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Abstract
Many advanced Learning from Demonstration
(LfD) methods consider the decomposition of
complex, real-world tasks into simpler sub-tasks.
By reusing the corresponding sub-policies within
and between tasks, they provide training data for
each policy from different high-level tasks and
compose them to perform novel ones. However,
most existing approaches to modular LfD focus
either on learning a single high-level task or de-
pend on domain knowledge and temporal seg-
mentation. By contrast, we propose a weakly
supervised, domain-agnostic approach based on
task sketches, which include only the sequence of
sub-tasks performed in each demonstration. Our
approach simultaneously aligns the sketches with
the observed demonstrations and learns the re-
quired sub-policies, which improves generalisa-
tion in comparison to separate optimisation proce-
dures. We evaluate the approach on multiple do-
mains, including a simulated 3D robot arm control
task using purely image-based observations. The
approach performs commensurately with fully su-
pervised approaches, while requiring significantly
less annotation effort, and significantly outper-
forms methods which separate segmentation and
imitation.

1. Introduction
Learning from demonstration (LfD) represents a popular
paradigm to teaching complex behaviours to robots and
virtual agents through demonstrations, without the need for
explicit programming or other description of a task, such
as a cost function (Argall et al., 2009). The benefits of
LfD over manual task definitions are numerous. First, some
behaviours are difficult to program or manually encode, but
can be easily demonstrated. Second, while programming
behaviours requires expert knowledge of the application
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platform, LfD requires only the ability to control the agent.

However, complex real world tasks pose a severe challenge
for simple LfD approaches such as behavioural cloning
(BC). While a complex task can often be broken down into
simpler sub-tasks, the algorithm itself lacks the means to
discover the decomposition and must instead learn a mono-
lithic policy for the whole task. The resulting policies are
not only more complex but also less reusable. For example,
a cube stacking task can be broken down into sub-tasks for
approaching a cube, grasping it, moving to a location, and
placing it onto an existing stack. In particular, sub-policies
for approaching and grasping the cube can be reused in other
manipulation routines such as rotating or throwing the cube.

Modular LfD addresses this challenge by modelling the
task as a composition of sub-tasks for which reusable sub-
policies (modules) are learned. These sub-policies are often
easier to learn and can be composed in different ways to
execute new tasks, enabling zero-shot imitation.

One approach to modular LfD is to provide the learner
with additional information about the demonstrations. This
comes in many forms, e.g., manual segmentation of demon-
strations (Hovland et al., 1996), interactive feedback during
learning (Niekum et al., 2015), or prior knowledge about
the task. Such domain knowledge may come in the form of
motion primitives, hard-coded parametric motion models
(Ekvall & Kragic, 2006; Schaal, 2006) and problem-specific
state modelling (Abdo et al., 2013; Konidaris et al., 2012).
An additional benefit is that since these methods ground
demonstrations on human-defined sub-tasks, the learned
policies are interpretable. They are, however, labour inten-
sive, perform sub-optimally if the underlying assumptions
are incorrect, and require domain knowledge.

In this work, we consider a general, weakly supervised,
modular LfD setting where demonstrations are augmented
only with a task sketch. This sketch describes the sequence
of sub-tasks that occur within the demonstration, without
additional information on their alignment (see Figure 1).

Drawing inspiration from speech recognition (Graves et al.,
2006) as well as modular reinforcement learning (Andreas
et al., 2017), we introduce temporal alignment for control
(TACO)1, an efficient, domain agnostic algorithm that learns
modular and grounded policies from high level task descrip-
tions, while relying purely on weak supervision.

1The TACO algorithm and experiments will soon be available
at https://sites.google.com/view/taco-ml.

https://sites.google.com/view/taco-ml
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Instead of considering the alignment of a demonstration with
the task sketch and the learning of associated sub-policies
as two separate processes, in TACO the imitation learning
stage affects the alignment and vice-versa by maximising
the joint likelihood of the observed sketch and the observed
action sequence given the states. TACO learns one sub-
policy for each sub-task present in the data and extends each
sub-policy’s action space to enable self-termination. At test
time, the agent is presented with new, potentially unseen,
and often longer sketches, which it executes by composing
the required sub-policies. In addition to simplifying the
imitation of complex tasks, the approach enables zero-shot
imitation given only a sketch.

