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Abstract In active perception tasks, an agent aims to

select sensory actions that reduce its uncertainty about

one or more hidden variables. For example, a mobile

robot takes sensory actions to efficiently navigate in

a new environment. While partially observable Markov

decision processes (POMDPs) provide a natural model

for such problems, reward functions that directly pe-

nalize uncertainty in the agent’s belief can remove the

piecewise-linear and convex (PWLC) property of the

value function required by most POMDP planners. Fur-

thermore, as the number of sensors available to the

agent grows, the computational cost of POMDP plan-

ning grows exponentially with it, making POMDP plan-

ning infeasible with traditional methods.

In this article, we address a twofold challenge of

modeling and planning for active perception tasks. We

analyze ρPOMDP and POMDP-IR, two frameworks

for modeling active perception tasks, that restore the

PWLC property of the value function. We show the

mathematical equivalence of these two frameworks by

showing that given a ρPOMDP along with a policy,

they can be reduced to a POMDP-IR and an equiva-

lent policy (and vice-versa). We prove that the value
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function for the given ρPOMDP (and the given policy)

and the reduced POMDP-IR (and the reduced policy) is

the same. To efficiently plan for active perception tasks,

we identify and exploit the independence properties of

POMDP-IR to reduce the computational cost of solving

POMDP-IR (and ρPOMDP). We propose greedy point-

based value iteration (PBVI), a new POMDP planning

method that uses greedy maximization to greatly im-

prove scalability in the action space of an active per-

ception POMDP. Furthermore, we show that, under

certain conditions, including submodularity, the value

function computed using greedy PBVI is guaranteed to

have bounded error with respect to the optimal value

function. We establish the conditions under which the

value function of an active perception POMDP is guar-

anteed to be submodular. Finally, we present a detailed

empirical analysis on a dataset collected from a multi-

camera tracking system employed in a shopping mall.

Our method achieves similar performance to existing

methods but at a fraction of the computational cost

leading to better scalability for solving active percep-

tion tasks.

Keywords Sensor selection · Long-term planning ·
Mobile sensors · Submodularity · POMDP

1 Introduction

Multi-sensor systems are becoming increasingly

prevalent in a wide-range of settings. For example,

This is a corrected version of this paper. The original
version contained a technical mistake in the proof of Lemma
6. We would like to thank Csaba Szepesvári for identifying
this mistake.
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multi-camera systems are now routinely used for se-

curity, surveillance and tracking (Kreucher et al, 2005;

Natarajan et al, 2012; Spaan et al, 2015). A key chal-

lenge in the design of these systems is the efficient al-

location of scarce resources such as the bandwidth re-

quired to communicate the collected data to a central

server, the CPU cycles required to process that data,

and the energy costs of the entire system (Kreucher

et al, 2005; Williams et al, 2007; Spaan and Lima, 2009).

For example, state of the art human activity recognition

algorithms require high resolution video streams cou-

pled with significant computational resources. When a

human operator must monitor many camera streams,

displaying only a small number of them can reduce

the operator’s cognitive load. IP-cameras connected di-

rectly to a local area network need to share bandwidth.

Such constraints gives rise to the dynamic sensor selec-

tion (Satsangi et al, 2015)1 problem where an agent at

each time step, must select K out of the N available

sensors to allocate these resources to, where K is the

maximum number of sensors allowed given the resource

constraints.

For example, consider the surveillance task, in which

a mobile robot aims to minimize its future uncertainty

about the state of the environment but can use only K

of its N sensors at each time step. Surveillance is an ex-

ample of an active perception (Bajcsy, 1988) task, where

an agent takes actions to reduce uncertainty about one

or more hidden variables, while reasoning about various

resource constraints. When the state of the environment

is static, a myopic approach that always selects actions

that maximize the immediate expected reduction in

uncertainty is typically sufficient. However, when the

state changes over time, a non-myopic approach that

reasons about the long-term effects of action selection

performed at each time step can be better. For exam-

ple, in the surveillance task, as the robot moves and

the state of the environment changes, it becomes essen-

tial to reason about the long-term consequences of the

robot’s actions to minimize the future uncertainty.

A natural decision-theoretic model for such an ap-

proach is the partially observable Markov decision pro-

cess (POMDP) (Sondik, 1971; Kaelbling et al, 1998;

Kochenderfer, 2015). POMDPs provide a comprehen-

sive and powerful framework for planning under un-

certainty. They can model the dynamic and partially

observable state and express the goals of the systems

1 This article extends the research already presented by
Satsangi et al (2015) at AAAI 2015. In this article, we present
additional theoretical results on equivalence of POMDP-IR
and ρPOMDP, a new technique that exploits the indepen-
dence properties of POMDP-IR to solve it more efficiently,
and we present a detailed empirical analysis of belief-based
rewards for POMDPs in active perception tasks.

in terms of rewards associated with state-action pairs.

This model of the world can be used to compute closed-

loop, long term policies that can help the agent to de-

cide what actions to take given a belief about the state

of the environment (Burgard et al, 1997; Kurniawati

et al, 2010).

In a typical POMDP, reducing uncertainty about

the state is only a means to an end. For example, a

robot whose goal is to reach a particular location may

take sensing actions that reduce its uncertainty about

its current location because doing so helps it determine

what future actions will bring it closer to its goal. By

contrast, in active perception problems reducing uncer-

tainty is an end in itself. For example, in the surveil-

lance task, the system’s goal is typically to ascertain

the state of its environment, not use that knowledge to

achieve a goal. While perception is arguably always per-

formed to aid decision-making, in an active perception

problem that decision is made by another agent such as

a human, that is not modeled as a part of the POMDP.

For example, in the surveillance task, the robot might

be able to detect a suspicious activity but only the hu-

man users of the system may decide how to react to

such an activity.

One way to formulate uncertainty reduction as an

end in itself is to define a reward function whose ad-

ditive inverse is some measure of the agent’s uncer-

tainty about the hidden state, e.g., the entropy of its

belief. However this formulation leads to a reward func-

tion that conditions on the belief, rather than the state

and the resulting value function is not PWLC, which

makes many traditional POMDP solvers inapplicable.

There exists online planning methods (Silver and Ve-

ness, 2010; Bonet and Geffner, 2009), which generates

policy on the fly, that do not require the PWLC prop-

erty of the value function. However, many of these

methods require multiple ‘hypothetical’ belief updates

to compute the optimal policy, which makes them un-

suitable for sensor selection where the optimal policy

must be computed in a fraction of a second. There ex-

ists other online planning methods that do not require

hypothetical belief updates (Silver and Veness, 2010),

but since we are dealing with belief based rewards, they

cannot be directly applied here. Here, we address the

case of offline planning where the policy is computed

before execution of the task.

Thus, to efficiently solve active perception problems,

we must (a) model the problem with minimizing uncer-

tainty as the objective while maintaining a PWLC value

function and (b) use this model to solve the POMDP ef-

ficiently. Recently, two frameworks have been proposed,

ρPOMDP (Araya-López et al, 2010) and POMDP with

Information Reward (POMDP-IR) (Spaan et al, 2015)



Exploiting Submodular Value Functions for Scaling Up Active Perception 3

to efficiently model active perception tasks, such that

the PWLC property of the value function is maintained.

The idea behind ρPOMDP is to find a PWLC approx-

imation to the “true” continuous belief-based reward

function, and then solve it with the traditional solvers.

POMDP-IR, on the other hand, allows the agent to

make predictions about the hidden state and the agent

is rewarded for accurate predictions via a state-based

reward function. There is no research that examines the

relationship between these two frameworks, their pros

and cons, or their efficacy in realistic tasks, thus it is

not clear how to choose between these two frameworks

to model the active perception problems.

In this article, we address the problem of efficient

modeling and planning for active perception tasks.

First, we study the relationship between ρPOMDP and

POMDP-IR. Specifically, we establish equivalence be-

tween them by showing that any ρPOMDP can be re-

duced to a POMDP-IR (and vice-versa) that preserves

the value function for equivalent policies. Having estab-

lished the theoretical relationship between ρPOMDP

and POMDP-IR, we model the surveillance task as a

POMDP-IR and propose a new method to solve it ef-

ficiently by exploiting a simple insight that lets us de-

compose the maximization over prediction actions and

normal actions while computing the value function.

Although POMDPs are computationally difficult

to solve, recent methods (Littman, 1996; Hauskrecht,

2000; Pineau et al, 2006; Spaan and Vlassis, 2005;

Poupart, 2005; Ji et al, 2007; Kurniawati et al, 2008;

Shani et al, 2012) have proved successful in solving

POMDPs with large state spaces. Solving active per-

ception POMDPs pose a different challenge: as the

number of sensors grows, the size of the action space(
N
K

)
grows exponentially with it. Current POMDP

solvers fail to address scalability in the action space

of a POMDP. We propose a new point-based planning

method that scales much better in the number of sen-

sors for such POMDPs. The main idea is to replace

the maximization operator in the Bellman optimality

equation with greedy maximization in which a subset

of sensors is constructed iteratively by adding the sen-

sor that gives the largest marginal increase in value.

We present theoretical results bounding the error

in the value functions computed by this method. We

prove that, under certain conditions including submod-

ularity, the value function computed using POMDP

backups based on greedy maximization has bounded

error. We achieve this by extending the existing results

(Nemhauser et al, 1978) for the greedy algorithm, which

are valid only for a single time step, to a full sequen-

tial decision making setting where the greedy operator

is employed multiple times over multiple time steps. In

addition, we show that the conditions required for such

a guarantee to hold are met, or approximately met, if

the reward is defined using negative belief entropy.

Finally, we present a detailed empirical analysis on

a real-life dataset from a multi-camera tracking system

installed in a shopping mall. We identify and study the

critical factors relevant to the performance and behav-

ior of the agent in active perception tasks. We show that

our proposed planner outperforms a myopic baseline

and nearly matches the performance of existing point-

based methods while incurring only a fraction of the

computational cost, leading to much better scalability

in the number of cameras.

2 Related Work

Sensor selection as an active perception task has been

studied in many contexts. Most work focus on either

open-loop or myopic solutions, e.g., (Kreucher et al,

2005), (Spaan and Lima, 2009), (Williams et al, 2007),

(Joshi and Boyd, 2009). Kreucher et al (2005) pro-

poses a Monte-Carlo approach that mainly focuses on

a myopic solution. Williams et al (2007) and Joshi and

Boyd (2009) developed planning methods that can pro-

vide long-term but open-loop policies. By contrast, a

POMDP-based approach enables a closed-loop, non-

myopic approach can lead to a better performance

when the underlying state of the world changes over

time. Spaan (2008), Spaan and Lima (2009), Spaan

et al (2010) and Natarajan et al (2012) also consider

a POMDP-based approach to active and cooperative

active perception. However, they consider an objective

function that conditions on state and not on belief,

as the belief-dependent rewards in POMDP break the

PWLC property of the value function. They use point-

based methods (Spaan and Vlassis, 2005) for solving the

POMDPs. While recent point-based methods (Shani

et al, 2012) for solving POMDPs scale reasonably in the

state space of POMDPs, they do not address the scala-

bility in the action and observation space of a POMDP.

Greedy PBVI focuses specially on the scalability in

the action space of an active perception POMDP and

provides better scalability by leveraging greedy max-

imization. Traditionally, POMDPs require the reward

function to be defined as a function of the state. How-

ever, for active perception POMDPs, the objective is to

reduce the uncertainty in the belief of the agent.

In recent years, applying greedy maximization to

submodular functions has become a popular and ef-

fective approach to sensor placement/selection (Krause

and Guestrin, 2005, 2007; Kumar and Zilberstein,

2009). However, such work focuses on myopic or fully
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observable settings and thus does not enable the long-

term planning required to cope with dynamic state in

a POMDP.

