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Abstract

Sequential decision-making problems with multiple objectives arise naturally in prac-
tice and pose unique challenges for research in decision-theoretic planning and learning,
which has largely focused on single-objective settings. This article surveys algorithms de-
signed for sequential decision-making problems with multiple objectives. Though there is
a growing body of literature on this subject, little of it makes explicit under what cir-
cumstances special methods are needed to solve multi-objective problems. Therefore, we
identify three distinct scenarios in which converting such a problem to a single-objective
one is impossible, infeasible, or undesirable. Furthermore, we propose a taxonomy that
classifies multi-objective methods according to the applicable scenario, the nature of the
scalarization function (which projects multi-objective values to scalar ones), and the type
of policies considered. We show how these factors determine the nature of an optimal so-
lution, which can be a single policy, a convex hull, or a Pareto front. Using this taxonomy,
we survey the literature on multi-objective methods for planning and learning. Finally, we
discuss key applications of such methods and outline opportunities for future work.

1. Introduction

Sequential decision problems, commonly modeled as Markov decision processes (MDPs)
(Bellman, 1957a), occur in a range of real-world tasks such as robot control (Kober &
Peters, 2012), game playing (Szita, 2012), clinical management of patients (Peek, 1999),
military planning (Aberdeen, Thiébaux, & Zhang, 2004), and control of elevators (Crites
& Barto, 1996), power systems (Ernst, Glavic, & Wehenkel, 2004), and water supplies
(Bhattacharya, Lobbrecht, & Solomantine, 2003). Therefore, the development of algorithms
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for automatically solving such problems, either by planning given a model of the MDP (e.g.,
via dynamic programming methods, Bellman, 1957b) or by learning through interaction
with an unknown MDP (e.g., via temporal-difference methods, Sutton & Barto, 1998), is
an important challenge in artificial intelligence.

In most research on these topics, the desirability or undesirability of actions and their
effects are codified in a single, scalar reward function. Typically, the objective of the
autonomous agent interacting with the MDP is then to maximize the expected (possibly
discounted) sum of these rewards over time. In many tasks, a scalar reward function is the
most natural, e.g., a financial trading agent could be rewarded based on the monetary gain
or loss in its holdings over the most recent time period. However, there are also many tasks
that are more naturally described in terms of multiple, possibly conflicting objectives, e.g.,
a traffic control system should minimize latency and maximize throughput; an autonomous
vehicle should minimize both travel time and fuel costs. Multi-objective problems have
been widely examined in many areas of decision-making (Zeleny & Cochrane, 1982; Vira &
Haimes, 1983; Stewart, 1992; Diehl & Haimes, 2004; Roijers, Whiteson, & Oliehoek, 2013)
and there is a growing, albeit fragmented, literature addressing multi-objective decision-
making in sequential settings.

In this article, we present a survey of the algorithms that have been devised for such
settings. We begin in Section 2 by formalizing the problem as a multi-objective MDP
(MOMDP). Then, in Section 3, we motivate the multi-objective perspective on decision-
making. Little of the existing literature on multi-objective algorithms makes explicit why a
multi-objective approach is beneficial and, crucially, which cases cannot be trivially reduced
to a single-objective problem and solved with standard algorithms. To address this, we
describe three motivating scenarios for multi-objective algorithms.

Then, in Section 4, we present a novel taxonomy that organizes multi-objective problems
in terms of their underlying assumptions and the nature of the resulting solutions. A key
difficulty with the existing literature is that authors have considered many different types
of problems, often without making explicit the assumptions involved, how these differ from
those of other authors, or the scope of applicability of the resulting methods. Our taxonomy
aims to fill this void.

Sections 5 and 6 survey MOMDP planning and learning methods, respectively, orga-
nizing them according to the taxonomy and identifying some key differences between the
approaches examined in the planning and learning areas. Section 7 surveys applications
of these methods, covering both specific applications and more general classes of problems
where MOMDP methods can be applied. Section 8 discusses future directions for the field
based on gaps in the literature identified in Sections 5 and 6, and Section 9 concludes.

2. Background

A finite single-objective Markov decision process (MDP) is a tuple 〈S,A, T,R, µ, γ〉 where:

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a transition function specifying, for each state, action, and
next state, the probability of that next state occurring,
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• R : S × A × S → ℜ is a reward function, specifying, for each state, action, and next
state, the expected immediate reward,

• µ : S → [0, 1] is a probability distribution over initial states, and

• γ ∈ [0, 1) is a discount factor specifying the relative importance of immediate rewards.

The goal of an agent that acts in this environment is to maximize the expected return
Rt, which is some function of the rewards received from timestep t and onwards. Typically,
the return is additive (Boutilier, Dean, & Hanks, 1999), i.e., it is a sum of these rewards. In
an infinite horizon MDP, the return is typically an infinite sum, with each term discounted
according to γ:

Rt =
∞
∑

k=0

γkrt+k+1,

where rt is the reward obtained at time t. The parameter γ thus quantifies the relative
importance of short-term and long-term rewards.

In contrast, in a finite horizon MDP, the return is typically an undiscounted finite sum,
i.e., after a certain number of timesteps, the process terminates and no more reward can be
obtained. While single- and multi-objective methods have been developed for finite horizon,
discounted infinite horizon, and average reward settings (Puterman, 1994), for the sake of
brevity we formalize only infinite horizon discounted reward MDPs in this article.1

An agent’s policy π determines which actions it selects at each timestep. In the broadest
sense, a policy can condition on everything that is known to the agent. A state-indepedent
value function V π specifies the expected return when following π from the initial state:

V π = E[R0 | π]. (1)

If the policy is stationary, i.e., it conditions only on the current state, then it can be
formalized as π : S × A → [0, 1]: it specifies, for each state and action, the probability of
taking that action in that state. We can then specify the state value function of a policy π:

V π(s) = E[Rt | π, st = s],

for all t when st = s. The Bellman equation restates this expectation recursively for
stationary policies:

V π(s) =
∑

a

π(s, a)
∑

s′

T (s, a, s′)[R(s, a, s′) + γV π(s′)].

Note that the Bellman equation, which forms the heart of most standard solution algorithms
such as dynamic programming (Bellman, 1957b) and temporal-difference methods (Sutton
& Barto, 1998), explicitly relies on the assumption of additive returns. This is important
because, as we explain in Section 4.2.2, some multi-objective settings can interfere with
this additivity property, making planning and learning methods that rely on the Bellman
equation inapplicable.

1. For formalizations of the other settings, see for example the overview by Van Otterlo and Wiering (2012).
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State value functions induce a partial ordering over policies, i.e., π is better than or
equal to π′ if and only if its value is greater for all states:

π � π′ ⇔ ∀s, V π(s) ≥ V π′

(s).

A special case of a stationary policy is a deterministic stationary policy, in which one
action is chosen with probability 1 for every state. A deterministic stationary policy can be
seen as a mapping from states to actions: π : S → A. For single-objective MDPs, there is
always at least one optimal policy π, i.e., ∀π′ : π � π′, that is stationary and deterministic.

Theorem 1. For any additive infinite-horizon single-objective MDP, there exists a deter-
ministic stationary optimal policy (see e.g., Howard, 1960; Boutilier et al., 1999).

If more than one optimal policy exists, they share the same value function, known as
the optimal value function V ∗(s) = maxπ V

π(s). The Bellman optimality equation defines
the optimal value function recursively:

V ∗(s) = max
a

∑

s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)].

Note that, because it maximizes over actions, this equation makes use of the fact that there
is an optimal deterministic stationary policy. Because an optimal policy maximizes the
value for every state, such a policy is optimal regardless of the initial state distribution µ.
However, the state-independent value (Equation 1) may very well be different for different
initial state distributions. Using µ, the state value function can be translated back into the
state-independent value function (Equation 1):

V π =
∑

s∈S

µ(s)V π(s).

A multi-objective MDP (MOMDP)2 is an MDP in which the reward function R : S ×
A × S → ℜn describes a vector of n rewards, one for each objective, instead of a scalar.
Similarly, a value function Vπ in an MOMDP specifies the expected cumulative discounted
reward vector:

Vπ = E[
∞
∑

k=0

γkrk+1 | π], (2)

where rt is the vector of rewards received at time t. The only difference between the single
objective value (Equation 1) and the multi-objective value (Equation 2) of a policy is that
the return, and the underlying sum of rewards, is now a vector rather than a scalar. For
stationary policies, we can also define the multi-objective value of a state:

Vπ(s) = E[
∞
∑

k=0

γkrt+k+1 | π, st = s]. (3)

In a single-objective MDP, state value functions impose only a partial ordering because
policies are compared at different states, e.g., it is possible that V π(s) > V π′

(s) but V π(s′) <

2. Multi-objective MDPs should not be confused with mixed-observability MDPs (Ong, Png, Hsu, & Lee,
2010), which are also sometimes abbreviated with ‘MOMDP’.
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V π′

(s′). But for a given state, the ordering is complete, i.e., V π(s) must be greater than,
equal to, or less than V π′

(s). The same is true of state-independent value functions.

In contrast, in an MOMDP, the presence of multiple objectives means that the value
function Vπ(s) for a state s is a vector of expected cumulative rewards instead of a scalar.
Such value functions supply only a partial ordering, even for a given state. For example,
it is possible that, for some state s, V π

i (s) > V π′

i (s) but V π
j (s) < V π′

j (s). Similarly, for

state-independent value functions, it may be that V π
i > V π′

i but V π
j < V π′

j . Consequently,
unlike in an MDP, we can no longer determine which values are optimal without additional
information about how to prioritize the objectives. Such information can be provided in
the form of a scalarization function, which we discuss in the following sections.

Though not the focus of this article, there are also MOMDP variants in which constraints
are specified on some objectives (see e.g., Feinberg & Shwartz, 1995; Altman, 1999). The
goal of the agent is then to maximize the regular objectives while meeting the constraints
on the other objectives. Constrained objectives are fundamentally different from regular
objectives because they are explicitly prioritized over the regular objectives, i.e., any policy
that fails to meet a constraint is inferior to any policy that meets all constraints, regardless
of how well the policies maximize the regular objectives.

3. Motivating Scenarios

While the MOMDP setting has received considerable attention, it is not immediately ob-
vious why it is a useful addition to the standard MDP or why specialized algorithms for
it are needed. In fact, some researchers argue that modeling problems as explicitly multi-
objective is not necessary, and that a scalar reward function is adequate for all sequential
decision-making tasks. The most direct formulation of this perspective is Sutton’s reward
hypothesis, which states “that all of what we mean by goals and purposes can be well
thought of as maximization of the expected value of the cumulative sum of a received scalar
signal (reward).”3

This view does not imply that multi-objective problems do not exist. Indeed, that
would be a difficult claim, since it is so easy to think of problems that naturally possess
multiple objectives. Instead, the implication of the reward hypothesis is that the resulting
MOMDPs can always be converted into single-objective MDPs with additive returns. Such
a conversion process would involve two steps. The first step is to specify a scalarization
function.

Definition 1. A scalarization function f , is a function that projects the multi-objective
value Vπ to a scalar value.

V π
w
(s) = f(Vπ(s),w),

where w is a weight vector parameterizing f .

For example, f may compute a linear combination of the values, in which case each element
of w quantifies the relative importance of the corresponding objective (this setting is dis-
cussed further in Section 4.2.1). The second step is to define a single-objective MDP with

3. http://rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
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Figure 1: The three motivating scenarios for MOMDPs: (a) the unknown weights scenario,
(b) the decision support scenario, (c) the known weights scenario.

additive returns such that, for all π and s, the expected return equals the scalarized value
V π
w
(s).

Though it rarely, if ever, makes the issue explicit, all research on MOMDPs rests on the
premise that there exist tasks for which one or both of these conversion steps is impossible,
infeasible, or undesirable. In this section, we discuss three scenarios in which this can occur
(see Figure 1).

The first scenario, which we call the unknown weights scenario (Figure 1a), occurs when
w is unknown at the moment when planning or learning must occur. Consider for example
a public transport system that aims to minimize both latency (i.e., the time that commuters
need to reach their destinations) and pollution costs. In addition, assume that the resulting
MOMDP can be scalarized by converting each objective into monetary cost: economists
can compute the cost of lost productivity due to commuting and pollution incurs a tax that
must be paid in pollution credits purchased at a given price. Assume also that those credits
are traded on an open market and therefore the price constantly fluctuates. If the transport
system is complex, it may be infeasible to compute a new plan every day given the latest
prices. In such a scenario, it can be preferable to use a multi-objective planning method
that computes a set of policies such that, for any price, one of those policies is optimal
(see the planning or learning phase in Figure 1a). While doing so is more computationally
expensive than computing a single optimal policy for a given price, it needs to be done
only once and can be done in advance, when more computational resources are available.
Then, when it is time to select a policy, the current weights, i.e., the price of the pollution
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credits, are used to determine the best policy from the set (the selection phase). Finally,
the selected policy is employed in the task (the execution phase).