We evaluate the performance of TACO on four domains of
varying complexity. First, we consider two toy domains,
a 2D navigation task and the Craft domain proposed by
Andreas et al. (2017). Finally, we consider the scenario
of controlling a simulated robot arm to use a number pad
and extend the task to use only image-based observations.
We demonstrate that, in all domains, policies trained using
TACO are capable of matching the performance of poli-
cies trained using a fully supervised method, where the
segmentation of the demonstration is provided, at a small
fraction of the labelling cost. At the same time, the approach
significantly outperforms our baselines which separate the
optimisation processes for segmentation and imitation.

2. Related Work
Learning from demonstration encompasses a wide range of
techniques that focus on learning to solve tasks based on (hu-
man) expert demonstrations (Argall et al., 2009). The fields
of modular and hierarchical LfD aim to extract reusable
policy primitives from complex demonstrations to increase
data efficiency and transfer knowledge between tasks.

In robotics, sub-policies can be modelled as motion primi-
tives (Schaal, 2006) which build the foundation for various
works on modular LfD e.g. (Niekum et al., 2012; Man-
schitz et al., 2014; Pastor et al., 2009). In this context, most
similar to the ideas underlying our approach is recent work
based on skill trees (Konidaris et al., 2012) and semantically
grounded finite representations (Niekum et al., 2015). How-
ever, these approaches consider separate segmentation of the
trajectories and fitting of primitives and imposes stronger
constraints on the type of the controllers. In contrast, our
work addresses segmenting the demonstrations and learning
the policies in one combined process.

Interleaving the two processes has been shown to provide
better segmentations and policies in recent work (Lioutikov
et al., 2017). The approach however considers learning via
policy embeddings in task space building on probabilistic
motion primitives (Paraschos et al., 2013), which restricts
the approach with respect to the types of tasks and observa-
tions. The method presented in this paper is less constrained
and can handle arbitrary differentiable function approxima-
tor for the control policies.

Recent work on hierarchical LfD transfers concepts from
the options framework (Sutton et al., 1999), which models
low-level policies as actions for a meta controller, to LfD
(Fox et al., 2017; Krishnan et al., 2017; Henderson et al.,
2017). Generally, options serve as tools for dividing a com-
plex task into multiple sub-policies specialised for regions
in the state space. TACO differs from option discovery
frameworks (Fox et al., 2017; Krishnan et al., 2017) during
both training and inference by replacing the functionality
of the meta-controller with weak supervision in the form
of a sequence of symbols. Weak supervision constrains the
learned policies to follow the description in the task sketch.
This prevents degenerate cases including high-frequency
switching between policies common with options (Krishnan
et al., 2017) as well as the potential collapse of the meta-
controller to apply only a single option. Furthermore, by
applying task sketches at test time, we enable the compo-
sition of sub-policies in unseen and longer sequences for
zero-shot imitation.

Recent work on modular reinforcement learning (RL) (An-
dreas et al., 2017), introduces the notion of sketches as
additional information representing the decomposition of
tasks. Similar to our work, Andreas et al. (2017) assume
that complex tasks can be broken down into sub-tasks. Our
approach exploits a similar modular structure but utilises
an imitation based objective that addresses the problem of
aligning sequences of different lengths.

A common approach to sequence alignment in speech
recognition is connectionist temporal classification (CTC)
(Graves et al., 2006). Previous extensions of CTC have
been proposed to increase its flexibility by reducing the as-
sumptions underlying the framework (Graves, 2012) and
exploiting structure in the input space (Huang et al., 2016).
In this paper, we extend CTC by combining sequence align-
ment and behavioural cloning.