Adaptive submodularity (Golovin and Krause, 2011)

is a recently developed extension that addresses these

limitations by allowing action selection to condition

on previous observations. However, it assumes a static

state and thus cannot model the dynamics of a POMDP

across timesteps. Therefore, in a POMDP, adaptive

submodularity is only applicable within a timestep, dur-

ing which state does not change but the agent can se-

quentially add sensors to a set. In principle, adaptive

submodularity could enable this intra-timestep sequen-

tial process to be adaptive, i.e., the choice of later sen-

sors could condition on the observations generated by

earlier sensors. However, this is not possible in our set-

ting because (a) we assume that, due to computational

costs, all sensors must be selected simultaneously; (b)

information gain is not known to be adaptive submod-

ular (Chen et al, 2015). Consequently, our analysis con-

siders only classic, non-adaptive submodularity.

To our knowledge, our work is the first to es-

tablish the sufficient conditions for the submodular-

ity of POMDP value functions for active perception

POMDPs and thus leverage greedy maximization to

scalably compute bounded approximate policies for dy-

namic sensor selection modeled as a full POMDP.

3 Background

In this section, we provide background on POMDPs,

active perception POMDPs and solution methods for
POMDPs.

3.1 Partially Observable Markov Decision Processes

POMDPs provide a decision-theoretic framework for

modeling partial observability and dynamic environ-

ments. Formally, a POMDP is defined by a tuple

〈S,A,Ω, T,O,R, b0, h〉. At each time step, the environ-

ment is in a state s ∈ S, the agent takes an action a ∈ A
and receives a reward whose expected value is R(s, a),

and the system transitions to a new state s′ ∈ S accord-

ing to the transition function T (s, a, s′) = Pr(s′|s, a).

Then, the agent receives an observation z ∈ Ω accord-

ing to the observation function O(s′, a, z) = Pr(z|s′, a).

Starting from an initial belief b0, the agent maintains

a belief b(s) about the state which is a probability dis-

tribution over all the possible states. The number of

time steps for which the decision process lasts, i.e., the

horizon is denoted by h. If the agent took action a in
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Fig. 1 Illustration of the PWLC property of the value func-
tion. The value function is the upper surface indicated by the
solid lines.

belief b and got an observation z, then the updated be-

lief ba,z(s) can be computed using Bayes rule. A policy

π specifies how the agent acts in each belief. Given b(s)

and R(s, a), one can compute a belief-based reward,

ρ(b, a) as:

ρ(b, a) =
∑
s

b(s)R(s, a). (1)

The t-step value function of a policy V πt is defined

as the expected future discounted reward the agent can

gather by following π for next t steps. V πt can be char-

acterized recursively using the Bellman equation:

V πt (b) ,

[
ρ(b, aπ) +

∑
z∈Ω

Pr(z|aπ, b)V πt−1(baπ,z)

]
, (2)

where aπ = π(b) and V π0 (b) = 0. The action-value func-

tion Qπt (b, a) is the value of taking action a and follow-

ing π thereafter:

Qπt (b, a) , ρ(b, a) +
∑
z∈Ω

Pr(z|a, b)V πt−1(ba,z). (3)

The policy that maximizes V πt is called the optimal pol-

icy π∗ and the corresponding value function is called the

optimal value function V ∗t . The optimal value function

V ∗t (b) can be characterized recursively as:

V ∗t (b) = max
a

[
ρ(b, a) +

∑
z∈Ω

Pr(z|a, b)V ∗t−1(ba,z)

]
.

(4)

We can also define Bellman optimality operator B∗:

(B∗Vt−1)(b) = max
a

[ρ(b, a) +
∑
z∈Ω

Pr(z|a, b)Vt−1(bz,a)],

and write (4) as V ∗t (b) = (B∗V ∗t−1)(b).

An important consequence of these equations is

that the value function is piecewise-linear and con-

vex (PWLC), as shown in Figure 1, a property ex-

ploited by most POMDP planners. Sondik (1971)
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showed that a PWLC value function at any finite

time step t can be expressed as a set of vectors:

Γt = {α0, α1, . . . , αm}. Each αi represents an |S|-
dimensional hyperplane defining the value function over

a bounded region of the belief space. The value of a

given belief point can be computed from the vectors as:

V ∗t (b) = maxαi∈Γt
∑
s b(s)αi(s).

3.2 POMDP Solvers

Exact methods like Monahan’s enumeration algorithm

(Monahan, 1982) computes the value function for all

possible belief points by computing the optimal Γt.

Point-based planners (Pineau et al, 2006; Shani et al,

2012; Spaan and Vlassis, 2005), on the other hand,

avoid the expense of solving for all belief points by com-

puting Γt only for a set of sampled beliefs B. Since exact

POMDP solvers (Sondik, 1971; Monahan, 1982) are in-

tractable for all but the smallest POMDPs, we focus on

point-based methods here. Point-based methods com-

pute Γt using the following recursive algorithm.

At each iteration (starting from t = 1), for each ac-

tion a and observation z, an intermediate Γ a,zt is com-

puted from Γt−1:

Γ a,zt = {αa,zi : αi ∈ Γt−1}, (5)

Next, Γ at is computed only for the sampled beliefs, i.e.,

Γ at = {αab : b ∈ B}, where:

αab = Γ a +
∑
z∈Ω

argmax
α∈Γa,zt

∑
s′

b(s′)α(s′). (6)

Finally, the best α-vector for each b ∈ B is selected:

αb = argmax
αab

∑
s′

b(s′)αab (s′), (7)

Γt = ∪b∈Bαb. (8)

The above algorithm at each timestep t, gener-

ates |An||Ω||Γt−1| alpha vectors in O(|S|2|A||Ω||Γt−1|)
time and then reduces them to |B| vectors in

O(|S||B||A||Ω||Γt−1|) (Pineau et al, 2006).

4 Active Perception POMDP

The goal in an active perception POMDP is to reduce

uncertainty about a feature of interest that is not di-

rectly observable. In general, the feature of interest may

be only part of the state, e.g., if a surveillance system

cares only about people’s positions, not their velocities,

or higher-level features derived from the state. However,

for simplicity, we focus on the case where the feature

of interest is just the state s2 of the POMDP. For sim-

plicity, we also focus on pure active perception tasks

in which the agent’s only goal is to reduce uncertainty

about the state, as opposed to hybrid tasks where the

agent may also have other goals. For such cases, hy-

brid rewards (Eck and Soh, 2012), which combine the

advantage of belief-based and state-based rewards, are

appropriate. Although not covered in this article, it is

straightforward to extend our results to hybrid tasks

(Spaan et al, 2015).

We model the active perception task as a POMDP

in which an agent must choose a subset of available

sensors at each time step. We assume that all selected

sensors must be chosen simultaneously, i.e. it is not pos-

sible within a timestep to condition the choice of one

sensor on the observations generated by another sensor.

This corresponds to the common setting where gener-

ating each sensor’s observation is time consuming, e.g.,

in the surveillance task, because it requires applying

expensive computer vision algorithms, and thus all the

observations from the selected cameras must be gener-

ated in parallel. Formally, an active perception POMDP

has the following components:

– Actions a = 〈a1 . . . aN 〉 are vectors of N binary

action features, each of which specifies whether a

given sensor is selected or not. For each a, we

also define its set equivalent a = {i : ai = 1},
i.e., the set of indices of the selected sensors. Due

to the resource constraints, the set of all actions

A = {a : |a| ≤ K} contains only sensor subsets of

size K or less. A+ = {1, . . . , N} indicates the set of

all sensors.

– Observations z = 〈z1 . . . zN 〉 are vectors of N obser-

vation features, each of which specifies the sensor

reading obtained by the given sensor. If sensor i is

not selected, then zi = ∅. The set equivalent of z is

z = {zi : zi 6= ∅}. To prevent ambiguity about which

sensor generated which observation in z, we assume

that, for all i and j, the domains of zi and zj share

only ∅. This assumption is only made for notational

convenience and does not restrict the applicability

of our methods in any way.

For example, in the surveillance task, a indicates

the set of cameras that are active and z are the ob-

servations received from the cameras in a. The model

for the sensor selection problem for surveillance task is

shown in Figure 2. Here, we assume that the actions in-

volve only selecting K out of N sensors. The transition

function is thus independent of the actions, as selecting

2 We make this assumption without loss of generality. The
following sections will make it clear that none of our results
require this assumption.
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Fig. 2 Model for sensor selection problem

sensors cannot change the state. However, as we outline

in the later subsection (6.4), it is possible to extend our

results to general active perception POMDPs with arbi-

trary transition functions, that can model, e.g., mobile

sensors that, by moving, change the state.

A challenge in these settings is properly formaliz-

ing the reward function. Because the goal is to re-

duce the uncertainty, reward is a direct function of

the belief, not the state, i.e., the agent has no pref-

erence for one state over another, so long as it knows

what that state is. Hence, there is no meaningful way

to define a state-based reward function R(s,a). Di-
rectly defining ρ(b,a) using, e.g., negative belief en-

tropy : −Hb(s) =
∑
s b(s) log(b(s)) results in a value

function that is not piecewise-linear. Since ρ(b,a) is

no longer a convex combination of a state-based re-

ward function, it is no longer guaranteed to be PWLC,

a property most POMDP solvers rely on. In the fol-

lowing subsections, we describe two recently proposed

frameworks designed to address this problem.

4.1 ρPOMDPs

A ρPOMDP (Araya-López et al, 2010), defined by a

tuple 〈S,A, T,Ω,O, Γρ, b0, h〉, is a normal POMDP ex-

cept that the state-based reward function R(s,a) has

been omitted and Γρ has been added. Γρ is a set of vec-

tors, that defines the immediate reward for ρPOMDP.

Since we consider only pure active perception tasks,

ρ depends only on b, not on a and can be written

as ρ(b). Given Γρ, ρ(b) can be computed as: ρ(b) =
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Fig. 3 Defining Γaρ with different sets of tangents to the
negative belief entropy curve in a 2-state POMDP.

maxα∈Γρ
∑
s b(s)α(s). If the true reward function is not

PWLC, e.g., negative belief entropy, it can be approxi-

mated by defining Γρ as a set of vectors, each of which

is tangent to the true reward function. Figure 3 illus-

trates approximating negative belief entropy with dif-

ferent numbers of tangents.

Solving a ρPOMDP3 requires a minor change to the

existing algorithms. In particular, since Γρ is a set of

vectors, instead of a single vector, an additional cross-

sum is required to compute Γ a
t : Γ a

t = Γρ ⊕ Γ a,z1

t ⊕
Γ a,z2

t ⊕ . . . . Araya-López et al (2010) showed that the

error in the value function computed by this approach,

3 Arguably, there is a counter-intuitive relation between the
general class of POMDPs and the sub-class of pure active per-
ception problems: on the one hand, the class of POMDPs is
a more general set of problems, and it is intuitive to assume
that there might be harder problems in the class. On the
other hand, many POMDP problems admit a representation
of the value function using a finite set of vectors. In contrast,
the use of entropy would require an infinite number of vec-
tors to merely represent the reward function. Therefore, even
though we consider a specific sub-class of POMDPs, this class
has properties that make it difficult to address using existing
methods.
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relative to the true reward function, whose tangents

were used to define Γρ, is bounded. However, the addi-

tional cross-sum increases the computational complex-

ity of computing Γ a
t to O(|S||A||Γt−1||Ω||B||Γρ|) with

point-based methods.

Though ρPOMDP do not put any constraints on

the definition of ρ, we restrict the definition of ρ for

an active perception POMDP to be a set of vectors en-

suring that ρ is PWLC, which in turn ensures that the

value function is PWLC. This is not a severe restric-

tion because solving a ρPOMDP using offline planning

requires a PWLC approximation of ρ anyway.

