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ABSTRACT
Modern search systems are based on dozens or even hundreds of
ranking features. The dueling bandit gradient descent (DBGD)
algorithm has been shown to effectively learn combinations of these
features solely from user interactions. DBGD explores the search
space by comparing a possibly improved ranker to the current pro-
duction ranker. To this end, it uses interleaved comparison methods,
which can infer with high sensitivity a preference between two rank-
ings based only on interaction data. A limiting factor is that it can
compare only to a single exploratory ranker.

We propose an online learning to rank algorithm called multileave
gradient descent (MGD) that extends DBGD to learn from so-called
multileaved comparison methods that can compare a set of rankings
instead of merely a pair. We show experimentally that MGD allows
for better selection of candidates than DBGD without the need for
more comparisons involving users. An important implication of
our results is that orders of magnitude less user interaction data is
required to find good rankers when multileaved comparisons are
used within online learning to rank. Hence, fewer users need to be
exposed to possibly inferior rankers and our method allows search
engines to adapt more quickly to changes in user preferences.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords
Information retrieval; Learning to rank; Interleaved comparisons;
Multileaved comparisons

1. INTRODUCTION
Modern search engines base their rankings on combinations of

dozens or even hundreds of features. Learning to rank, i.e., finding
an optimal combination of features, is an active area of research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WSDM 2016, February 22 - 25, 2016, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3716-8/16/02 ...$15.00.
DOI: http://dx.doi.org/10.1145/2835776.2835804.

Traditionally, learning was done offline by optimizing for per-
formance on a training set consisting of queries and relevance as-
sessments produced by human assessors. However, such datasets
are time consuming and expensive to produce. Moreover, these
assessments are not always in line with actual user preferences [23].
And since data of users interacting with a search engine are often
readily available, research is focussing more on learning online in-
stead [10, 13, 22, 31]. Online learning to rank methods optimize
combinations of rankers while interacting with users of a search en-
gine. While interacting with the search engine, users leave a trace of
interaction data, e.g., query reformulations, mouse movements, and
clicks, that can be used to infer preferences. Clicks have proven to
be a valuable source of information when interpreted as a preference
between either rankings [22] or documents [13]. In particular, when
clicks are interpreted using interleaved comparison methods, they
can reliably infer preferences between a pair of rankers [4, 13, 14].

Dueling bandit gradient descent (DBGD) [31] is an online learn-
ing to rank algorithm that learns from these interleaved comparisons.
It uses the inferred preferences to estimate a gradient, which is
followed to find a locally optimal ranker. At every learning step,
DBGD estimates this gradient with respect to a single exploratory
ranker and updates its solution if the exploratory ranker seems better.
Exploring more than one ranker before updating towards a promis-
ing one could lead to finding a better ranker using fewer updates.
However, when using interleaved comparisons, this would be too
costly, since it would require pairwise comparisons involving users
between all exploratory rankers. Instead, we propose to learn from
comparisons of multiple rankers at once, using a single user interac-
tion. In this way, our proposed method, multileave gradient descent
(MGD), aims to speed up online learning to rank.

We propose two variants of MGD that differ in how they estimate
the gradient. In MGD winner takes all (MGD-W), the gradient is
estimated using one ranker randomly sampled from those who won
the multileaved comparison. In MGD mean winner (MGD-M), the
gradient is estimated using the mean of all winning rankers.

In this paper, we answer the following research questions.
RQ1 Can MGD learn faster from user feedback (i.e., using fewer

clicks) than DBGD does?

RQ2 Does MGD find a better local optimum than DBGD?

RQ3 Which update approach, MGD-W or MGD-M, maximizes
learning speed? Which finds a better local optimum?

Our contributions are:
• Two approaches, MGD-W and MGD-M, to using multileaved

comparison outcomes in an online learning to rank method.



• Extensive empirical validation of our new methods via experi-
ments on nine learning to rank datasets, showing that MGD-W
and MGD-M outperform the state of the art in online learning
to rank.

In Section 2 we discuss related work; Section 3 includes a detailed
description of interleaving and multileaving methods and of DBGD,
which are three elements that play a central role in this paper. In
Section 4 we introduce multileave gradient descent. In Section 5 we
detail our experimental setup. Section 6 provides both results and
their analysis. We conclude in Section 7.

2. RELATED WORK
Related work for this paper comes in two areas. First, there are

learning to rank methods in Section 2.1. Particularly important for
this paper is the dueling bandit gradient descent (DBGD) method,
which is therefore described in more detail in Section 3.2. Second,
there are evaluation methods in Section 2.2, of which the interleaving
and multileaving methods play a crucial role in this paper. Therefore,
these are described in more detail in Section 3.1.

2.1 Online learning to rank
Learning to rank comes in online and offline variants. Offline

learning to rank methods [19] can be supervised and semi-supervised
[29]. Offline learning methods suffer from drawback of requiring
labeled datasets, which are expensive to produce and the models
learned do not necessarily align with user satisfaction [23].

Our focus is on online learning to rank methods that learn from
online evaluation methods, based on users’ interactions with IR
systems [10, 31], without requiring annotated datasets. One can for-
mulate the online learning to rank for IR problem as a reinforcement
learning (RL) problem. The problem can be modeled as a contextual
bandit problem that assumes that consecutive queries are indepen-
dent of each other [18, 27]. A crucial difference between typical
RL problems and the application to IR is that in the IR scenario the
reward cannot directly be observed. Instead, user interactions with
an IR system can be interpreted as a biased and noisy preference for
either rankings [22] or documents [13].

Many methods for online learning to rank have been proposed.
Hofmann et al. [10] explore learning from pairwise document prefer-
ence while most methods are based on the listwise learning paradigm
where preferences between rankers are inferred from clicks. Such
pairwise preferences can come from interleaving methods as dis-
cussed in Sections 2.2 and 3.1. One influential learning to rank
method is dueling bandit gradient descent (DBGD) [31], which is
extended upon in this paper and therefore explained in more detail
in Section 3.2. DBGD implements a stochastic gradient descent
method to find the best ranker in an infinite space of rankers. This
algorithm has been extended before by Hofmann et al. [11] such
that it would reuse historical interaction data and not just live user
interactions. Alternative methods are based on the k-armed bandit
formulation by [32] and assume a finite space of possible rankers,
the best of which needs to be found.

2.2 Evaluation for information retrieval
Evaluation has always been an integral part of information re-

trieval (IR) research. IR evaluation comes in three flavors: offline,
in the form of users studies, and online.

Firstly, there is Cranfield-style evaluation, as introduced by Clever-
don et al. [5], a form of evaluation we refer to as offline. This type
of evaluation is based on test collections that consist of queries,
documents, and relevance assessments of these documents with
respect to these queries. Test collections can be used to evalu-
ate systems by computing offline evaluation metrics such as MAP,
NDCG, ERR [23]. It forms the basis of most TREC-style evaluation

benchmarks [30]. A major advantage of offline evaluation is the
repeatability of experiments and the ease of evaluation of many
and new rankers. However, relevance assessments are typically
produced by trained human judges. This is not only time consuming
and expensive, it is also not entirely clear how useful such relevance
assessments really are as agreement with actual users’ preferences
is not necessarily high [23]. Several approaches to address the
high costs of producing relevance assessments have been described
[3, 24]; even further steps are taken in [1, 2], with proposals for
automatically created test collections.