3. Preliminaries
In this section, we introduce the required concepts and meth-
ods for the derivation of TACO.

3.1. Behavioural Cloning
Behavioural cloning (BC) models LfD as a supervised learn-
ing problem, by optimising a policy π to maximise the
likelihood of the training dataset D = {ρ1, ρ2, ..., ρM},
where ρ = ((s1, a1), (s2, a2), ..., (sT , aT )) is a state-action
demonstration trajectory of T pairs of states s ∈ S and ac-
tions a ∈ A. Let πθ(a|s) be the probability of taking action
a in state s as modelled by a policy πθ parameterised by θ.
BC performs the following optimisation:

θ∗ = argmax
θ

Eρ[
T∑
t=1

log πθ(at|st)]. (1)

One drawback of BC is its susceptibility to covariate shift,
which occurs when small errors during testing cause the
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agent to drift away from states it encountered during train-
ing, yielding poor performance. One way to overcome this
problem is using disturbances for augmenting robot tra-
jectories (DART) (Laskey et al., 2017), which introduces
noise in the data collection process, allowing the agent to
learn actions that can recover from errors. In this paper,
unless stated otherwise, we use a training approach based
on DART.

The standard formulations of BC and DART, which learn
only one policy per task, lack two important properties. The
first is modularity: the demonstrated behaviour can have a
hierarchical structure that decomposes into modules, or sub-
policies. The second is reuse: the modules can be composed
in various ways to perform different tasks.

3.2. Modular Learning from Demonstration
Modular LfD introduces modularity and reuse to the LfD
problem. A schematic is shown in Figure 1. To render the
policies reusable, it assumes that any task can be solved
by multiple sub-policies, each of which operates in an aug-
mented action space A+ that includes a STOP action (i.e.,
A+ := A ∪ aSTOP ) that does not have to be observed
in the demonstration. It also assumes that more than one
sub-policy may be present within a demonstration. In our
formulation, extra information is provided in the form of a
task sketch τ = (b1, b2, . . . , bL), with L ≤ T , and bl ∈ B,
where B = {1, 2, . . . ,K}, is a dictionary of sub-tasks. The
sketch indicates which sub-tasks are active in a trajectory.

Although the aSTOP action is never observed, it can be
inferred from the data. If the demonstration contains a
simple task then aSTOP is called only at the end of the
demonstration. If L = T , then we know which policy
from B is active at each time-step. i.e., aSTOP for each
policy is called as soon as the active policy changes within
the demonstration. If all extra information is available,
we can perform behavioural cloning, with two differences.
First, maximising the likelihood takes place assuming an
action-augmented policy π(a+|s). Second, we learn |B| =
K modular policies πθk from K datasets Dk containing
trajectories ρk as segmented based on τ :

θ∗k=1,...,K = argmax
θk

Eρk [

Tρ∑
t=1

log πθk(a+t |st)]. (2)

e

However, the fully supervised approach is labour intensive
as each trajectory must be manually segmented into sub-
policies. In this paper, we consider cases where L << T
and τ contains only the sequence of active sub-tasks in the
order they occur, without duplicates. Inferring when aSTOP
occurs is therefore more challenging as τ and ρ operate at
different timescales and must first be aligned.

Figure 1. Problem setting: The trajectory ρ (red) is augmented by
a task sketch τ (blue). The two sequences operate at different
timescales. The whole trajectory is aligned (manually or automati-
cally) and segmented into three parts. From this alignment three
separate policies are learned. The unobserved aSTOP action for
each policy is inferred to occur at the point where the policies
switch from one to the other.

3.3. Sequence Alignment
Since L << T , we cannot independently maximise the
likelihood of active sub-tasks in τ for every time step in
ρ. The problem of aligning sequences of different lengths,
a common challenge in speech and action recognition, is
often addressed via connectionist temporal classification
(CTC) (Graves et al., 2006). Here, we review a variant
of CTC adapted to the notation introduced so far, which
does not include gaps between the predictions, based on the
assumption that sub-tasks occur in sequence without pause.

A path ζ = (ζ1, ζ2, ..., ζT ) is a sequence of sub-tasks of the
same length as the input sequence ρ, describing the active
sub-task ζt from the dictionary B at every time-step. The
set of all possible paths ZT,τ for a task sketch τ is the set
of paths of length T that are equal to τ after removing all
adjacent duplicates. For example, after removing adjacent
duplicates, the path ζ = (b1, b1, b2, b3, b3, b3) equals the
sketch τ = (b1, b2, b3). The CTC objective maximises the
probability of the sequence τ given the input sequence ρ:

ψ∗ = argmax
ψ

E(ρ,τ)[pψ(τ |ρ)] (3)

= argmax
ψ

E(ρ,τ)

