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Abstract. We study the problem of optimizing an individual base ranker using
clicks. Surprisingly, while there has been considerable attention for using clicks
to optimize linear combinations of base rankers, the problem of optimizing an
individual base ranker using clicks has been ignored. The problem is different
from the problem of optimizing linear combinations of base rankers as the scoring
function of a base ranker may be highly non-linear. For the sake of concreteness,
we focus on the optimization of a specific base ranker, viz. BM25. We start by
showing that significant improvements in performance can be obtained when
optimizing the parameters of BM25 for individual datasets. We also show that it is
possible to optimize these parameters from clicks, i.e., without the use of manually
annotated data, reaching or even beating manually tuned parameters.

1 Introduction
Traditional approaches to evaluating or optimizing rankers are based on editorial data, i.e.,
manually created explicit judgments. Recent years have witnessed a range of alternative
approaches for the purpose of evaluating or optimizing rankers, which reduce or even
avoid the use of explicit manual judgments. One type of approach is based on pseudo test
collections, where judgments about query-document pairs are automatically generated
by repurposing naturally occurring labels such as hashtags or anchor texts [1–3].

Another type of approach is based on the use of implicit signals. The use of implicit
signals such as click data to evaluate or optimize retrieval systems has long been a
promising alternative or complement to explicit judgments [4, 12–14, 18]. Evaluation
methods that interpret clicks as absolute relevance judgments have often been found
unreliable [18]. In some applications, e.g., for optimizing the click-through rate in ad
placement and web search, it is possible to learn effectively from click data, using various
learning to rank methods, often based on bandit algorithms. Click models can effectively
leverage click data to allow more accurate evaluations with relatively little editorial data.
Moreover, interleaved comparison methods have been developed that use clicks not to
infer absolute judgments but to compare rankers by observing clicks on interleaved result
lists [7].

The vast majority of work on click-based evaluation or optimization has focused on
optimizing a linear combination of base rankers, thereby treating those rankers as black
boxes [9, 10, 26]. In this paper, we try to break open those black boxes and examine
whether online learning to rank can be leveraged to optimize the base rankers themselves.
Surprisingly, even though a lot of work has been done on improving the weights of
base rankers in a combined learner, there is no previous work on online learning of the
parameters of base rankers and there is a lot of potential gain from this new form of



optimization. We investigate whether individual base rankers can be optimized using
clicks. This question has two key dimensions. First, we aim to use clicks, an implicit
signal, instead of explicit judgments. The topic of optimizing individual base rankers
such as TF.IDF, BM25 or DFR has received considerable attention over the years but
that work has almost exclusively used explicit judgments. Second, we work in an online
setting while previous work on optimizing base rankers has almost exclusively focused
on a more or less traditional, TREC-style, offline setting.

Importantly, the problem of optimizing base rankers is not the limiting case of the
problem of optimizing a linear combination of base rankers where one has just one
base ranker. Unlike the scoring function that represents a typical online learning to rank
solution, the scoring function for a single base ranker is not necessarily linear. A clear
example is provided by the well-known BM25 ranker [19], which has three parameters
that are related in a non-linear manner: k1, k3 and b.

In this paper, we pursue the problem of optimizing a base ranker using clicks by
focusing on BM25. Currently, it is common practice to choose the parameters of BM25
according to manually tuned values reported in the literature, or to manually tune
them for a specific setting based on domain knowledge or a sweep over a number of
possible combinations using guidance from an annotated data set [5, 25]. We propose
an alternative by learning the parameters from click data. Our goal is not necessarily to
improve performance over manually tuned parameter settings, but rather to obviate the
need for manual tuning.

Specifically, the research questions we aim to answer are as follows.
RQ1 How good are the manually tuned parameter values of BM25 that are currently

used? Are they optimal for all data sets on average? Are they optimal for individual
data sets?

RQ2 Is it possible to learn good values of the BM25 parameters from clicks? Can we
approximate or even improve the performance of BM25 achieved with manually
tuned parameters?