A second form of evaluation is through user studies. In this type
of studies, users and their interaction behavior are studied in a lab
setting [16]. This makes such evaluations even more expensive
than offline evaluation, specifically because experiments are not
repeatable and do not scale up.

Thirdly, online evaluation exploits the interactions of real users
with a live search engine [17]. Online evaluation comes in several
dominant forms. In A/B testing two rankers are shown to two dis-
tinct groups of users. For each group, click metrics are computed
and the outcomes are compared to determine which ranker is better.
Interleaved comparison methods [4, 13, 14] have been shown to be
highly sensitive, much more so than A/B metrics [4, 22], meaning
that less interaction data are required to detect differences between
rankers. Interleaved comparison methods take as input two rankings
and produce an interleaved result list. The interleaved list is shown
to users and interactions with interleaved lists are interpreted so as
to determine which of the two input rankers wins the comparison.
Several interleaving methods exist. Balanced interleave (BI) [15]
starts by randomly selecting a ranker to start with. Then, alternating,
documents that have not been picked are picked from the two input
rankings. BI can result in a preference for a ranker irrespective of
where a user clicks. This bias is corrected in team draft interleave
(TDI) [22], which we discuss in Section 3.1. More recent methods
include document constraints (DC) [7] and probabilistic interleave
(PI) [9]. A major advantage of PI is that it can also infer preferences
between rankers that were not originally interleaved. This allows
one to learn from historical interaction data [11]. However, PI risks
showing users poor rankings. This shortcoming was addressed in op-
timized interleave (OI) [21] by restricting the allowed interleavings
to only those that are a union of prefixes of the two input rankings.

Recently, interleaving methods have been extended to multileav-
ing methods [26] that allow for comparisons of more than two
rankers at once. In particular, Schuth et al. [26] extend TDI to team
draft multileave (TDM) and OI to optimized multileave (OM). TDM
forms part of our motivation and is discussed in detail in Section 3.1.

Our work is different from the work mentioned above in that our
online learning to rank methods are the first to learn from multileav-
ing comparison feedback. So far, online learning to rank methods
only learned from pairwise preferences between either documents or
rankers. Our methods are the first to learn from n-way preferences
between rankers.

3. BACKGROUND
We describe in more detail two types of related work on which

our work depends: interleaved and multileaved comparison methods
(Section 3.1) and dueling bandit gradient descent (DBGD; Sec-
tion 3.2).

3.1 Interleaving and multileaving
Interleaved comparison methods are highly sensitive online eval-

uation methods for information retrieval systems [4, 13, 14]. These
methods combine the documents from a pair of rankings into a
single document list and present this combined list to the user. The



user’s interaction with this result list is then used to infer a pref-
erence for one of the input rankings. It was shown that, typically,
this way of comparing two rankers requires one to two orders of
magnitude less data when compared to A/B testing [4]. Multileaved
comparison methods [26] allow for more than two rankers to be
compared using a similar methodology, reducing the amount of
interaction data required even further.

Several interleaving methods have been proposed over the years,
see Section 2. We build upon team draft interleave (TDI) [22] and
an extended version called team draft multileave (TDM) [26].

TDI works as follows. When a user enters a query into a search
engine, the query is passed to the two rankers to be compared. The
rankings these rankers produce are then interleaved in a process
analogous to picking teams for a friendly team-sport match. The
documents are players and there are two teams representing the
two rankers. Each team has a preference ordering over players,
corresponding to the ranking over documents. In each round, the
teams take turns picking their most preferred, still available player.
Which teams chooses first is determined randomly. Selected players
are appended to the interleaved list, and the team they are assigned
to is recorded.1 This interleaved list is shown to the user, who may
click on some documents in this list. The clicked documents give
credit to the team to which they belong. The team, or ranker, that
receives the most credit wins the comparison. If n rankers must be
compared, an interleaving method such as TDI needs n · (n − 1)
queries to determine how they all relate to each other.

By contrast, for TDM, a user’s query is passed to all n rankers
at once. These rankers each produce their rankings, which are inte-
grated into a single ranking using a team selection process similar
to that of TDI. However, there now are n teams that take turns.2

This implies that, in case n is larger than the number of slots in
the interleaved list, some teams may not be represented. Inferring
which teams win is now done by counting the number of clicked
documents for each team. The result is a partial ordering over the n
rankers. Thus, only a single query, instead of n · (n− 1) queries, is
needed to compare all n rankers. Of course, many queries are still
needed for a reliable comparison, and potentially more so than with
TDI. However, it was shown that this tradeoff can be quite favorable
for TDM [26]. Note that TDM reduces to TDI for n = 1.

3.2 Dueling bandit gradient descent
Dueling bandit gradient descent (DBGD) [31] is an online learn-

ing to rank method that learns from user feedback in the form of
clicks. In particular, DBGD learns from a relative interpretation
of this feedback produced by, e.g., TDI (see Section 3.1). DBGD,
shown in Algorithm 1, assumes that rankers can be represented by
weight vectors, starting of with a randomly initialised weight vector
w0

0, referred to as the current best ranker. For each query that is
issued, on line 6, an exploratory candidate ranker w1

t is created
by slightly perturbing the weight vector of the current best ranker.
Both the current best ranker and the candidate ranker create their
rankings of documents for the issued query. These two rankings
are interleaved using, e.g., TDI, on line 8. Then, on line 9 this
interleaving is shown to the user who issued the query and clicks
are observed. The interactions of this user with the interleaving
are interpreted by the interleaving method on line 10 to determine
who won the comparison. If the candidate won, the weight vector
of the current best ranker is updated with an α step towards the
weight vector of the candidate ranker. If not, the weight vector is not

1For documents belonging to a prefix that the two input rankings
have in common, no teams are assigned to increase sensitivity [4].
2As in TDI, documents belonging to a prefix that is common to all
n rankings are not assigned to teams.

Algorithm 1 Dueling Bandit Gradient Descent (DBGD).

1: Input: α, δ, w0
0

2: for t← 1..∞ do
3: qt ← receive_query(t) // obtain a query from a user
4: l0 ← generate_list(w0

t , qt) // ranking of current best
5: u1

t ← sample_unit_vector()
6: w1

t ← w0
t + δu1

t // create a candidate ranker
7: l1 ← generate_list(w1

t , qt) // exploratory ranking
8: mt, tt ← TDI_interleave(l) // interleaving and teams
9: ct ← receive_clicks(mt) // show interleaving to the user

10: bt ← TDI_infer(tt, ct) // set of winning candidates
11: if w0

t ∈ bt then
12: w0

t+1 ← w0
t // if current best wins or ties, no update

13: else
14: w0

t+1 ← w0
t + αu1

t // update α step towards candidate

Algorithm 2 Multileave Gradient Descent (MGD).