4.2 POMDPs with Information Rewards

Spaan et al. proposed POMDPs with information re-

wards (POMDP-IR), an alternative framework for

modeling active perception tasks that relies only on

the standard POMDP. Instead of directly rewarding

low uncertainty in the belief, the agent is given the

chance to make predictions about the hidden state and

rewarded, via a standard state-based reward function,

for making accurate predictions. Formally, a POMDP-

IR is a POMDP in which each action a ∈ A is a tuple

〈an, ap〉 where an ∈ An is a normal action, e.g., moving

a robot or turning on a camera (in our case an is a),

and ap ∈ Ap is a prediction action, which expresses pre-

dictions about the state. The joint action space is thus

the Cartesian product of An and Ap, i.e., A = An×Ap.
Prediction actions have no effect on states or obser-

vations but can trigger rewards via the standard state-

based reward function R(s, 〈an, ap〉). While there are

many ways to define Ap and R, a simple approach is to
create one prediction action for each state, i.e., Ap = S,

and give the agent positive reward if and only if it cor-

rectly predicts the true state:

R(s, 〈an, ap〉) =

{
1, if s = ap

0, otherwise.
(9)

Thus, POMDP-IR indirectly rewards beliefs with

low uncertainty, since these enable more accurate pre-

dictions and thus more expected reward. Furthermore,

since a state-based reward function is explicitly de-

fined, ρ can be defined as a convex combination of

R, as in (1), guaranteeing a PWLC value function,

as in a regular POMDP. Thus, a POMDP-IR can be

solved with standard POMDP planners. However, the

introduction of prediction actions leads to a blowup

in the size of the joint action space |A| = |An||Ap| of

POMDP-IR. Replacing |A| with |An||Ap| in the analy-

sis yields a complexity of computing Γ a
t for POMDP-IR

of O(|S||An||Γt−1||Ω||B||Ap|) for point-based methods.

S" S’"

An"

Ap"

O"

R"

t" t+1"

Fig. 4 Influence diagram for POMDP-IR.

Note that, though not made explicit in Spaan et al

(2015), several independence properties are inherent

to the POMDP-IR framework, as shown in Figure 4.

Specifically, the two important properties are (a) in our

setting the reward function is independent of the nor-

mal actions; (b) the transition and the observation func-

tion are independent of the normal actions. Although

POMDP-IR can model hybrid rewards, where in ad-

dition to prediction actions, normal actions can reward

agent as well (Spaan et al, 2015), in this article, because

we focus on pure active perception, the reward function

R is independent of the normal actions. Furthermore,

state transitions and observations are independent of

the prediction actions. In Section 6, we introduce a new

technique to show that these independence properties

can be exploited to solve a POMDP-IR much more effi-

ciently and thus avoid the blowup in the size of the ac-

tion space caused by the introduction of the prediction

actions. Although, the reward function in our setting

is independent of the normal actions, the main results

we present in this article are not dependent on this

property and can be easily extended or applied to cases

where the reward is dependent on the normal actions.

5 ρPOMDP and POMDP-IR Equivalence

ρPOMDP and POMDP-IR offer two perspectives on

modeling active perception tasks. ρPOMDP starts from

a “true” belief-based reward function such as the neg-

ative entropy and then seeks to find a PWLC approxi-

mation via a set of tangents to the curve. By contrast,

POMDP-IR starts from the queries that the user of the

system will pose, e.g., “What is the position of every-

one in the room?” or “How many people are in the

room” and creates prediction actions that reward the

agent correctly for answering such queries. In this sec-

tion we establish the relationship between these two
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frameworks by proving the equivalence of ρPOMDP

and POMDP-IR. By equivalence of ρPOMDP and

POMDP-IR, we mean that given a ρPOMDP and a

policy, we can construct a corresponding POMDP-IR

and a policy such that the value function for both the

policies is exactly the same. We show this equivalence

by starting with a ρPOMDP and a policy and introduc-

ing a reduction procedure for both ρPOMDP and the

policy (and vice-versa). Using the reduction procedure,

we reduce the ρPOMDP to a POMDP-IR and the pol-

icy for ρPOMDP to an equivalent policy for POMDP-

IR. We then show that the value function, V πt for the

ρPOMDP we started with and the reduced POMDP-

IR is the same for the given and the reduced policy.

To complete our proof, we repeat the same process by

starting with a POMDP-IR and then reducing it to

a ρPOMDP. We show that the value function V πt for

the POMDP-IR and the corresponding ρPOMDP is the

same.

Definition 1 Given a ρPOMDP Mρ =

〈S,Aρ, Ω, Tρ, Oρ, Γρ, b0, h〉 the reduce-pomdp-

ρ-IR(Mρ) produces a POMDP-IR MIR =

〈S,AIR, Ω, TIR, OIR, RIR, b0, h〉 via the following

procedure.

– The set of states, set of observations, initial be-

lief and horizon remain unchanged. Since the set

of states remain unchanged, the set of all possible

beliefs is also the same for MIR and Mρ.

– The set of normal actions in MIR is equal to the set

of actions in Mρ, i.e., An,IR = Aρ;

– The set of prediction actions Ap,IR in MIR contains

one prediction action for each α
ap
ρ ∈ Γρ.

– The transition and observation functions in MIR

behave the same as in Mρ for each an and ignore

the ap, i.e., for all an ∈ An,IR: TIR(s,an, s
′) =

Tρ(s,a, s
′) and OIR(s′,an, z) = Oρ(s

′,a, z), where

a ∈ Aρ corresponds to an.

– The reward function in MIR is defined such that

∀ap ∈ Ap, RIR(s, ap) = α
ap
ρ (s), where α

ap
ρ is the

α-vector corresponding to ap.

For example, consider a ρPOMDP with 2 states, if ρ

is defined using tangents to belief entropy at b(s1) = 0.3

and b(s1) = 0.7. When reduced to a POMDP-IR, the

resulting reward function gives a small negative reward

for correct predictions and a larger one for incorrect pre-

dictions, with the magnitudes determined by the value

of the tangents when b(s1) = 0 and b(s1) = 1:

RIR(s, ap) =

{
−0.35, if s = ap

−1.21, otherwise.
(10)

This is illustrated in Figure 3 (top).

Definition 2 Given a policy πρ for a ρPOMDP, Mρ,

the reduce-policy-ρ-IR(πρ) procedure produces a

policy πIR for a POMDP-IR as follows. For all b,

πIR(b) = 〈πρ(b), argmax
ap

∑
s

b(s)R(s, ap)〉. (11)

That is, πIR selects the same normal action as πρ and

the prediction action that maximizes expected immedi-

ate reward.

Using these definitions, we prove that solving Mρ is

the same as solving MIR.

Theorem 1 Let Mρ be a ρPOMDP and πρ an arbi-

trary policy for Mρ. Furthermore let MIR = reduce-

pomdp-ρ-IR(Mρ) and πIR = reduce-policy-ρ-

IR(πρ). Then, for all b,

V IR
t (b) = V ρt (b), (12)

where V IR
t is the t-step value function for πIR and V ρt

is the t-step value function for πρ.

Proof See Appendix. ut

Definition 3 Given a POMDP-IR MIR =

〈S,AIR, Ω, TIR, OIR, RIR, b0, h〉 the reduce-

pomdp-IR-ρ(MIR) produces a ρPOMDP

Mρ = 〈S,Aρ, Ω, Tρ, Oρ, Γρ, b0, h〉 via the following

procedure.

– The set of states, set of observations, initial be-

lief and horizon remain unchanged. Since the set

of states remain unchanged, the set of all possible

belief is also the same for MIR and Mρ.

– The set of actions in Mρ is equal to the set of normal

actions in MIR, i.e., Aρ = An,IR.

– The transition and observation functions in Mρ be-

have the same as in MIR for each an and ignore the

ap, i.e., for all a ∈ Aρ: Tρ(s,a, s
′) = TIR(s,an, s

′)

and Oρ(s
′,a, z) = OIR(s′,an, z) where an ∈ An,IR

is the action corresponding to a ∈ Aρ.
– The Γρ in Mρ is defined such that, for each

prediction action in Ap,IR, there is a corre-

sponding α vector in Γρ, i.e., Γρ = {αapρ (s) :

α
ap
ρ (s) = R(s, ap) for each ap ∈ Ap,IR}. Conse-

quently, by definition, ρ is defined as: ρ(b) =

maxαapρ [
∑
s b(s)α

ap
ρ (s)].

Definition 4 Given a policy πIR = 〈an, ap〉 for a

POMDP-IR, MIR, the reduce-policy-IR-ρ(πIR) pro-

cedure produces a policy πρ for a POMDP-IR as fol-

lows. For all b,

πρ(b) = πnIR(b), (13)
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Theorem 2 Let MIR be a POMDP-IR and πIR =

〈an, ap〉 a policy for MIR, such that ap =

argmaxa′p b(s)R(s, a′p). Furthermore let Mρ = reduce-

pomdp-IR-ρ(MIR) and πρ = reduce-policy-IR-

ρ(πIR). Then, for all b,

V ρt (b) = V IRt (b), (14)

where V IR
t is the value of following πIR in MIR and V ρt

is the value of following πρ in Mρ.

Proof See Appendix. ut

The main implication of these theorems is that

any result that holds for either ρPOMDP or POMDP-

IR also holds for the other framework. For example,

the results presented in Theorem 4.3 in Araya-López

et al (2010) that bound the error in the value func-

tion of ρPOMDP also hold for POMDP-IR. Further-

more, with this equivalence, the computational com-

plexity of solving ρPOMDP and POMDP-IR comes out

to be the same, since POMDP-IR can be converted into

ρPOMDP (and vice-versa) trivially, without any sig-

nificant blow-up in representation. Although we have

proved the equivalence of ρPOMDP and POMDP-IR

only for pure active perception task where the reward

is solely conditioned on the belief, it is straightforward

to extend it to hybrid active perception tasks, where

the reward is conditioned both on belief and the state.

Although, the resulting active perception POMDP for

dynamic sensor selection is such that the action does

not affect the state, the results from this section do not

use that property at all and thus are valid for active

perception POMDPs where an agent might take an ac-

tion which can affect the state in the next time step.

6 Decomposed Maximization for POMDP-IR

The POMDP-IR framework enables us to formulate

uncertainty as an objective, but it does so at the

cost of additional computations, as adding predic-

tion actions enlarges the action space. The computa-

tional complexity of performing a point-based backup

for solving POMDP-IR is O(|S|2|An||Ap||Ω||Γt−1|) +

O(|S||B||An||Γt−1||Ω||Ap|). In this section, we present

a new technique that exploits the independence proper-

ties of POMDP-IR, mainly that the transition function

and the observation function are independent of the

prediction actions, to reduce the computational costs.

We also show that the same principle is applicable to

ρPOMDPs.

The increased computational cost of solving

POMDP-IR arises from the size of the action space,

|An||Ap|. However, as shown in Figure 4, prediction ac-

tions only affect the reward function and normal actions

only affect the observation and transition function. We

exploit this independence to decompose the maximiza-

tion in the Bellman optimality equation:

V ∗t (b) = max
〈an,ap〉∈A

[∑
s

b(s)R(s, ap)

+
∑
z∈Ω

Pr(z|an, b)V ∗t−1(ban,z)
]

= max
ap∈Ap

∑
s

b(s)R(s, ap)

+ max
an∈An

∑
z∈Ω

Pr(z|an, b)V ∗t−1(ban,z)

These decomposition can be exploited by point-

based methods by computing Γ a,zt only for normal ac-

tions, an and αap only for prediction actions. That is,

(5) can be changed to:

Γ an,z
t = {αan,z

i : αi ∈ Γt−1}. (15)

For each prediction action, we compute the vector spec-

ifying the immediate reward for performing the pre-

diction action in each state: ΓAp = {αap}, where

αap(s) = R(s, ap) ∀ ap ∈ Ap. The next step is to mod-

ify (6) to separately compute the vectors maximizing

expected reward induced by prediction actions and the

expected return induced by the normal action:

αan
b = argmax

αap∈ΓAp

∑
s

b(s)αap(s)

+
∑
z

argmax
αan,z∈Γan,z

t

∑
s

αan,z(s)b(s).

