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Abstract— Inverse Reinforcement Learning (IRL) for path
planning enables robots to learn cost functions for difficult tasks
from demonstration, instead of hard-coding them. However,
IRL methods face practical limitations that stem from the need
to repeat costly planning procedures. In this paper, we propose
Rapidly Exploring Learning Trees (RLT∗), which learns the cost
functions of Optimal Rapidly Exploring Random Trees (RRT∗)
from demonstration, thereby making inverse learning methods
applicable to more complex tasks. Our approach extends
Maximum Margin Planning to work with RRT∗ cost functions.
Furthermore, we propose a caching scheme that greatly reduces
the computational cost of this approach. Experimental results
on simulated and real-robot data from a social navigation
scenario show that RLT∗ achieves better performance at lower
computational cost than existing methods. We also successfully
deploy control policies learned with RLT∗ on a real telepresence
robot.

I. INTRODUCTION

Learning from demonstration (LfD) [1] is of great interest
to roboticists because it can circumvent tedious and of-
ten infeasible manual programming of complex behaviours.
While most LfD methods rely on supervised learning (i.e.,
behavioural cloning) to directly learn policies, certain ap-
proaches, namely inverse optimal control (IOC) [2] and
inverse reinforcement learning (IRL) [3] instead learn cost
functions from demonstration, which are then used to plan
the robot’s behaviour.

In addition, learned cost functions are often useful even
when the environment changes. For example, if the friction in
a robot’s wheels changes due to wear and tear, the optimal
policy will change but the cost function will not. Thus, a
robot trained via supervised learning would need to learn
a new policy, while a robot trained via IRL could simply
replan on the new dynamics with its existing cost function.
In addition, cost functions are thought to be more succinct
representations of the aims of the agent [3]. For example, a
robot whose aim is to reach a goal as fast as possible may
have a simple cost function but a complex policy.

IRL is an iterative process that, in an inner loop, solves
the forward planning problem (i.e., finds an optimal policy
under the current cost function) and subsequently, in an outer
loop, updates the current cost function. This process repeats
until convergence. For continuous domains such as robotics,
solving the planning problem exactly is typically intractable.
Doing so may result in high-dimensional models to which
most planning algorithms scale poorly, necessitating a coarse
discretisation that yields poor performance. Consequently, in
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robotics, planning is often done using sample-based, single-
query motion planners such as Rapidly Exploring Random
Trees (RRTs) [4] and their variants [5]. Such methods can
cope with high-dimensional continuous domains, as well as
the presence of obstacles in the environment and motion
constraints on the robot.

In this paper, we first propose Approximate Maximum
Margin Planning (AMMP), a variant of Maximum Margin
Planning (MMP) [6] that does not assume an optimal planner.
Doing so allows us to use sample-based planning algorithms,
such as RRT∗ in the inner loop of IRL. Second, we propose a
caching scheme that both improves performance and reduces
the computational cost when RRT∗ is used within AMMP.
The resulting algorithm, which we call Rapidly Exploring
Learning Trees (RLT∗), allows computationally efficient IRL
in high-dimensional, continuous domains with obstacles and
motion constraints.

We evaluate RLT∗ on real and simulated data from a social
navigation scenario. The results demonstrate that, in the
absence of obstacles and motion constraints, RLT∗ performs
better and is faster than both MMP and RLT∗ without
caching. Furthermore, we show that RLT∗, unlike MMP,
can learn cost functions in robotic tasks with obstacles and
motion constraints. Finally, we deploy our method on a real
telepresence robot using data from human demonstrations.

II. RELATED WORK

Substantial research has applied IRL to robotics [7], [8],
[9]. A big challenge in doing so is solving the forward
planning problem under the current cost function at every
iteration. The planning problem is especially intractable in
robotics because the state-action spaces encountered are
often continuous and high dimensional.

One approach is to discretise the state-action spaces and
solve the resulting Markov decision process (MDP). How-
ever, in high-dimensional tasks, fine discretisations render
planning intractable and coarse discretisations yield poor
performance.