1: Input: n, α, δ, w0
0, update(w, α, {b}, {u})

2: for t← 1..∞ do
3: qt ← receive_query(t) // obtain a query from a user
4: l0 ← generate_list(w0

t , qt) // ranking of current best
5: for i← 1...n do
6: uit ← sample_unit_vector()
7: wi

t ← w0
t + δuit // create a candidate ranker

8: lit ← generate_list(wi
t, qt) // exploratory ranking

9: mt, tt ← TDM_multileave(lt) // multileaving and teams
10: ct ← receive_clicks(mt) // show multileaving to the user
11: bt ← TDM_infer(tt, ct) // set of winning candidates
12: if w0

t ∈ bt then
13: w0

t+1 ← w0
t // if current best among winners, no update

14: else
15: w0

t+1 ← update(w0
t , α,bt,ut) // Algorithm 3 or 4

updated. This process repeats indefinitely, yielding a continuously
adaptive system.

4. MULTILEAVE GRADIENT DESCENT
In this section, we propose a new algorithm called multileave

gradient descent (MGD).

4.1 Extending DBGD with multileaving
MGD is shown in Algorithm 2. As in DBGD, MGD learns

from online feedback and uses a current best ranker, which is
updated based on user feedback. For each query, MGD uses the
current best ranker to create a ranking. Subsequently, on lines 5
through 8, n exploratory candidate rankers are generated along with
their corresponding rankings. Unlike DBGD, which is restricted
to a single candidate ranker during comparison, MGD can handle
multiple candidate rankers because it uses multileaving, which on
line 9 creates a single document list out of the n rankings. After
observing user clicks on this ranker, on line 10, a set of rankers
that won the comparison is inferred. In our case, TDM is used
and thus the set of winners contains the candidate(s) that received
the greatest number of clicks. If the current best ranker is among
the winners, then no candidate is considered to be better and no
update is performed. However, if not, the current best ranker is
updated accordingly on line 15, using one of two update methods
described in Section 4.2. In this way, MGD incrementally improves
the current best ranker.

By comparing multiple candidates at each iteration the probability
of finding a better candidate ranker than the current best is expected
to increase. Furthermore, adding more rankers to the comparison
increases the expected value of the resulting ranker, since the candi-



Algorithm 3 MGD update function: winner takes all (MGD-W).
1: Input: w, α, b, u // in b are only winners
2: bj ← pick_random_uniformly(b)
3: return w + αuj

Algorithm 4 MGD update function: mean winner (MGD-M).
1: Input: w, α, b, u // in b are only winners
2: return w + α 1

|u|
∑

bj∈b uj

date rankers will also compete with each other. Correspondingly, the
intuition behind MGD is that the use of multileaving improves the
learning speed compared to DBGD. It should be noted, though, that
the quality of the document list presented to the user may decrease:
as MGD is more exploratory than DBGD, i.e., multileaving lets
more candidate rankers add documents to the list, thus the current
best ranker is exploited less than in the DBGD case.

4.2 Multileave approaches to gradient descent
DBGD generates each candidate ranker by sampling a unit sphere

uniformly and adding the resulting unit vector to the current best
ranker. For the MGD approaches in this paper this procedure was re-
peated n times to create a set of n candidate rankers. However, this
approach might have the drawback that it can produce identical or
very similar candidate rankers. Thus it is possible that during an iter-
ation identical candidates are compared, potentially compromising
the exploratory benefits of using MGB. But since the dimensionality
of the feature space is expected to be much greater than the number
of candidates, it is most unlikely the set contains similar rankers.

The simple update method of DBGD is only applicable to a single
winning candidate ranker. Conversely, MGD requires an approach
to infer an update from a winning set of candidate rankers. We
introduce two approaches for performing updates: MGD winner
takes all (MGD-W) and MGD mean winner (MGD-M) displayed in
Algorithm 3 and 4 respectively. MGD-W picks a random candidate
ranker out of the set of winners and performs the DBGD update
as if it were the only winner. This has the disadvantage that all
other winning candidates are discarded, but it has the advantage
that the update is performed towards a candidate that was part of
the comparison. MGD-M, on the other hand, takes the mean of
the winning candidate rankers and performs the DBGD update as if
the mean was the only winner. In contrast with MGD-W, MGD-M
uses all the winning candidates in its update. However, the update
is performed towards the mean of the winning rankers, thereby
assuming that the mean of all winners is preferred over the current
best ranker, despite the two not having been directly compared.
Thus, updates could actually harm the current best ranker. However,
this risk also exists for MGD-W since user interaction is expected
to contain noise and can result in poor candidate ranker winning a
comparison. Note that both methods reduce to DGBD for n = 1.

An alternative way of comparing many candidate rankers without
having to do many comparisons with users involved, is DBGD
with candidate pre-selection (CPS) [11]. However, this method
reuses historical interaction data which it requires to be generated
stochastically using potentially unsafe rankings [21]. MGD is a new
way of comparing candidates that does not have this drawback.

5. EXPERIMENTS
In this section, we detail our experiments which are designed to

answer the research questions posed in Section 1.3 We are interested
in whether and how our newly introduced algorithm MGD (RQ1)

3All our experimental code is open source and available at
https://bitbucket.org/ilps/lerot [25].

Table 1: Instantiations of CCM [6] as used in our experiments.

P (click = 1|R) P (stop = 1|R)
Relevance grade R 0 1 2 0 1 2

perfect (per) 0.0 0.5 1.0 0.0 0.0 0.0
navigational (nav) 0.05 0.5 0.95 0.2 0.5 0.9
informational (inf) 0.4 0.7 0.9 0.1 0.3 0.5

almost random (a.ra) 0.4 0.5 0.6 0.5 0.5 0.5

learns faster than DBGD; (RQ2) converges to a better optimum
compared to DBGD; and (RQ3) how the two variants MGD-W and
MGD-M compare to each other.

All our experiments assume a stream of independent queries
coming from users interacting with the system we are training.
Users are presented with a results list in response to their query and
may or may not interact with the list by clicking on one or more
documents. The queries come from static datasets (Section 5.1)
and the clicks from a click model (Section 5.2). In Section 5.3
we describe the experiments we run. Our evaluation measures are
described in Section 5.4.

5.1 Datasets
We use nine learning to rank datasets that are distributed as

LETOR 3.0 and 4.0 [20]. The datasets each consist of (1) queries,
only represented by their identifier, (2) manual relevance assess-
ments for documents with respect to these queries, and (3) docu-
ments represented as feature vectors, again, with respect to each
query. Feature vectors consist of 45, 46, or 64 features encoding
ranking models such as TF.IDF, BM25, Language Modeling, PageR-
ank, and HITS on different parts of the documents. All the datasets
come split into 5 folds, which we use for 5-fold cross validation.
Each dataset encodes a search task. Most tasks come from TREC
Web Tracks between 2003 and 2008. The only exception is the OH-
SUMED dataset with 106 queries which comes from a query log of
the search engine on the MedLine abstract database. HP2003, HP-
2004, NP2003, and NP2004 all implement navigational tasks which
are homepage finding and named-page finding, respectively; both
TD2003 and TD2004 implement topic distillation tasks which is an
informational task. HP2003, HP2004, NP2003, NP2004, TD2003
and TD2004 contain documents from the .GOV collection which
was crawled from the .gov domain; each contains between 50 and
150 queries and about 1,000 judged documents per query. The last
two datasets, MQ2007 and MQ2008, are more recent and use the
.GOV2 collection; they contain more queries, 1700 and 800 respec-
tively, but far fewer assessments per query. OHSUMED, MQ2007,
and MQ2008 have graded relevance judgments from 0, not relevant,
to 2, highly relevant. The other datasets have binary relevance labels
with grade 0 for not relevant and grade 2 for relevant.