[ ∑
ζ∈ZT,τ

pψ(ζ|ρ)
]

(4)

= argmax
ψ

E(ρ,τ)

[ ∑
ζ∈ZT,τ

T∏
t=1

pψ(ζt|ρ)
]

(5)

where pψ(ζt|ρ) is commonly represented by a neural net-
work parameterised by ψ that outputs the probability of
each sub-task in B. While naively computing (3) is infeasi-
ble for longer sequences, dynamic programming provides a
tractable solution. Let Zt,τ1:l be the set that includes paths
ζ1:t of length t corresponding to task sketches τ1:l of length
l, and αt(l) =

∑
ζ1:t∈Zt,τ1:l

p(ζ|ρ) be the probability of
being in task bl at time-step t in the graph in Figure 2a. The
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probability of a task sketch given the input sequence p(τ |ρ)
is equal to αT (L).

We can recursively compute αt(l) based on αt−1(l),
αt−1(l − 1), and the probability of the current sub-task
p(ζt|ρt). As τ begins with a specific sub-task, the initial
α’s are deterministic and the probability of starting in the
corresponding policy b1 at time-step t = 1 is 1. Figure
2a depicts the recursive computation of the forward terms
which is mathematically summarised as:

αt(l) = p(bl|ρt)[αt−1(l − 1) + αt−1(l))], (6)

α1(l) =

{
1, if l = 1,

0, otherwise.
(7)

Based on the recursive computation of the CTC objective
in (6) and any automatic differentiation framework, we can
optimise our model. For the manual derivation of the gradi-
ents and CTC backwards variables, please see the work of
Graves et al. (2006).

4. Methods
This section describes two ways to apply insights from CTC
to address modular LfD. We first describe a naive adaptation
which performs modular LfD with arbitrary differentiable
architectures and discuss its drawbacks. We then intro-
duce TACO, which simultaneously optimises the alignment
between trajectory ρ and task sequence τ and learns the
underlying policies.

4.1. Naively Adapted CTC
A naive modular LfD algorithm can first align the state-
action trajectories with the prescribed sketches via CTC to
derive the required datasets Dk and then learn K modular
policies with behavioural cloning as in (2), an approach we
denote as CTC-BC.

However, this approach fundamentally differs from the reg-
ular application of CTC. At inference time, CTC is typically
given a new trajectory ρ and computes the most likely sketch
assignment τ . In contrast, we use CTC to align ρ with τ
and subsequently train the sub-policies via BC while dis-
carding the CTC based controller. This alignment for BC is
derived via maximisation over αt(l), as computed in (6), at
each time-step, leading to the most likely path through the
sequence. Following the determination of sketch-trajectory
alignment, the sub-policies are optimised using (2).

While this approach only trains sub-policies via a single
alignment based on the argmax of the forward variables α
for every time-step in (6), we can account for the probabilis-
tic assignment of active sub-policies by utilising a weighting
based on the forward variables. However, as no aligned tar-
gets exist for the stop actions, they have to be derived based
on the relations of the normalised α’s between consecu-
tive time-steps. A derivation of this α-weighted version of
CTC-BC can be found in the Appendix. In our experiments,

we consider the direct, single alignment resulting from tak-
ing the argmax as well as the full optimisation of the joint
probabilities via TACO.

A crucial drawback of CTC-BC is the independent compu-
tation of the optimisation for alignment and for imitation.
The alignment affects the policy optimisation as it is per-
formed in a later step but not vice-versa. The introduction
of TACO in the next section addresses this shortcoming.

4.2. Temporal Alignment for Control (TACO)
Aligning the sequences ρ and τ via CTC treats the index for
active sub-policies as pure symbols and fails to exploit the
fact that we then need to learn the respective sub-policies
via BC. Consequently, what CTC determines to be a good
alignment might result in a badly conditioned optimisation
problem for the sub-policies, converging to a local minimum
and demonstrating degraded performance once deployed.