Some methods that use discretisation formulate the prob-
lem such that only an open-loop path (rather than a closed-
loop policy) is required. Then, given deterministic dynamics,
planning can be performed using A∗ [6], allowing realistic
problems to be tackled. We take a similar approach but, by
planning using RRT∗, we substantially enlarge the class of
tasks that can be tackled.

Another approach is to use hybrid planners. Inverse Opti-
mal Heuristic Control [10] models the long-term goals of the
agent as a coarsely discretised MDP, to ensure tractability,
while using supervised learning to determine the local policy



of the agent at each state. Graph-Based IOC [11] uses
discrete optimal control on a coarse graph and the actual path
is executed using local trajectory optimisation techniques
such as CHOMP [12], which would otherwise suffer from
local minima. However, these methods employ complex and
domain-specific planning formulations that are not suitable
for all robotics tasks. By contrast, our approach employs
a widely used planner, making it versatile and easy to
implement.

Another recent method is Adaptive State Graphs [13],
which builds a state-action controller graph before doing
any learning. This controller graph is akin to options in
semi-Markov decision processes, and allows for a more
flexible representation of the state-action space. However,
the controller used to learn the underlying cost function is
different from the one used to execute the robot’s behaviour.
This can have adverse effects since IRL assumes that the
demonstration paths came from the same planner used during
learning. Instead of building a controller graph first and then
using a different controller to optimise trajectories, RLT∗

builds a controller tree on the fly and uses the same planner
for learning and execution.

All of the above methods require a model of the dynamics
of the system. Another paradigm, that of model-free IRL,
avoids the need to explicitly plan, employing sampling in-
stead. As a result it tends to scale better to high-dimensional
state-action spaces and does not require a model of the
system dynamics, [14], [15]. Model free IRL samples trajec-
tories, usually starting from the initial conditions observed
in the data. The probability of these trajectories is weighted
according to the current cost function, which is then updated
to make trajectories closer to the data more likely. A big
challenge is to find an appropriate importance distribution at
each iteration. [16] considers guiding the importance distri-
bution by simultaneously learning a good policy under the
current cost function and using it as an adaptive importance
sampler. However, since it uses a modified version of Linear
Quadratic Regulator control the derived policies are only
locally optimal and can produce highly suboptimal paths or
even fail in the presence of obstacles. By contrast, RRTs
cope naturally with obstacles, as long as they are static and
mapped, and is also asymptotically optimal.

III. BACKGROUND

We begin with background on path planning and inverse
reinforcement learning for path planning.

A. Path Planning

Path planning occurs in a space S of possible robot
configurations. A configuration s ∈ S is usually continuous,
and often represents spatial quantities such as position and
orientation. A path planner seeks an obstacle-free path ζo,g =
(s1, s2, s3 . . . , slζ ) of length lζ , from an initial configuration
o = s1 to a goal configuration g = slζ . When the initial and
goal configurations are implied, we refer to a path as ζ.

As there could be several paths to the goal, planners often
employ a cost functional, C(ζ), which typically sums the

costs between two subsequent configurations c(si, sj):

C(ζ) =

lζ−1∑
i=1

c(si, si+1). (1)

This cost functional is similar to the one used in optimal
control and analogous to the return used in reinforcement
learning. Given the cost functional, the path planner seeks
an optimal path ζ∗, which satisfies,

ζ∗o,g = argmin
ζo,g∈Zo,g

C(ζ), (2)

where Zo,g is the set of possible paths such that s1 =
o, slζ = g. Many path planning algorithms discretise S
and use graph search algorithms like A∗ to find the op-
timal path. Under mild assumptions, these approaches are
guaranteed to find the best path on the graph, therefore
solving (2) for a subset Z̃o,g ⊂ Zo,g , whose size depends
on the discretisation. However, such methods scale poorly in
the size of S. Furthermore, such algorithms ignore motion
constraints as they assume all nodes in the graph can be
reached by their neighbours in exactly the same way. This
assumption does not hold, e.g., for non-holonomic robots,
where the ortientation at each node places constraints on
how it can be reached. In this constrained space, it is less
straightforward to define actions, neighbouring nodes, or an
admissible heuristic, which is necessary for optimality.