In the unknown weights scenario, scalarization is impossible before planning or learning
but trivial once a policy actually needs to be used because w is known by that time.
In contrast, in the second scenario, which we call the decision support scenario (Figure
1b), scalarization is infeasible throughout the entire decision-making process because of the
difficulty of specifying w, or even f . For example, economists may not be able to accurately
compute the cost of lost productivity due to commuting. The user may also have “fuzzy”
preferences that defy meaningful quantification. For example, if the transport system could
be made more efficient by building a new train line that obstructs a beautiful view, then a
human designer may not be able to quantify the loss of beauty. The difficulty of specifying
the exact scalarization is especially apparent when the designer is not a single person but
a committee or legislative body whose members have different preferences and agendas.
In such a system, the MOMDP method is used to calculate an optimal solution set with
respect to the known constraints about f and w. As Figure 1b shows, the decision support
scenario proceeds similarly to the unknown weights scenario except that, in the selection
phase, the user or users select a policy from the set according to their arbitrary preferences,
rather than explicit scalarization according to given weights.

In all these cases, one can still argue that scalarization before planning or learning is
possible in principle. For example, the loss of beauty can be quantified by measuring the
resulting drop in housing prices in neighborhoods that previously enjoyed an unobstructed
view. However, the difficulty with scalarization is not only that doing so may be impractical
but, more importantly, that it forces the users to express their preferences in a way that may
be inconvenient and unnatural. This is because selecting w requires weighing hypothetical
trade-offs, which can be much harder than choosing from a set of actual alternatives. This
is a well understood phenomenon in the field of decision analysis (Clemen, 1997), where
the standard workflow involves presenting alternatives before soliciting preferences. That
is why subfields of decision analysis such as multiple criteria decision-making and multi-
attribute utility theory focus on multiple objectives (Dyer, Fishburn, Steuer, Wallenius, &
Zionts, 1992). For the same reasons, algorithms for MOMDPs can provide critical decision
support. Rather than forcing the users to specify w in advance, these algorithms just
prune policies that would not be optimal for any w. Then, they offer the users a range of
alternatives from which they can select according to preferences whose relative importance
is not easily quantified.

In the third scenario, which we call the known weights scenario (Figure 1c), we assume
that w is known at the time of planning or learning and thus scalarization is both possible
and feasible. However, it may be undesirable because of the difficulty of the second step
in the conversion. In particular, if f is nonlinear, then the resulting single-objective MDP
may not have additive returns (see Section 4.2.2). As a result, the optimal policy may be
non-stationary (see Section 4.3.2) or stochastic (see Section 4.3.3), which cannot occur in
single-objective, additive, infinite-horizon MDPs (see Theorem 1). Consequently, the MDP
can be difficult to solve, as standard methods are not applicable. Converting the MDP to
one with additive returns may not help either as it can cause a blowup in the state space,
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which also leaves the problem intractable.4 Therefore, even though scalarization is possible
when w is known, it may still be preferable to use methods specially designed for MOMDPs
rather than to convert the problem to a single-objective MDP. In contrast to the unknown
weights and the decision support scenarios, in the known weights scenario, the MOMDP
method only produces one policy, which is then executed, i.e., there is no separate selection
phase, as shown in Figure 1c.

Note that Figure 1 assumes an off-line scenario: planning or learning occurs only once,
before execution. However, multi-objective methods can also be employed in on-line settings
in which planning or learning are interleaved with execution. In the on-line version of the
unknown weights scenario, the weights are better characterized as dynamic, rather than
unknown. In an on-line scenario, the agent must already have seen weights in all timesteps
t > 1 since this is a prerequisite for execution in timesteps 1, . . . , t − 1. However, if the
weights change over time, the agent may not yet know the weights that will be used in
timestep t when it is in the planning or learning phase of that timestep.

4. Problem Taxonomy

So far, we have described the MOMDP formalism and proposed three motivating scenarios
for it. In this section, we discuss what constitutes an optimal solution. Unfortunately, there
is no simple answer to this question, as it depends on several critical factors. Therefore,
we propose a problem taxonomy, shown in Table 1, that categorizes MOMDPs according
to these factors and describes the nature of an optimal solution in each category. Our
taxonomy is based on what we call the utility-based approach, in contrast to many other
multi-objective papers that follow an axiomatic approach to optimality in MOMDPs.

The utility-based approach rests on the following premise: before the execution phases
of the scenarios in Section 3, one policy is selected by collapsing the value vector of a policy
to a scalar utility, using the scalarization function. The application of the scalarization
function may be implicit and hidden, e.g., it may be embedded in the thought-process of
the user, but it nonetheless occurs. The scalarization function is part of the notion of utility,
i.e., what the agent should maximize. Therefore, if we find a set with an optimal solution
for each possible weight setting of the scalarization function, we have solved the MOMDP.
The utility-based approach derives the optimal solution set from the assumptions that are
made about the scalarization function, which policies the user allows, and whether we need
one or multiple policies.

By contrast, the axiomatic approach begins with the axiom that the optimal solution set
is the Pareto front (see Section 4.2.2).5 This approach is limiting because, as we demonstrate
in this section, there are some settings for which other solution concepts are more suitable.

Thus, we take a utility-based approach because it makes it possible to derive the solution
concept, rather than just assuming it. When the Pareto front is in fact the correct solution

4. Since non-additive returns can depend on the agent’s entire history, the immediate reward function in
the converted MDP may also depend on that history and thus the state representation in the converted
MDP must be augmented to include it.

5. For an example of an axiomatic approach to multi-objective reinforcement learning, see the survey by
Liu, Xu, and Hu (2013).
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single policy multiple policies
(known weights) (unknown weights or decision support)

deterministic stochastic deterministic stochastic

linear
scalarization

one deterministic stationary
policy (1)

convex coverage set of
deterministic stationary policies
(2)

monotonically
increasing
scalarization

one
deterministic
non-stationary
policy (3)

one mixture
policy of two
or more
deterministic
stationary
policies (4)

Pareto
coverage set of
deterministic
non-stationary
policies (5)

convex
coverage set of
deterministic
stationary
policies (6)

Table 1: The MOMDP problem taxonomy showing the critical factors in the problem and
the nature of the resulting optimal solution. The columns describe whether the
problem necessitates a single policy or multiple ones, and whether those policies
must be deterministic (by specification) or are allowed to be stochastic. The rows
describe whether the scalarization function is a linear combination of the rewards
or, whether this cannot be assumed and the scalarization function is merely a
monotonically increasing function of them. The contents of each cell describe
what an optimal solution for the given setting looks like.

concept, the utility-based approach provides a justification for it. When it is not, it allows
for a more appropriate solution concept to be derived instead.

Our taxonomy categorizes problem classes based on the assumptions about the scalar-
ization function, which policies the user allows, and whether one or multiple policies are
required. We show that this leads different solution concepts, underscoring the importance
of carefully considering the choice of solution concept based on all the available information.

We discuss the three factors that constitute our taxonomy in the following order. In
Section 4.1, we discuss the first factor: whether one or multiple policies are sought, a choice
that follows directly from which motivating scenario is applicable. The known weights
scenario (Figure 1c) implies a single-policy approach while the unknown weights and decision
support scenarios (Figure 1a and 1b) imply a multiple-policy approach. In Section 4.2, we
discuss the second factor: whether the scalarization function is a linear combination of the
rewards or merely a monotonically increasing function of them. In Section 4.3, we discuss
the third factor: whether stochastic or only deterministic policies are permitted.

The goal of the taxonomy is to cover most research on MOMDPs while remaining simple
and intuitive. However, due to the diversity of research on MOMDPs, some research does
not fit neatly in our taxonomy. We note these discrepancies when discussing such research
in Sections 5 and 6.

75



Roijers, Vamplew, Whiteson & Dazeley

4.1 Single versus Multiple Policies

Following the approach of Vamplew et al. (2011), we first distinguish problems in which
only one policy is sought from ones in which multiple policies are sought. Which case holds
depends on which of the three motivating scenarios discussed in Section 3 applies.

In the unknown weights and decision support scenarios, the solution to an MOMDP
consists of multiple policies. Though these two scenarios are conceptually quite different,
from an algorithmic perspective they are identical. The reason is that they are both charac-
terized by a strict separation of the decision-making process into two phases: the planning
or learning phase and the execution phase (though in on-line settings, the agent may go
back and forth between the two).

In the planning or learning phase, w is unavailable. Consequently, the planning or learn-
ing algorithm must return not a single policy but a set of policies (and the corresponding
multi-objective values). This set should not contain any policies that are suboptimal for all
scalarizations, i.e. we are only interested in undominated policies.

Definition 2. For an MOMDP m and a scalarization function f , the set of undominated
policies, U(Πm), is the subset of all possible policies Πm for m for which there exists a w

for which the scalarized value is maximal:

U(Πm) = {π : π ∈ Πm ∧ ∃w∀(π′ ∈ Πm) V π
w

≥ V π′

w
}. (4)

U(Πm) is sufficient to solve m, i.e., for each w, it contains a policy with the optimal
scalarized value. However, it may contain redundant policies that, while optimal for some
weights, are not the only optimal policy in the set for w. Such policies can be removed
while still ensuring the set contains an optimal policy for all w. In fact, in order to solve
m, we need only a subset of the undominated policies such that, for any possible w, at
least one policy in the set is optimal. This is sometimes called a coverage set (CS) (Becker,
Zilberstein, Lesser, & Goldman, 2003).

Definition 3. For an MOMDP m and a scalarization function f , a set CS(Πm) is a
coverage set if it is a subset of U(Πm) and if, for every w, it contains a policy with maximal
scalarized value, i.e., if:

CS(Πm) ⊆ U(Πm) ∧ (∀w)(∃π)
(

π ∈ CS(Πm) ∧ ∀(π′ ∈ Πm) V π
w

≥ V π′

w

)

. (5)

Note that U(Πm) is automatically a coverage set. However, while U(Πm) is unique, CS(Πm)
need not be. When there are multiple policies with the same value, U(Πm) contains all of
them, while a coverage set need contain only one. In addition, for a given CS(Πm), there
may exist a policy π′ /∈ CS(Πm) for which Vπ′

is different from Vπ for all π ∈ CS(Πm)
but which has the same scalarized value as a π ∈ CS(Πm) for all w at which π′ is optimal.
In contrast to single-objective MDPs, in MOMDPs whether or not a policy is in a CS(Πm)
can depend on the initial state distribution µ. It is thus important to accurately specify µ
when formulating an MOMDP.

Ideally, an MOMDP algorithm should find the smallest CS(Πm). However, doing so
might be harder than just finding one smaller than U(Πm). In Section 4.2, we specialize
the coverage set for two classes of scalarization functions.
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In the execution phase, a single policy is chosen from the set returned in the planning or
learning phase and executed. In the unknown weights scenario, we assume thatw is revealed
after planning or learning is complete but before execution begins. Selecting a policy then
requires only maximizing over the scalarized value of each policy in the returned set:

π∗ = argmax
π∈CS(Πm)

V π
w
.

In the decision support scenario, this set is manually inspected by the user(s), who select a
policy for execution informally, making an implicit trade-off between the objectives.

In the known weights scenario, w is known before planning or learning begins. Therefore,
returning multiple policies is unnecessary. However, as mentioned in Section 3 and discussed
further in Section 4.2.2, scalarization can yield a single-objective MDP that is difficult to
solve.

4.2 Linear versus Monotonically Increasing Scalarization Functions

The second critical factor affecting what constitutes an optimal solution to an MOMDP is
the nature of the scalarization function. In this section, we discuss two types of scalarization
function: those that are linear combinations of the rewards and those that are merely
monotonically increasing functions of them.

4.2.1 Linear Scalarization Functions

A common assumption about the scalarization function (e.g., Natarajan & Tadepalli, 2005;
Barrett & Narayanan, 2008), is that f is linear, i.e., it computes the weighted sum of the
values for each objective.

Definition 4. A linear scalarization function computes the inner product of a weight vector
w and a value vector Vπ

V π
w

= w ·Vπ. (6)

Each element of w specifies how much one unit of value for the corresponding objective
contributes to the scalarized value. The elements of the weight vector w are all positive real
numbers and constrained to sum to 1.

Linear scalarization functions are a simple and intuitive way to scalarize. One common
situation in which they are applicable is when rewards can be easily translated into monetary
value. For example, consider a mining task in which different policies yield different expected
quantities of various minerals. If the prices per kilo of those minerals fluctuate daily, then
the task can be formulated as an MOMDP, with each objective corresponding to a different
mineral. Each element of Vπ then reflects the expected number of kilos of that mineral
that are mined under π and the scalarized value V π

w
corresponds to the monetary value

of everything that is mined. V π
w

can be computed only when w, corresponding to the
(normalized) current price per kilo of each mineral, becomes known.