By decomposing the maximization, this approach

avoids iterating over all |An||Ap| joint actions. At each

timestep t, this approach generates |An||Ω||Γt−1|+ |Ap|
backprojections in O(|S|2|An||Ω||Γt−1|+ |S||Ap|) time

and then prunes them to |B| vectors, with a computa-

tional complexity of O(|S||B|(|Ap|+ |An||Γt−1||Ω|)).
The same principle can be applied to ρPOMDP by

changing (6) such that it maximizes over immediate

reward independently from the future return:

αa
b = argmax

αρ∈Γρ

∑
s

b(s)αapρ (s)

+
∑
z

argmax
αa,z∈Γa,z

t

∑
s

αa,z(s)b(s).

The computational complexity of solving ρPOMDP

with this approach is O(|S|2|A||Ω||Γt−1| + |S||Γρ|) +

O(|S||B|(|Γρ| + |A||Γt−1||Ω|). Thus, even though both

POMDP-IR and ρPOMDP use extra actions or vec-

tors to formulate belief-based rewards, they can both be

solved at only minimal additional computational cost.
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7 Greedy PBVI

The previous sections allow us to model the active per-

ception task efficiently, such that the PWLC property of

the value function is maintained. Thus, we can now di-

rectly employ traditional POMDP solvers that exploit

this property to compute the optimal value function

V ∗t .While point-based methods scale better in the size

of the state space, they are still not practical for our

needs as they do not scale in the size of the normal

action space of active perception POMDPs.

While the computational complexity of one iteration

of PBVI is linear in the size of the action space |A| of a

POMDP, for an active perception POMDP, the action

space is modeled as selecting K out of the N available

sensors, yielding |A| =
(
N
K

)
. For fixed K, as the number

of sensors N grows, the size of the action space and the

computational cost of PBVI grows exponentially with

it, making use of traditional POMDP solvers infeasible

for solving active perception POMDPs.

In this section, we propose greedy PBVI, a new

point-based planner for solving active perception

POMDPs which scales much better in the size of the ac-

tion space. To facilitate the explication of greedy PBVI,

we now present the final step of PBVI, described earlier

in (7) and (8), in a different way. For each b ∈ B, and

a ∈ A, we must find the best αa
b ∈ Γ a

t .

αa,∗
b = argmax

αa
b∈Γ

a
t

∑
s

αa
b (s)b(s), (16)

and simultaneously record its value Q(b, a) =∑
s α

a,∗
b b(s). Then, for each b we find the best vector

across all actions: αb = αa∗

b , where

a∗ = argmax
a∈A

Q(b, a). (17)

The main idea of greedy PBVI is to exploit greedy

maximization (Nemhauser et al, 1978), an algorithm

that operates on a set function Q : 2X → R. Greedy

maximization is much faster than full maximization as

it avoids going over the
(
N
K

)
choices and instead con-

structs a subset of K elements iteratively. Thus, we

replace the maximization operator in the Bellman opti-

mality equation with greedy maximization. Algorithm 1

shows the argmax variant, which constructs a subset

Y ⊆ X of size K by iteratively adding elements of

X to Y . At each iteration, it adds the element that

maximally increases marginal gain ∆Q(e|a) of adding a

sensor e to a subset of sensors a:

∆Q(e|a) = Q(b, e ∪ a)−Q(b, a). (18)

To exploit greedy maximization in PBVI, we need

to replace an argmax over A with greedy-argmax.

Algorithm 1 greedy-argmax(Q,X,K)

Y ← ∅
for m = 1 to K do

Y ← Y ∪ {argmaxe∈X\Y ∆Q(e|Y )}
end for
return Y

Our alternative description of PBVI above makes this

straightforward: (17) contains such an argmax and

Q(b, .) has been intentionally formulated to be a set

function over A+. Thus, implementing greedy PBVI re-

quires only replacing (17) with:

aG = greedy-argmax(Q(b, ·), A+,K). (19)

Since the complexity of greedy-argmax is only

O(|N ||K|), the complexity of greedy PBVI is only

O(|S||B||N ||K||Γt−1|) (as compared to O(|S||B|
(
n
k

)
)

for traditional PBVI for computing Γ a
t ).

Using point-based methods as a starting point

is essential to our approach. Algorithms like Mona-

han’s enumeration algorithm (Monahan, 1982) that

rely on pruning operations to compute V ∗ instead

of performing an explicit argmax, cannot directly use

greedy-argmax. Thus, it is precisely because PBVI op-

erates on a finite set of beliefs that an explicit argmax

is performed, opening the door to using greedy-argmax

instead.

7.1 Bounds given submodular value function

In the following subsections, we present the highlights

of the theoretical guarantees associated with greedy

PBVI. The detailed analysis can be found in the ap-

pendix. Specifically, we show that a value function com-

puted by greedy PBVI is guaranteed to have bounded

error with respect to the optimal value function un-

der submodularity, a property of set functions that for-

malizes the notion of diminishing returns. Then, we

establish the conditions under which the value func-

tion of a POMDP is guaranteed to be submodular. We

define ρ(b) as negative belief entropy, ρ(b) = −Hb(s)

to establish the submodularity of value function. Both

ρPOMDP and POMDP-IR approximate ρ(b) with tan-

gents. Thus, in the last subsection, we show that even

if belief entropy is approximated using tangents, the

value function computed by greedy PBVI is guaran-

teed to have bounded error with respect to the optimal

value function.

Submodularity is a property of set functions that

corresponds to diminishing returns, i.e., adding an el-

ement to a set increases the value of the set function

by a smaller or equal amount than adding that same
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element to a subset. In our notation, this is formalized

as follows. Given a policy π, the set function Qπt (b, a)

is submodular in a, if for every aM ⊆ aN ⊆ A+ and

ae ∈ A+ \ aN ,

∆Qb(ae|aM ) ≥ ∆Qb(ae|aN ), (20)

Equivalently, Qπt (b, a) is submodular if for every

aM , aN ⊆ A+,

Qπt (b, aM∩aN )+Qπt (b, aM∪aN ) ≤ Qπt (b, aM )+Qπt (b, aN ).

Submodularity is an important property because of

the following result:

Theorem 3 (Nemhauser et al, 1978) If Qπt (b, a) is

non-negative, monotone and submodular in a, then for

all b,

Qπt (b, aG) ≥ (1− e−1)Qπt (b, a∗), (21)

where aG = greedy-argmax(Qπt (b, ·), A+,K) and a∗ =

argmaxa∈AQ
π
t (b, a).

Theorem 3 gives a bound only for a single applica-

tion of greedy-argmax, not for applying it within each

backup, as greedy PBVI does. In this subsection, we es-

tablish such a bound. Let the greedy Bellman operator

BG be:

(BGV πt−1)(b) =
G

max
a

[ρ(b, a)+γ
∑
z∈Ω

Pr(z|a, b)V πt−1(ba,z)],

where maxGa refers to greedy maximization. This imme-

diately implies the following corollary to Theorem 3:

Corollary 1 Given any policy π, if Qπt (b, a) is non-

negative, monotone, and submodular in a, then for all b,

(BGV πt−1)(b) ≥ (1− e−1)(B∗V πt−1)(b). (22)

Proof From Theorem 3 since (BGV πt−1)(b) = Qπt (b, aG)

and (B∗V πt−1)(b) = Qπt (b, a∗). ut

Next, we define the greedy Bellman equation:

V Gt (b) = (BGV Gt−1)(b), where V G0 = ρ(b). Note that V Gt
is the true value function obtained by greedy maximiza-

tion, without any point-based approximations. Using

Corollary 1, we can bound the error of V G with respect

to V ∗.

Theorem 4 If for all policies π, Qπt (b, a) is non-

negative, monotone and submodular in a, then for all b,

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (23)

Proof See Appendix.

Theorem 4 extends Nemhauser’s result to a full se-

quential decision making setting where multiple ap-

plication of greedy maximization are employed over

multiple time steps. This theorem gives a theoretical

guarantee on the performance of greedy PBVI. Given

a POMDP with a submodular value function, greedy

PBVI is guaranteed to have bounded error with respect

to the optimal value function. Moreover, this perfor-

mance comes at a computational cost that is much less

than that of solving the same POMDP with traditional

solvers. Thus, greedy PBVI scales much better in the

size of the action space of active perception POMDPs,

while still retaining bounded error.

The results presented in this subsection are appli-

cable only if the value function for a POMDP is sub-

modular. In the following subsections, we establish the

submodularity of value function for active perception

POMDP under certain conditions.

7.2 Submodularity of value functions

The previous subsection showed that the value func-

tion computed by greedy PBVI is guaranteed to have

bounded error as long as it is non-negative, monotone

and submodular. In this subsection, we establish suf-

ficient conditions for these properties to hold. Specifi-

cally, we show that, if the belief-based reward is nega-

tive entropy, i.e., ρ(b) = −Hb(s) + log( 1
|S| ) then under

certain conditions Qπt (b, a) is submodular, non-negative

and monotone as required by Theorem 4. We point out

that the second part, log( 1
|S| ) is only required (and suf-

ficient) to guarantee non-negativity, but is independent

of the actual beliefs or actions. For the sake of concise-
ness, in the remainder of this paper we will omit this

term.

We start by observing that Qπt (b, a) = ρ(b) +∑t−1
k=1G

π
k (bt, at), where Gπk (bt, at) is the expected im-

mediate reward with k steps to go, conditioned on the

belief and action with t steps to go and assuming policy

π is followed after timestep t:

Gπk (bt, at) = γt−k
∑
zt:k

Pr(zt:k|bt, at, π)(−Hbk(sk)),

where zt:k is a vector of observations received in the

interval from t steps to go to k steps to go, bt is the

belief at t steps to go, at is the action taken at t steps

to go, and ρ(bk) = −Hbk(sk), where sk is the state at

k steps to go. To show that Qπt (b, a) is submodular the

main condition is conditional independence as defined

below:

Definition 5 The observation set z is conditionally in-

dependent given s if any pair of observation features are
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conditionally independent given the state, i.e.,

Pr(zi, zj |s) = Pr(zi|s) Pr(zj |s), ∀zi, zj ∈ z. (24)

Using above definition, the submodularity of Q(b, a)

can be established as:

Theorem 5 If zt:k is conditionally independent given

sk and ρ(b) = −Hb(s), then Qπt (b, a) is submodular in

a, for all π.

Proof See Appendix.

Theorem 6 If zt:k is conditionally independent given

sk, V πt is convex over the belief space for all t, π, and

ρ(b) = −Hb(s) + log( 1
|S| ), then for all b,

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (25)

Proof See Appendix.

In this subsection we showed that if the immediate

belief-based reward ρ(b) is defined as negative belief en-

tropy, then the value function of an active perception

POMDP is guaranteed to be submodular under cer-

tain conditions. However, as mentioned earlier, to solve

active perception POMDP, we approximate the belief

entropy with vector tangents. This might interfere with

the submodularity of the value function. In the next

subsection, we show that, even though the PWLC ap-

proximation of belief entropy might interfere with the

submodularity of the value function, the value function

computed by greedy PBVI is still guaranteed to have

bounded error.

7.3 Bounds given approximated belief entropy

While Theorem 6 bounds the error in V Gt (b), it does

so only on the condition that ρ(b) = −Hb(s). How-

ever, as discussed earlier, our definition of active per-

ception POMDPs instead defines ρ using a set of vec-

tors Γ ρ = {αρ1, . . . , αρm}, each of which is a tangent to

−Hb(s), as suggested by Araya-López et al (2010), in

order to preserve the PWLC property. While this can

interfere with the submodularity of Qπt (b, a), here we

show that the error generated by this approximation is

still bounded in this case.