Our contributions are (1) the insight that we can potentially achieve significant improve-
ments of state-of-the-art learning to rank approaches by learning the parameters of base
rankers, as opposed to treating them as black boxes which is currently the common
practice; (2) a demonstration of how parameters of an individual base ranker such as
BM25 can be learned from clicks using the dueling bandit gradient descent approach;
and, furthermore, (3) insight into the parameter space of a base ranker such as BM25.

2 Related work
Related work comes in two main flavors: (1) work on ranker evaluation or optimization
that does not use traditional manually created judgments, and (2) specific work on
optimizing BM25.

Several attempts have been made to either simulate human queries or generate
relevance judgments without the need of human assessors for a range of tasks. One
recurring idea is that of pseudo test collections, which consist of automatically generated
sets of queries and for every query an automatically generated set of relevant documents
(given some document collection). The issue of creating and using pseudo test collections
goes back at least to [24]. Azzopardi et al. [2] simulate queries for known-item search



and investigate term-weighting methods for query generation. Asadi et al. [1] describe a
method for generating pseudo test collections for training learning to rank methods for
web retrieval; they use anchor text in web documents as a source for sampling queries,
and the documents that these anchors link to are regarded as relevant documents for
the anchor text (query). Berendsen et al. [3] use a similar methodology for optimizing
microblog rankers and build on the idea that tweets with a hashtag are relevant to a topic
covered by the hashtag and hence to a suitable query derived from the hashtag.

While these methods use automatically generated labels instead of human annota-
tions, the setting is still an offline setting; learning takes place after collecting a batch of
pseudo relevant documents for a set of queries. Clicks have been used in both offline
and online settings for evaluation and optimization purposes, with uses ranging from
pseudo-relevance feedback [14] to learning to rank or re-rank [12, 13]. Radlinski et al.
[18] found that evaluation methods that interpret clicks as absolute relevance judgments
are unreliable. Using bandit algorithms, where rankers are the arms that can be pulled
to observe a click as feedback, it is possible to learn effectively from click data for
optimizing the click-through rate in ad placement and web search [17]. Carterette and
Jones [4] find that click models can effectively leverage click data to allow more accu-
rate evaluations with relatively little editorial data. In this paper, we use probabilistic
interleave [7], an interleaved comparison method that uses clicks not to infer absolute
judgments but to compare base rankers by observing clicks on interleaved result lists;
we use this relative feedback not only to optimize a linear combination of base rankers,
as has been done before, but also to optimize an individual ranker. Our optimization
method uses this relative feedback in a dueling bandit algorithm, where pairs of rankers
are the arms that can be pulled to observe a click as relative feedback [9, 10, 26].

Our case study into optimizing an individual base ranker using clicks focuses on
BM25; a parameterized (with parameters k1, k3 and b) combination of term frequency
(TF), inverse document frequency (IDF) and query term frequency (cf. Section 3.1). A
good general introduction to this ranker can be found in [20], while detailed coverage of
early experiments aimed at understanding the model’s parameters can be found in [22].
Improvements to standard BM25 have previously been investigated by Svore and Burges
[23], who apply BM25 to different document fields. Then a machine learning approach
is used to combine the results on these different fields. However, there the parameters of
BM25 are still set at a fixed value. Most similar to the work presented here is [5, 25].
There, however, the parameters of BM25 are optimized based on relevance labels, not
clicks, in an offline learning, so that the parameters learned cannot be adapted while
search takes place. Interestingly, over the years, different values of the key parameters in
BM25 are used as manually tuned “default” values; e.g., Qin et al. [16] use k1 = 2.5,
k3 = 0, b = 0.8 for the .gov collection. They use k1 = 1.2, k3 = 7, b = 0.75 for the
OHSUMED collection, while Robertson and Walker [19] use k1 = 2.0, b = 0.75.