In the single-policy setting, where w is known, the presence of multiple objectives poses
no difficulties given a linear f . Instead, f can simply be applied to each reward vector in the
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MOMDP. Because the inner product computed by f distributes over addition, the result is
a single-objective MDP with additive returns. In the infinite horizon setting this leads to:

V π
w

= w ·Vπ = w · E[

∞
∑

k=0

γkrt+k+1] = E[

∞
∑

k=0

γk(w · rt+k+1)]. (7)

Since this single-objective MDP has additive returns, it can be solved with standard meth-
ods, yielding a single policy, as reflected in the box labeled (1) in Table 1. Due to Theorem
1, a determinstic stationary policy suffices. However, a multi-objective approach can still
be preferable in this case, e.g., Vπ may be easier to estimate than V π

w
in large or continuous

MOMDPs where function approximation is required (see Section 6.1).
In the multiple policy setting, however, we do not know w during planning or learning

and therefore want to find a coverage set. If f is linear, then U(Πm), which is automatically
a coverage set, consists of the convex hull. Substituting Equation 6 in the definition of the
undominated set (Definition 2), we obtain the definition of the convex hull:

Definition 5. For an MOMDP m, the convex hull (CH) is the subset of Πm for which
there exists a w for which the linearly scalarized value is maximal:

CH(Πm) = {π : π ∈ Πm ∧ ∃w∀(π′ ∈ Πm) w ·Vπ ≥ w ·Vπ′

}. (8)

Figure 2a illustrates the concept of a convex hull for stationary deterministic policies. Each
point in the plot represents the multi-objective value of a given policy for a two-objective
MOMDP. The axes represent the reward dimensions. The convex hull is shown as a set
of filled circles, connected by lines that form a convex surface.6 Given a linear f , the
scalarized value of each policy is a linear function of the weights. This is illustrated in
Figure 2b, where the x-axis represents the weight for dimension 0 (w[1] = 1 − w[0]), and
the y-axis the scalarized value of the policies. To select a policy, we need only know the
values of the convex hull policies, which form the upper surface of the scalarized value,
as illustrated by the black solid lines, and correspond to the three convex hull policies in
Figure 2a. The upper surface forms a piecewise linear and convex function. Such functions
are also well-known from the literature on partially-observable Markov decision processes
(POMDPs), whose relationship to MOMDPs we discuss in Section 5.2.

Like any U(Πm), CH(Πm) can contain superfluous policies. However, we can also define
the convex coverage set (CCS) as the specification of the coverage set when f is linear. This
is reflected in box (2) in Table 1 (we explain why the policies in this set are deterministic
and stationary in Section 4.3.1).

Definition 6. For an MOMDP m, a set CCS(Πm) is a convex coverage set if it is a
subset of CH(Πm) and if, for every w, it contains a policy whose linearly scalarized value
is maximal, i.e., if:

CCS(Πm) ⊆ CH(Πm) ∧ (∀w)(∃π)
(

π ∈ CCS(Πm) ∧ ∀(π′ ∈ Πm) w ·Vπ ≥ w ·Vπ′

)

. (9)

6. Note that the term “convex hull” has a slightly different meaning in the multi-objective literature than
its standard geometric definition. In geometry, the convex hull of a finite set S of points in Euclidean
space is the minimal subset of S so that each of the other points in S can be expressed as a convex
combination of the points in the convex hull. In a multi-objective setting, we are only interested in a
particular subset of the geometric convex hull; those points of which its convex combinations are strictly
bigger (in all dimensions) than any other point in S, i.e., all points that are optimal for some weight.
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(a) (b)

Figure 2: Example of the convex hull and Pareto front. Each point in (a) represents the
multi-objective value of a given policy and each line in (b) represents the linearly
scalarized value of a policy across values of w. The convex hull is shown as black
filled circles in (a), and black lines in (b). The Pareto front consists of all filled
points (circles and squares) in (a), and both the dashed and solid black lines in
(b). The unfilled points in (a) (grey lines in (b)) are dominated.

For deterministic stationary policies, the difference between CH(Πm) and CCS(Πm) may
often be small. Therefore, the terms are often used interchangeably. However, in the case
of non-stationary or stochastic policies, the difference is quite significant, as the CH can
contain infinitely many policies, while it is possible to construct a finite CCS, as we show
in Section 4.3.1.

4.2.2 Monotonically Increasing Scalarization Functions

While linear scalarization functions are intuitive and simple, they are not always adequate
for expressing the user’s preferences. For example, suppose in the mining task mentioned
above, there are two minerals that can be mined and only three policies are available: π1
sends the mining equipment to a location where only the first mineral can be mined, π2 to
a location where only the second mineral can be mined, and π3 to a location where both
minerals can be mined. Suppose the owner of the equipment prefers π3, e.g., because it at
least partially appeases clients with different interests. However, it may be the case that,
because the location corresponding to π3 has fewer minerals, the convex hull contains only
π1 and π2. Thus, the owner’s preference of π3 implies that he or she, implicitly or explicitly,
employs a nonlinear scalarization function.

Here, we consider the case in which f can be nonlinear, and corresponds to a common
notion of the relationship between reward and utility. This class of possibly nonlinear scalar-
izations are the strictly monotonically increasing scalarization functions. These functions
adhere to the constraint that if a policy is changed in such a way that its value increases in
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one or more of the objectives, without decreasing in any other objectives, then the scalarized
value also increases.

Definition 7. A scalarization function f is strictly monotonically increasing if:

(∀i, V π
i ≥ V π′

i ∧ ∃i, V π
i > V π′

i ) ⇒ (∀w, V π
w
> V π′

w
). (10)

Linear scalarization functions (with non-zero positive weights) are included in this class
of functions. The condition on the left-hand side of Equation 10 is more commonly known
as Pareto dominance (Pareto, 1896).

Definition 8. A policy π Pareto-dominates another policy π′ when its value is at least as
high in all objectives and strictly higher in at least one objective:

Vπ ≻P Vπ′

⇔ ∀i, V π
i ≥ V π′

i ∧ ∃i, V π
i > V π′

i . (11)

Demanding that f is strictly monotonically increasing is quite a minimal constraint, as it
requires only that, all other things being equal, getting more reward for a certain objective
is always better. In fact, it is difficult to think of any f that violates this constraint without
employing a highly unnatural notion of reward.7

Three observations are in order about strictly monotonically increasing scalarization
functions and the related concept of Pareto dominance. First, unlike in the linear case, we
do not necessarily know the exact shape of f . Instead, we know only that it belongs to a
particular class of functions. The solution concept that follows thus applies to any strictly
monotonically increasing f . In cases where stronger assumptions about f can be made,
more specific solution concepts are possible. However, except for linearity, we are not aware
of any such properties of f that have been exploited in solving MOMDPs.

Second, the notions of optimality introduced in Section 4.2.1 are no longer appropriate.
The reason is that, even though the vector-valued returns are still additive (Equation 2), the
scalarized returns may not be because f may no longer be linear. As an example, consider
the well-known Tchebycheff scalarization function (Perny & Weng, 2010)8:

ψ(Vπ,p,w) = − max
i∈1...n

wi|pi − V π
i | − ǫ

∑

i∈1...n

wi|pi − V π
i |, (12)

where p is an optimistic reference point, w are weights, and ǫ is an arbitrarily small positive
constant greater than 0. Note that the sum on the righthand side is what makes the function
strictly monotonically increasing. Now, if p = (3, 3), ǫ = 0.01, r1 = (0, 3), r2 = (3, 0),
w = (0.5, 0.5) and γ = 1, then f(Vπ,w) = 0 but E[

∑∞
k=0 γ

kf(rt+k+1,w)] = (−1.515) +
(−1.515) = −3.03. This loss of additivity of the scalarized returns when applying a nonlinear
f has important consequences for which methods can be applied, as we show in Section 4.3.2.

Third, we can still identify and prune policies that are not optimal for any w for any
strictly monotonically increasing f , even though it may be nonlinear. Consider the three

7. In addition, if f is not strictly monotonically increasing and no other assumptions are made, then no
policies can be pruned from the coverage set. Thus, computing the value of every policy in this coverage
set, which is required by the selection phase, is likely to be intractable.

8. Our definition differs slightly from that of Perny and Weng (2010): it is multiplied by −1 to express
maximization instead of minimization, for the sake of consistency with the rest of this article.
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labeled policies in Figure 2a (note that Figure 2b does not apply, because the scalarization
function is no longer linear). B has a higher value than A in one objective, but a lower
value in the other. We therefore cannot tell whether A or B ought to be preferred without
knowing w. However, C has a lower value than A in both objectives, and thus A Pareto-
dominates C: A ≻P C. Because f is strictly monotonically increasing, the scalarized value
of A is greater than that of C for all w and thus we can discard C.

For now, we defer a full discussion of what constitutes an optimal solution for an
MOMDP with a strictly monotonically increasing scalarization function (i.e., boxes (3)-(6)
in Table 1) because this depends, not only on whether the single or multiple policy setting
applies, but also on whether only deterministic or also stochastic policies are considered,
which is addressed in Section 4.3.

However, we can already observe that, given any strictly monotonically increasing f , we
can use the Pareto front as a set of viable policies. The Pareto front consists of all policies
that are not Pareto dominated.

Definition 9. For an MOMDP m, the Pareto front is the set of all policies that are not
Pareto dominated by any other policy in Πm:

PF (Πm) = {π : π ∈ Πm ∧ ¬∃(π′ ∈ Πm),Vπ′

≻P Vπ}. (13)

Note that PF (Πm) is not the set of undominated policies U(Πm) for all specific strictly
monotonically increasing f . We have already seen that for the special case of linear f ,
U(Πm) = CH(Πm), which is a subset of PF (Πm). (For example, in Figure 2, the Pareto
front consists of the convex hull plus B.) However, for any strictly monotonically increasing
f , we know that a policy that is not in the PF (Πm) is dominated with respect to f , i.e.,
π 6∈ PF (Πm) ⇒ π 6∈ U(Πm). This is because, for strictly monotonically increasing f and
π /∈ PF (Πm), there cannot exist a w for which π is optimal, since by definition there exists
a π′ such that Vπ′

≻P Vπ and, since f is strictly monotonically increasing, this implies
that V π′

w
> V π

w
.

However, if we know only that f is strictly monotonically increasing, we cannot settle
for a subset of PF (Πm) either, because there exist strictly monotonically increasing f for
which U(Πm) = PF (Πm). Perny and Weng (2010) show that U(Πm) = PF (Πm) for the
Tchebycheff function (Equation 12), which is strictly monotonically increasing. Therefore,
we cannot discard policies from the PF (Πm) and retain an undominated set U(Πm) for all
strictly monotonically increasing f .

A Pareto coverage set (PCS) of minimal size can be constructed by retaining only one
policy of the policies with identical vector values in the PF (Πm). We can formally define
the PCS as follows:

Definition 10. For an MOMDP m, a set PCS(Πm) is a Pareto coverage set if it is a subset
of PF (Πm) and if, for every policy π′ ∈ Πm, it contains a policy that either dominates π′

or has equal value to π′, i.e., if:

PCS(Πm)⊆PF (Πm) ∧ ∀(π′∈Πm)(∃π)
(

π∈PCS(Πm) ∧ (Vπ≻P Vπ′

∨Vπ=Vπ′

)
)

. (14)

Again, for deterministic stationary policies the difference between a PCS(Πm) and PF (Πm)
may be minor. Note that PF (Πm) is automatically a PCS(Πm). Most papers in the
literature therefore take PF (Πm) as the solution.
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We can also slightly relax the constraint on f , without having to change which policies
are in the PCS(Πm). Specifically, we can define a monotonically increasing scalarization
function as a function for which the following property holds: (∀i, V π

i ≥ V π′

i ) ⇒ (∀w, V π
w

≥
V π′

w
). This relaxation influences the set of undominated policies: while policies that are not

in the PF (Πm) are always dominated under a strictly monotonically increasing f , they need
not be under any monotonically increasing f . Consider for example f(Vπ,w) = 0, which
is monotonically increasing but not strictly monotonically increasing. For this function
there are no dominated policies, as every policy has the same scalarized value. However,
because the scalarized value of a policy π′ 6∈ PF (Πm) cannot be greater than the scalarized
function of a policy π ∈ PCS(Πm), we can use the PCS(Πm) for (non-strict) monotonically
increasing f . Therefore, in this article, we focus on monotonically increasing f , as this is
the broader class of functions.

Because the PF (Πm), and even a PCS(Πm), may be prohibitively large and contain
many policies whose values differ by negligible amounts, Chatterjee et al. (2006) and Brázdil
et al. (2011) introduce a slack parameter ǫ, and use this to define an ǫ-approximate Pareto
front, PFǫ(Π

m). PFǫ(Π
m) contains all values of policies such that for every possible policy

π′ ∈ Πm there is a policy π ∈ PFǫ(Π
m) such that ∀i V π

i (s) + ǫ ≥ V π′

i (s). By weakening
the requirements for domination, this approach yields a smaller set that can be calculated
more efficiently.

Another option for finding a smaller set than PF (Πm) is making additional assumptions
about the scalarization function. For example, Perny, Weng, Goldsmith, and Hanna (2013)
introduce the notion of fairness between objectives, leading to Lorentz optimality. The
additional assumption is that if the sum of the values over all objectives stays the same,
making the difference between two objectives smaller yields a higher scalarized value. This is
of course a strong assumption that does not apply as broadly as Pareto optimality. However,
when it does apply, it can help reduce the size of the optimal solution set.