Let ρ̃(b) denote the PWLC approximated entropy

and Ṽ ∗t denote the optimal value function when us-

ing a PWLC approximation to negative entropy for the

belief-based reward, as in an active perception POMDP,

i.e.,

Ṽ ∗t (b) = max
a

[ρ̃(b) +
∑
z∈Ω

Pr(z|b, a)Ṽ ∗t−1(ba,z)]. (26)

Araya-López et al (2010) showed that, if ρ(b) verifies

the α-Hölder condition (Gilbarg and Trudinger, 2001),

a generalization of the Lipschitz condition, then the fol-

lowing relation holds between V ∗t and Ṽ ∗t :

||V ∗t − Ṽ ∗t ||∞ ≤
Cδα

1− γ
, (27)

where V ∗t is the optimal value function with ρ(b) =

−Hb(s), δ is the density of the set of belief points at

which tangent are drawn to the belief entropy, and C

is a constant.

Let Ṽ Gt (b) be the value function computed by greedy

PBVI when immediate belief-based reward is ρ̃(b):

Ṽ Gt (b) =
G

max
a

[ρ̃(b) +
∑
z∈Ω

Pr(z|b, a)Ṽ Gt−1(ba,z)], (28)

then the error between Ṽ Gt (b) and V ∗t (b) is bounded as

stated in the following theorem.

Theorem 7 For all beliefs, the error between Ṽ Gt (b)

and Ṽ ∗t (b) is bounded, if ρ(b) = −Hb(s), V
π
t is convex

in the belief space for all π, t, and if zt:k is conditionally

independent given sk.

Proof See Appendix.

In this subsection we showed that if the negative

entropy is approximated using tangent vectors, greedy

PBVI still computes a value function that has bounded

error. In the next subsection we outline how greedy

PBVI can be extended to general active perception

tasks.

7.4 General Active Perception POMDPs

The results presented in this section apply to the active

perception POMDP in which the evolution of the state

over time is independent of the actions of the agent.

Here, we outline how these results can be extended

to general active perception POMDPs without many

changes. The main application for such an extension

is in tasks involving a mobile robot coordinating with

sensors to intelligently take actions to perceive its envi-

ronment. In such cases, the robot’s actions, by causing

it to move, can change the state of the world.

The algorithms we proposed can be extended to

such settings by making small modifications to the

greedy maximization operator. The greedy algorithm

can be run for K + 1 iterations and in each iteration

the algorithm would choose to add either a sensor (only

if fewer than K sensors have been selected), or a move-

ment action (if none has been selected so far). Formally,

using the work of Fisher et al (1978), which extends that
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of Nemhauser et al (1978) on submodularity to combi-

natorial structures such as matroids, the action space of

a POMDP involving a mobile robot can be modeled as

a partition matroid and greedy maximization subject

to matroid constraints (Fisher et al, 1978) can be used

to maximize the value function approximately.

The guarantees associated with greedy maximiza-

tion subject to matroid constraints (Fisher et al,

1978) can then be used to bound the error of greedy

PBVI. However, deriving exact theoretical guarantees

for greedy PBVI for such tasks is beyond the scope of

this article. Assuming that the reward function is still

defined as the negative belief entropy, the submodular-

ity of such POMDPs still holds under the conditions

mentioned in Section 6.2.

In this subsection, we presented greedy PBVI, which

uses greedy maximization to improve the scalability

in the action space of an active perception POMDP.

We also showed that, if the value function of an active

perception POMDP is submodular, then greedy PBVI

computes a value function that is guaranteed to have

bounded error. We established that if the belief-based

reward is defined as the negative belief entropy, then

the value function of an active perception POMDP is

guaranteed to be submodular. We showed that if the

negative belief entropy is approximated by tangent vec-

tors, as is required to solve active perception POMDPs

efficiently, greedy PBVI still computes a value function

that has bounded error. Finally, we outlined how greedy

PBVI and the associated theoretical bounds can be ex-

tended to general active perception POMDPs.

8 Experiments

In this section, we present an analysis of the behav-

ior and performance of belief-based rewards for active

perception tasks, which is the main motivation of our

work. We present the results of experiments designed

to study the effect on the performance of the choice

of prediction actions/tangents, and compare the costs

and benefits of myopic versus non-myopic planning. We

consider the task of tracking people in a surveillance

area with a multi-camera tracking system. The goal of

the system is to select a subset of cameras, to correctly

predict the position of people in the surveillance area,

based on the observations received from the selected

cameras. In the following subsections, we present re-

sults on real-data collected from a multi-camera sys-

tem in a shopping mall and we present the experiments

comparing performance of greedy PBVI to PBVI.

We compare the performance of POMDP-IR with

decomposed maximization to a naive POMDP-IR that

Fig. 5 Problem setup for the task of tracking one person.
We model this task as a POMDP with one state for each
cell. Thus the person can move among |S| cells. Each cell is
adjacent to two other cells and each cell is monitored by a
single camera. Thus, in this case there are N = |S| cameras.
At each time step, the person can stay in the same cell as she
was in the previous time step with probability p or she can
move to one of the neighboring cells with equal probability.
The agent must select K out of N cameras and the task
is to predict the state of the person correctly using noisy
observations from the K cameras. There is one prediction
action for each state and the agent gets a reward of +1 if it
correctly predicts the state and 0 otherwise. An observation
is a vector of N observation features, each of which specifies
the person’s position as estimated by the given camera. If a
camera is not selected, then the corresponding observation
feature has a value of null.

does not decompose the maximization. Thanks to The-

orems 1 and 2, these approaches have performance

equivalent to their ρPOMDP counterparts. We also

compare against two baselines. The first is a weak base-

line we call the rotate policy in which the agent simply

keeps switching between cameras on a turn-by-turn ba-
sis. The second is a stronger baseline we call the cover-

age policy, which was developed in earlier work on ac-

tive perception (Spaan, 2008; Spaan and Lima, 2009).

The coverage policy is obtained after solving a POMDP

that rewards the agent for observing the person, i.e., the

agent is encouraged to select the cameras that are most

likely to generate positive observations. Thanks to the

decomposed maximization, the computational cost of

solving for the coverage policy and belief-based rewards

is the same.

8.1 Simulated Setting

We start with experiments conducted in a simulated

setting, first considering the task of tracking a single

person with a multi-camera system and then consider-

ing the more challenging task of tracking multiple peo-

ple.
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Fig. 6 (a) Performance comparison between POMDP-IR with decomposed maximization, naive POMDP-IR, coverage policy,
and rotate policy; (b) Runtime comparison between POMDP-IR with decomposed maximization and naive POMDP-IR; (c)
Behavior of POMDP-IR policy; (d) Behavior of coverage policy.

8.1.1 Single-Person Tracking

We start by considering the task of tracking one per-

son walking in a grid-world composed of |S| cells and

N cameras as shown in Figure 5. At each timestep,

the agent can select only K cameras, where K ≤ N .

Each selected camera generates a noisy observation of

the person’s location. The agent’s goal is to minimize

its uncertainty about the person’s state. In the experi-

ments in this section, we fixed K = 1 and N = 10. The

problem setup and the POMDP model is shown and

described in Figure 5.

To compare the performance of POMDP-IR to the

baselines, 100 trajectories were simulated from the

POMDP. The agent was asked to guess the person’s

position at each time step. Figure 6(a) shows the cumu-

lative reward collected by all four methods. POMDP-

IR with decomposed maximization and naive POMDP-

IR perform identically as the lines indicating their re-

spective performance lie on top of each other in figure

6(a). However, Figure 6(b), which compares the run-

times of POMDP-IR with decomposed maximization

and naive POMDP-IR, shows that decomposed maxi-

mization yields a large computational savings. Figure

6(a) also shows that POMDP-IR greatly outperforms

the rotate policy and modestly outperforms the cover-

age policy.

Figures 6(c) and 6(d) illustrate the qualitative dif-

ference between POMDP-IR and the coverage policy.

The blue lines mark the points in trajectory when the

agent selected the camera that observes the person’s

location. If the agent selected a camera such that the

person’s location is not covered then the blue vertical

line is not there at that point in the trajectory in the

figure. The agent has to select one out of N cameras

and does not have an option of not selecting any cam-

era. The red line plots the max of the agent’s belief.

The main difference between the two policies is that

once POMDP-IR gets a good estimate of the state, it

proactively observes neighboring cells to which the per-

son might transition. This helps it to more quickly find

the person when she moves. By contrast, the coverage

policy always looks at the cell where it believes her to

be. Hence, it takes longer to find her again when she

moves. This is evidenced by the fluctuations in the max

of the belief, which often drops below 0.5 for the cov-

erage policy but rarely does so for POMDP-IR. The

presence of false positives and negatives can also be

seen in the figure, when max of the belief goes down

even though the agent selected the camera which can

observe the person’s location and in some cases even
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Fig. 7 Performance comparison as negative belief entropy is
better approximated.

though the agent did not select the camera which can

observe the person’s location but still the max of belief

shoots up.

Next, we examine the effect of approximating a true

reward function like belief entropy with more and more

tangents. Figure 3 illustrates how adding more tangents

can better approximate negative belief entropy. To test

the effects of this, we measured the cumulative reward

when using between one and four tangents per state.

Figure 7 shows the results and demonstrates that, as

more tangents are added, the performance improves.

However, performance also quickly saturates, as four

tangents perform no better than three.

Next, we compare the performance of POMDP-IR

to a myopic variant that seeks only to maximize im-
mediate reward, i.e., h = 1. We perform this compar-

ison in three variants of the task. In the highly static

variant, the state changes very slowly: the probabil-

ity of staying is the same state is 0.9. In the mod-

erately dynamic variant, the state changes more fre-

quently, with a same-state transition probability of 0.7.

In the highly dynamic variant, the state changes rapidly

(with a same-state transition probability of 0.5). Fig-

ure 8 (top) shows the results of these comparisons. In

each setting, non-myopic POMDP-IR outperforms my-

opic POMDP-IR. In the highly static variant, the dif-

ference is marginal. However, as the task becomes more

dynamic, the importance of look-ahead planning grows.

Because the myopic planner focuses only on immedi-

ate reward, it ignores what might happen to its belief

when the state changes, which happens more often in

dynamic settings.

We also compare the performance of myopic and

non-myopic planning in a budget-constrained environ-

ment. This specifically corresponds to an energy con-
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Fig. 8 (top) Performance comparison for myopic vs. non my-
opic policies; (bottom) Performance comparison for myopic vs
non myopic policies in budget-based setting.

strained environment, where cameras can be employed

only a few times over the entire trajectory. This is aug-

mented with resource constraints, so that the agent has

to plan not only when to use the cameras, but also de-

cide which camera to select. Specifically, the agent can

only employ the multi-camera system a total of 15 times

across all 50 timesteps and the agent can select which

camera (out of the multi-camera system) to employ at

each of the 15 instances. On the other timesteps, it must

select an action that generates only a null observation.

Figure 8 (bottom) shows that non-myopic planning is

of critical importance in this setting. Whereas myopic

planning greedily consumes the budget as quickly as

possible, thus earning more reward in the beginning,

non-myopic planning saves the budget for situations in

which it is highly uncertain about the state.

Finally, we compare the performance of myopic and

non-myopic planning when the multi-camera system

can communicate with a mobile robot that also has sen-

sors. This setting is typical of a networked robot system

(Spaan et al, 2010) in which a robot coordinates with a

multi-camera system to perform surveillance of a build-

ing, detect any emergency situations like fire, or help

people navigate to their destination. Here, the task is

to minimize uncertainty about the location of one per-

son who is moving in the space monitored by the robot

and the cameras. The robot’s sensors are assumed to be

more accurate than the stationary cameras. Specifically,

the sensors attached to the robot can detect if a person

is in the current cell with 90% accuracy compared to



16 Satsangi et al.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Timestep

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

 

 

Non−myopic

Myopic

Fig. 9 Performance comparison for myopic vs. non myopic
policies when camera system is assisting a moving robot.

the stationary cameras, each of which has an accuracy

of 75% of detecting a person in the cell it observes. The

robot’s sensor can observe the presence or absence of

a person only for the cell that the robot occupies. In

addition to using its sensors to generate observations

about its current cell, the robot can also move forward

or backward to an adjacent cell or choose to stay at the

current cell. To model this task, the action vector intro-

duced earlier is augmented with another action feature

that indicates the direction of the robot’s motion, which

can take three values: forward, backward or stay.