5.2 Simulating clicks
We use the setup described by Hofmann [8] to simulate user

interactions. In their setup, clicks are produced based on a cascade
click model (CCM) [6]. This model explains behavior of web search
users as follows. Users are assumed to start examining results lists
from the first document in the list and then work their way down
the list. For each document they encounter, users decide whether
it warrants a click, which is modeled as P (click = 1|R), a click
probability conditioned on the human generated relevance label R.
After clicking, the user’s information need may either be satisfied
or they continue down the rank list. In CCM, this is modeled with
P (stop = 1|R), the probability of stopping conditioned on the
relevance label R.

In Table 1, we first list the three instantiations of CCM that we use
in all our experiments. These three instantiations model a perfect

https://bitbucket.org/ilps/lerot


user that clicks on all highly relevant and only on relevant docu-
ments. Then, a navigational instantiation encoding a navigational
task where a user is mostly looking for a single highly relevant doc-
ument. And lastly, an informational instantiation that models a user
who would typically click on several documents, less dependent on
their relevance. These three models have increasing levels of noise,
as less and less is determined by the relevance labels of documents.
Then, we use the almost random instantiation only for some of our
experiments to test what happens when feedback becomes extremely
noisy. Note that the datasets that only have binary relevance use
instantiations for the lowest and highest relevance labels (0 and 2)
in Table 1.

5.3 Experimental runs
To evaluate the effect of the number of candidates n that are

being contrasted in a multileave experiment, both flavors of mul-
tileave gradient descent, MGD-W and MGD-M, are run with n ∈
{1, 2, 6, 9, 20}. We included n = 9 to capture the case were all
documents in the top top κ = 10 come from different rankers. We
write MGD-W-n (MGD-M-n) to indicate settings in which we run
MGD-W (MGD-M) with n candidates.

In our experiments we contrast the performance of MGD-W and
MGD-M with each other as well as with the DBGD baseline. A
run with n = 1 is included to verify wether this setting has no
significant difference with the baseline. The bulk of our experiments
consist of 1,000 iterations (i.e., simulated user impressions) each
and is run 25 times on each fold resulting in 125 runs over each
dataset. One experiment is run with 100,000 query impressions and
the same number of repetitions. In total, our results are based on
over 86M simulated query impressions.

The parameters of the MGD algorithm are set according to the
current standard for DBGD [31]. Accordingly, the candidates were
generated with δ = 1, updates for DBGD were performed with
α = 0.01, and zeros used for initialization of w0

0. For MGD we
increased the learning rate to α = 0.03 by tuning it on NP2003, see
Section 6.4.2.

5.4 Evaluation
To assess performance, NDCG [12] is computed on held-out data.

We use the top κ = 10 for simulating clicks and computing the
NDCG:

NDCG =

κ∑
i=1

2rel(r[i])−1

log2(i+ 1)
iNDCG−1.

This metric calculates the gain over relevance labels rel(r[i]) for
each document, which is then normalized by the maximal NDCG
possible, the ideal NDCG (iNDCG). Offline performance is deter-
mined by computing the average NDCG score of the current best
ranker over a held-out set. Furthermore, since the user experience
with MGD may be inferior to the existing DBGD algorithm, online
performance is also assessed, by computing the cumulative NDCG
over the results shown to the user. For online performance, a dis-
count factor of γ = 0.995 is used [8, 28]. This factor ensures that
impressions beyond a horizon of 1,000 impressions have an im-
pact of less than 1%. To verify whether differences are statistically
significantly different, a two tailed Student’s t-test is used.

6. RESULTS AND ANALYSIS
In this section we present the results of our experiments and

answer the research questions posed in Section 1. Furthermore, in
Section 6.4, we investigate the effect of n, the number of candidates,
and α, the learning rate.
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Figure 1: Offline performance (NDCG) on MGD-W and MGD-
M with varying number of candidates compared to DBGD on
NP2003 dataset for the perfect, navigational and informational
click model.

6.1 Learning speed
We start by answering RQ1: whether MGD learns faster than

DBGD. The plots in Figure 1 show how offline performance, mea-
sured as NDCG on a held-out fold, increases as the learning methods
observe more queries. These plots are based only on queries from
NP2003 and are illustrative of performance on all other datasets.
We see that when n, the number of candidates that are being mul-
tileaved, increases, offline performance of both MGD-M-n and
MGD-W-n improves monotonically. Furthermore, systems with
more candidates learn much faster. In the case of perfect feedback,
there is less of an effect as there is less to gain over an already well
performing baseline. But when the noise in user feedback increases,
the advantage of MGD over DBGD becomes stronger. Interestingly,
for n = 20, the MGD methods obtain an NDCG value on infor-
mational feedback that is close to the converged performance on
perfect feedback. In other words, the inclusion of more candidates
counters the noise introduced by the click model. In Table 2 we
see the same effect for all datasets: generally, under perfect feed-
back converged performance does not change much; however, if
the feedback is noisier, then the more candidates are added, the



Table 2: Offline score (NDCG) after 1,000 query impressions of each of the algorithms for the 3 instantiations of the CCM (see
Table 1). Bold values indicate maximum performance per dataset and click model. Statistically significant improvements (losses)
over the DBGD baseline are indicated by M (p < 0.05) and N (p < 0.01) (O and H). We show the standard deviation between brackets.

HP2003 NP2003 TD2003 HP2004 NP2004 TD2004 MQ2007 MQ2008 OHSUMED

pe
rf

ec
t

DBGD 0.766 (0.06) 0.710 (0.05) 0.299 (0.09) 0.730 (0.07) 0.715 (0.08) 0.303 (0.03) 0.381 (0.03) 0.476 (0.04) 0.443 (0.05)

MGD-W-2 0.771 (0.06) 0.705 (0.05) 0.314 (0.08) 0.731 (0.06) 0.726 (0.07) 0.306 (0.03) 0.392 (0.02) N 0.480 (0.04) 0.445 (0.05)

MGD-W-4 0.771 (0.06) 0.712 (0.05) 0.318 (0.08) 0.742 (0.06) 0.732 (0.07) 0.310 (0.04) 0.396 (0.02) N 0.481 (0.04) 0.447 (0.05)

MGD-W-6 0.778 (0.06) 0.712 (0.05) 0.314 (0.08) 0.745 (0.06) 0.725 (0.07) 0.308 (0.04) 0.398 (0.02) N 0.479 (0.04) 0.444 (0.05)

MGD-W-9 0.774 (0.06) 0.713 (0.05) 0.314 (0.07) 0.744 (0.06) 0.725 (0.07) 0.311 (0.04) 0.400 (0.02) N 0.481 (0.04) 0.430 (0.04) O

MGD-W-20 0.776 (0.06) 0.710 (0.05) 0.314 (0.07) 0.749 (0.06) M 0.726 (0.07) 0.308 (0.04) 0.396 (0.02) N 0.480 (0.04) 0.438 (0.05)