3 Method

Today’s state-of-the-art ranking models combine the scores produced by many base
rankers and compute a combination of them to arrive at a high-quality ranking. In the



simplest form, this combination can be a weighted sum:

s(q, d) = w1 · s1(q, d) + · · ·+ wn · sn(q, d), (1)

where wi is the weight of each base ranker si(q, d) that operates on the query q and
document d. The base rankers may have internal parameters that influence their perfor-
mance. We focus on one particular base ranker, BM25, which has three parameters that
determine the weight applied to term frequency, inverse document frequency and other
query or document properties in the BM25 scoring function.

Below, we first recall BM25 in full detail and then describe how we use clicks to
optimize BM25’s parameters.

3.1 Implementation of BM25 Several variants of BM25 are used in the literature.
We use the variant that is used to compute the BM25 feature in the LETOR data set [16].
Given a query q and document d, the BM25 score is computed as a sum of scores for
every term qi in the query that occurs at least once in d:

BM25(q, d) =
∑

qi:tf (qi,d)>0

idf (qi) · tf (qi, d) · (k1 + 1)

tf (qi, d) + k1 · (1− b+ b · |d|avgdl )
· (k3 + 1) · qtf (qi, q)

k3 + qtf (qi, q)
(2)

The terms used in this formula are:
– idf (qi) (inverse document frequency): computed as idf (qi) := log

(
N−df (qi)+0.5
df (qi)+0.5

)
where N is the total number of documents in the collection and df (qi) is the number
of documents in which the term qi occurs at least once;

– tf (qi, d) (term frequency): the number of times term qi occurs in document d;
– qtf (qi, q) (query term frequency): the number of times term qi occurs in query q;
– |d|

avgdl : the length of document d, normalized by the average length of documents in
the collection;

– k1, b and k3: the parameters of BM25 that we want to optimize. Usually, k1 is set to
a value between 1 and 3, b is set somewhere around 0.8 and k3 is set to 0. Note that
when k3 is set to 0 the entire right part of the product in Eq. 2 cancels out to 1.

3.2 Learning from clicks Most learning to rank approaches learn from explicit,
manually produced relevance assessments [15]. These assessments are expensive to
obtain and usually produced in an artificial setting. More importantly, it is not always
feasible to obtain the assessments needed. For instance, if we want to adapt a ranker
towards a specific user or a group of users, we cannot ask explicit feedback from these
users as it would put an undesirable burden upon these users.

Instead, we optimize rankers using clicks. It has been shown by Radlinski et al. [18]
that interpreting clicks as absolute relevance judgments is unreliable. Therefore, we
use a dueling bandit approach: the candidate preselection (CPS) method. This method
was shown to be state-of-the-art by Hofmann et al. [9]. It is an extension of the dueling
bandit gradient descent (DBGD) method, proposed in [26]. Briefly, DBGD works as
follows. The parameters that are being optimized are initialized. When a query is
presented to the learning system, two rankings are generated: one with the parameters
set at the current best values, another with a perturbation of these parameters. These
two rankings are interleaved using probabilistic interleave [7, 8], which allows for the



reuse of historical interactions. The interleaved list is presented to the user and we
observe the clicks that the user produces, which are then used to determine which of
the two generated rankings was best. If the ranking produced with the perturbed set
of parameters wins the interleaved comparison, then the current best parameters are
adapted in the direction of the perturbation. CPS is a variant of DBGD that produces
several candidate perturbations and compares these on historical click data to decide
on the most promising candidate. Only the ranking produced with the most promising
perturbation is then actually interleaved with the ranking generated with the current best
parameters and exposed to the user.

The difference between the current best ranker and the perturbed ranker is controlled
by the parameter δ. The amount of adaptation of the current best ranker in case the
perturbed ranker wins is controlled by a second parameter, α. Together, these parameters
balance the speed and the precision with which the algorithm learns. If they are too big,
the learning algorithm may oscillate, skip over optimal values and never converge to the
optimum. If they are too small, the learning algorithm will not find the optimum in a
reasonable amount of time.