Performance is quantified as the total number of

times the correct location of the person is predicted by

the system. Figure 9, which shows the performance of

myopic and non-myopic policies for this task, demon-

strates that when planning non-myopically the agent is

able to utilize the accurate sensors more effectively as

to compared to when planning myopically.

8.1.2 Multi-Person Tracking

To extend our analysis to a more challenging prob-

lem, we consider a simulated setting in which multi-

ple people must be tracked simultaneously. Since |S|
grows exponentially in the number of people, the result-

ing POMDP quickly becomes intractable. Therefore, we

compute instead a factored value function

Vt(b) =
∑
i

V it (bi), (29)

where V it (bi) is the value of the agent’s current belief bi

about the i-th person. Thus, V it (bi) needs to be com-

puted only once, by solving a POMDP of the same size

as that in the single-person setting. During action se-

lection, Vt(b) is computed using the current bi for each

person. This kind of factorization corresponds to the

assumption that each person’s movement and observa-

tions is independent of that of other people. Although

violated in practice, such an assumption can nonethe-

less yield good approximations.
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Fig. 10 (top) Multi-person tracking performance for
POMDP-IR and coverage policy; (bottom) Performance of
POMDP-IR and coverage policy when only important cells
must be tracked.

Figure 10 (top), which compares POMDP-IR to the

coverage policy with one, two, and three people, shows

that the advantage of POMDP-IR grows substantially

as the number of people increases. Whereas POMDP-IR

tries to maintain a good estimate of everyone’s position,

the coverage policy just tries to look at the cells where

the maximum number of people might be present, ig-

noring other cells completely.

Finally, we compare POMDP-IR and the coverage

policy in a setting in which the goal is only to reduce

uncertainty about a set of “important cells” that are

a subset of the whole state space. For POMDP-IR, we

prune the set of prediction actions to allow predictions

only about important cells. For the coverage policy, we

reward the agent only for observing people in important

cells. The results, shown in Figure 10 (bottom), demon-

strate that the advantage of POMDP-IR over the cov-

erage policy is even larger in this variant of the task.

POMDP-IR makes use of information coming from cells

that neighbor the important cells (which is of critical

importance if the important cells do not have good ob-

servability), while the coverage policy does not. As be-

fore, the difference gets larger as the number of people

increases.

8.2 Real Data

Finally, we extended our analysis to a real-life dataset

collected in a shopping mall. This dataset was gath-
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Fig. 11 Sample tracks for all the cameras. Each color rep-
resents all the tracks observed by a given camera. The boxes
denote regions of high overlap between cameras.
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Fig. 12 Performance of POMDP-IR and the coverage policy
on the shopping mall dataset.

ered over 4 hours using 13 CCTV cameras located in a

shopping mall (Bouma et al, 2013). Each camera uses

a FPDW (Dollar et al, 2010) pedestrian detector to de-

tect people in each camera image and in-camera track-
ing (Bouma et al, 2013) to generate tracks of the de-

tected people’s movements over time.

The dataset consists of 9915 tracks each specifying

one person’s x-y position over time. Figure 11 shows

the sample tracks from all of the cameras.

To learn a POMDP model from the dataset, we di-

vided the continuous space into 20 cells (|S| = 21: 20

cells plus an external state indicating the person has

left the shopping mall). Using the data, we learned a

maximum-likelihood tabular transition function. How-

ever, we did not have access to the ground truth of

the observed tracks so we constructed them using the

overlapping regions of the camera.

Because the cameras have many overlapping regions

(see Figure 11), we were able to manually match tracks

of the same person recorded individually by each cam-

era. The “ground truth” was then constructed by tak-

ing a weighted mean of the matched tracks. Finally, this

ground truth was used to estimate noise parameters for

each cell (assuming zero-mean Gaussian noise), which
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Fig. 13 Runtimes for the different methods.

was used as the observation function. Figure 12 shows

that, as before, POMDP-IR substantially outperforms

the coverage policy for various numbers of cameras. In

addition to the reasons mentioned before, the high over-

lap between the cameras contributes to POMDP-IR’s

superior performance. The coverage policy has difficulty

ascertaining people’s exact locations because it is re-

warded only for observing them somewhere in a cam-

era’s large overlapping region, whereas POMDP-IR is

rewarded for deducing their exact locations.

8.3 Greedy PBVI

To empirically evaluate greedy PBVI, we tested it on

the problem of tracking either one or multiple people

using a multi-camera system. The reward function is

described as a set of |S| vectors, Γ ρ = {α1 . . . α|S|},
with αi(s) = 1 if s = i and αi(s) = 0 otherwise. The

initial belief is uniform across all states. We planned for

horizon h = 10 with γ = 0.99.

As baselines, we tested against regular PBVI and

myopic versions of both greedy and regular PBVI that

compute a policy assuming h = 1 and use it at each

timestep. Figure 13 shows runtimes under different

values of N and K. Since multi-person tracking uses

the value function obtained by solving a single-person

POMDP, single and multi-person tracking have the

same runtimes. These results demonstrate that greedy

PBVI requires only a fraction of the computational cost

of regular PBVI. In addition, the difference in the run-

time grows quickly as the action space gets larger: for

N = 5 and K = 2 greedy PBVI is twice as fast, while

for N = 11,K = 3 it is approximately nine times as

fast. Thus, greedy PBVI enables much better scalabil-

ity in the action space. Figure 14, which shows the cu-

mulative reward under different values of N and K for

single-person (top) and multi-person (bottom) track-

ing, verifies that greedy PBVI’s speedup does not come

at the expense of performance, as greedy PBVI accu-

mulates nearly as much reward as regular PBVI. They

also show that both PBVI and greedy PBVI benefit
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Fig. 14 Cumulative reward for single-person (top) and
multi-person (bottom) tracking.

from non-myopic planning. While the performance ad-

vantage of non-myopic planning is relatively modest,

it increases with the number of cameras and people,

which suggests that non-myopic planning is important

to making active perception scalable.

Furthermore, an analysis of the resulting policies

showed that myopic and non-myopic policies differ qual-

itatively. A myopic policy, in order to minimize un-

certainty in the next step, tends to look where it be-

lieves the person to be. By contrast, a non-myopic pol-

icy tends to proactively look where the person might

go next, so as to more quickly detect her new location

when she moves. Consequently, non-myopic policies ex-

hibit less fluctuation in belief and accumulate more re-

ward, as illustrated in Figure 15. The blue lines mark

when the agent chooses the camera that can observe

the cell occupied by the person. The red line plots the

max of the agent’s belief. The difference in fluctuation

in belief is evident, as the max of the belief often drops

below 0.5 for the myopic policy but rarely does so for

the non-myopic policy.

9 Discussion & Conclusions

In this article, we addressed the problem of active per-

ception, in which an agent must take actions to re-

duce uncertainty about a hidden variable while reason-

ing about various constraints. Specifically, we modeled

the task of surveillance with multi-camera tracking sys-
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Fig. 15 Behavior of myopic vs. non-myopic policy.

tems in large urban spaces as an active perception task.

Since the state of the environment is dynamic, we model

this task as a POMDP to compute closed-loop non-

myopic policies that can reason about the long-term

consequences of selecting a subset of sensors.

Formulating uncertainty reduction as an end in it-

self is a challenging task, as it breaks the PWLC prop-

erty of the value function, which is imperative for solv-

ing POMDPs efficiently. ρPOMDP and POMDP-IR are

two frameworks that allow formulating uncertainty re-

duction as an end in itself and does not break the

PWLC property.

We showed that ρPOMDP and POMDP-IR are two

equivalent frameworks for modeling active perception

task. Thus, results that apply to one framework are

also applicable to the other. While ρPOMDP does not

restrict the definition of ρ to a PWLC function, in this

work we restrict the definition of ρPOMDP to a case

where ρ is approximated with a PWLC function, as it

is not feasible to efficiently solve a ρPOMDP where the

ρ is not a PWLC function.

We model the action space of the active perception

POMDP as selectingK out ofN sensors, whereK is the

maximum number of sensors allowed by the resource

constraints. Recent POMDP solvers enable scalability

in the state space. However, for active perception, as

the number of sensors grow, the action space grows

exponentially. We proposed greedy PBVI, a POMDP

planning method, that improves scalability in the ac-

tion space of a POMDP. While we do not directly ad-
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dress the scaling in the observation space, we believe re-

cent ideas on factorization of observation space (Veiga

et al, 2014) can be combined with our approach to im-

prove scalability in state, action and observation space

to solve active perception POMDPs.

By leveraging the theory of submodularity, we

showed that the value function computed by greedy

PBVI is guaranteed to have bounded error. Specifi-

cally, we extend Nemhauser’s result on greedy maxi-

mization of submodular functions to long-term plan-

ning. To apply these results to the active perception

task, we showed that under certain conditions the value

function of an active perception POMDP is submod-

ular. One such condition requires that the series fu-

ture of observations be independent of each other given

the state. While this is a strong condition, it is only

a sufficient condition and not may not be a necessary

one. Thus, one line of future work is to attempt to re-

lax this condition for proving the submodularity of the

value function. Finally, we showed that, even with a

PWLC approximation to the true value function, which

is submodular, the error in the value function computed

by greedy PBVI remains bounded, thus enabling us to

compute efficiently value functions for active perception

POMDP.

Greedy PBVI is ideally suited for active perception

POMDPs for which the value function is submodular.

However, in real-life situations submodularity of value

function might not always hold. For example, in our

setting when there is occlusion, it is possible for com-

binations of sensors that when selected together yield

higher utility than the sum of their utilities when se-

lected individually. Similar case can arise when a mobile

robots is trying to sense the best point of view to ob-

serve a scene that is occluded. Thus in cases like this,

greedy PBVI might not return the best solution.

Our empirical analysis established the critical fac-

tors involved in the performance active perception

tasks. We showed that a belief-based formulation of

uncertainty reduction beats a corresponding popular

state-based reward baseline as well as other simple poli-

cies. While, the non-myopic policy beats the myopic

one, the gain in certain cases the gain is marginal. How-

ever, in cases involving mobile sensors and budgeted

constraints, non-myopic policies become critically im-

portant. Finally, experiments on a real-world dataset

showed that the performance of greedy PBVI is similar

to the existing methods but requires only a fraction of

the computational cost, leading to much better scala-

bility for solving active perception tasks.

10 Appendix

10.1 Results from Section 4

Theorem 1 Let Mρ be a ρPOMDP and πρ an arbi-

trary policy for Mρ. Furthermore let MIR = reduce-

pomdp-ρ-IR(Mρ) and πIR = reduce-policy-ρ-

IR(πρ). Then, for all b,

V IR
t (b) = V ρt (b), (30)

where V IR
t is the t-step value function for πIR and V ρt

is the t-step value function for πρ.

Proof By induction on t. To prove the base case, we

observe that, from the definition of ρ(b),

V ρ0 (b) = ρ(b) = max
α
ap
ρ ∈Γρ

∑
s

b(s)αapρ (s).

Since MIR has a prediction action correspond-

ing to each α
ap
ρ , thus the ap corresponding to

α = argmaxαapρ ∈Γρ
∑
s b(s)α

ap
ρ (s), must also maximize∑

s b(s)R(s, ap). Then,

V ρ0 (b) = max
ap

∑
s

b(s)RIR(s, ap)

= V IR
0 (b).