MGD-M-2 0.771 (0.07) 0.712 (0.05) 0.312 (0.08) 0.743 (0.06) 0.730 (0.08) 0.311 (0.04) 0.392 (0.02) N 0.480 (0.04) 0.443 (0.05)

MGD-M-4 0.777 (0.07) 0.711 (0.05) 0.317 (0.07) 0.742 (0.07) 0.729 (0.07) 0.315 (0.04) N 0.400 (0.02) N 0.482 (0.04) 0.447 (0.05)

MGD-M-6 0.779 (0.06) 0.716 (0.04) 0.320 (0.07) 0.747 (0.06) M 0.725 (0.07) 0.312 (0.04) M 0.402 (0.02) N 0.481 (0.04) 0.447 (0.05)

MGD-M-9 0.780 (0.06) 0.714 (0.05) 0.322 (0.07) M 0.747 (0.06) M 0.726 (0.07) 0.311 (0.04) 0.406 (0.02) N 0.484 (0.04) 0.437 (0.04)

MGD-M-20 0.777 (0.06) 0.714 (0.05) 0.321 (0.07) M 0.747 (0.06) M 0.724 (0.08) 0.316 (0.04) N 0.408 (0.02) N 0.484 (0.04) 0.446 (0.04)

na
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DBGD 0.725 (0.07) 0.672 (0.06) 0.281 (0.09) 0.676 (0.08) 0.693 (0.08) 0.281 (0.03) 0.370 (0.03) 0.460 (0.04) 0.433 (0.06)

MGD-W-2 0.766 (0.06) N 0.702 (0.05) N 0.306 (0.09) M 0.732 (0.06) N 0.715 (0.08) M 0.303 (0.03) N 0.372 (0.03) 0.466 (0.04) 0.438 (0.05)

MGD-W-4 0.769 (0.06) N 0.708 (0.05) N 0.314 (0.08) N 0.735 (0.06) N 0.720 (0.08) N 0.307 (0.04) N 0.380 (0.02) N 0.469 (0.04) 0.437 (0.04)

MGD-W-6 0.772 (0.06) N 0.705 (0.05) N 0.312 (0.08) N 0.738 (0.06) N 0.721 (0.08) N 0.304 (0.04) N 0.382 (0.02) N 0.468 (0.04) 0.431 (0.05)

MGD-W-9 0.771 (0.06) N 0.708 (0.05) N 0.304 (0.07) M 0.738 (0.06) N 0.725 (0.08) N 0.304 (0.04) N 0.388 (0.02) N 0.470 (0.04) M 0.431 (0.05)

MGD-W-20 0.771 (0.06) N 0.710 (0.05) N 0.314 (0.07) N 0.738 (0.06) N 0.721 (0.07) N 0.304 (0.04) N 0.386 (0.03) N 0.470 (0.04) 0.432 (0.05)

MGD-M-2 0.766 (0.06) N 0.703 (0.06) N 0.302 (0.08) 0.726 (0.06) N 0.717 (0.08) M 0.301 (0.04) N 0.376 (0.03) 0.467 (0.04) 0.435 (0.05)

MGD-M-4 0.768 (0.06) N 0.705 (0.05) N 0.312 (0.08) N 0.738 (0.06) N 0.721 (0.07) N 0.305 (0.04) N 0.385 (0.02) N 0.468 (0.04) 0.435 (0.04)

MGD-M-6 0.772 (0.06) N 0.707 (0.05) N 0.309 (0.07) N 0.736 (0.07) N 0.723 (0.08) N 0.305 (0.04) N 0.387 (0.03) N 0.473 (0.04) N 0.437 (0.05)

MGD-M-9 0.771 (0.06) N 0.710 (0.05) N 0.317 (0.08) N 0.741 (0.06) N 0.724 (0.07) N 0.302 (0.04) N 0.391 (0.02) N 0.472 (0.04) M 0.436 (0.04)

MGD-M-20 0.769 (0.06) N 0.711 (0.04) N 0.318 (0.08) N 0.741 (0.06) N 0.720 (0.07) N 0.306 (0.04) N 0.390 (0.02) N 0.472 (0.04) M 0.437 (0.05)
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DBGD 0.460 (0.22) 0.418 (0.19) 0.167 (0.10) 0.401 (0.21) 0.489 (0.19) 0.197 (0.08) 0.323 (0.05) 0.419 (0.05) 0.407 (0.05)

MGD-W-2 0.677 (0.11) N 0.585 (0.13) N 0.223 (0.10) N 0.625 (0.11) N 0.629 (0.11) N 0.233 (0.07) N 0.338 (0.04) M 0.427 (0.05) 0.418 (0.05)

MGD-W-4 0.722 (0.07) N 0.636 (0.09) N 0.253 (0.09) N 0.667 (0.10) N 0.662 (0.09) N 0.258 (0.05) N 0.343 (0.04) N 0.440 (0.04) N 0.422 (0.05) M

MGD-W-6 0.727 (0.06) N 0.652 (0.07) N 0.249 (0.09) N 0.674 (0.09) N 0.669 (0.10) N 0.272 (0.04) N 0.344 (0.04) N 0.441 (0.04) N 0.423 (0.05) M

MGD-W-9 0.727 (0.06) N 0.656 (0.07) N 0.264 (0.10) N 0.679 (0.07) N 0.670 (0.09) N 0.259 (0.05) N 0.339 (0.04) N 0.434 (0.04) M 0.418 (0.06)

MGD-W-20 0.729 (0.06) N 0.649 (0.06) N 0.252 (0.09) N 0.675 (0.09) N 0.664 (0.10) N 0.260 (0.05) N 0.341 (0.04) N 0.434 (0.05) M 0.415 (0.05)

MGD-M-2 0.696 (0.09) N 0.606 (0.10) N 0.241 (0.09) N 0.634 (0.12) N 0.645 (0.12) N 0.246 (0.07) N 0.333 (0.04) 0.430 (0.05) 0.421 (0.05) M

MGD-M-4 0.736 (0.06) N 0.659 (0.07) N 0.276 (0.09) N 0.685 (0.08) N 0.682 (0.09) N 0.271 (0.04) N 0.350 (0.03) N 0.443 (0.04) N 0.427 (0.05) N

MGD-M-6 0.742 (0.06) N 0.667 (0.06) N 0.275 (0.09) N 0.692 (0.07) N 0.687 (0.09) N 0.278 (0.04) N 0.351 (0.04) N 0.448 (0.04) N 0.427 (0.05) N

MGD-M-9 0.745 (0.06) N 0.681 (0.06) N 0.283 (0.08) N 0.710 (0.08) N 0.698 (0.08) N 0.284 (0.04) N 0.361 (0.03) N 0.454 (0.04) N 0.425 (0.05) N

MGD-M-20 0.752 (0.06) N 0.677 (0.07) N 0.295 (0.08) N 0.703 (0.07) N 0.703 (0.08) N 0.291 (0.04) N 0.356 (0.03) N 0.452 (0.04) N 0.430 (0.05) N

more MGD improves over the baseline. Offline performance for
MGD goes up dramatically for noisy feedback compared to the
baseline and the standard deviation (between brackets in the table)
drops dramatically. This indicates much more stable performance
for MGD. As a sanity check, we see in Figure 1 that both MGD-W-1
and MGD-M-1 perform very close to the DBGD baseline. This is
to be expected because, besides their learning rates, both methods
are algorithmically identical to the baseline for n = 1.