We aim to learn the BM25 parameters k1, b and k3 from clicks, using the learning
method described above. Because the parameters are of very different orders of magni-
tude, with b typically ranging between 0.45 and 0.9 and k1 typically ranging between 2
and 25, we chose to use a separate δ and α for each parameter. This is necessary because
what may be a reasonable step size for k1 will be far too large for b. Therefore we have,
for example, a separate δk1 and δb. This allows us to govern the size of exploration and
updates in each direction.

4 Experimental setup

We investigate whether we can optimize the parameters of a base ranker, BM25, from
clicks produced by users interacting with a search engine. Below, we first describe
the data we use to address this question. Then we describe how our click-streams are
generated, and our evaluation setup.1

4.1 Data For all our experiments we use features extracted from the .gov collection that
is also included in the LETOR data set [16]. The .gov collection consists of a crawl of the
.gov domain with about 1M documents. The six sets of queries and relevance assessments
we use are based on TREC Web track tasks from 2003 and 2004. The data sets HP2003,
HP2004, NP2003, and NP2004 implement navigational tasks: homepage finding and
named-page finding, respectively. TD2003 and TD2004 implement an informational task:
topic distillation. All six data sets contain between 50 and 150 queries and approximately
1,000 judged documents per query.

We index the original .gov collection to extract low-level features such as term
frequency and inverse document frequency that are needed for BM25. While indexing,
we do not perform any pre-processing (e.g., no stemming, no stop word removal). We
only extract features for the documents in the LETOR data set [16]. All the data sets we
use are split by query for 5-fold cross validation.

1 All our code is open source, available at https://bitbucket.org/ilps/lerot [21].

https://bitbucket.org/ilps/lerot


Table 1. Instantiations of the DCM click model used in our experiments, following [9].

P (click = 1|R) P (stop = 1|R)
r = 0 r = 1 r = 0 r = 1

perfect 0.0 1.0 0.0 0.0
navigational 0.05 0.95 0.2 0.9
informational 0.4 0.9 0.1 0.5
almost random 0.4 0.6 0.5 0.5

4.2 Clicks We employ a click simulation framework analogous to that of [9]. We do
so because we do not have access to a live search engine or a suitable click log. Note that,
even if a click log was available, it would not be adequate since the learning algorithm is
likely to produce result lists that never appear in the log.

In our click simulation framework, we randomly sample with replacement a query
from the queries in the data set. The learning system is then responsible for producing a
ranking of documents for this query. This ranking is then presented to a simulated user,
which produces clicks on documents that can be used by the learning system to improve
the ranker. In our experiments, we use the Dependent Click Model (DCM) by Guo et al.
[6] to produce clicks. This click model assumes that users scan a result list from top
to bottom. For each examined document, users are assumed to determine whether it
potentially satisfies their information need enough to click the document. This decision
is based on relevance labels manually given to each document-query combination. We
model this as P (C|R): the probability of clicking a document given its relevance label.
After clicking, the user might continue scanning down the document list or stop, which
is modeled as P (S|R): the probability of stopping after a document given its relevance
label. Again following [9], we instantiate P (C|R) and P (S|R) as in Table 1. We use
four instantiations of the click model: the perfect click model, in which exactly every
relevant document is clicked; the navigational click model, in which users almost only
click relevant documents and usually stop when they have found a relevant document; the
informational click model, in which non-relevant documents are also clicked quite often
and users stop after finding a relevant document only half of the time; and the almost
random click model in which there is only a very small difference in user behavior for
relevant and non-relevant documents.

4.3 Learning setup We employ the learning approach described in Section 3.2. For
CPS we use the parameters suggested by [9]: we use η = 6 candidate perturbations and
we use the λ = 10 most recent queries. We initialize the weights of the BM25 model
randomly. For the learning of BM25 parameters, we set αb = 0.05 and δb = 0.5. We
computed the average ratio between k1 and b across the parameter values that were
optimal for the different data sets, and set αk1 and δk1 accordingly. This ratio was 1 to
13.3, so we set αk1 = 0.665 and δk1 = 6.65. These learning parameters have been tuned
on a held out development set.