In this section, we propose Temporal Alignment for Control
(TACO), in which the alignment is influenced by the per-
formance of the sub-policies and addressed within a single
optimisation procedure. Concretely, instead of maximising
Equation (3) followed by Equation (2), we seek to maximise
the joint log likelihood of the task sequence and the actions
conditioned on the states:

p(τ,aρ|sρ) =
∑

ζ∈ZT,τ

p(ζ|sρ)
T∏
t=1

πθζt (at|st), (8)

where p(ζ|sρ) is the product of the stop, aSTOP , and non-
stop, āSTOP , probabilities associated with any given path.
The first term in (8) is similar to the corresponding term in
(5) but now depends only on states. Every possible align-
ment ζ dictates which data within the sequence ρ is associ-
ated with which sub-policy πθ, which is the second term in
(8) and corresponds to the BC objective. Maximising thus
performs simultaneous alignment of τ and ρ and learns the
associated policies for each sub-task.

As with CTC, the sketch length is expected to be shorter than
the trajectory length, L� T , which for longer trajectories
renders the computation of all paths ζ in ZT,τ intractable.
However, the summation over paths can be performed via
dynamic programming with a forward-backward procedure
similar to that of CTC. Using consistent notation, the likeli-
hood of a being at sub-task l at time t can be formulated in
terms of forward variables:

αt(l) :=
∑

ζ1:t∈Zt,τ1:l

p(ζ|sρ)
t∏

t′=1

πθζ
t′

(at′ |st′). (9)

Here τ1:l denotes the part of the sub-task sequence until l.

Even though not explicitly modelling the probability of
a certain sub-task given the states and actions (p(b|s, a)),
extending the policies with the stop action aSTOP enables
switching from one sub-task in the sketch to the next. This
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(a) CTC - Computation of forward variables αt(l) (b) TACO - Computation of forward variables αt(l)

Figure 2. Visualisation of the forward recursion for all paths ζ corresponding to the sketch τ . The horizontal axis denotes time, while the
vertical denotes the task sequence. While a node at l, t in CTC is only weighted by the meta-controller probability p(bl|st, at), nodes and
edges are weighted in TACO respectively via the sub-policies πl(at|st) and πl(aSTOP |st)

in turn allows computation of the probability of being in a
certain sub-task bl of the sketch, at time t. At time t = 1 we
know that ζ1 = τ1, i.e., we always necessarily begin with
the first sub-policy described in the sketch.

α1(l) =

{
πθb1(a1|s1), if l = 1,

0, otherwise.
(10)

Subsequently, a certain sub-policy can only be reached by
staying in the same sub-policy or stopping the previous
sub-policy in the sketch using the aSTOP action:

αt(l) = πθbl(at|st)
[
αt−1(l − 1)πθbl−1

(aSTOP |st) (11)

+αt−1(l)(1− πθbl(aSTOP |st))
]
.

Performing this recursion until T yields the forward vari-
ables. A visualisation of the recursion is shown in Figure 2b.
The forward variables at the end of this recursion determine
the likelihood in (8):

αT (L) = p(τ,aρ|sρ). (12)

Since the computation is fully differentiable, the backward
variables and subsequently the gradient of the likelihood
with respect to the parameters θi for each policy can be
computed efficiently by any auto-diff framework. However,
as the forward recursion can lead to underflow, we employ
the forward variable normalisation technique from Graves
et al. (2006).

Intuitively, the probability for the stop actions of a policy
at each time-step determines the weighting of data points
(state-action pairs) for all sub-policies. If a sub-policy as-
signs low probability a specific data-point, e.g., if at similar
states it has been optimised to fit different actions, the op-
timisation increases the probability of the preceding and
succeeding policy in the sketch for that data point, effec-
tively influencing the probabilistic alignment.

A potential pitfall of simultaneously optimising for align-
ment and control is the early collapse of the alignment objec-
tive to a single path (Figure 2b). This stops further exposure
of the sub-policies to potential state-action pairs they would
be able to fit well. To achieve sufficient exploration of dif-
ferent possible alignments, we use dropout (Srivastava et al.,
2014). At every forward pass, different alignment paths
are sampled, exposing the sub-policies to a wider range
of data-points they could potentially fit, greatly improving
performance.

5. Experiments
We evaluate TACO across four different domains with dif-
ferent continuous and discrete states and actions including
image-based control of a 3D robot arm. Our experiments
aim to answer the following questions.

• How does TACO perform across a range of different
tasks? Can it be successfully applied to a range of
architectures and input-output representations?