Offline performance, however, only tells half the story in an
online learning to rank setting. Users are exposed to interleaved and
multileaved lists that are used by the systems to infer preferences.
Since the quality of these lists may vary, it is critical to measure the
impact on users. Note that the quality of these list varies due to a
combination of two factors: the quality of the rankers learned so
far and the impact of the interleaving or multileaving method. We
measure online performance by computing the NDCG score of the
lists that users observe and discounting it over time (see Section 5.4).
Figure 2 displays the online performance for all systems, again on a
single dataset. Just like with offline performance, MGD outperforms
DBGD more when the noise in the feedback increases. In fact,
Table 3 shows that under perfect feedback, online performance

for one dataset actually decreases compared to the baseline. This
suggests that, for feedback without noise, increasing exploration,
which is a direct consequence of adding candidates, is not as helpful
for maximizing online performance. In other words, while adding
candidates increases offline performance, in the absence of feedback
noise it may harm online performance through the introduction of
excessive exploration. However, generally, whether there is noise
in the click feedback or not, MGD outperforms DBGD. Also for
online performance, the standard deviation of MGD is much lower
than for DBGD, irrespective of the noise.

Our answer to RQ1 is thus that MGD with increasing numbers of
candidates learns increasingly faster than DBGD in terms of offline
performance. In terms of online performance, MGD is on par with
or outperforms DBGD when feedback has realistic levels of noise.

6.2 Convergence
In this section, we answer RQ2: whether MGD converges to a

better optimum than DBGD. To do so, we investigate converged
offline performance only. Table 2 shows converged performance
after 1,000 query impressions for all the datasets that we consider.
Note that for NP2003 these values correspond to the points on the



Table 3: Online score (discounted cumulative NDCG, see Section 5.4) of each of the algorithms for the 3 instantiations of the CCM
(see Table 1). Bold values indicate maximum performance per dataset and click model. Statistically significant improvements (losses)
over the DBGD baseline are indicated by M (p < 0.05) and N (p < 0.01) (O and H). We show the standard deviation between brackets.

HP2003 NP2003 TD2003 HP2004 NP2004 TD2004 MQ2007 MQ2008 OHSUMED

pe
rf

ec
t

DBGD 95.88 (23.04) 97.79 (7.19) 36.28 (16.18) 97.93 (19.02) 102.92 (8.81) 42.92 (14.73) 60.11 (4.49) 78.17 (4.54) 70.43 (3.85)

MGD-W-2 110.77 (5.91) N 101.71 (5.87) N 41.19 (4.84) N 100.92 (6.67) 106.69 (6.17) N 38.15 (3.32) H 60.49 (3.23) 78.79 (3.97) 72.58 (3.58) N

MGD-W-4 112.96 (5.14) N 103.42 (5.94) N 42.36 (3.91) N 104.44 (5.27) N 108.94 (5.48) N 38.50 (2.66) H 61.33 (3.47) M 78.52 (4.96) 72.73 (3.14) N

MGD-W-6 113.37 (5.13) N 104.13 (5.42) N 43.00 (3.94) N 104.79 (5.46) N 110.02 (5.39) N 38.13 (2.43) H 61.22 (3.30) M 78.76 (4.01) 72.73 (3.48) N

MGD-W-9 114.66 (4.57) N 105.79 (5.88) N 43.53 (3.63) N 107.22 (4.80) N 110.27 (5.69) N 38.39 (2.35) H 60.62 (3.42) 78.12 (3.93) 70.32 (3.11)

MGD-W-20 116.25 (4.21) N 104.96 (5.23) N 44.43 (4.19) N 106.23 (5.22) N 109.94 (5.91) N 39.79 (2.42) O 60.28 (3.35) 78.07 (3.87) 72.42 (3.58) N

MGD-M-2 111.23 (5.59) N 101.42 (6.54) N 41.26 (4.37) N 101.67 (7.35) M 108.24 (6.08) N 37.51 (2.86) H 61.43 (3.54) M 79.08 (4.29) 72.74 (4.00) N

MGD-M-4 113.91 (4.86) N 103.48 (5.61) N 42.64 (4.39) N 103.58 (5.62) N 109.70 (5.79) N 38.39 (2.43) H 61.85 (3.10) N 79.11 (4.41) 72.84 (3.63) N

MGD-M-6 113.46 (4.66) N 104.25 (5.02) N 43.22 (3.88) N 105.31 (5.16) N 109.80 (5.66) N 38.68 (2.47) H 61.00 (3.06) 78.97 (3.91) 72.78 (3.16) N

MGD-M-9 115.81 (4.21) N 105.09 (4.71) N 44.02 (4.06) N 106.79 (5.36) N 110.88 (5.94) N 38.38 (2.11) H 60.64 (2.75) 77.88 (3.86) 70.97 (3.12)

MGD-M-20 115.67 (4.99) N 104.75 (4.79) N 44.50 (3.71) N 107.05 (4.71) N 110.51 (5.69) N 40.18 (2.31) O 61.57 (3.10) N 78.69 (3.73) 72.51 (3.24) N

na
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DBGD 78.79 (24.72) 85.83 (13.70) 32.21 (15.15) 80.61 (20.58) 90.92 (13.27) 37.46 (13.46) 58.07 (4.96) 76.04 (5.21) 66.99 (5.71)

MGD-W-2 105.53 (8.45) N 95.55 (8.07) N 38.54 (5.71) N 92.59 (10.96) N 100.96 (9.07) N 35.72 (4.74) 59.24 (4.34) M 77.18 (4.95) 71.34 (4.56) N

MGD-W-4 110.07 (6.55) N 100.22 (6.74) N 41.58 (4.81) N 100.37 (7.05) N 105.81 (6.72) N 37.90 (2.68) 59.57 (4.11) M 78.18 (4.52) N 72.00 (3.47) N

MGD-W-6 109.97 (5.47) N 101.36 (5.14) N 41.66 (4.39) N 101.00 (6.46) N 107.07 (5.95) N 38.21 (3.00) 60.18 (3.28) N 77.88 (4.35) N 72.62 (3.67) N

MGD-W-9 113.17 (5.33) N 101.71 (5.19) N 43.03 (4.53) N 102.54 (5.67) N 106.63 (6.02) N 39.04 (2.86) 60.71 (3.54) N 77.91 (4.49) N 72.69 (3.84) N

MGD-W-20 112.18 (4.70) N 101.85 (5.68) N 42.24 (4.60) N 102.82 (5.80) N 107.02 (6.20) N 39.28 (2.91) 60.55 (3.14) N 77.77 (4.34) N 72.39 (3.37) N

MGD-M-2 106.27 (8.78) N 94.34 (8.44) N 39.21 (5.48) N 94.70 (9.55) N 103.34 (8.49) N 36.40 (4.00) 59.65 (4.32) N 77.72 (4.73) N 71.04 (4.52) N