4.3 Deterministic versus Stochastic Policies

The third critical factor affecting what constitutes an optimal solution to an MOMDP is
whether only deterministic polices are considered or stochastic ones are also allowed. While
in most applications there is no reason to exclude stochastic policies a priori, there can be
cases when stochastic policies are clearly undesirable or even unethical. For example, if the
policy determines the clinical treatment of a patient, e.g., as in work of Lizotte, Bowling,
and Murphy (2010) and Shortreed, Laber, Lizotte, Stroup, Pineau, and Murphy (2011),
then flipping a coin to determine the course of action may be inappropriate. We denote the
set of deterministic policies Πm

D and the set of stationary policies Πm
S . Both sets are subsets

of all policies: Πm
D ⊆ Πm ∧Πm

S ⊆ Πm. Finally the set of policies that are both deterministic
and stationary is the intersection of both these sets, denoted Πm

DS = Πm
D ∩Πm

S .

In single-objective MDPs, this factor is not critical because, due to Theorem 1, we can
restrict our search to deterministic stationary policies, i.e. the optimal attainable value
is attainable with a deterministic stationary policy: max

π∈Πm
V π = max

π′∈Πm

DS

V π′

. However, the

situation is more complex in MOMDPs. In this section, we discuss how the focus on
stochastic or deterministic policies affects each setting considered in our taxonomy.
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4.3.1 Deterministic and Stochastic Policies with Linear Scalarization

Functions

When f is linear, a result similar to Theorem 1 holds for MOMDPs due to the following
corollary:

Corollary 1. For an MOMDP m, any CCS(Πm
DS) is also a CCS(Πm).

Proof. If f is linear, we can translate the MOMDP to a single-objective MDP, for each
possible w. This is done by treating the inner product of the reward vector and w as the
new rewards, and leaving the rest of the problem as is. Since the inner product distributes
over addition, the scalarized returns remain additive (Equation 7). Thus, for every w

there exists a translation to a single-objective MDP, for which an optimal deterministic and
stationary policy must exist, due to Theorem 1. Hence, for each w there exists an optimal
deterministic stationary policy. Therefore, there exists a π ∈ CCS(Πm

DS) that is optimal
for that w. Consequently, there cannot exist a π′ ∈ Πm \ Πm

DS such that w ·Vπ′

> w ·Vπ

and thus CCS(Πm
DS) is also a CCS(Πm).

Any CCS(Πm
DS) is thus sufficient for solving MOMDPs with linear f , even when stochas-

tic and non-stationary policies are allowed. This is reflected in box (2) in Table 1. It also
applies to box (1) since the optimal policy in that case is just a member of this CCS(Πm

DS),
i.e., the one that is best for the given known w.

Unfortunately, no result analogous to Corollary 1 holds for MOMDPs with monotoni-
cally increasing f . In the rest of this section, we discuss why this is so and the consequences
for the nature of an optimal MOMDP solution for boxes (3)-(6) in Table 1.

4.3.2 Multiple Deterministic Policies with Monotonically Increasing

Scalarization Functions

In the multiple-policy setting when only deterministic policies are allowed and f is nonlinear,
non-stationary policies may be better than the best stationary ones.

Theorem 2. In infinite-horizon MOMDPs, deterministic non-stationary policies can Pareto-
dominate deterministic stationary policies that are undominated by other deterministic sta-
tionary policies (White, 1982).

To see why, consider the following MOMDP, denoted m1, adapted from an example by
White (1982). There is only one state and three actions a1, a2, and a3, which yield rewards
(3, 0), (0, 3), and (1, 1), respectively. If we allow only deterministic stationary policies,
then there are three possible policies π1, π2, π3 ∈ Πm1

DS , each corresponding to always taking
one of the actions, all of which are Pareto optimal. These policies have the following
state-independent values (Equation 2): Vπ1 = (3/(1 − γ), 0), Vπ2 = (0, 3/(1 − γ)), and
Vπ3 = (1/(1−γ), 1/(1−γ)). However, if we now consider the set of possibly non-stationary
policies Πm1

D (including non-stationary ones), we can construct a policy πns ∈ Πm1
D \ Πm1

DS

that alternates between a1 and a2, starting with a1, and whose value is Vπns = (3/(1 −
γ2), 3γ/(1 − γ2)). Consequently, πns ≻P π3 when γ > 0.5 and thus we cannot restrict our
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attention to stationary policies.9 Consequently, in the multiple deterministic policies case
with monotonically increasing f , we need to find a PCS(Πm

D), which includes non-stationary
policies, as shown in box (5) of Table 1.

In addition to having to consider a broader class of policies, another consequence is
that defining a policy indirectly via the value function is no longer possible. In standard
single-objective methods, the optimal policy can be found by doing local action selection
with respect to the value function: i.e., for every state, the policy selects the action that
maximizes the expected value. However, for local selection to yield a non-stationary pol-
icy, the value function must also be non-stationary, i.e., it must condition on the current
timestep. While this is standard in the finite-horizon setting, where a different value func-
tion is computed for each timestep, it is not possible in the infinite-horizon setting. We
discuss how to address this difficulty in Sections 5 and 6.

4.3.3 Multiple Stochastic Policies with Monotonically Increasing

Scalarization Functions

In the multiple policy setting where stochastic non-stationary policies, i.e., the full set Πm,
are allowed, we again cannot consider only deterministic stationary policies. However, we
can employ stochastic stationary policies instead of deterministic non-stationary ones. In
particular, we can employ a mixture policy (Vamplew, Dazeley, Barker, & Kelarev, 2009)
πm that takes a set of N deterministic policies, and selects the i-th policy from this set, πi
with probability pi, where

∑N
i=0 pi = 1. This leads to values that are a linear combination

of the values of the constituent policies. In our previous example, we can replace πns by a
policy πm that chooses π1 with probability p1 and π2 otherwise, resulting in the following
values:

Vπm = p1V
π1 + (1− p1)V

π2 =

(

3p1
1− γ

,
3(1− p1)

1− γ

)

.

Fortunately, it is not necessary to explicitly represent an entire PCS(Πm) explicitly.
Instead, it is sufficient to compute a CCS(Πm

DS). The necessary stochastic policies to
create a PCS(Πm) can then be easily constructed by making mixture policies from those
policies on the CCS(Πm

DS).

Corollary 2. In an infinite horizon discounted MOMDP, an infinite set of mixture policies
PM can be constructed from policies that are on a CCS(Πm

DS), such that this set PM , is a
PCS(Πm) (Vamplew et al., 2009).

Proof. We can construct a policy with any value vector on the convex surface, e.g., the
black lines in Figure 2a, by mixing policies on a CCS(Πm

DS), e.g., the black dots.10 There-
fore, we can always construct a mixture policy that dominates a policy with a value under
this surface, e.g., B. We can show by contradiction that there cannot be any policy above

9. White (1982) shows this in an infinite-horizon discounted setting, but the arguments hold also for the
finite-horizon and average-reward settings.

10. Note that we should always mix policies that are “adjacent”; the line between any pair of the policies
we mix should be on the convex surface. E.g. mixing the policy represented by the leftmost black dot
in Figure 2a and the policy represented by the rightmost black dot does not lead to optimal policies, as
the line connecting these two points is under the convex surface.
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the convex surface. If there was, it would be optimal for some w if f was linear. Con-
sequently, by Corollary 1, there would be a deterministic stationary policy with at least
equal value. But since the convex surface spans the values on the CCS(Πm

DS), this leads
to a contradiction. Thus, no policy can Pareto-dominate a mixture policy on the convex
surface.

Thanks to Corollary 2, it is sufficient to compute a CCS(Πm
DS) to solve an MOMDP, as

reflected in box (6) of Table 1. A surprising consequence of this fact, which to our knowledge
is not made explicit in the literature, is that Pareto optimality, though the most common
solution concept associated with multi-objective problems, is actually only necessary in one
specific problem setting:

Observation 1. The multiple policy setting when f is monotonically increasing and only
deterministic policies are considered (box (5) of Table 1), requires computing a Pareto cov-
erage set. When either f is linear or stochastic policies are allowed, a CCS(Πm

DS) suffices.

Wakuta (1999) proves the sufficiency of a CCS(Πm
DS) for monotonically increasing

scalarizations with multiple stochastic policies (box (6) of Table 1) in infinite horizon
MOMDPs, but in a different way. Instead of the mixture policies in Corollary 2, he uses sta-
tionary randomizations over deterministic stationary policies. Wakuta and Togawa (1998)
provide a similar proof for the average reward case.

Note that, while it is common to consider non-stationary or stochastic policies when f
is nonlinear, such policies typically condition only on the current state, or the current state
and time, not the agent’s reward history. However, in this setting, policies that condition
on that reward history can dominate those that do not. For example, suppose there are two
objectives which can take only positive values and f simply selects the smaller of the two, i.e.,
f(Vπ,w) = mini V

π
i . Suppose also that, in a given state, two actions are available, which

yields rewards of (4, 4) and (0, 5) respectively. Finally, suppose that the agent can arrive at
that state with one of two reward histories, whose discounted sums are either (5, 0) or (3, 3).
A policy that conditions on these discounted reward histories can outperform policies that
do not, i.e., the optimal policy selects the action yielding (4, 4) when the reward history sums
to (3, 3) and the action yielding (0, 5) when the reward history sums to (5, 0). So, while for
single objective MDPs the Markov property and additive returns are sufficient to restrict our
attention to policies that ignore history, in the multi-objective case, the scalarized returns
are no longer additive and therefore the optimal policy can depend on the history. Examples
of methods that exploit this fact are the ‘steering’ approach (Mannor & Shimkin, 2001) and
the reward-augmented-state thresholded lexicographic ordering method by Geibel (2006),
which are discussed in Section 6.1.

4.3.4 Single Deterministic and Stochastic Policies with Monotonically

Increasing Scalarization Functions

All that remains to address is the single-policy setting with monotonically increasing f .
The nature of the optimal solution in this case follows directly from the reasoning given for
the multiple-policy setting.

If only deterministic policies are considered, then the single policy that is sought may
be non-stationary, as reflected in box (3) of Table 1, for the reasons elucidated by White’s
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example. Again, it is hard to define such a non-stationary policy by local action selection,
due to the risk of circular dependencies in the Q-values.

If stochastic policies are allowed, then the optimal policy may be stochastic, but this
can be represented as a mixture policy of two or more deterministic stationary policies, as
reflected in box (4) of Table 1, for the same reasons given in Corollary 2. In both cases,
policies can potentially benefit from conditioning on the reward history.

5. Planning in MOMDPs

In this section, we survey some key approaches to planning in MOMDPs, i.e., computing
an optimal policy or the coverage set of undominated policies given a complete model of
the MOMDP. Following the taxonomy presented in Section 4, we first consider single-policy
methods and then turn to multiple-policy methods for linear and monotonically increasing
scalarization functions.

5.1 Single-Policy Planning

In the known weights scenario, w is known before planning begins, and so only a single
policy, optimal for w, must be discovered. Since the MOMDP can be transformed to a
single-objective MDP when f is linear (see Section 4.2.1), we focus here on single-policy
planning for nonlinear f .

As discussed in Section 4.2.2, nonlinear f can cause the scalarized return to be non-
additive. Consequently, single-objective dynamic programming and linear programming
methods, which exploit the assumption of additive returns by employing the Bellman equa-
tion, are not applicable. However, different linear programming formulations for single-
policy planning in MOMDPs are possible. A key feature of such methods is that they
can produce stochastic policies, which, as discussed in Section 4, can be optimal when the
scalarization function is nonlinear. While we are not aware of any single-policy planning
methods that work for arbitrary nonlinear f , methods have been developed for two special
cases. In particular, Perny and Weng (2010) propose a linear programming method for
MOMDPs scalarized using the Tchebycheff function mentioned in Section 4.2.2. Because
the Tchebycheff function always has a w for which any Pareto-optimal policy is optimal,
this approach can find any (single) policy on the Pareto front. In addition, Ogryczak, Perny,
and Weng (2011) propose an analogous method for the ordered weighted regret metric. This
metric calculates the regret of each objective with respect to an estimated ideal reference
point, sorts these into descending order, and calculates a weighted sum in which the weights
are also in descending order.