• How does TACO perform with respect to zero-shot
imitation on sequences not included in the training set
and task sketches of different length?

• How does TACO perform in relation to baselines in-
cluding CTC-BC (Section 4.1) and the fully super-
vised approach with all trajectories segmented into
sub-tasks?

• How does the dataset size influence the relative perfor-
mance of TACO in comparison with our baselines?

The latter questions are investigated by introducing a set of
baselines based on Sections 3.2 and 4.1.

• GT-BC, which uses ground-truth, segmented demon-
strations and performs direct maximum likelihood
training to optimise the sub-policies (Equation 2).
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• CTC-BC, which uses both bidirectional gated recur-
rent units (Cho et al., 2014) [CTC-BC(GRU)] or multi-
layer perceptrons [CTC-BC(MLP)] to perform CTC.
In both cases, we apply MLPs for the sub-policies.

While the options framework presents a common approach
to hierarchical LfD (Fox et al., 2017; Krishnan et al., 2017;
Henderson et al., 2017), it predominantly neglects the possi-
bility of additional control information to switch between
different high-level tasks, as is given by task sketches. Given
the resulting limitation of independent modelling of dif-
ferent high level tasks, these framework cannot efficiently
model multiple task sketches. This will result in highly
degraded performance when evaluation is based on multi-
ple different tasks, like the ones given in our evaluation (in
both regular and in particular zero shot scenarios). For this
reason, the evaluation focuses on approaches that utilise the
task sketches.

The main evaluation metric is the task accuracy, i.e., the ratio
of full tasks completed to the total attempted. In addition,
the sub-task accuracy is ported to provide more insight.
Finally, Table 1 provides results comparing the sequence
alignment accuracy. That is, the percentage of timesteps
that the demonstrated trajectory was given a correct sub-task
label when compared to the ground truth alignment.

We focus on testing in a zero-shot setting: the task sequences
prescribed at test time are not in the training data and are
longer than the training sketches. Note that in the non-zero-
shot setting, while the tasks to be completed have been
seen, the world parameters such as feature positions are
randomised. Finally, in all our evaluations we vary the size
of the training set to investigate how performance varies
with respect to available data.

5.1. Nav-World Domain

Figure 3. The Nav-World. The agent (Blue) receives a route as a
task sketch. In this case. τ = (Black, Green, Yellow, Red)

We present the Nav-World domain, depicted in Figure 3, as
a simple 2D navigation task. The agent (Blue) operates in a
8-dimensional continuous state space with four destination
points (Green, Red, Yellow, Black). The state space repre-
sents the (x, y) distance from each of the destination points.
The action space is 2-dimensional and represents a veloc-
ity (vx, vy). At training time, the agent is presented with
state-action trajectories ρ from a controller that visits L des-
tinations in a certain sequence given by the task sketch, e.g.
τ = (Black, Green, Yellow, Red). At the end of learning,
the agent outputs four sub-policies π(a+|s) for reaching
each destination. At test time, it is given a sketch τtest of
length Ltest containing a sequence of destinations. The task

is considered successful if the agent visits all destinations
in the correct order. During demonstrations and testing, the
agent’s location and the destination points are sampled from
a Gaussian distribution centred at predefined locations.

Figure 4. Nav-World results: Mean accuracy over 100 agents on
100 test tasks. Task length at test time is Ltest = 4 and at training
time is L = 3. TACO (red) approaches the performance of a fully
supervised sequence (grey) given enough data.

In this domain, the dataset sizes are 50, 400, and 1000
demonstrations. The task length at training time is L = 3.
We report the task success rate for unseen, longer tasks of
length Ltest = 4 (zero-shot setting). 100 agents are trained
for each task and each algorithm, with the evaluation based
on 100 testing tasks.

As displayed in the results in Figure 4, CTC-BC performs
poorly in both settings, with the MLP architecture perform-
ing slightly better. However, CTC(MLP) provides accurate
alignment, often reaching 90% overlap between the pre-
dicted sub-task sequence and ground truth (Table 1). Fitting
on smaller datasets however strongly reduces the quality of
the policies. As the states are similar before and after a pol-
icy switch but the actions are different (different policies),
small mistakes in alignment cause multi-modality in the
data distribution. This causes relatively low performance for
BC with a mean squared error (MSE) objective. In contrast,
TACO avoids this problem by probabilistically weighting
all policies when fitting to each time-step. From Table 1
we can see that TACO’s inductive bias for control allows it
to achieve much better alignment accuracy than CTC-BC.
These two factors bring about performance that approaches
that of GT-BC for larger datasets, a consistent trend in all
our experiments.