MGD-M-4 109.44 (6.21) N 99.22 (6.87) N 41.02 (4.33) N 99.01 (7.37) N 105.82 (6.92) N 38.09 (3.21) 60.25 (3.59) N 78.16 (4.53) N 72.49 (3.81) N

MGD-M-6 110.70 (5.77) N 100.56 (5.54) N 42.45 (4.57) N 102.04 (6.37) N 106.04 (6.51) N 38.28 (3.48) 60.31 (3.30) N 77.84 (4.89) N 72.79 (3.57) N

MGD-M-9 112.30 (5.35) N 102.95 (5.62) N 42.74 (4.55) N 103.96 (6.55) N 107.41 (5.94) N 39.55 (3.08) 60.36 (3.29) N 77.89 (3.94) N 72.71 (3.97) N

MGD-M-20 111.38 (5.37) N 102.23 (5.45) N 43.10 (4.34) N 102.88 (5.79) N 106.78 (5.16) N 38.79 (2.76) 60.21 (3.56) N 78.23 (4.13) N 72.53 (3.11) N
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DBGD 48.23 (27.66) 50.42 (19.83) 22.46 (11.82) 43.36 (21.88) 59.58 (22.88) 27.76 (11.89) 55.60 (6.00) 71.94 (5.56) 62.99 (7.22)

MGD-W-2 72.76 (18.10) N 64.09 (18.01) N 25.94 (7.55) N 62.61 (18.11) N 69.48 (16.80) N 26.52 (6.26) 55.83 (4.98) 73.33 (5.09) M 66.39 (5.93) N

MGD-W-4 78.49 (16.93) N 73.02 (14.67) N 29.34 (6.15) N 70.73 (14.81) N 78.97 (13.16) N 28.21 (5.60) 56.04 (4.11) 74.31 (4.93) N 67.70 (4.44) N

MGD-W-6 81.96 (14.73) N 73.66 (12.21) N 30.84 (6.17) N 70.90 (12.56) N 81.44 (11.32) N 29.12 (4.57) 56.24 (4.18) 74.86 (4.79) N 67.75 (4.55) N

MGD-W-9 85.14 (10.63) N 77.57 (10.24) N 30.26 (5.61) N 73.60 (11.66) N 82.86 (11.52) N 28.45 (4.36) 56.09 (3.61) 73.64 (4.71) M 68.48 (4.52) N

MGD-W-20 84.44 (11.41) N 74.65 (9.53) N 29.91 (4.96) N 69.06 (13.01) N 81.78 (10.73) N 28.56 (4.28) 56.18 (3.46) 73.09 (4.87) 67.51 (4.63) N

MGD-M-2 70.70 (18.56) N 66.03 (18.38) N 27.33 (6.76) N 61.78 (20.42) N 71.30 (18.17) N 27.29 (6.20) 56.28 (4.55) 73.35 (5.68) M 67.15 (5.63) N

MGD-M-4 84.38 (14.30) N 76.41 (12.63) N 28.98 (5.88) N 72.82 (14.05) N 82.12 (11.01) N 28.44 (4.77) 56.58 (4.35) 74.45 (4.87) N 68.75 (4.49) N

MGD-M-6 85.51 (11.36) N 76.37 (11.58) N 31.55 (6.33) N 73.52 (13.17) N 83.05 (10.23) N 28.59 (4.16) 56.88 (4.11) 74.26 (5.07) N 67.97 (4.47) N

MGD-M-9 87.84 (8.50) N 81.04 (8.74) N 32.45 (4.90) N 75.81 (10.21) N 86.05 (7.79) N 30.21 (3.74) M 55.91 (3.67) 74.50 (4.44) N 68.65 (4.51) N

MGD-M-20 86.73 (7.24) N 80.99 (7.72) N 32.07 (4.23) N 76.72 (9.64) N 82.92 (8.21) N 29.68 (3.32) 56.57 (3.48) 73.99 (4.61) N 68.50 (3.49) N

right vertical axis of Figure 1. These graphs are also illustrative
for all datasets and show that increasing the number of candidates
results in a better converged offline performance. In the case of
perfect feedback, the effect of the number of candidates is not very
strong; for most datasets and algorithms no significant improvement
over the baseline is apparent. However, when noise in the feedback
increases, and thus when feedback becomes more realistic compared
to the perfect instantiation, the effect becomes much stronger as
more candidates are used. In general, as Table 2 shows, this effect
is significant and substantial as soon as more than one candidate is
used.

For many datasets, performance of MGD after 1,000 query im-
pressions is almost on par with DBGD trained without noise. How-
ever, as Figure 1 and Table 2 show, MGD with enough candidates
always outperforms DBGD after 1,000 queries.

The graphs in Figure 1 clearly suggest that not all systems con-
verge within 1,000 impressions. For this reason, we ran an additional
longer experiment with 100,000 queries with informational feed-
back. Figure 3 shows the results with the same setup as in Figure 1
but over a larger number of queries. The graph shows that even after
100,000 queries DBGD has not converged, and MGD still performs

better. Nonetheless, the difference between the algorithms decreases
over time, until they converge to a similar level of performance.
Thus, both algorithms seem to converge to the same optimum but
DBGD requires many more queries than MGD to do so.

Hence, we answer RQ2 as follows: MGD converges to an opti-
mum which is at least as good as the optimum DBGD finds. How-
ever, MGD does so much faster, as shown in Section 6.1.

6.3 Comparing outcome interpretations
In this section we answer RQ3: how MGD-W and MGD-M com-

pare to each other. Figure 1, which shows the learning curves of both
methods for varying click models, indicates that, in terms of offline
performance, there is no substantial difference between MGD-W
and MGD-M for the perfect and navigational click models. How-
ever, for the informational click model, which has noisier feedback,
MGD-M consistently outperforms MGD-W. The same applies to all
datasets we considered, see Table 2. In the offline setting, MGD-M
is the better approach as it is more capable of handling noise than
MGD-W.

In terms of online performance, MGD-M also usually outper-
forms MGD-W, see Figure 2 and Table 3. Again, the effect is
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Figure 2: Online performance (discounted cumulative NDCG)
on MGD-W and MGD-M with varying number of candidates
compared to DBGD on NP2003 dataset for perfect, navigational
and informational click model instantiations.

stronger when there is more noise in the feedback. Generally, MGD-
M has lower standard deviation than MGD-W indicating that it is
more stable.

Note that the informational click model has a high probability
to produce multiple clicks because its stop probabilities are low
(see Table 1). This typically leads to multiple winners of a TDM
comparison, which in turn allows MGD-M to be different from
MGD-W. Thus, a potential reason for MGD-M to outperform MGD-
W is that the mean of several unit vectors is shorter than a unit vector.
As a result, MGD-M updates the current best weight vector with
smaller steps. In other words, for DBGD and MGD-W we have that
|w0
t − w0

t+1| = α · δ, while for MGD-M |w0
t − w0

t+1| ≤ α · δ.
We tested this hypothesis by normalizing the mean vector to a

unit vector before updating using MGD-M, so Algorithm 4 was
effectively changed such that |w0

t − w0
t+1| = α · δ. The result is

depicted in Table 4, where we see how MGD-M with normalized
update directions indeed performs slightly worse than MGD-M
without normalization for the informational click model in terms of
offline performance, confirming that some of its advantage indeed
comes from the smaller update step. Nonetheless, MGD-M with
normalization still either performs on par with or better than MGD-
W, so not all of its performance advantage can be attributed to
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Figure 3: Offline performance (NDCG) on MGD-W and MGD-
M with 9 candidates compared to DBGD on NP2003 dataset an
informational click model.