4.4 Evaluation and significance testing As evaluation metric, we use nDCG [11]
on the top 10 results, measured on the test sets, following, for instance, [23, 25]. For
each learning experiment, for each data set, we run the experiment for 2,000 interactions
with the click model. We repeat each experiment 25 times and average results over the 5



Table 2. NDCG scores for various values of BM25 parameters k1 and b, optimized for different
data sets. The first and last row give the scores with parameters that have been manually tuned
for the .gov and OHSUMED collections, respectively [16]. Other parameter values are chosen to
produce maximal scores, printed in boldface, for the different data sets listed in the first column.
For all results, k3 = 0. Statistically significant improvements (losses) over the values manually
tuned for .gov are indicated by M (p < 0.05) and N (p < 0.01) (O and H).

k1 b HP2003 HP2004 NP2003 NP2004 TD2003 TD2004 Overall

.gov 2.50 0.80 0.674 0.629 0.693 0.599 0.404 0.469 0.613

HP2003 7.40 0.80 0.692 0.650 0.661H 0.591 0.423N 0.477 0.614

HP2004 7.30 0.85 0.688 0.672M 0.657H 0.575 0.423N 0.482M 0.613
2.50 0.85 0.671 0.613 0.682 0.579O 0.404 0.473 0.605O

7.30 0.80 0.690 0.647 0.661H 0.592 0.423N 0.477 0.613

NP2003 2.60 0.45 0.661 0.572O 0.719 0.635 0.374H 0.441H 0.607
2.50 0.45 0.660 0.572O 0.718 0.635 0.374H 0.441H 0.607
2.60 0.80 0.675 0.629 0.692 0.601 0.403 0.470 0.613

NP2004 4.00 0.50 0.663 0.584 0.705 0.647M 0.386O 0.446H 0.609
2.50 0.50 0.663 0.573O 0.713 0.635 0.381H 0.444H 0.607
4.00 0.80 0.680 0.645 0.683 0.605 0.414M 0.474 0.616

TD2003 25.90 0.90 0.660 0.597 0.515H 0.478H 0.456M 0.489M 0.550H

2.50 0.90 0.676 0.607 0.672 0.560H 0.405 0.471 0.600H

25.90 0.80 0.645 0.576 0.535H 0.493H 0.445 0.482 0.549H

TD2004 24.00 0.90 0.664 0.604 0.520H 0.481H 0.449M 0.491M 0.553H

2.50 0.90 0.676 0.607 0.672 0.560H 0.405 0.471 0.600H

24.00 0.80 0.645 0.578 0.538H 0.496H 0.446 0.482 0.550H

OHSUMED 1.20 0.75 0.662O 0.589H 0.703 0.591 0.398 0.461H 0.605O

folds and these repetitions. We test for significant differences using the paired t-test in
answering RQ1 and the independent measures t-test for RQ2.

5 Results and analysis
We address our research questions in the following two subsections.

5.1 Measuring the performance of BM25 with manually tuned parameters In
order to answer RQ1, we compute the performance of BM25 with the parameters used
in the LETOR data set [16]. The parameter values used there differ between the two
document collections in the data set. The values that were chosen for the .gov collection
were k1 = 2.5, b = 0.8 and k3 = 0. The values that were chosen for the OHSUMED
collection were k1 = 1.2, b = 0.75 and k3 = 7. We refer to these values as the manually
tuned .gov or OHSUMED parameter values, respectively. Note that the manually tuned
.gov parameter values were tuned to perform well on average, over all data sets.

The results of running BM25 with the .gov manual parameters (as described in
Section 4) are in the first row of Table 2. We also experiment with different values of k1,
b and k3. We first tried a range of values for k1 and b. For k1 the range is from −1 to 30



with steps of 0.1 and for b the range is for −0.5 to 1 with steps of 0.05. The results are
in Table 2. For each of the data sets, we include the parameter values that gave maximal
nDCG scores (in bold face). For each value of k1 and b, we show the performance on
each data set and the average performance over all data sets.