Other researchers have proposed single-policy methods for MOMDPs with constraints.
Feinberg and Shwartz (1995) consider MOMDPs with one regular objective and M objec-
tives with inequality constraints. They show that if a feasible policy exists for this setting,
it can be deterministic and stationary after some finite number of timesteps N and that,
prior to timestep N , at mostM random actions must be performed. They call this a (M,N)
policy, show that all Pareto-optimal values can be achieved by (M,N) policies, and propose
a linear programming algorithm that finds ǫ-approximate policies for this setting. More
general MOMDPs with constraints have also been considered. In particular, Altman (1999)
proposes several linear programming approaches for such settings.
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Fürnkranz, Hüllermeier, Cheng, and Park (2012) propose a framework for MDPs with
qualitative reward signals, which are related to MOMDPs but do not fit neatly in our
taxonomy. Qualitative reward signals indicate a preference between policies or actions
without directly ascribing a numeric value to them. Since such preferences induce a partial
ordering between policies, the policy iteration method the authors propose for this setting
may be applicable to MOMDPs with nonlinear f , as Pareto dominance also induces partial
orderings. However, the authors note that multi-objective tasks generally do have numeric
feedback that can be exploited. Thus, they suggest that quantitative MOMDPs can be
viewed as a subset of preference-based MDPs, and as such methods designed specifically
for MOMDPs may be more efficient than general preference-based methods.

5.2 Multiple-Policy Planning with Linear Scalarization Functions

In the multiple-policy setting with linear f , we seek a CCS(Πm
DS). Note however, the

distinction between the convex hull and a convex coverage set is usually not made in the
literature.

One might argue that explicitly multi-objective methods are not necessary in this set-
ting, because one could repeatedly run single-objective methods to obtain a CCS(Πm

DS).
However, since there are infinitely many possible w, it is not obvious that all possible val-
ues for w can be covered. It might be possible to devise a way to run the single-objective
methods a finite number times and still guarantee that a CCS(Πm

DS) is produced. However,
this would be a nontrivial result and the corresponding algorithm would in essence be a
multi-objective method that happens to use single-objective methods as subroutines.

One approach that has been attempted to find a minimally sized CCS(Πm
D), i.e., a convex

coverage set of deterministic but not necessarily stationary policies, originally proposed by
White and Kim (1980), is to translate the MOMDP into a partially observable Markov
decision process (POMDP) (Sondik, 1971). An intuitive way to think about this translation
is to imagine that there is in fact only one true objective but the agent is unaware which of
the objectives in the MOMDP it is. This is modeled in the POMDP by defining the state
as a tuple 〈s1, s2〉 where s1 is the state in the MOMDP and s2 ∈ {1 . . . n} indicates which is
the true objective. The observations thus identify s1 exactly but give no information about
s2. Note that this translation from MOMDPs to POMDPs is one-way only. Not every
POMDP can be translated to an equivalent MOMDP.

Typically, an agent interacting with a POMDP maintains a belief, i.e., a probability
distribution over states. In a POMDP derived from an MOMDP, this belief can be decom-
posed into a belief about s1 and a belief about s2. The former is degenerative because s1 is
known. The latter is a vector of size n in which the i-th element specifies the probability
that the i-th objective is the true one. This vector is analogous to w for a linear f . In
fact, this is the reason why Figure 2b resembles the piecewise linear value functions often
depicted for POMDPs; the only difference is whether the x-axis is interpreted as w or as a
belief.

White and Kim (1980) show that, in the finite horizon case, the solution for every belief
is exactly the solution for each w, and that the solutions for the resulting POMDP are
exactly those for the original MOMDP. The infinite horizon case is more difficult because
infinite horizon POMDPs are undecidable (Madani, Hanks, & Condon, 1999). However,
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for a sufficiently large horizon, the solution to a finite horizon POMDP can be used as an
approximate solution to an infinite horizon MOMDP.

To solve the resulting POMDP,White and Kim (1980) propose a combination of Sondik’s
one-pass algorithm (Smallwood & Sondik, 1973) and policy iteration for POMDPs (Sondik,
1978). However, any POMDP planning method can be used as long as it (1) does not
require an initial belief about the POMDP state (which would correspond to initializing
not only the MOMDP state but also w) and (2) computes the optimal policy for every
possible belief. More recently developed exact methods, e.g., Cassandra, Littman, and
Zhang (1997) and Kaelbling, Littman, and Cassandra (1998), meet these conditions and
could thus be employed. Approximate point-based POMDP methods (Spaan & Vlassis,
2005; Pineau, Gordon, & Thrun, 2006) do not meet conditions (1) and (2) but could be
adapted to compute an approximate convex hull, by choosing a prior distribution for the
weights from which they could sample. Online POMDP planning methods (Ross, Pineau,
Paquet, & Chaib-draa, 2008) are not applicable because they plan only for a given belief.

Converting to a POMDP thus allows the use of some but not all POMDP methods for
solving MOMDPs with linear f . However, this approach can be inefficient because it does
not exploit the characteristics that distinguish such MOMDPs from general POMDPs, i.e.,
that part of the state, s1, is known and that no observations give any information about
s2. For example, methods that compute policies trees, e.g., (Kaelbling et al., 1998) do not
exploit the fact that only deterministic policies that are stationary functions of the state
are needed for MOMDPs with linear f . Furthermore, as mentioned before, general infinite
horizon POMDPs are undecidable, but for MOMDPs it is in fact possible to compute the
CCS(Πm

DS) exactly.

For these reasons, researchers have also developed specialized planning methods for this
setting. Viswanathan, Aggarwal, and Nair (1977) propose a linear programming approach
for episodic MOMDPs. Wakuta and Togawa (1998) propose a policy iteration approach
that has three phases. The first phase uses policy iteration to narrow down the set of
possibly optimal policies. The second phase uses linear programs to check for optimality.
Since this does not necessarily give a definitive answer, the third phase uses another linear
program to handle any undetermined solutions left after the second phase.

Barrett and Narayanan (2008) propose convex hull value iteration (CHVI), which com-
putes the CH(Πm

DS), in every state. CHVI extends conventional value iteration by storing a

set of vectors,
◦

Q (s, a) for each state-action pair, representing the convex hull of policies in-
volving that action. These sets of vectors correspond to the Q-values in the single-objective
setting; they contain the optimal Q-values for all possible w. When a backup operation is
performed, the Q-hulls at the next state s′ are propagated back to s. For each possible next

state s′, all possible actions a′ are considered (i.e. the union of convex hulls
⋃

a′

◦

Q (s′, a′) is
taken), and weighted by the probability of s′ occurring when taking action a in state s. This
procedure is very similar to the witness algorithm (Kaelbling et al., 1998) for POMDPs.

Lizotte et al. (2010) propose a value-iteration approach for the finite-horizon setting
that computes a different value function for each timestep. In addition, it uses a piecewise
linear spline representation of the value functions. The authors prove this offers asymptotic
time and space complexity improvements over the representation used by CHVI and also
enables application of this algorithm to MOMDPs with continuous states. However, the
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algorithm is only applicable to problems with two objectives. This limitation is addressed
in the authors’ subsequent work (Lizotte, Bowling, & Murphy, 2012) which extends the
algorithm to an arbitrary number of objectives and provides a detailed implementation for
the case of three objectives.

5.3 Multiple-Policy Planning with Monotonically Increasing Scalarization

Functions

In this section, we consider planning in MOMDPs with monotonically increasing f . As dis-
cussed in Section 4.3, when stochastic policies are allowed, mixture policies of deterministic
stationary policies are sufficient. Therefore, we focus on the case when only deterministic
policies are allowed and consider methods that compute a PCS(Πm

D), which can include
non-stationary policies. The distinction between the PF (Πm

D) and PCS(Πm
D) is usually not

made in the literature.

As in the linear case, scalarizing for every w and obtaining a PCS(Πm
D) by the single-

objective methods is problematic. Again there are infinitely many w to consider but, unlike
the linear case, there is the additional difficulty that the scalarized returns may no longer
be additive, which can make single-objective methods inapplicable.

Daellenbach and Kluyver (1980) present an algorithm for multi-objective routing tasks
(essentially deterministic MOMDPs). Their approach uses dynamic programming in con-
junction with an augmented state space to find all non-Pareto-dominated policies iteratively,
where the number of iterations equals the maximum number of steps in the route. The al-
gorithm finds undominated sub-policies in parallel. The authors use two alternative explicit
scalarization functions, which they call the weighted minsum and weighted minmax oper-
ators. First, the values of all solutions are translated : for each objective, the new value
becomes the fractional difference between the optimal values for that objective across all
solutions. Then, the value for that objective is multiplied by a positive weight. Finally,
either the minimum of the sum (minsum) or the minimum of the maximal value (minmax )
of these new weighted fractional differences is chosen as the scalarization. Note that both
scalarization functions are monotonically increasing in all objectives, as the optimal value
for each objective individually does not depend on the scalarization function.

White (1982) extends this work by proposing a dynamic programming method that
approximately solves infinite horizon MOMDPs. It does so by repeatedly backing up ac-
cording to a multi-objective version of the Bellman equation. Since the policies can be
non-stationary, the size of the Pareto front grows rapidly in the number of backups applied.
However, White notes that this number “need not be too large before acceptable approxi-
mations are reached”. Nonetheless, this approach is feasible only for small MOMDPs.

Wiering and De Jong (2007) address this difficulty with a dynamic programming method
called CON-MODP for deterministic MOMDPs that computes optimal stationary policies.
CON-MODP works by enforcing consistency during DP updates: a policy is consistent if
it suggests the same action at all timesteps for a given state. If an inconsistent policy is
inconsistent only in one state-action pair, CON-MODP makes it consistent by forcing the
current action to be taken each time the current state is visited. If the inconsistency runs
deeper, the policy is discarded.
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By contrast, Gong (1992) proposes a linear programming approach that finds the Pareto-
front of stationary policies. However, as the authors note, this approach is also suitable
only to small MOMDPs because the number of constraints and decision variables in the
linear program increase rapidly as the state space grows.

As mentioned in Section 4.2.2, one way to cope with intractably large Pareto fronts is
to compute instead an ǫ-approximate Pareto front, which can be much smaller. Chatterjee
et al. (2006) propose a linear programming method that computes the ǫ-approximate front
for an infinite horizon MOMDP, while Chatterjee (2007) propose an analogous algorithm
for the average reward setting. In both cases, stationary stochastic policies are shown to be
sufficient.

Another way to improve scalability in this setting is to give up on planning for the whole
state space and instead plan on-line for the agent’s current state, using a Monte Carlo tree
search approach (Kocsis & Szepesvári, 2006). Such approaches, which have proven very
successful, e.g., in the game of Go (Gelly & Silver, 2011), are increasingly popular for
single-objective MDPs. Wang and Sebag (2013) propose a Monte Carlo tree search method
for deterministic MOMDPs. Single-objective tree search methods typically optimistically
explore the tree by selecting actions that maximize the upper confidence bound of their
value estimates. The multi-objective variant does the same, but with respect to a scalar
multi-objective value function whose definition is based on the hypervolume indicator in-
duced by the proposed action together with the set of Pareto optimal policies computed so
far. The hypervolume indicator (Zitzler, Thiele, Laumanns, Fonseca, & da Fonseca, 2003)
measures the hypervolume that is Pareto-dominated by a set of points. Since the Pareto
front maximizes the hypervolume indicator, this optimistic action selection strategy focuses
the tree search on the branches most likely to compliment the existing archive.

6. Learning in MOMDPs

The methods reviewed in Section 5 assume that a model of the transition and reward
dynamics of the MOMDP are known. In cases where such a model is not directly available,
multi-objective reinforcement learning (MORL) can be used instead.

One way to carry out MORL is to take a model-based approach, i.e., use the agent’s
interaction with the environment to learn a model of the transition and reward function of
the MOMDP and then apply multi-objective planning methods such as those described in
Section 5. Though such an approach seems well suited to MORL, only a few papers have
considered it, (e.g., Lizotte et al., 2010, 2012). We discuss opportunities for future work
in model-based MORL in Section 8.1. Instead, most of the work in MORL has focused on
model-free methods, where a model of the transition and reward function is never explicitly
learned.

In this section, we survey some key MORL approaches. While the majority of these
methods are for the single-policy setting, multiple-policy methods have also been devel-
oped. At first glance, it may seem that multiple-policy methods are unlikely to be effective
in the learning setting, since finding more policies would increase sample costs, not just
computational costs, and the former is typically a much scarcer resource. However, model-
based methods can obviate this issue: once enough samples have been gathered to learn a
useful model, finding policies optimal for more weights requires only computation. Model-
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free methods can also be practical for the multiple-policy setting if they employ off-policy
learning (Sutton & Barto, 1998; Precup, Sutton, & Dasgupta, 2001), which makes it pos-
sible to learn about one policy using data gathered by another. In this way, policies for
multiple weight settings can be optimized using the same data.

6.1 Single-Policy Learning Methods

In the known weights scenario, a MORL algorithm aims to learn a single policy that is
optimal for the given weights. As discussed in Section 5.1, under linear scalarization this
is equivalent to learning the optimal policy for a single-objective MDP and so standard
temporal-difference (TD) methods (Sutton, 1988) such as Q-learning (Watkins, 1989) can
easily be applied.