These drawbacks motivate sample-based path planning
algorithms such as RRT∗ [5]. Instead of building a graph
and then searching it, RRT∗ builds a tree on the fly and
keeps track of the current best path. The algorithm consists
of two interleaved steps.

The first step is sampling. A random point srand is
sampled from the configuration space. Next, the closest point
sclosest, already in the existing vertex set V is determined
and a new point snew is created by steering from sclosest
to srand. In a Euclidean space, steering between two points
means simply connecting them with a straight line. However,
if orientations and motion constraints are used, then becomes
more complex. Finally, the sampling step determines the
points, Snear, within a given radius of snew.

The second step is rewiring, which determines which
points in Snear we should connect to snew, i.e., it determines
which path to snew results in a lowest cost path. Finally, we
repeat this step for the parents of Snear. Thus, the tree is
rewired locally around the new point, such that lower global
cost paths arise.

Alternating between these two steps for a given time
budget T solves (2) for a subset Z̃o,g that is determined by
the randomly sampled points. As T →∞, RRT∗ minimises
over the entire Zo,g , i.e., it is asymptotically optimal in time
[5]. By contrast, A∗ is asymptotically optimal in resolution.

B. IRL for Path Planning

In path planning, we are given a cost function and must
find a (near) optimal path to the goal. In the inverse problem,
we are given example paths and must find the cost function
for which these paths are (near) optimal. The example paths



comprise a dataset D = (ζ1o1,g1 , ζ
2
o2,g2 ...ζ

D
oD,gD ) where ζioi,gi

is an example path with initial and final configurations oi and
gi. We assume the unknown cost function is of the form,

c(si, sj) = wT f(si, sj), (3)

where f(si, sj) is a K-dimensional vector of features that
encode different aspects of the configuration pair and w
is a vector of unknown weights to be learned. Since w is
independent of the configuration, we can express the total
cost of the path in a parametric form:

C(ζ) = wT

lζ−1∑
i=0

f(si, si+1) := wTF(ζ), (4)

where F(ζ) is the feature sum of the path.
While many formulations of the inverse problem exist, the

general idea is to find a weight vector that assigns less cost
to the example paths than all other possible paths with the
same initial and goal configuration. This can be formalised
by a set of inequality constraints:

C(ζioi,gi) ≤ C(ζ) ∀ζ ∈ Zoi,gi ∀i. (5)

The constraint is an inequality because Zoi,gi contains only
paths available to the planner and thus may not include the
example path ζioi,gi . Zoi,gi can be large but if we have an
optimisation procedure that solves (2), it is enough to satisfy,

C(ζioi,gi) ≤ min
ζ∈Zoi,gi

C(ζ) ∀i. (6)

Maximum Margin Planning (MMP) [6] introduces a mar-
gin function Li(ζ) that decreases the cost of the proposed
path ζ if it is dissimilar to ζioi,gi . For example, Li(ζ) could be
−1 times the number of configurations in the demonstration
path not visited by ζ. As in Support Vector Machines,
requiring the model to fit the data well even in the presence of
a margin improves generalisation. Furthermore, the margin
helps address the ill-posed nature of IRL, i.e., many cost
functions are consistent with the demonstrated behaviour.
Formally, MMP solves the following optimisation problem:

argmin
w,τ

1

2
||w||2 + λ

D

∑
i

τi (7)

s.t. C(ζioi,gi)− τi ≤ min
ζ∈Zoi,gi

C(ζ) + Li(ζ) ∀i, (8)

where τi are slacks that can be used to relax the constraints.
Rearranging the inequality in terms of the slacks yields:

C(ζioi,gi)− min
ζ∈Zoi,gi

C(ζ) + Li(ζ) ≤ τi ∀i. (9)

Consequently, the w minimising:

1

2
||w||2+ λ

D

∑
i

(
C(ζioi,gi)− min

ζ∈Zoi,gi

(
C(ζ)+Li(ζ)

))
(10)

also minimises (7), i.e., the slacks are tight. The minimum
can be found by computing a subgradient and performing
gradient descent on the above objective:

∇w = w +
λ

D

D∑
i=0

F (ζioi,gi)− F (ζ̃
∗
oi,gi), (11)

where,
ζ̃∗oi,gi = argmin

ζ∈Zoi,gi
C(ζ) + Li(ζ). (12)

The inverse problem can therefore be seen as an iterative
procedure that first solves (12) in the inner loop while
keeping the weights constant. Given that solution, it then
updates the weights using (11) in the outer loop. The weights
at convergence represent the cost function that is used to plan
future behaviour. In [6], A∗ search was used for planning in
the inner loop, assuming that the domain contained acyclic
positive costs. In this paper, we make the same assumptions
but develop methods that use RRT∗ for planning.

IV. METHOD

In this section, we propose Rapidly Exploring Learning
Trees (RLT∗). We first propose a generic extension to MMP
that we call Approximate Maximum Margin Planning. We
then show how an implementation of this approach with an
RRT∗ planner and a novel caching scheme yields RLT∗.

A. Approximate Maximum Margin Planning

Section III-B shows how the multiple constraints of (5) can
be reduced to the single constraint of (6) for each demon-
stration. However, this reduction requires an optimal planner
to perform the minimisation in (5), which is impractical in
many robot applications. Suppose instead that, as in RRT∗,
we have a mechanism for sampling different paths from
Zo,g along with their respective costs and that, for a given
finite time budget T , this path sampler samples a subset
Z̃o,g ⊂ Zo,g , Then, we can modify (6) to demand that our
cost function satisfies,

C(ζioi,gi) ≤ min
ζoi,gi∈Z̃oi,gi

C(ζ) ∀i. (13)

As T increases, lower cost paths are sampled, making this
inequality harder to satisfy. Assuming Z̃oi,gi is constant, we
can rewrite (10) as:

1

2
||w||2+ λ

D

∑
i

(
C(ζioi,gi)− min

ζ∈Z̃oi,gi

(
C(ζ)+Li(ζ)

))
. (14)

This gives rise to an approach we call Approximate Maxi-
mum Margin Planning (AMMP). It is similar to MMP with
the crucial difference that the planning step is executed by a
sample-based planner and not a deterministic one, like A∗.
An important consequence is that Z̃oi,gi changes every time
we invoke the sample-based planner. Thus, AMMP can be
thought of as sampling the constraints that we want our cost
function to satisfy. The main advantage of AMMP is that it
is not bound by the restrictive assumptions of A∗, such as a
discrete state-action space and no motion constraints.



However, an ineffective sampler could yield poor gradient
estimates and thus poor solutions. In fact, Ratliff et al. [12]
argue that, for this reason, sample-based planners like RRT
are not suited to learning cost functions from demonstration,
as the paths sampled by RRT are heavily biased during
the sampling process and thus highly suboptimal. However,
asymptotically optimal sample-based planners like RRT∗ are
better able to plan low-cost paths [5] and thus well suited
for use within AMMP.

B. Rapidly Exploring Learning Trees

As suggested above, a simple way implement AMMP is
to use RRT∗ as the sample-based planner. RRT∗ can sample
low-cost paths, allowing AMMP to learn a good cost func-
tion. Furthermore, RRT∗ can cope with large and continuous
state-action spaces with motion constraints. However, the
result is a computationally expensive algorithm that calls the
planner I×|D| times over I iterations, given a dataset of size
|D|. Furthermore, sampling a separate set of points at every
iteration could produce noisy gradients that negatively affect
convergence. In this section, we propose Rapidly Exploring
Learning Trees (RLT∗), which implements AMMP with an
RRT∗ planner using a novel caching scheme to ensure both
computational efficiency and more consistent gradients.