The results show that when we average over all data sets, no significant improvements
to the manually tuned .gov parameter values can be found. This is to be expected, and
merely shows that the manual tuning was done well. However, for four out of six
data sets, a significant improvement can be achieved by deviating from the manually
tuned .gov parameter values for that particular dataset. Furthermore, taking the average
optimal nDCG, weighted with the number of queries in each data set, yields an overall
performance of 0.644 nDCG. Thus, it pays to optimize parameters for specific data sets.

In cases where both k1 and b were different from the manually tuned .gov values, we
also consider the results of combining k1 with the manually tuned .gov value for b and
vice-versa. E.g., when k1 = 4.0 and b = 0.5, for the NP2004 data set the value of b has a
bigger impact than the value of k1: changing k1 back to the manually tuned value causes
a decrease of nDCG of 0.012 points, while changing b to the manually tuned value gives
a decrease of 0.042 points. However, in other cases the value of k1 seems to be more
important. E.g., for the TD2003 data set we can achieve an improvement of 0.041 points
by changing k1 to 25.9, while keeping b at the manually tuned 0.8.

The bottom row in Table 2 shows the results of a BM25 ranker with the manually
tuned OHSUMED parameter values. This ranker performs worse than the manually tuned
.gov values averaged over all data sets, which, again, shows that it makes sense to tune
these parameters, rather than just taking a standard value from the literature.

For the third parameter k3, we performed similar experiments, varying the parameter
value from 0 to 1, 000. There were no significant differences in the resulting nDCG
scores. The small differences that did occur favored the manually tuned value 0. The fact
that k3 hardly has any influence on the performance is to be expected, since k3 weights
the query term frequency (cf. Equation 2), the number of times a word appears in the
query. For most query terms, the query term frequency is 1. Since the weight of this
feature does not greatly affect the result, we omit k3 from the rest of our analysis.

Using these results, we are ready to answer our first research question, RQ1. The
manually tuned .gov values for k1 and b are quite good when we look at a combination
of all data sets. When looking at different data sets separately, significant improvements
can be reached by deviating from the values that were manually tuned for the entire
collection. This shows that tuning of the parameters to a specific setting is a promising
idea. Considering the last parameter k3, the standard value was optimal for the data sets
we investigated.

5.2 Learning parameters of BM25 using clicks In this section we answer RQ2: can
we learn the parameters of BM25 from clicks? We aim to learn the parameters per data
set from clicks. Our primary goal is not to beat the performance of the manually tuned
.gov parameters. Should optimizing a base ranker such as BM25 prove successful, i.e.,
reach or even beat manually tuned values, the advantage is rather that optimizing the
parameters no longer requires human annotations. Furthermore, learning the parameters
eliminates the need for domain-specific knowledge, which is not always available, or
sweeps over possible parameter values, which cost time and cannot be done online.
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Fig. 1. Optimization landscape for two parameters of BM25, k1 and b, for the NP2004 data set
measured with nDCG. White crosses indicate where individual runs of the learning algorithm
plateaued when learning from clicks produced with the perfect click model. For the other five data
sets we experimented with we obtained a similar landscape with the peak on a different location.

To begin, we visualize the optimization landscape for the two BM25 parameters
that matter: k1 and b. We use the data obtained from the parameter sweep described
in Section 5.1. The optimization landscape is unimodal and generally smooth when
averaged over many queries, as illustrated by Fig. 1 for the NP2004 data set. We find
similar landscapes with peaks at different locations (listed in Table 2) for other data
sets. This observation suggests that a gradient descent approach such as DBGD is a
suitable learning algorithm. Note, however, that the online learning algorithm will never
actually observe this landscape: it can only observe relative feedback from the interleaved
comparisons and moreover, this feedback is observed on a per query basis.

Next, we optimize k1 and b for each individual data set using the four instantiations of
our click model: perfect, navigational, informational, and almost random. The learning
curves are depicted in Fig. 2. Irrespective of the noise in the feedback, and of the (random)
starting point, the learning method is able to dramatically improve the performance of
BM25. For the perfect click model the final performance after 2000 queries is either on
a par with the manually tuned values used by Qin et al. [16] or above. We can, however,
not always recover the gain we observe in the parameter sweep in Table 2 completely
when learning from clicks.