(31)

For the inductive step, we assume that V IR
t−1(b) =

V ρt−1(b) and must show that V IR
t (b) = V ρt (b). Starting

with V IR
t (b),

V IR
t (b) = max

ap

∑
s

b(s)R(s, ap)

+
∑
z

Pr(z|b, πnIR(b))V IR
t−1(bπ

n
IR(b),z),

(32)

where πnIR(b) denotes the normal action of the tuple

specified by πIR(b) and:

Pr(z|b, πnIR(b)) =
∑
s

∑
s′′ OIR(s′′, πnIR(b), z)TIR(s, πnIR(b), s′′)b(s).

Using the reduction procedure, we can replace TIR
and OIR and πnIR(b) with their ρPOMDP counterparts

on right hand side of the above equation:

Pr(z|b, πnIR(b)) =
∑
s

∑
s′′ Oρ(s

′′, πρ(b), z)Tρ(s, πρ(b), s
′′)b(s)

= Pr(z|b, πρ(b)) .

Similarly, for the belief update equation,

bπ
n
IR(b),z =

OIR(s′, πnIR(b), z)

Pr(z|πnIR(b), b)

∑
s

b(s)TIR(s, πnIR(b), s′)

=
Oρ(s

′, πρ(b), z)

Pr(z|πρ(b), b)
∑
s

b(s)Tρ(s, πρ(b), s
′)

= bπρ(b),z.
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(33)

Substituting the above result in (32) yields:

V IR
t (b) = maxap

∑
s b(s)R(s, ap) +

∑
z Pr(z|b, πρ(b))V IR

t−1(bπρ(b),z).

(34)

Since the inductive assumption tells us that

V IR
t−1(b) = V ρt−1(b) and (31) shows that ρ(b) =

maxap
∑
s b(s)R(s, ap):

V IR
t (b) = [ρ(b) +

∑
z

Pr(z|b, πρ(b))V ρt−1(bπρ(b),z)]

= V ρt (b).

(35)

ut

Theorem 2 Let MIR be a POMDP-IR and πIR =

〈an, ap〉 an policy for MIR, such that ap =

maxa′p b(s)R(s, a′p). Furthermore let Mρ = reduce-

pomdp-IR-ρ(MIR) and πρ = reduce-policy-IR-

ρ(πIR). Then, for all b,

V ρt (b) = V IRt (b), (36)

where V IR
t is the value of following πIR in MIR and V ρt

is the value of following πρ in Mρ.

Proof By induction on t. To prove the base case, we

observe that, from the definition of ρ(b),

V IR0 (b) = max
ap

∑
s

b(s)R(s, ap)

=
∑
s

b(s)α(s) {where α(s) is the α(s)

corresponding to ap = argmaxa′p
∑
s b(s)R(s, a′p).}

= ρ(b)

= V ρ0 (b)

(37)

For the inductive step, we assume that V ρt−1(b) =

V IRt−1(b) and must show that V ρt (b) = V IRt (b). Starting

with V ρt (b),

V ρt (b) = ρ(b) +
∑
z

Pr(z|b, πρ(b))V ρt−1(bπρ(b),z), (38)

where πnIR(b) denotes the normal action of the tuple

specified by πIR(b) and:

Pr(z|b, πρ(b)) =
∑
s

∑
s′′ Oρ(s

′′, πρ(b), z)Tρ(s, πρ(b), s
′′)b(s).

(39)

From the reduction procedure, we can replace Tρ and

Oρ and πρ(b) with their POMDP-IR counterparts:

Pr(z|b, πρ(b)) =
∑
s

∑
s′′ OIR(s′′, πnIR(b), z)TIR(s, πnIR(b), s′′)b(s)

= Pr(z|b, πIR(b)).

Similarly, for the belief update equation,

bπρ(b),z =
Oρ(s

′, πρ(b), z)

Pr(z|πρ(b), b)
∑
s

b(s)Tρ(s, πρ(b), s
′)

=
OIR(s′, πnIR(b), z)

Pr(z|πnIR(b), b)

∑
s

b(s)TIR(s, πnIR(b), s′)

= bπIR(b),z.

(40)

Substituting the above result in (38) yields:

V ρt (b) = ρ(b) +
∑
z

Pr(z|b, πIR(b))V IR
t−1(bπIR(b),z). (41)

Since the inductive assumption tells us

that V ρt−1(b) = V IR
t−1(b) and (37) shows that

maxap
∑
s b(s)R(s, ap) = ρ(b):

V ρt (b) = [max
ap

∑
s

b(s)R(s, ap)

+
∑
z

Pr(z|b, πIR(b))V IRt−1(bπIR(b),z)]

= V IRt (b).

ut

10.2 Results from subsection 6.1

The following Lemma proves that the error in the value

function remains bounded after application of BG.

Lemma 1 If for all b, ρ(b) ≥ 0,

V πt (b) ≥ (1− ε)V ∗t (b), (42)

and Qπt (b, a) is non-negative, monotone, and submodu-

lar in a, then, for ε ∈ [0, 1],

(BGV πt )(b) ≥ (1− e−1)(1− ε)(BGV ∗t )(b). (43)

Proof Starting from (42) and, for a given a, on both

sides multiplying γ ≥ 0, taking the expectation over z,

and adding ρ(b) (since ρ(b) ≥ 0 and ε ≤ 1):

ρ(b)+γEz|b,a[V πt (ba,z)] ≥ (1−ε)(ρ(b)+γEz|b,a[V ∗t (ba,z)]).

From the definition of Qπt (3), we thus have:

Qπt+1(b, a) ≥ (1− ε)Q∗t+1(b, a) ∀a. (44)

From Theorem 3, we know

Qπt+1(b, aGπ ) ≥ (1− e−1)Qπt+1(b, a∗π), (45)

where aGπ = greedy-argmax(Qπt+1(b, ·), A+,K) and

a∗π = argmaxaQ
π
t+1(b, a). Since Qπt+1(b, a∗π) ≥

Qπt+1(b, a) for any a,

Qπt+1(b, aGπ ) ≥ (1− e−1)Qπt+1(b, aG∗ ), (46)



Exploiting Submodular Value Functions for Scaling Up Active Perception 21

where aG∗ = greedy-argmax(Q∗t (b, ·), A+,K). Finally,

(44) implies that Qπt+1(b, aG∗ ) ≥ (1− ε)Q∗t+1(b, aG∗ ), so:

Qπt+1(b, aGπ ) ≥ (1− e−1)(1− ε)Q∗t+1(b, aG∗ )

(BGV πt )(b) ≥ (1− e−1)(1− ε)(BGV ∗t )(b).
(47)

ut

Using Corollary 1 and Lemma 1, we can prove The-

orem 4.

Theorem 4 If for all policies π, Qπt (b, a) is non-

negative, monotone and submodular in a, then for all

b,

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (48)

Proof By induction on t. The base case, t = 0, holds

because V G0 (b) = ρ(b) = V ∗0 (b).

In the inductive step, for all b, we assume that

V Gt−1(b) ≥ (1− e−1)2t−2V ∗t−1(b), (49)

and must show that

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (50)

Applying Lemma 1 with V πt = V Gt−1 and (1 − ε) =

(1− e−1)2t−2 to (49):

(BGV Gt−1)(b) ≥ (1− e−1)2t−2(1− e−1)(BGV ∗t−1)(b)

V Gt (b) ≥ (1− e−1)2t−1(BGV ∗t−1)(b).

Now applying Corollary 1 with V πt−1 = V ∗t−1:

V Gt (b) ≥ (1− e−1)2t−1(1− e−1)(B∗V ∗t−1)(b)

V Gt (b) ≥ (1− e−1)2tV ∗t (b).
(51)

ut

10.3 Results from subsection 6.2

Proving that Qπt (b, a) is submodular in a requires three

steps. First, we show that Gπk (bt, at) equals the condi-

tional entropy of bk over sk given zt:k and at. Second,

we show that, under certain conditions, conditional en-

tropy is a submodular set function. Third, we combine

these two results to show that Qπt (b, a) is submodular.

Lemma 2 If ρ(b) = −Hb(s), then the expected reward

at each time step equals the negative discounted condi-

tional entropy of bk over sk given zt:k:

Gπk (bt, at) = −γt−k(Hbk(sk|zt:k, at))

= −γt−k(Hat

bk (sk|zt:k)) ∀ π.

Proof To prove the above lemma, we take help of some

additional notations and definitions, first we must elab-

orate on the definition of bk:

bk(sk) , Pr(sk|bt, at, π, zt:k) = Pr(zt:k,sk|bt,at,π)
Pr(zt:k|bt,at,π) . (52)

For notational convenience, we also write this as:

bk(sk) ,
Prπbt,at(z

t:k, sk)

Prπbt,at(z
t:k)

. (53)

The entropy of bk is thus:

Hbk(sk) =
∑
sk

Prπbt,at(z
t:k, sk)

Prπbt,at(z
t:k)

log(
Prπbt,at(z

t:k, sk)

Prπbt,at(z
t:k)

),

and the conditional entropy of bk over sk given zt:k is:

Hat

bk (sk|zt:k) =
∑
sk
∑

zt:k Pr
π
bt,at(z

t:k, sk) log(
Prπ

bt,at
(zt:k,sk)

Prπ
bt,at

(zt:k)
).

Then, by definition of Gπk (bt, at),

Gπk (bt, at) = γ(t−k)(−
∑
zt:k

Prπbt,at(z
t:k)Hbk(sk))

By definition of entropy,

= γt−k
∑

zt:k Pr
π
bt,at(z

t:k)

[∑
sk

Prπ
bt,at

(zt:k,sk)

Prπ
bt,at

(zt:k)
log(

Prπ
bt,at

(zt:k,sk)

Prπ
bt,at

(zt:k)
)

]

= γt−k
∑
zt:k

[∑
sk

Prπbt,at(z
t:k, sk) log(

Prπbt,at(z
t:k, sk)

Prπbt,at(z
t:k)

)

]
By definition of conditional entropy,

= γt−k(−Hat

bk (sk|zt:k)). ut

Lemma 3 If z is conditionally independent given s

then −H(s|z) is submodular in z, i.e., for any two ob-

servations zM and zN ,

H(s|zM∪zN )+H(s|zM∩zN ) ≥ H(s|zM )+H(s|zN ). (54)

Proof By Bayes’ rule for conditional entropy (Cover

and Thomas, 1991):

H(s|zM ∪ zN ) = H(zM ∪ zN |s) +H(s)−H(zM ∪ zN ). (55)

Using conditional independence, we know H(zM ∪
zN |s) = H(zM |s) + H(zN |s). Substituting this in (55),

we get:

H(s|zM ∪ zN ) = H(zM |s) +H(zN |s) +H(s)−H(zM ∪ zN ). (56)

By Bayes’ rule for conditional entropy:

H(s|zM∩zN ) = H(zM∩zN |s)+H(s)−H(zM∩zN ). (57)
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Adding (55) and (57):

H(s|zM ∩ zN ) +H(s|zM ∪ zN ) = H(zM |s) +H(zN |s)
+H(zM ∩ zN |s) + 2H(s)

−H(zM ∪ zN )−H(zM ∩ zN ).

(58)

By Bayes’ rule for conditional entropy:

H(zM |s) = H(s|zM ) +H(zM )−H(s), and

H(zN |s) = H(s|zN ) +H(zN )−H(s)
(59)

Substituting H(zM |s) and H(zN |s) in (58):

H(s|zM ∩ zN ) +H(s|zM ∪ zN ) = H(s|zM ) +H(s|zN )

+H(zM ∩ zN |s) + [H(zM )

+H(zN )−H(zM ∪ zN )−H(zM ∩ zN )].