5.2. Craft Domain
Andreas et al. (2017) introduced the Craft Domain to
demonstrate the value of weak supervision using policy
sketches in the RL setting. In this domain, an agent is
given hierarchical tasks and a sketch description of that
task. The binary state space has 1076 dimensions and
the action space enables discrete motions as well as ac-
tions to pick up and use objects. A typical example task is
τmake planks = (get(wood), use(workbench)). The tasks vary
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Domain

Algorithm Nav-World Craft Dial Dial (Image)

TACO 95.3 95.6 99.8 99.0
CTC-BC (MLP) 89.0 41.4 90.1 84.6
CTC-BC (GRU) 80.0 57.1 93.4 48.8
GT-BC (aligned w. TACO) 94.6 99.4 89.0 98.2

Table 1. Alignment accuracy of each algorithm for all domains.
TACO always outperforms CTC emphasising the importance of
maximising the joint likelihood of task sequences and actions. The
alignment for GT-BC was obtained by computing the argmax of
the TACO forward variables on the policies learned using GT-BC.

from L = 2 to L = 4. The demonstrations are provided
from a trained RL agent, which obtains near optimal perfor-
mance. Performance is measured using the reward function
defined in the original domain. We train agents for all base-
lines and deploy them on randomly sampled tasks from the
same distribution seen during training.

Figure 5 shows the results, which are similar to those in Nav-
World. CTC-BC fails to obtain substantial reward. However,
unlike in Nav-World, CTC does not achieve good align-
ments with either architecture, as the abstract, binary state-
action space makes it harder to detect distribution changes.
Instead of concatenating state-action pairs, TACO learns a
mapping from one to the other, making it easier to tell when
the sub-policy changes. This in turn allows TACO to match
or even surpass BC with sufficient data.

200 500 1000
Datasize

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd

GT-BC
TACO
CTC-BC (MLP)
CTC-BC (GRU)

Figure 5. Craft results: Mean reward over 2000 tasks. The tasks
are the same as during training but the environment instantiation
is different. The RL agent used to derive the policies achieves a
mean reward of 0.9. Taco (red) approaches the performance of a
fully supervised method (grey) given enough data.

5.3. Dial Domain
Even though the Craft Domain is quite challenging, the
lengths of the demonstrations and the resulting episodes are
quite short, T ≤ 20, making it easier to align ρ and τ . The
final two experiments take place in a more realistic robotic
manipulation domain. In the Dial Domain, a JACO 6 DoF
manipulator simulated in MuJoCo (Todorov et al., 2012)
interacts with a large dial-pad, as shown in Figure 6. The
demonstrations contain state-action trajectories that describe
the process by which a PIN is pressed, e.g., τ = (0, 5, 1, 6).

A task is considered successful if all the digits in the PIN are
pressed in order. Demonstrations in this domain come from
a PID controller that can move to predefined joint angles.
We sub-sample the data from the simulator by 20, resulting
in trajectories T ≈ 200 for L = 4. We report task and
alignment accuracy as before. We consider two variants of
the Dial Domain, one with joint-angle based states and the
other with images. The action space represents the torques
for each joint of the JACO arm in both cases.

Figure 6. Dial Domain: A 6 DoF JACO arm must dial a PIN of
arbitrary length.

5.3.1. JOINT SPACE DIAL DOMAIN

In the first variant, the state is manually constructed and
39-dimensional, containing the joint angles and the distance
from each digit on the dial pad in three dimensions. If the
locations of the numbers in the dial-pad remains the same,
however, the problem can be solved only using joint angles.
For this reason, during each demonstration we randomly
swap the location of the numbers. We test the policies on
the standard number formation displayed in Figure 6, which
is never observed during training.

