 60 agents, but at 100
agents, Basic CMOVE runs in about 5.9s and PMOVE in 21s. Even though Incremental
CMOVE is worse than Basic CMOVE, its runtime still grows a lot slower than PMOVE,
and beats PMOVE when there are many agents.

The difference between PMOVE and CMOVE results from the relationship be-
tween the number of agents and the sizes of the CCS, which grows linearly, and the
PCS, which grows polynomially (Figure 3 (bottom right)). The induced width remains
around 4 regardless of v. These results demonstrate that, when the CS grows linearly (or
polynomially) in the number of agents, MOVE can solve MO-CoGs with many more
agents than the nongraphical approach. In problems where the CCS grows more slowly
than the PCS, CMOVE can solve MO-CoGs with many more agents than PMOVE.

8 Conclusions and Future Work

In this paper, we proposed the CMOVE algorithm for multi-objective coordination
graphs. Unlike previous methods, it computes the convex coverage set (CCS) rather
than the Pareto coverage set (PCS). Not only does this provide the optimal solution
when the scalarization function is linear or stochastic strategies are allowed, it also
greatly reduces computational costs.

Using two variants of CMOVE – based on the trade-off between pruning effort and
and smaller intermediate results – we analyzed CMOVE’s complexity in terms of the
different pruning operators that can be used to compute the local CCSs. Our empiri-
cal study showed that CMOVE can tackle multi-objective problems much faster than
methods that compute the PCS. The runtime of CMOVE grows much more slowly than
that of PMOVE because the CCS grows much more slowly than the PCS. Therefore,
we conclude that computing the CCS is key to keeping large MO-CoGs tractable.

In future work, we hope to develop approximate techniques for MO-CoGs. The
work of [5], which converts graphs to trees and applies max-plus [9] to approximate
the PCS, could be extended to approximate the CCS. Alternatively, an efficient multi-
objective version of max-plus for graphs with loops could also approximate the CCS. In
addition, loosening the definition of the CCS, in the spirit of the ε-approximate Pareto
front [3], could also yield efficient approximations. Finally, we hope to develop a multi-
objective version of sparse cooperative Q-learning [9] that would use CMOVE as a
subroutine to tackle sequential multi-objective multi-agent tasks.

Acknowledgements

This research is supported by the NWO DTC-NCAP (#612.001.109) and NWO CATCH
(#640.005.003) projects.

Computing Convex Coverage Sets for Multi-Objective Coordination Graphs 15

References

1. L. Barrett and S. Narayanan. Learning all optimal policies with multiple criteria. In ICML,
pages 41–47, New York, NY, USA, 2008. ACM.

2. R. Becker, S. Zilberstein, V. Lesser, and C.V. Goldman. Transition-Independent Decentral-
ized Markov Decision Processes. In AAMAS, 2003.

3. T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two views on multiple mean-
payoff objectives in Markov decision processes. CoRR, abs/1104.3489, 2011.

4. A.R. Cassandra, M.L. Littman, and N.L. Zhang. Incremental pruning: A simple, fast, exact
method for partially observable markov decision processes. In UAI, pages 54–61, 1997.

5. F.M. Delle Fave, R. Stranders, A. Rogers, and N.R. Jennings. Bounded decentralised coor-
dination over multiple objectives. In AAMAS, pages 371–378, 2011.

6. J.P. Dubus, C. Gonzales, and P. Perny. Choquet optimization using gai networks for multia-
gent/multicriteria decision-making. In ADT, pages 377–389. 2009.

7. Z. Feng and S. Zilberstein. Region-based incremental pruning for POMDPs. CoRR,
abs/1207.4116, 2012.

8. C.E. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In NIPS,
2002.

9. J.R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning by payoff propa-
gation. J. Mach. Learn. Res., 7:1789–1828, December 2006.

10. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

11. D. J. Lizotte, M. Bowling, and S. A. Murphy. Efficient reinforcement learning with multiple
reward functions for randomized clinical trial analysis. In ICML, pages 695–702, 2010.

12. R. Marinescu, A. Razak, and N. Wilson. Multi-objective influence diagrams. In UAI, 2012.
13. Diederik M Roijers, Shimon Whiteson, and Frans A Oliehoek. Multi-objective variable

elimination for collaborative graphical games. In AAMAS, 2013. Extended Abstract.
14. E. Rollón. Multi-Objective Optimization for Graphical Models. PhD thesis, Universitat

Politècnica de Catalunya, 2008.
15. E. Rollón and J. Larrosa. Bucket elimination for multiobjective optimization problems. Jour-

nal of Heuristics, 12:307–328, 2006.
16. G. Tesauro, R. Das, H. Chan, J. O. Kephart, C. Lefurgy, D. W. Levine, and F. Rawson.

Managing power consumption and performance of computing systems using reinforcement
learning. In NIPS, 2007.

17. P. Vamplew, R. Dazeley, E. Barker, and A. Kelarev. Constructing stochastic mixture policies
for episodic multiobjective reinforcement learning tasks. In Advances in Artificial Intelli-
gence, pages 340–349. 2009.