Since entropy is submodular [H(zM ) + H(zN ) −
H(zM ∪ zN )−H(zM ∩ zN )] is positive and since entropy

is positive, H(zM ∩ zN |s) is positive. Thus,

H(s|zM ∩ zN ) +H(s|zM ∪ zN ) = H(s|zM ) +H(s|zN )

+ a positive term.

This implies H(s|zM ∪zN )+H(s|zM ∩zN ) ≥ H(s|zM )+

H(s|zN ). ut

Lemma 4 If zt:k is conditionally independent given sk

and ρ(b) = −Hb(s), then Gπk (bt, at) is submodular in at

∀ π.

Proof Let atM and atN be two actions and zt:kM and zt:kN
the observations they induce. Then, from Lemma 2,

Gπk (bt, atM ) = γ(t−k)(−Hat

bk (sk|zt:kM )). (60)

From Lemma 3,

Hat

bk (sk|zt:kM ∪ zt:kN ) +Hat

bk (sk|zt:kM ∩ zt:kN )

≥ Hat

bk (sk|zt:kM ) +Hat

bk (sk|zt:kN )

Multiplying by− γt−kon both sides and

using definition of G

Gπk (bt, atM ∪ atN ) +Gπk (bt, atN ∩ atM )

≤ Gπk (bt, atM ) +Gπk (bt, atN ).

ut

Theorem 5 If zt:k is conditionally independent given

sk and ρ(b) = −Hb(s), then Qπt (b, a) is submodular in

a, for all π.

Proof ρ(b) is trivially submodular in a because it

is independent of a. Furthermore, Lemma 4 shows

that Gπk (bt, at) is submodular in at. Since a positively

weighted sum of submodular functions is also sub-

modular (Krause and Golovin, 2014), this implies that∑t−1
k=1G

π
k (bt, at) and thus Qπt (b, a) are also submodular

in a. ut

Lemma 5 If V πt is convex over the belief space for all

t, then Qπt (b, a) is monotone in a, i.e., for all b and

aM ⊆ aN , Qπt (b, aM ) ≤ Qπt (b, aN ).

Proof By definition of Qπt (b, a),

Qπt (b, aM ) = [ρ(b) + γEzM [V πt−1(baM ,zM )|b, aM ]]. (61)

Since ρ(b) is independent of aM , we need only show that

the second term is monotone in a. Let aP = aN \ aM
and

Fπb (aN ) = EzN [V πt−1(baN ,zN )||b, aN ]. (62)

Since aN = {aM ∪ aP },

Fπb (aN ) = E{zM ,zP }[V
π
t−1(b{aM ,aP },{zM ,zP })|b, {aM , aP }].

Separating expectations,

Fπb (aN ) = EzM [EzP [V πt−1(b{aM ,aP },{zM ,zP })|b, aP ]|b, aM ]

Applying Jensen’s inequality, since V πt−1 is convex,

Fπb (aN ) ≥ EzM [V πt−1(EzP [baM ,aP ,zM ,zP |b, aP ])||b, aM ]

Since the expectation of the posterior is the prior,

Fπb (aN ) ≥ EzM [V πt−1(baM ,zM )|b, aM ]

Fπb (aN ) ≥ Fπb (aM ).
(63)

Consequently, we have:

ρ(b) + γt−kFπb (aN ) ≥ ρ(b) + γt−kFπb (aM )

Qπt (b, aN ) ≥ Qπt (b, aM ).
(64)

Theorem 6 If zt:k is conditionally independent given

sk, V πt is convex over the belief space for all t, π, and

ρ(b) = −Hb(s) + log( 1
|S| ), then for all b,

V Gt (b) ≥ (1− e−1)2tV ∗t (b). (65)

Proof Follows from Theorem 4, given QGt (b, a) is non-

negative, monotone and submodular. For ρ(b) =

−Hb(s) + log( 1
|S| ), it is easy to see that QGt (b, a) is

non-negative, as entropy is always positive (Cover and

Thomas, 1991) and is maximum when b(s) = 1
|S| for

all s (Cover and Thomas, 1991). Theorem 5 showed

that QGt (b, a) is submodular if ρ(b) = −Hb(s). The

monotonicity of QGt follows from the condition that V πt
is convex in belief space; Lemma 5 then shows that

QGt (b, a) is monotone in a. ut
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10.4 Results from subsection 6.3

Lemma 6 For all beliefs b, the error between V Gt (b)

and Ṽ Gt (b) is bounded by Cδα

1−γ . That is, ||V Gt − Ṽ Gt ||∞ ≤
Cδα

1−γ .

Proof Follows exactly the strategy by Araya-López et al

(2010) used to prove (27), which places no conditions

on π and thus holds as long as BG is a contraction

mapping. Since for any policy the Bellman operator Bπ

defined as:

(BπVt−1)(b) = [ρ(b, aπ) + γ
∑
z∈Ω

Pr(z|aπ, b)Vt−1(baπ,z)],

is a contraction mapping (Bertsekas, 2007), the bound

holds for Ṽ Gt . ut

Let η = Cδα

1−γ and Q̃∗t (b, a) = ρ̃(b) +∑
z Pr(z|b, a)Ṽ ∗t−1(ba,z) denote the value of taking ac-

tion a in belief b under an optimal policy. Let Q̃Gt (b, a) =

ρ̃(b) +
∑

z Pr(z|b, a)Ṽ Gt−1(ba,z) be the action-value func-

tion computed by greedy PBVI with immediate reward

being ρ̃(b). Also, let

Q̃πt (b, a) = ρ̃(b) +
∑
z

Pr(z|b, a)Ṽ πt−1(ba,z),

Ṽ πt (b) = ρ̃(b) +
∑
z

Pr(z|b, aπ)Ṽ πt−1(baπ,z),
(66)

denote the value function for a given policy π, when the

belief based reward is ρ̃(b). As mentioned before, it is

not guaranteed that Q̃Gt (b, a) is submodular. Instead,

we show that it is ε-submodular :

Definition 6 The set function f(a) is ε-submodular in

a, if for every aM ⊆ aN ⊆ A+, ae ∈ A+ \ aN and ε ≥ 0,

f(ae ∪ aM )− f(aM ) ≥ f(ae ∪ aN )− f(aN ) − ε.

Lemma 7 If ||V πt−1− Ṽ πt−1||∞ ≤ η, and Qπt (b, a) is sub-

modular in a, then Q̃πt (b, a) is ε′-submodular in a for all

b, where ε′ = 4(γ + 1)η.

Proof Since, ||V πt−1− Ṽ πt−1||∞ ≤ η, then for all beliefs b,

V πt−1(b)− Ṽ πt−1(b) ≤ η, (67)

For a given a, on both sides multiply γ ≥ 0, take the

expectation over z and since ρ(b)− ρ̃(b) ≤ η, ,

ρ(b)− ρ̃(b) + γEz|b,aV
π
t−1(b)− γEz|b,aṼ

π
t−1(b) ≤ γη + η

Therefore for all b, a,

Qπt (b, a)− Q̃πt (b, a) ≤ (γ + 1)η (68)

Now since Qπt (b, a) is submodular, it satisfies the fol-

lowing equation,

Qπt (b, ae ∪ aM )−Qπt (b, aM ) ≥ Qπt (b, ae ∪ aN )−Qπt (b, aN ), (69)

for every aM ⊆ aN ⊆ A+, ae ∈ A+ \aN For each action

that appear in (69), that is, {ae ∪ aM}, aM , {ae ∪ aN}
and aN , the value computed by Q̃πt for belief b will be an

approximation to Qπt . Thus the inequality in (69) that

holds for Qπt , may not hold for Q̃πt . The worst case pos-

sible is, for some combination of b, {ae∪aM}, aM , {ae∪
aN}, Q̃πt (b, ae ∪ aM ) and Qπt (b, aN ) underestimates the

true value of Qπt (b, ae ∪ aM ) and Q̃πt (b, aN ) by (γ + 1)η

each and Q̃πt (b, aM ) and Q̃πt (b, ae ∪ aN ) overestimates

the value of Qπt (b, aM ) and Qπt (b, ae ∪ aN ) by (γ + 1)η

each. This can be written formally as: Q̃πt (b, ae∪aM )−
Q̃πt (b, aM ) ≥ Q̃πt (b, ae∪aN )−Q̃πt (b, aN )−4(γ+1)η. ut

Lemma 8 If Q̃πt (b, a) is non-negative, monotone and

ε-submodular in a, then

Q̃πt (b, aG) ≥ (1− e−1)Q̃πt (b, a∗)− 4χKε, (70)

where χK =
∑K−1
p=0 (1−K−1)p.

Proof Let a∗ be the optimal set of action fea-

tures of size K, a∗ = argmaxa Q̃
π
t (b, a) and let

al be the greedily selected set of size l, that is,

al = greedy-argmax(Q̃πt (b, ·), A+, l) Also, let a∗ =

{a∗1 . . . a∗K} be the elements of set a∗. Then,

By monotonicity of Q̃πt (b, a)

Q̃πt (b, a∗) ≤ Q̃πt (b, a∗ ∪ al)

Re-writing as a telescoping sum

= Q̃πt (b, al) +
K∑
j=1

∆Q̃b
(a∗j |al ∪ {a∗1 . . . a∗j−1})

Using Lemma 7, since Q is ε′-submodular

≤ Q̃πt (b, al) +

K∑
j=1

∆Q̃b
(a∗j |al) + 4Kε

As al+1 is built greedily from al in order to maximize ∆Q̃b

≤ Q̃πt (b, al) +

K∑
j=1

(Q̃πt (b, al+1)− Q̃πt (b, al)) + 4Kε

As |a∗| = K

= Q̃πt (b, al) +K(Q̃πt (b, al+1)− Q̃πt (b, al)) + 4Kε

Let δl := Q̃πt (b, a∗) − Q̃πt (b, al), which allows us to

rewrite above equation as: δl ≤ K(δl − δl+1) + 4Kε.

Hence, δl+1 ≤ (1− 1
K )δl + 4ε. Using this relation recur-

sively, we can write, δK ≤ (1 − 1
K )Kδ0 + 4

∑K−1
p=0 (1 −

1
K )pε. Also, δ0 = Q̃πt (b, a∗) − Q̃πt (b, a0) and using

the inequality 1 − x ≤ e−x, we can write δK ≤
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e−
K
K Q̃πt (b, a∗) + 4

∑K−1
p=0 (1 − K−1)ε. Substituting δK

and rearranging terms (Also χK =
∑K−1
p=0 (1 − 1

K )p):

Q̃πt (b, aG) ≥ (1− e−1)Q̃πt (b, a∗)− 4χKε. ut

Theorem 7 For all beliefs, the error between Ṽ Gt (b)

and Ṽ ∗t (b) is bounded, if ρ(b) = −Hb(s), V
π
t is convex

in the belief space for all π, t, and if zt:k is conditionally

independent given sk.

Proof Theorem 6 shows that, if ρ(b) = −Hb(s), and zt:k

is conditionally independent given sk, then QGt (b, a) is

submodular. Using Lemma 7, for V πt = V Gt , Ṽ πt = Ṽ Gt ,

Qπt (b, a) = QGt (b, a) and Q̃πt (b, a) = Q̃Gt (b, a), it is easy

to see that Q̃Gt (b, a) is ε-submodular. This satisfies one

condition of Lemma 8. Given that Ṽ Gt (b) is convex, the

monotonicity of Q̃Gt (b, a) follows from Lemma 5. Since

ρ̃(b) is non-negative, Q̃Gt (b, a) is non-negative too. Now

we can apply Lemma 9 to prove that the error gener-

ated by a one-time application of the greedy Bellman

operator to Ṽ Gt (b), instead of the Bellman optimality

operator, is bounded. It is thus easy to see that the er-

ror between Ṽ Gt (b), produced by multiple applications

of the greedy Bellman operator, and Ṽ ∗t (b) is bounded

for all beliefs. ut
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