Table 4: Performance of MGD-M, MGD-W and normalized
MGD-M each with 9 candidates for the three instantiations of
the CCM (see Table 1). Run on the NP2003 dataset; perfor-
mance evaluated after 1,000 impressions.

perfect navigational informational

of
fli

ne MGD-W 0.713 (0.05) 0.708 (0.05) 0.656 (0.07)

MGD-M 0.714 (0.05) 0.710 (0.05) 0.681 (0.06)

Norm MGD-M 0.711 (0.04) 0.710 (0.04) 0.667 (0.06)
on

lin
e MGD-W 105.785 (5.88) 101.708 (5.19) 77.568 (10.24)

MGD-M 105.087 (4.71) 102.953 (5.62) 81.037 (8.74)

Norm MGD-M 105.844 (5.21) 102.686 (5.32) 81.676 (9.46)

smaller updates. This implies that the direction of the update taken
by MGD-M is better than that of MGD-W.

To answer RQ3, while in general both MGD methods outperform
DBGD, MGD-M is better at handling high noise levels, making it
more effective than MGD-W overall. The advantage of MGD-M
over MGD-W comes from both the update direction and a smaller
update size.

6.4 Number of candidates and learning rate
In this section, we investigate some remaining questions.

6.4.1 Number of candidates
In Section 6.1 we have already discussed the interplay between

the amount of noise in the feedback and the optimal number of can-
didates in MGD. Figure 4 shows the effect of increasing the number
of candidates even further to a maximum of 1,000 candidates. Note
that as soon as the number of candidate rankers goes beyond the
length of the result shown to users, the only effect of increasing
it even further is that the probability of including the current best
ranker decreases.4 We see in Figure 4, Table 2 and Table 3 that both
offline and online performance generally go up when the number of
candidates goes up. However, beyond approximately 10 candidates
this either stabilizes or fluctuates slightly, depending on the amount
of noise in the click model. This matches κ = 10, the result list
length in our experiments. We increase the noise further than we
did until now by including results for an almost random click model
instantiation. Still in Figure 4 (the green curves near the bottom
in both plots), we see that the more noise we add, the more MGD
benefits from adding candidates.

4This is an artifact that stems from the way we generate candidates
and the fact that we use TDM as our multileaving method.
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In conclusion, both offline and online performance increase with
the number of candidates when noise is present, but this effect
appears to be limited by the length of the result list shown to users.

6.4.2 Learning rate
Our MGD algorithms are sufficiently different from DBGD to

warrant a new investigation of the learning rate α. The results in
Section 6.3 suggest that some of MGD-M’s superior performance
over MGD-W could be explained by the smaller steps this algorithm
takes. To further investigate this effect, we vary the learning rate.

Figure 5, which shows a sweep over learning rates, again shows
a considerable difference between MGD-M and MGD-W. Further-
more, for most algorithms online performance increases when α
goes up while offline performance drops slowly. With a learning rate
close to zero, MGD performs notably worse than DBGD because
multileaving interferes more with the ranking presented to the user,
while the low learning rates prevents it from adapting quickly. Con-
versely, when the learning rate increases, MGD greatly outperforms
DBGD in terms of online performance for all three click models.
This illustrates the tradeoff MGD makes: multileaving distorts the
ranking shown to the user, but when the learning rate increases it
compensates by adapting to the user faster. So, interestingly, also
when there is no noise in the feedback, MGD can greatly outperform
DBGD if the learning rate is chosen appropriately. Note that, for
all our other experiments, we chose a fixed value of α = 0.03 for
MGD based on these plots. This point denotes a reasonable tradeoff
between offline and online performance. This is a different optimum
than DBGD and, since DBGD is equal to MGD with a single candi-
date, it seems the optimal learning rate depends on the number of
candidates. Ideally, one would find a learning rate that is optimal for
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Figure 5: Sweep over learning rate values in terms of offline
and online performance after 1,000 impressions for MGD-M
and MGD-W with 9 candidates and DBGD. Performed on
NP2003 using three different click models with varying degrees
of noise.
each number of candidates. Doing so would only increase MGD’s
performance advantage.

In sum, this experiment shows that DBGD and MGD have dif-
ferent optimal learning rates and that MGD can greatly outperform
DBGD, both offline and online, when the learning rate is chosen
appropriately.

7. CONCLUSION
We proposed an extension of dueling bandit gradient descent

(DBGD), an online learning to rank method. DBGD is limited to ex-
ploring only a single candidate ranker at a time. Where DBGD uses
interleaved comparisons to infer pairwise preferences, our newly
introduced method—multileave gradient descent (MGD)—learns
from comparisons between a set of rankers to infer n-way prefer-
ences between n candidate ranker improvements. We proposed two
specific ways of using these preferences for updating a current best
ranker. The first variant, MGD-W, picks a ranker to update towards
at random from among the rankers that win a comparison; the sec-
ond variant, MGD-M, updates towards the mean of all winners of
the comparison.

Our empirical results, based on extensive experiments on nine
learning to rank datasets encompassing 86M user interactions, show
that either variant dramatically improves over the DBGD baseline.
In particular, when the noise in user feedback increases, we find
that both MGD-W and MGD-M are capable of learning better
rankers much faster than the baseline does. When the number
of candidate rankers we consider increases from 1 (as in the base-
line), offline performance—measured on held-out data—and online
performance—measured on the results shown to users—consistently
go up until it converges at around 10 candidate rankers. After 1,000
query impressions with noisy feedback, MGD performs almost on



par with DBGD trained on feedback without any noise. We further
show that MGD obtains at least the same converged performance
that DBGD ultimately obtains, but that it does so using orders of
magnitude less user interaction data. From the two variants we
compared, MGD-M performs either equal to, or outperforms MGD-
W. The advantage of MGD-M over MGD-W comes from both the
update direction and smaller update size.

An important implication of our results is that orders of magnitude
less user interaction data is required to find good rankers when
multileaved comparisons are used as feedback mechanism for online
learning to rank. This results in far fewer users being exposed
to inferior rankers and it allows search engines to adapt faster to
changes in user preferences.

Our findings give rise to several directions that remain to be ex-
plored. Firstly, we sampled candidate rankers randomly uniformly
from a unit sphere around the current best ranker. Alternatively, one
could consider selecting rankers such that all directions are covered,
which may speed up learning even further. Secondly, currently we
have two strategies for interpreting multileave comparison outcomes,
MGD-M and MGD-W. We could consider an additional strategy
that takes a weighted combination of all the compared rankers, po-
tentially even down weighting the directions for loosing candidate
rankers. Thirdly, we noticed that often, in particular closer to con-
vergence, many of the compared rankers become very similar. One
could consider adapting the multileaving algorithm to not attempt to
infer preferences between rankers that produce the same rankings,
but rather, consider all these to be the same rankers.
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