However, even though no specialized methods are needed to address this setting, it
is nonetheless the most commonly studied setting for MORL. Linear scalarization with
uniform weights, i.e., all the elements of w are equal, forms the basis of the work of Karlsson
(1997), Ferreira, Bianchi, and Ribeiro (2012), Aissani, Beldjilali, and Trentesaux (2008) and
Shabani (2009) amongst others, while non-uniform weights have been used by authors such
as Castelletti et al. (2002), Guo et al. (2009) and Perez et al. (2009). The majority of this
work uses TD methods, which work on-line, although Castelletti et al. (2010) extend off-line
Fitted Q-Iteration (Ernst, Geurts, & Wehenkel, 2005) to multiple objectives.

In most cases, the only change made to the underlying RL algorithm is that, rather than
scalarizing the reward function and then learning a scalar value function in the resulting
single-objective MDP, a vector-valued value function is learned in the original MOMDP and
then scalarized only when selecting actions. The argument for this approach is that the
values of individual objectives may be easier to learn than the scalarized value, particularly
when function approximation is employed (Tesauro et al., 2007). For example, each function
approximator can ignore any state variables that are irrelevant to its objective, reducing
the size of the state space and thereby speeding learning.

As discussed in Section 4.2.2, linear scalarization may not be appropriate for some sce-
narios. Vamplew, Yearwood, Dazeley, and Berry (2008) demonstrate empirically that this
can have practical consequences for MORL. Therefore, MORL methods that can work with
nonlinear scalarization functions are of substantial importance. Unfortunately, as illustrated
in Section 4.2.2, coping with this setting is especially challenging, since algorithms such as
TD methods that are based on the Bellman equation are inherently incompatible with
nonlinear scalarization functions due to the non-additive nature of the scalarized returns.

Four main classes of single-policy MORL methods using non-linear scalarization have
arisen, which differ in how they deal with this issue. The first class simply applies TD
methods without modification. These approaches either resign themselves to being heuris-
tics that are not guaranteed to converge or impose restrictions on the environment to ensure
convergence. The second class modifies either the TD algorithm or the state representation
such that the issue of non-additive returns is avoided. The third class uses TD methods
to learn multiple policies using linear scalarization with different values for w, and then
forms a stochastic or non-stationary ‘meta-policy’ from them that is optimal with respect
to a nonlinear scalarization. The fourth class uses policy-search methods, which do not
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make use of the Bellman equation and hence can be directly applied in combination with
nonlinear scalarizations.

The first class includes methods that model the problem as a multi-agent system, with
one agent per objective. Each agent learns and recommends actions on the basis of the
return for its own objective. A global switch then selects a winning agent, whose recom-
mended action is followed for the current state. Examples include a simple ‘winner-takes-all’
approach in which the agent whose recommended action has the highest Q-value is selected,
or more sophisticated approaches such as W-learning (Humphrys, 1996) where the selected
action is the one that will incur the most loss if it is not followed. One key weakness of
such approaches was pointed out by Russell and Zimdars (2003): they do not allow for the
selection of actions that, while not optimal for any single objective, offer a good compromise
between multiple objectives. Another key weakness is that, since the actions selected at
different timesteps may be recommended by different agents, the resulting behavior corre-
sponds to a policy that combines elements of those learned by each agent. This combination
may not be optimal even for a single objective, i.e., it may be Pareto dominated and perform
arbitrarily poorly.

TD has also been used directly with nonlinear scalarization functions that do allow for
the consideration of all actions, not just those which are optimal with regards to individual
objectives. Scalarization functions based on fuzzy logic have been proposed for problems
with discrete actions by Zhao, Chen, and Hu (2010) and for problems with continuous
actions by Lin and Chung (1999). A widely cited approach to nonlinear scalarization is
that of Gabor, Kalmar, and Szepesvari (1998), which is designed for tasks where constraints
must be satisfied for some objectives. A lexicographic ordering of the objectives is defined
and a threshold value is specified for all objectives except the last. State-action values for
each objective that exceed the corresponding threshold are clamped to that threshold value
prior to applying the lexicographic ordering. Thus, this thresholded lexicographic ordering
(TLO) approach to scalarization maximizes performance on the last objective subject to
meeting constraints on the other objectives as specified by the thresholds.

While methods combining TD with nonlinear scalarization may converge to a suitable
policy under certain conditions, they can also converge to a suboptimal policy or even fail
to converge under other conditions. For example, Issabekov and Vamplew (2012) demon-
strate empirically that TLO can fail to converge to a suitable policy for episodic tasks if a
constrained objective receives non-zero rewards at any timestep other than the end of the
episode. In general, methods based on the combination of TD and nonlinear scalarization
must be regarded as heuristic in nature, or applicable only to restricted classes of problems.

The second class avoids the problems caused by non-additive scalarized returns by modi-
fying either the TD algorithm or the state representation. To our knowledge, two approaches
proposed by Geibel (2006) to address the limitations of TLO are the only members of this
class. Both require that the reward accumulated for each objective over the current episode
be stored. In the first algorithm, local decision-making is based on the scalarized value of
the sum of the cumulative reward and the current state-action values. This eliminates the
problem of non-additive returns, but yields a policy that is non-stationary with respect to
the observed state, meaning the algorithm may not converge. The second approach aug-
ments the state representation with the cumulative reward. This approach converges to the
correct policy but learns slowly, due to the increase in the size of the state space.
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The third class uses TD methods only to learn policies based on linear scalarizations.
A policy selection mechanism based on a nonlinear scalarization is then used to form a
‘meta-policy’ from these base policies. The Multiple Directions Reinforcement Learning
(MDRL) algorithm of Mannor and Shimkin (2001, 2004) uses such an approach in the
context of on-line learning for non-episodic tasks. The user specifies a target region within
which the long-term average reward should lie. An initial active policy is chosen arbitrarily
and followed until the average reward moves outside of the target region and the agent is
in a specified reference state. At this point, the direction from the current average reward
vector to the closest point of the target set is calculated, and the policy whose direction best
matches this target direction is selected as the active policy. In this way, the average reward
is ‘steered’ towards the user’s specified target region. While the underlying base policies
utilize linear scalarization, the nature of the policy-selection mechanism means that the
overall non-stationary policy formed from these base policies is optimal for the nonlinear
scalarization specified by the user’s defined target set. Vamplew et al. (2009) suggest a
similar approach for episodic tasks, with TD used first to learn policies that are optimal
under linear scalarization for a range of different w, before a stochastic mixture policy is
constructed that is optimal with regards to a nonlinear scalarization.

The fourth class uses policy-search algorithms that directly learn a policy without learn-
ing a value function. For single-policy MORL, research on policy-search approaches has
focused on policy-gradient methods (Sutton, McAllester, Singh, & Mansour, 2000; Kohl &
Stone, 2004; Kober & Peters, 2011). In such methods, a policy is iteratively adjusted in the
direction of the gradient of the value with respect to the parameters (usually probability
distributions over actions per state) of a policy. Shelton (2001) proposes an algorithm that
first learns the optimal policy for each individual objective. These are used as base poli-
cies to form an initial mixture policy that stochastically selects a base policy at the start
of each episode. A hill-climbing method based on a weighted convex combination of the
normalized objective gradients iteratively improves the mixture policy. This approach does
not directly fit our taxonomy because the returns themselves are never scalarized. Instead,
the weights are used to find a step direction relative to the current policy parameters. From
a practical perspective, its behavior is akin to that of single-policy RL using a nonlinear
scalarization function, as it converges to a single Pareto-optimal policy that need not lie
on the convex hull. Uchibe and Doya (2009) also propose a policy-gradient method for
MORL called Constrained Policy Gradient RL (CPGRL) which uses a gradient projec-
tion technique to find policies whose average reward satisfies constraints on one or more of
the objectives. Like Shelton’s approach, CPGRL learns stochastic policies and works with
nonlinear scalarization functions.

6.2 Multiple-Policy Learning with Linear Scalarization Functions

In the unknown weights and decision support scenarios, if f is linear, then MORL algorithms
aim to learn a CCS of the possible policies. A simple but inefficient approach used by
Castelletti et al. (2002) is to run TD multiple times with different values of w. In the
simplest case, the runs are conducted sequentially to gradually build up an approximate
CCS. Natarajan and Tadepalli (2005) showed that this approach can be made more efficient
by reusing the policies learned on the earlier runs for the most similar w. They show that
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this improves greatly on sample costs when learning a policy for w similar to those already
visited in previous runs. However, many samples are typically still required before a good
approximate CCS is obtained.

A more sophisticated approach to approximating a convex coverage set is to learn mul-
tiple policies in parallel. Several algorithms have been proposed to achieve this within a
TD learning framework. The approach of Hiraoka, Yoshida, and Mishima (2009) is similar
to the CHVI planning algorithm of Barrett and Narayanan (2008) (see Section 5.2) in that
it learns in parallel the optimal value function for all w, using a convex hull representation.
This approach is prone to infinite growth in the number of vertices in convex hull polygons,
and so a threshold margin is applied to the hull representations on each iteration, eliminat-
ing points that contribute little to the hull’s hypervolume. Hiraoka et al. (2009) present an
algorithm to adapt the margins during learning to improve efficiency, but note that many
parameters must be tuned for effective performance. Mukai, Kuroe, and Iima (2012) present
a similar extension of CHVI to a learning context. They address the problematic growth
in the number of values stored by pruning vectors after each Q-value update: a vector is
selected at random from the set of vectors stored for the given state-action pair and all
others lying within a threshold distance of it are deleted.

The approaches of both Hiraoka et al. (2009) and Mukai et al. (2012) are designed for
on-line learning. By contrast, Multi-Objective Fitted Q-Iteration (MOFQI) (Castelletti,
Pianosi, & Restelli, 2011, 2012) is an off-line approach to learning multiple policies. MOFQI
is a multi-objective extension of the Fitted Q-Iteration (FQI) algorithm (Ernst et al., 2005)
which uses a combination of historical data about the single-step transition dynamics of the
environment, an initial function approximator, and the Q-learning update rule to construct
a dataset that maps state-action pairs to their expected return. This dataset is then used
to train an improved function approximator and the process repeats until the values of the
function approximator converge. MOFQI provides a computationally efficient extension of
FQI to multiple objectives by including w in the input to the function approximator and
constructing an expanded training data set containing training instances with randomly
generated w’s. Since the learned function generalizes across weight space in addition to
state-action space, it can be used to construct a policy for any w.

As discussed in Section 5.3, Lizotte et al. (2010) and Lizotte et al. (2012) describe a value-
iteration algorithm to find the convex hull of policies for finite horizon tasks. They note that
this method can be applied in a learning context by estimating a model of the state transition
probabilities and immediate rewards on the basis of experience of the environment. This
approach is demonstrated for the task of analyzing randomized drug trial data by producing
these estimates from the historical data gathered during the clinical trials.

6.3 Multiple-Policy Learning with Monotonically Increasing Scalarization

Functions

If f is nonlinear, then MORL algorithms for the unknown weights and decision support sce-
narios should aim to learn a PCS. As in the linear scalarization case, the simplest approach
is to run single-objective algorithms multiple times with varying w. Shelton (2001) demon-
strates this approach with a policy-gradient algorithm, while Vamplew et al. (2011) do the
same with the TLO method of Gabor et al. (1998). This approach however, requires that
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f is explicitly known to the learning algorithm, which may be undesirable in the decision
support scenario.

To our knowledge, there are currently no methods for learning multiple policies with
nonlinear f using a value-function approach. While it might seem possible to adapt convex
hull methods such as CHVI by using Pareto-dominance operators in place of convex-hull
calculations, doing so is not straightforward. Because the scalarized values of policies in a
certain state are non-additive, we cannot restrict ourselves to stationary policies if we want
to find all deterministic Pareto-optimal policies (as mentioned in Section 4.3.2). However,
for the Bellman equation from CHVI to work, additivity, and the resulting sufficiency of
deterministic policies, is required. We discuss options for developing multiple-policy learning
methods for nonlinear f in Sections 8.1 and 8.2.

Given the extensive research on both multi-objective evolutionary algorithms (MOEAs)
(Coello Coello, Lamont, & Van Veldhuizen, 2002; Tan, Khor, Lee, & Sathikannan, 2003;
Drugan & Thierens, 2012) and evolutionary methods for RL (Whiteson, 2012), there is sur-
prisingly little work on evolutionary approaches to MORL. As these methods are population-
based, they are well suited to approximating Pareto fronts, and would thus seem a natural
fit when f is nonlinear. To our knowledge, Handa (2009b) was the first to apply MOEAs
to MORL, by extending Estimation of Distribution (EDA) evolutionary algorithms to han-
dle multiple objectives. EDA-RL (Handa, 2009a) uses Conditional Random Fields (CRF)
to represent probabilistic policies. An initial set of policies are used to generate a set of
episodes. The best episodes from this set are selected and CRFs that are likely to pro-
duce these trajectories are generated. The policies formed from these CRFs then constitute
the next generation. Handa (2009b) extends EDA-RL to MOMDPs by using a Pareto-
dominance based fitness metric to select the ‘best’ episodes.