For the NP2004 data set we have plotted the final parameter values that have been
learned using the perfect click model in Fig. 1. The final parameter values are clustered
near the optimal value, indicating that the learning method is indeed capable of finding
the peak of the landscape. Final parameters for individual runs using each data set are
depicted in Fig. 3. For each data set, the parameters converge to a different region. We
also see that the manually tuned parameters are not included in any of these regions.

Performance generally degrades when clicks become less reliable. However, the
performance of the navigational click model is not much lower than the performance of
the perfect click model. This is a promising result, since feedback from actual users will
be noisy and our learning method should be able to deal with that.

The above experiments are all initialized with random starting parameters. In cases
where a good starting point is known, learning can be sped up. For example, we also
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Fig. 2. Learning curves when learning the parameters of BM25 using DBGD from clicks. Measured
in nDCG on a holdout data set averaged over 5-fold cross validation and 25 repetitions. The clicks
used for learning are produced by the perfect, navigational, informational and almost random
click model. The horizontal gray lines indicate the performance for the manually tuned .gov (solid)
and OHSUMED (dotted) parameters.

initialized learning with the manually tuned .gov parameters (k1 = 2.5 and b = 0.8) and
found a plateau that was not different from the one found with random initialization. It
was, however, found in fewer than 200 queries, depending on the data set.

In conclusion, we can give a positive answer to the first part of RQ2. Learning good
values for the BM25 parameters from user clicks is possible. As to the second part
of RQ2, the optimized parameters learned form clicks lead to performance of BM25 that
approaches, equals or even surpasses the performance achieved using manually tuned
parameters for all datasets.

6 Conclusion
In this paper we investigated the effectiveness of using clicks to optimize base rankers
in an online learning to rank setting. State-of-the-art learning to rank approaches use a
linear combination of several base rankers to compute an optimal ranking. Rather than
learning the optimal weights for this combination, we optimize the internal parameters
of these base rankers. We focussed on the base ranker BM25 and aimed at learning these
parameters of BM25 in an online setting using clicks.

Our results show that learning good parameters of BM25 from clicks is indeed
possible. As a consequence, it is not necessary to hand tune these parameters or use
human assessors to obtain labeled data. Learning with a dueling bandit gradient de-
scent approach converges to near-optimal parameters after training with relative click
feedback on about 1,000 queries. Furthermore, the performance of BM25 with these
learned parameters approaches, equals or even surpasses the performance achieved using
manually tuned parameters for all datasets. The advantage of our approach lies in the
fact that the parameters can be learned automatically from implicit feedback, and that
the parameters can be tuned specifically for different settings. The parameters learned
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Fig. 3. Parameter settings where individual runs of the learning algorithm plateaued when learning
with the perfect click model for 2,000 queries.

from the data in the different data sets differ greatly from each other. More importantly,
the performance gains we observed by tuning the parameters for a specific data set were
significant for many of the data sets considered. We could, however, not always recover
this gain completely when learning from clicks.

In state-of-the-art learning to rank algorithms applied to, e.g., the LETOR data set,
the BM25 score is generally used in a weighted combination with many other base
rankers. For future work, it is interesting to see how the click-optimized versions of
BM25 (or other base rankers, for that matter) can improve the performance of a state-of-
the-art learning to rank algorithm when BM25 is used as one query-document feature
among many. There are several ways in which the process of optimizing a base ranker
can be integrated with state-of-the-art online learning to rank: (1) first learn the optimal
parameters of the base rankers in isolation, then use the optimized base rankers and learn
the optimal weights of a linear combination of these base rankers; (2) first learn the
optimal weights of a linear combination of base rankers using either optimized or default
parameter values for the individual base rankers and then learn the optimal parameters of
the individual base rankers based on user clicks in reply to the outcome of the ensemble
learning-to-rank algorithm; (3) learn the parameters of the base rankers and the weights
of the ensemble together based on user clicks in reply to the outcome of the ensemble.
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