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Abstract

Planning under uncertainty poses a complex problem in which multiple objectives often need
to be balanced. When dealing with multiple objectives, it is often assumed that the relative impor-
tance of the objectives is known a priori. However, in practice human decision makers often find it
hard to specify such preferences exactly, and would prefer a decision support system that presents
a range of possible alternatives. We propose two algorithms for computing these alternatives for the
case of linearly weighted objectives. First, we propose an anytime method, approximate optimistic
linear support (AOLS), that incrementally builds up a complete set of ε-optimal plans, exploiting
the piecewise-linear and convex shape of the value function. Second, we propose an approximate
anytime method, scalarised sample incremental improvement (SSII), that employs weight sampling
to focus on the most interesting regions in weight space, as suggested by a prior over preferences.
We show empirically that our methods are able to produce (near-)optimal alternative sets orders of
magnitude faster than existing techniques, thereby demonstrating that our methods provide sensible
approximations in stochastic multi-objective domains.

1 Introduction
Many real-world planning problems involve both uncertainty as well as multiple objectives. This type of
problems is expressed naturally using the multi-objective Markov decision process (MOMDP) frame-
work [4]. Following [4] we assume the existence of a scalarisation function, i.e. a function that translates
multi-dimensional rewards into a scalar value. However, using such a function for planning requires
complete knowledge of its parameters, or weights, beforehand. When such knowledge is not available,
solving an MOMDP requires finding the set of optimal solutions for all possible weights.

In this paper1, we consider only linear scalarisation functions. Therefore, it suffices to focus on
the Convex Coverage Set of an MOMDP. Existing methods such as optimistic linear support (OLS) [5]
exploit the value piecewise-linear convexity in the optimal value function over all weights, present when
the scalarisation function is linear, to minimise the number of scalarised MDPs that need to be solved.
However, OLS can only guarantee this when the scalarised MDPs are solved optimally and is therefore
not directly applicable to large realistic planning problems.

2 Our Contributions
We propose new methods that rely on approximate MDP solving techniques to produce (near-)optimal
CCSs. The first algorithm we propose is approximate optimistic linear support (AOLS) that, given an

1This is an extended abstract of our paper [3] at ICAPS 2014.



ε-bounded MDP approximation, is guaranteed to produce an ε-approximate CCS. The second algorithm,
scalarised sample-based iterative improvement (SSII), exploits available prior knowledge on the distri-
bution of weights and concentrates its effort within such a prior.2 Although SSII can in practice produce
a better approximate CCS over this prior, we cannot provide a bound on the CCS quality because SSII
relies on sampling.

Both AOLS and SSII use an approximate single-objective solver as a subroutine. AOLS can use any
solver. SSII requires an anytime method. In this paper we use UCT* [2] for both.

3 Evaluation
We performed experiments on instances of the maintenance planning problem [6], a 2-objective, prob-
abilistic and numerical planning domain, and compared the optimal OLS method with our approximate
AOLS and SSII. The optimal solutions have been computed using SPUDD [1] and approximations using
the UCT* algorithm from PROST [2]. We compared the outcomes in terms of runtime, average CCS
error εexp and maximal CCS εmax error. The results are presented in Table 1 below.

[0, 1] [0.5, 1]

Algorithm Runtime |CCS| εexp εmax %OPT εexp εmax %OPT

OLS + SPUDD 2390.819 9.250 - - - - - -
AOLS + UCT* 0.01s 8.612 3.389 0.701 325.354 0.000 0.692 325.025 0.000
AOLS + UCT* 1s 19.940 4.111 0.119 65.668 0.167 0.117 65.426 0.167
AOLS + UCT* 10s 65.478 4.528 0.084 56.439 0.333 0.091 56.381 0.333
AOLS + UCT* 20s 165.873 5.694 0.044 38.667 0.417 0.048 38.627 0.417
SSII 1s, no prior 18.795 4.306 0.118 70.244 0.167 0.116 70.195 0.167
SSII 10s, no prior 59.336 3.889 0.061 51.800 0.333 0.068 51.747 0.333
SSII 1s, prior 17.892 3.944 0.221 95.189 0.000 0.125 61.667 0.167
SSII 10s, prior 59.154 4.083 0.141 71.290 0.083 0.057 43.006 0.333

Table 1: Comparison of averaged performance of the algorithms presented in this paper for various
parameters, shown for two regions of the scalarised reward space. Runtimes are in seconds, the expected
error εexp and maximum error εmax are relative to the optimum CCS and %OPT denotes the fraction
of instances that were solved optimally.

From the table we can conclude that both AOLS and SSII are able to produce reasonable, and
sometimes even optimal, solutions much faster than OLS. Also, SSII is competitive with AOLS without
exploiting additional knowledge but when SSII uses the prior it produces a slightly better CCS within
the targeted weight region w1 ∈ [0.5, 1] and w2 = 1− w1.
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2Note that such a prior expresses some — but not complete — knowledge about the weights.