Soh and Demiris (2011) also apply MOEAs to MORL. Policies are represented as
Stochastic Finite State Controllers (SFSC) and are optimized using two different MOEAs:
NSGA2, a standard evolutionary algorithm, and MCMA, an EDA. The use of SFSCs gives
rise to a large search space, necessitating the addition of a local search operator. The local
search generates a random w, uses it to scalarize the rewards, and performs gradient-based
search on the SFSC. Empirical comparisons on multi-objective variants of three POMDP
benchmarks demonstrate that the evolutionary methods are generally superior to the purely
local-search approach, and that local search combined with evolution usually outperforms
the purely evolutionary methods. This is one of very few papers to directly consider partially
observable MOMDPs.

7. MOMDP Applications

Multi-objective methods for planning and learning have been employed in a wide range
of applications, both in simulation and real-world settings. In this section, we survey
these applications. For the sake of brevity, this list is not comprehensive but instead aims
to provide an illustrative range of examples. First, we discuss the use of multi-objective
methods in specific applications. Second, we discuss research that has identified broader
classes of problems in which multi-objective methods can play a useful role.
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7.1 Specific Applications

An important factor driving interest in multi-objective decision-making is the increasing
social and political emphasis on environmental concerns. More and more, decisions must
be made that trade off economic, social, and environmental objectives. This is reflected in
the fact that a substantial proportion of applications of multi-objective methods have an
environmental component.

Perhaps the most extensively researched application is the water reservoir control prob-
lem considered by Castelletti et al. (2002), Castelletti, Pianosi, and Soncini-Sessa (2008),
Castelletti et al. (2011, 2012) and Castelletti, Pianosi, and Restelli (2013). The general
task is to find a control policy for releasing water from a dam while balancing multiple uses
of the reservoir, including hydroelectric production and flood mitigation. Management of
hydroelectric power production has also been examined by Shabani (2009). Another en-
vironmental application is that of forest management to balance the economic benefits of
timber harvesting with environmental or aesthetic objectives, which has been demonstrated
in simulation by both Gong (1992) and Bone and Dragicevic (2009).

Several researchers have also considered environmentally-motivated applications con-
cerning the management of energy consumption. The SAVES system developed by Kwak
et al. (2012) controls various aspects of a commercial building (lighting, heating, air-
conditioning, and computer systems) to provide a suitable trade-off between energy con-
sumption and the comfort of the building’s occupants. Simulation results indicate that
SAVES can reduce energy consumption approximately 30% compared to a manual control
system, while maintaining or slightly improving occupant comfort. Both Tesauro et al.
(2007) and Liu et al. (2010) consider the problem of controlling a computing server, with
the objectives of minimizing both response time to user requests and power consumption.
Guo et al. (2009) apply MORL to develop a broker agent in the electricity market. The
broker sets caps for a group of agents that sit below it in a hierarchy and manage energy
consumption at a device level, and must balance energy cost and system stability.

Shelton (2001) also examines the application of MORL to developing broker agents.
However, in this case the agent’s task is financial rather than environmental, acting as a
market maker that sets buy and sell prices for resources in a market. The aim is to balance
the objectives of maximizing profit and minimizing spread (the difference between the buy
and sell prices) as that will lead to a larger volume of trades11.

Computing and communications applications have also been widely considered. Perez
et al. (2009) apply MORL to the allocation of resources to jobs in a cloud computing sce-
nario, with the objectives of maximizing system responsiveness, utilization of resources, and
fairness amongst different classes of user. Comsa et al. (2012) consider how to maximize
system throughput and ensure user equity in the context of a Long Term Evolution mobile
communications packet scheduling protocol. Tong and Brown (2002) use constraint-based
scalarization to address the tasks of call access control and routing in a broadband mul-
timedia network. Their system aims to maximize profit (a function of throughput) while
satisfying constraints on quality of service metrics (capacity constraints and fairness con-
straints), and uses methods similar to that of Gabor et al. (1998). Zheng, Li, Qiu, and Gong

11. Shelton’s model of the market does not directly model trading volume, and so spread is used as a proxy
for volume.
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(2012) also use constrained MORL methods to make routing decisions in a cognitive radio
network, aiming to minimize average transmission delay while maintaining an acceptably
low packet loss rate.

Industrial and mechanical control, an important application for single-objective MDP
methods, has also been explored by MOMDP researchers. Aoki, Kimura, and Kobayashi
(2004) apply distributed RL to control a sewage flow system, exploiting the system’s hier-
archical structure to find a solution that minimizes violation of stock levels at each node
in the flow system, while smoothing variation in flow at the source. Aissani et al. (2008)
apply MORL to maintenance scheduling within a manufacturing plant to minimize the time
taken to complete all maintenance tasks and machine downtime. Aissani, Beldjilali, and
Trentesaux (2009) build on this work by applying it to a simulation of a real petroleum refin-
ery and demonstrating the ability to adapt to unscheduled corrective maintenance required
due to equipment failures. The control of a wet clutch in heavy-duty transmission systems
is examined by Van Vaerenbergh et al. (2012). There are twin objectives of minimizing
engagement time, while also making the transition smooth.

Robotics are also a popular application for MOMDPs, though most work so far has been
in simulation rather than on real robots. Maravall and de Lope (2002) consider the control
of a two-limbed brachiating robot, with the objectives of moving in a desired direction
while avoiding collisions12. Nojima, Kojima, and Kubota (2003) also attempt to balance
the objectives of progress to a target and collision avoidance. Their agent makes use of
predefined behavioral modules for target tracing, collision avoidance, and wall following,
with MORL used to dynamically adjust the weighting of the modules. Meisner (2009)
identifies social robots as a promising application of MOMDP methods: their behavior is
inherently multi-objective because they must carry out a task without causing anxiety or
discomfort for humans.

MORL has also been applied to the control of traffic infrastructure. Yang and Wen
(2010) apply it to the control of freeway on-ramps and vehicle management systems, aiming
to maximize both the throughput and equity of a freeway system. Multiple agents with
shared policies are used, with action selection occurring via negotiation between agents.
Similarly, Dusparic and Cahill (2009) apply MORL to control traffic lights at intersections
in an urban environment to minimize waiting time of two different classes of vehicles. Yin,
Duan, Li, and Zhang (2010) and Houli, Zhiheng, and Yi (2010) also apply MORL to traffic
light control. The novelty of their approach lies in considering different objectives based
on the current state of the road system; minimizing vehicle stops is prioritized when traffic
is free-flowing; minimizing waiting time is emphasized when the system is at medium load;
and minimizing queue length at intersections is targeted when the system is congested.

Lizotte et al. (2010, 2012) consider a medical application: prescribing an appropriate
drug regime for a patient so as to achieve an acceptable trade-off between the drugs’ effec-
tiveness and the severity of its side effects. Their system learns multiple policies based on

12. In many robotic applications it may be ideal to avoid collisions completely, but in some environments
this may not be possible (e.g., in the presence of moving obstacles whose velocity is both faster than that
of the robot, and difficult to predict, such as may be the case for humans or human-controlled vehicles)
and so reducing both the likelihood and impact of collisions may be more reasonable than attempting
to find a collision-free policy. See for example Holenstein and Badreddin (1991) and Pervez and Ryu
(2008).
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static data produced during randomized controlled drug trials. The selection of the best
treatment for a specific patient is then made by a doctor based on that patient’s individ-
ual circumstances. This application is an excellent example of a problem where stochastic
approaches like mixture policies are inappropriate. A policy that maximizes both symp-
tom relief and also side effects for one patient and then minimizes side effects but also
symptom relief for the next patient may appear to give excellent results when averaged
across episodes. However, the experience of each individual patient will likely be regarded
as undesirable.

7.2 Applications within Broader Planning and Learning Tasks

In addition to the specific applications discussed above, several authors have identified more
general classes of tasks in which multi-objective sequential decision-making can be applied.

7.2.1 Probabilistic and Risk-Aware Planning

Cheng, Subrahmanian, and Westerberg (2005) argue that decision-making under uncer-
tainty is inherently multi-objective in nature. Even if there is only a single reward to be
considered (such as profit), the environmental uncertainty means that the expected value
alone is insufficient to support good decision-making; the decision-maker must also consider
the variance of the return. Similarly, Bryce (2008) states that probabilistic planning is
inherently multi-objective due to the need to optimize both the cost and the probability of
success of the plan. He criticizes approaches that either aggregate these factors or bound one
and then optimize the other, arguing in favor of explicitly multi-objective methods. The
aptly named “Probabilistic Planning is Multi-objective!” paper by Bryce, Cushing, and
Kambhampati (2007) demonstrates how this might be achieved, describing a method based
on multi-objective dynamic programming over belief states, and a multi-objective extension
of the Looping AO* search algorithm to find the set of Pareto-optimal plans. Recent work
by Kolobov, Mausam, and Weld (2012) and Teichteil-Königsbuch (2012b) examine the ex-
tension of stochastic shortest path (SSP) methods to problems where dead-end states exist.
SSP methods assume that at least one policy exists which is guaranteed to reach the goal;
in the presence of dead-ends no such policy exists, and so the authors propose algorithms
which aim to both maximize the probability of reaching the goal and minimize the cost of
the paths found to that goal.

Bryce (2008) notes that a probabilistic plan fails when the environment enters a non-goal
absorbing state. Hence, multi-objective probabilistic planning has strong parallels with the
research into risk-aware RL carried out by Geibel (2001) and Geibel and Wysotzki (2005),
which add a second reward signal indicating the transition of the environment into an error
state. Defourny, Ernst, and Wehenkel (2008) also provide useful insights into the incor-
poration of risk-awareness into MDP methods. They review a range of criteria proposed
for constraining risk, and note that many of these are nonlinear and produce non-additive
scalarized returns that are incompatible with the local decision-making of methods based
on the Bellman equation. They recommend that custom risk-control requirements should
be mostly enforced heuristically, by altering policy optimization procedures and checking
the compliance of the policies with the initial requirements. Multi-policy MOMDP meth-
ods treating risk as an additional objective would satisfy this requirement: having iden-
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tified the coverage set, any risk-aware metric can then be used to select the best policy.
However, some measures of risk may not be expressed directly as discounted cumulative
rewards. For example, an agent may wish to minimize the variance in the expected re-
turn for a particular reward signal rather than its discounted cumulative value. Methods
based on multi-objective probabilistic model checking (Courcoubetis & Yannakakis, 1998;
Forejt, Kwiatkowska, Norman, Parker, & Qu, 2011; Forejt, Kwiatkowska, & Parker, 2012;
Teichteil-Königsbuch, 2012a), which evaluate whether a system modelled as an MDP satis-
fies multiple, possibly conflicting, properties, may be suitable for such tasks.

7.2.2 Multi-Agent Systems

The use of MDPs within multi-agent systems has been widely explored (Bosoniu, Babuska,
& Schutter, 2008), and several authors have proposed approaches that are strongly related
to MOMDPs. In a multi-agent system, each agent has its own objective, but for effective
overall performance must also consider how its actions will affect the other agents. If the
agents are not completely self-interested, then this problem can be framed as an MOMDP by
treating the effects on other agents as additional objectives. For example, Mouaddib (2006)
uses multi-objective dynamic programming to facilitate cooperation between multiple agents
whose underlying goals may be conflicting. For each state-action pair, each agent stores
three values: its local utility, the gain other agents receive, and the penalty it inflicts on
other agents. The policy for each agent is then established by converting these vector values
to regret ratios and applying a leximin ordering to these ratios.

Dusparic and Cahill (2010) compare the application of MORL to multi-agent tasks with
other multi-agent methods such as evolutionary and ant-colony algorithms. Dusparic and
Cahill (2009) extend the W-Learning algorithm of Humphrys (1996). Each agent learns
both local policies (one for each of its own objectives) and remote policies (one for each
local policy of each of its neighboring agents). At each timestep, all local policies and all
active remote policies of each agent nominate actions, and a winning action is selected by
combining action values across all nominating policies. A weighting term is applied to the
values of remote policies to determine the level of cooperation each agent offers its neighbor.
Experimental results in an urban traffic control simulator show substantial improvement
when the level of cooperation is non-zero. This work is similar to that of Schneider, Wong,
Moore, and Riedmiller (1999), which addresses the use of multiple agents in a distributed
network such as a power distribution grid, where the aim is to maximize a global reward
formed from a combination of each agent’s local reward. They demonstrate that if each
agent focuses only on its own local reward, the policies learned may not maximize the global
reward, and that performance is improved by having each agent perform linearly scalarized
learning using both its own local reward and the rewards of its neighboring agents.

7.2.3 Multi-Objective Optimization using Reinforcement Learning

Reinforcement learning is primarily applied to sequential decision-making tasks in a dynamic
environment. However it can also be employed to control search mechanisms for static op-
timization tasks such as scheduling (Carchrae & Beck, 2005). Multi-objective optimization
for static tasks such as design is a well-established field and, while the majority of this work
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has employed mathematical or evolutionary approaches (Coello Coello et al., 2002), a few
authors have explored the application of reinforcement learning in such contexts.