Figure 7 shows the results, which follow the same trend
as in the other domains. CTC-BC fails to complete any
tasks and is not capable of aligning the sequences. TACO’s
performance significantly increases with data size, achiev-
ing superior performance to GT-BC at sizes of 1000 and
1200 demonstrations. We believe is due to a regularising
effect of TACO’s optimisation procedure. To shed more
light into this observation, we use a GT-BC policy and per-
form alignment with the TACO forward pass on 100 unseen
trajectories (Table 1). The resulting alignment is lower than
that of TACO, which suggests that GT-BC is more prone to
overfitting.

To evaluate our methods in more complex zero-shot sce-
narios, we also measure the task accuracy over 100 tasks
as Ltest is increased, as shown in Figure 8. As expected,
TACO’s performance falls with increasing task length as
the chance of failing at a single sub-task increases. The
accuracy however decreases at a lower rate than that of the
baseline.
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Figure 7. Joint Space Dial results: Task accuracy over 100 tasks of
Ltest = 5. During training L = 4. Evaluation is performed in an
unseen configuration of the dial pad. Bars for CTC based methods
do not appear as they did not finish any tasks.
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Figure 8. Task accuracy for increasing values of Ltest. The accu-
racy is measured over 100 runs for TACO and GT-BC.

5.3.2. IMAGE SPACE DIAL DOMAIN

The image-based variant of the Dial Domain considers the
same task as above, but with an image-based state represen-
tation. We use RGB images of size 112 × 112, which are
passed through a simple convolutional architecture before
splitting into individual policies. In this case, we do not ran-
domise the digit positions but discard joint angles from the
agent’s state space, as those angles would allow an agent to
derive an optimal policy without utilising the image. Details
of the architectures used can be found in the Appendix.

Figure 9 details task and sub-task accuracy for this domain.
We can see that TACO performs well in comparison with
the baselines, despite the increased difficulty in the state
representation.

6. Discussion
TACO requires only weak supervision for modular LfD
while providing performance commensurate with fully su-
pervised approaches on a range of tasks including zero-shot
imitation scenarios.

To successfully complete a task, a policy must not only
complete the sub-tasks but also terminate the active policy
at the right moment. Both GT-BC and CTC-BC rely on
a single alignment between sub-tasks and demonstrations,
based on ground truth and an argmax alignment respec-
tively. TACO’s strength lies in optimising the sub-policies
over a distribution instead of a point estimate of the align-
ment. Training policies over a distribution of alignments ex-
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Figure 9. Image-Space Dial: Accuracy over 25 test tasks. CTC-BC
is unable to perform full task sequences and only solves a minor
percentage of the sub-tasks, while both GT-BC and TACO are
able to complete most sub-tasks.

poses the sub-policies to more data points, which induces a
regularising effect. This view is supported by the alignment
accuracy results of Table 1 in which we evaluate trained
policies for alignment on unseen sequences (based on (10)
and (11)). For larger datasets GT-BC achieves less accurate
alignment than TACO (Table 1), which in turn suggests that
it may be more prone to overfitting. Better alignment on test
demonstrations is correlated with task accuracy. This sug-
gests that the idea of integrating the optimisation objectives
in TACO for sequence alignment as well as imitation learn-
ing could have applications in cases where the end objective
is good alignment rather than control policies.

TACO has been effectively applied to the presented tasks
and significantly reduces supervision efforts. However, the
given sketches are highly structured and dissimilar to natural
human communication. An interesting avenue for future
work is the combination of the increased modularity of
TACO with more flexible architectures that can handle
natural language (Mei et al., 2016; Chaplot et al., 2017). In
addition, future work aims at applications in more complex
hierarchical tasks and on real robots.

While TACO reduces the annotation effort compared to
temporally segmented trajectories, it relies on weak super-
vision via task sketches. Further work into relaxing the
assumptions underlying the use of these sketches can aim at
omitting the constraint on the order of the sub-tasks.

7. Conclusion
We presented TACO, a novel method to address modular
learning from demonstration by incorporating weakly super-
vised information in the form of a task sketch, that provides
a high-level description of sub-tasks in a demonstration
trajectory. We evaluated TACO in four different domains
consisting of continuous and discrete action and state spaces,
including a domain with purely visual observations. With
limited supervision, TACO performs commensurate to a
fully supervised approach while significantly outperforming
the straightforward adaptation of CTC for modular LfD in
both control and alignment.
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