Mariano and Morales (1999, 2000b, 2000a) investigate the use of RL methods (Ant-Q
and Q-learning) as a search mechanism for optimization of multi-objective design tasks. The
values of the decision variables are considered as the current state, and actions are defined
that alter the values of those variables. Multiple agents explore the state space in parallel.
Agents are divided into ‘families’, where each family focuses on a single objective. At the
end of an episode, the final states found by each agent are evaluated. Undominated solu-
tions are kept in an archive and the agents that discovered those solutions are rewarded,
increasing the likelihood of similar policies being followed in the future. The method is
shown to work on a small number of test problems from the evolutionary multi-objective
optimization literature. Liao, Wu, and Jiang (2010) apply RL to search for static control
settings for a power generation system with the objectives of reducing fuel usage and ensur-
ing voltage stability. They propose an RL algorithm that is formulated specifically for tasks
with high-dimensional state spaces, and compare its performance against an evolutionary
multi-objective algorithm, finding that the RL method discovers fronts that are both more
accurate and better distributed, while also improving the speed of search.

Note that to effectively apply RL to multi-objective optimization, assumptions are usu-
ally made about the nature of the environment. For example, Liao et al. (2010) require
that each action increases or decreases the value of precisely one state variable. As a result,
these methods are likely to have limited applicability to the more general MORL problems
described earlier.

8. Future Work

In this section, we enumerate some of the possibilities for future research in multi-objective
planning and learning.

8.1 Model-Based Methods

As mentioned in Section 6, there has been very little work on model-based approaches to
MORL. Given the breadth of planning methods for MOMDPs, which could be employed in
model-based MORL methods as subroutines, this is surprising. To our knowledge, the only
work in this area is that of Lizotte et al. (2010, 2012), where a model of the MOMDP’s
transition probabilities and reward function is derived from historical data, and then a
spline-based multi-objective value iteration approach is applied to that model. In general,
learning such models seems only negligibly harder than in the single-objective setting, since
estimates of each reward function can just be learned separately. The problem of learning
the transition function, generally considered the hard part of model learning, is identical to
the single-objective setting. Especially in multiple-policy scenarios, model-based approaches
to MORL could greatly reduce sample costs: once the model has been learned, an entire
CCS or PCS can be computed off-line, without requiring additional samples.
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8.2 Learning Multiple Policies with Monotonically Increasing Scalarization

Functions using Value Functions

As mentioned in Section 6.3, we are not aware of any methods that use a value function
approach to learn multiple policies on the PCS. When stochastic policies are permitted,
the problem is easier because we can learn CCS(Πm

DS), and use either mixture policies
(Vamplew et al., 2009) or stationary randomizations (Wakuta, 1999) of the policies on
this CCS (see Section 4.3.3). However, when only deterministic policies are permitted, the
problem is more difficult. One option could be to use a finite-horizon approximation to the
infinite horizon problem. By planning backwards from the planning horizon, the expected
reward of t timesteps to go approximates the infinite-horizon value better and better as
t → ∞. As mentioned in Section 5.2, similar approaches have been used in the POMDP
setting. Another way to find good approximations to non-stationary policies could be to
learn stationary policies (perhaps by extending CON-MDP (Wiering & De Jong, 2007) to
the learning setting), and prefix them by t timesteps of non-stationary policy.

8.3 Many-Objective Sequential Decision-Making

The majority of the research reviewed in this article, both theoretical and applied, deals with
MOMDPs with only a few objectives. This mirrors the state of early evolutionary multi-
objective research, which focused almost exclusively on problems with two or at most three
objectives. However, over the last decade there has been growing interest in evolutionary
methods for so-called many-objective problems, which have at least four and sometimes
more than fifty objectives (Ishibuchi, Tsukamoto, & Nojima, 2008). This research has
shown that many algorithms that perform well for a few objectives scale poorly in the
number of objectives, necessitating special algorithms for the many-objective setting.

While many-objective MDPs have received little consideration so far, there are numer-
ous real-world control problems that can be naturally modeled in this way. For example,
Fleming et al. (2005) point out that many-objective control problems commonly arise in
engineering, and give the example of a jet engine control system with eight objectives. As
with the many-objective problems considered in evolutionary computation, it seems likely
that at least some of the methods explored so far will scale poorly in the number of ob-
jectives. For example, the multi-policy MOMDP planning algorithm described by Lizotte
et al. (2010) is limited to problems with two objectives.

A key challenge posed by many-objective problems is that the number of undominated
solutions typically grows exponentially in the number of objectives. This is particularly
problematic for multiple-policy MOMDP methods. Fleming et al. (2005) note that one
of the most effective approaches used in many-objective evolutionary computation is to
incorporate user preferences to restrict the search space to a small region of interest. In
particular, they recommend interactive preference articulation in which the user interac-
tively steers the system towards a desirable solution during optimization. While Vamplew
et al. (2011) raise the possibility of incorporating such an approach into MORL, we are not
aware of any research that has actually done so.
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Figure 3: An MOMDP with two objectives and four states.

8.4 Expectation of Scalarized Return

In Section 3, we defined the scalarized value V π
w
(s) to be the result of applying the scalariza-

tion function f to the multi-objective valueVπ(s) according tow, i.e., V π
w
(s) = f(Vπ(s),w).

Since Vπ(s) is itself an expectation, this means that the scalarization function is applied
after the expectation is computed, i.e.,

V π
w
(s) = f(Vπ(s),w) = f(E[

∞
∑

k=0

γkrk | π, s0 = s],w).

This formulation, which we refer to as the scalarization of the expected return (SER) is
standard in the literature. However, it is not the only option. It is also possible to define
V π
w
(s) as the expectation of the scalarized return (ESR):

V π
w
(s) = E[f(

∞
∑

k=0

γkrk,w) | π, s0 = s]

Which definition is used can critically affect which policies are preferred. For example,
consider the following MOMDP, illustrated in Figure 3. There are four states (A, B, C, and
D) and two objectives. The agent starts in state A and has two possible actions: a1 transits
to state B or C, each with probability of 0.5, and a2 transits to state D with probability 1.
Both actions lead to a (0, 0) reward. In states B, C and D there is only one action, which
leads to a deterministic reward of (3, 0) for B, (0, 3) for C, and (1, 1) for D.

The scalarization function just multiplies the two objectives together. Thus, under SER,

V π
w
(s) = V π

1 (s)V π
2 (s),

and under ESR,

V π
w
(s) = E[

(

∞
∑

k=0

γkr1k

)(

∞
∑

k=0

γkr2k

)

| π, s0 = s],
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where rik is the reward for the i-th objective on timestep k (w is not needed in this example
since f involves no constants). If π1(A) = a1 and π2(A) = a2, then the multi-objective
values are Vπ1(A) = (1.5γ/(1− γ), 1.5γ/(1− γ)) and Vπ2(A) = (γ/(1− γ), γ/(1− γ)).

Under SER, this leads to scalarized values of V π1(A) = (1.5γ/(1 − γ))2 and V π2(A) =
(γ/(1 − γ))2 and consequently π1 is preferred. Under ESR, however, we have V π1(A) = 0
and V π2(A) = (γ/(1− γ))2 and thus π2 is preferred.

Intuitively, the SER formulation is appropriate when the policy will be used many times
and return accumulates across episodes, e.g., because the same user is using the policy each
time. Then, scalarizing the expected reward makes sense and π1 is preferable because in
expectation it will accumulate more return in both objectives. However, if the policy will
only be used a few times or the return does not accumulate across episodes, e.g., because
each episode is conducted for a different user, then the ESR formulation is more appropriate.
In this case, the expected return before scalarization is not of interest and π2 is preferable
because π1 will always yield zero scalarized return on any given episode.

To our knowledge, there is no literature on MOMDPs that employs the ESR formulation,
even though there are many real-world scenarios in which it seems more appropriate. For
example, in the medical application of Lizotte et al. (2010) mentioned in Section 7, each
patient gets only one episode to treat his or her illness, and is thus clearly interested in
maximizing ESR, not SER. Thus, we believe that developing methods for MOMDPs under
the ESR formulation is a critical direction for future research.

9. Conclusions

This article presented a survey of algorithms designed for sequential decision-making prob-
lems with multiple objectives.

In order to make explicit under what circumstances special methods are needed to
solve multi-objective problems, we identified three distinct scenarios in which converting
such a problem to a single-objective one is impossible, infeasible, or undesirable. As well as
providing motivation for the need for multi-objective methods, these scenarios also represent
the three main ways these methods are applied in practice.

We proposed a taxonomy that classifies multi-objective methods according to the ap-
plicable scenario, the scalarization function (which projects multi-objective values to scalar
ones), and the type of policies considered. We showed how these factors determine the
nature of an optimal solution, which can be a single policy, or a coverage set (convex or
Pareto). Our taxonomy is based on a utility-based approach, which sees the scalarization
function as part of the utility, and thus part of the problem definition. This contrasts with
the so-called axiomatic approach, which usually assumes the Pareto front is the appropriate
solution. We showed that the utility-based approach can be used to justify the choice for
a solution set. Following this line of thought, we observed (Observation 1) that computing
the Pareto front is often not necessary, and that in many cases a convex coverage set of
deterministic stationary policies is sufficient.

Using our taxonomy, we surveyed the literature on multi-objective methods for planning
and learning. An interesting observation is that most of the learning methods use a model-
free rather than a model based approach, identifying the latter as an understudied class of
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methods. Another part of the taxonomy which has not yet been widely studied is learning
in the case of monotonically increasing scalarization functions.

We discussed key applications of MOMDP methods as motivation for the importance
of such methods. Applications were identified in a diverse range of fields including environ-
mental management, financial markets, information and communications technology, and
control of industrial processes, robotic systems and traffic infrastructure. In addition con-
nections were identified between multi-objective sequential decision-making and other broad
areas of research such as probabilistic planning and model-checking, multi-agent systems
and more general multi-objective optimization.

Finally, we outlined several opportunities for future work, which include understudied
areas (model-based methods, learning in monotonically increasing scalarization settings,
and many-objective sequential decision-making), and a reformulation of the objective for
MOMDPs – the Expectation of Scalarized Return – which is particularly important to
optimize when a policy can be executed only once.
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Goossens, S., Pinte, G., & Symens, W. (2012). Improving wet clutch engagement
with reinforcement learning. In International Joint Conference on Neural Networks,
IJCNN 2012.

Vira, C., & Haimes, Y. Y. (1983). Multiobjective decision making: theory and methodology.
No. 8. North-Holland.

Viswanathan, B., Aggarwal, V. V., & Nair, K. P. K. (1977). Multiple criteria Markov
decision processes. TIMS Studies Management Science, 6, 263–272.

Wakuta, K., & Togawa, K. (1998). Solution procedures for Markov decision processes. Op-
timization: A Journal of Mathematical Programming and Operations Research, 43 (1),
29–46.

Wakuta, K. (1999). A note on the structure of value spaces in vector-valued Markov decision
processes.. Mathematical Methods of Operations Research, 49 (1), 77–85.

Wang, W., & Sebag, M. (2013). Hypervolume indicator and dominance reward based multi-
objective monte-carlo tree search. Machine Learning, 1–27.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University.

112



A Survey of Multi-Objective Sequential Decision-Making

White, C. C., & Kim, K. M. (1980). Solution procedures for solving vector criterion Markov
decision processes. Large Scale Systems, 1, 129–140.

White, D. (1982). Multi-objective infinite-horizon discounted Markov decision processes.
Journal of Mathematical Analysis and Applications, 89 (2), 639 – 647.

Whiteson, S. (2012). Evolutionary computation for reinforcement learning. In Wiering,
M. A., & van Otterlo, M. (Eds.), Reinforcement Learning: State of the Art, chap. 10,
pp. 325–352. Springer, Berlin.

Wiering, M., & De Jong, E. (2007). Computing optimal stationary policies for multi-
objective Markov decision processes. In IEEE International Symposium on Approxi-
mate Dynamic Programming and Reinforcement Learning, pp. 158–165. IEEE.

Yang, Z., & Wen, K. (2010). Multi-objective optimization of freeway traffic flow via a
fuzzy reinforcement learning method. In 3rd International Conference on Advanced
Computer Theory and Engineering, Vol. 5, pp. 530–534.

Yin, S., Duan, H., Li, Z., & Zhang, Y. (2010). Multi-objective reinforcement learning for
traffic signal coordinate control. In 1th World Conference on Transport Research.

Zeleny, M., & Cochrane, J. L. (1982). Multiple criteria decision making, Vol. 25. McGraw-
Hill New York.

Zhao, Y., Chen, Q., & Hu, W. (2010). Multi-objective reinforcement learning algorithm for
MOSDMP in unknown environment. In Proceedings of the 8th World Congress on
Intelligent Control and Automation, pp. 3190–3194.

Zheng, K., Li, H., Qiu, R. C., & Gong, S. (2012). Multi-objective reinforcement learning
based routing in cognitive radio networks: Walking in a random maze. In International
Conference on Computing, Networking and Communications, pp. 359–363.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Perfor-
mance assessment of multiobjective optimizers: An analysis and review. Evolutionary
Computation, IEEE Transactions on, 7 (2), 117–132.

113