A key observation is that, in RRT∗, only the rewiring
step depends on the cost function. The sampling step is
independent of it and, especially when motion constraints
are present, contains the most computationally expensive
operations. These are: 1) fitting and querying a data structure
to find the nearest neighbour and the radius neighbours to
a newly sampled point, 2) applying the steer function to
all neighbours to and from the newly sampled point, and
3) checking for obstacles in these paths. By contrast, the
only potentially expensive operation in the rewiring step is
querying the cost of an edge.

Therefore, a key idea behind RLT∗ is to perform the
sampling step just once for each data point and cache it
for reuse throughout learning. Then, at each iteration, only
the rewiring step needs to be repeated as the cost function
changes.

Algorithm 1 describes the caching step, which takes as
input p, the number of points to randomly sample from
free space; sinit, the initial point; and η, the steer step
size. For each randomly sampled point srand, we find the
nearest neighbour, snearest, from the set of points in the
vertex set V . We then create a new configuration point
snew by steering from snearest to srand. Next, we query the
radius neighbours, Snear, of snew at a radius determined by
min{γRRT∗( log(|V |)|V | )

1
d , η}. Here, d is the dimensionality of

S, and γRRT∗ is a constant based on the volume of free space
(see [5]). Next, we determine which points in Snear can
safely reach snew through the chosen Steer function (lines
13-17). These forward paths are stored in Pathsfwd. We
then perform the same procedure but this time checking the
paths from snew to Snear and store them in the set Pathsbwd
(lines 18-22). This algorithm turns the sampling process of
RRT∗ into a preprocessing step. Consequently, the expensive

Nearest, Near, Steer and Safe procedures only need
to be repeated |D| times instead of I × |D| times.

Algorithm 1 cacheRRT(n,sinit,η)
1: P ← ∅ {Initialise the point cache}
2: V ← sinit
3: for i = 0 . . . n do
4: srand ← SampleFreei
5: snearest ← Nearest(V, srand)
6: snew ← Get(snearest, srand)

7: Snear ← Near(V, snew,min{γRRT∗ (
log(|V |)
|V | )

1
d , η})

8: Pathsfwd ← ∅
9: Pathsbwd ← ∅

10: Sfwd ← ∅
11: Sbwd ← ∅
12: for snear . . . Snear do
13: pathfwd = Steer(snear, snew)
14: if Safe(pathfwd) then
15: Pathsfwd ← Pathsfwd ∪ pathfwd
16: Sfwd ← Sfwd ∪ snear
17: end if
18: pathbwd = Steer(snew, snear)
19: if Safe(pathbwd) then
20: Pathsbwd ← Pathsbwd ∪ pathbwd
21: Sbwd ← Sbwd ∪ snear
22: end if
23: end for
24: V ← V ∪ snew
25: P ← P ∪ {snearest, snew, Sfwd, Sbwd, Pathsfwd, Pathsbwd}
26: end for
27: return P

The output of Algorithm 1 is input to Algorithm 2, which
resembles the rewiring procedure in RRT∗ [5] and returns a
low-cost path to the goal. However, unlike RRT∗ rewiring,
the vertices of the tree and their neighbours at each iteration
are already known and contained within the point cache.
This speeds computation while keeping consistency between
the planners used during learning and final execution. As
learning proceeds and the cost function changes, so does
the wiring of this tree; however, the points involved do not
change.

Algorithm 3 describes Rapidly Exploring Learning Trees
(RLT∗), which uses Algorithms 1 and 2. First, we initialise
the weights, either randomly or using a cost function that
simply favours shortest paths. Then, for each datapoint ζi,
we calculate feature sums and run cacheRRT. The main
learning loop involves cycling through all data points and
finding the best path under a loss-augmented cost function.
The feature sums of this path are calculated and subsequently
the difference with the demonstrated feature sums is com-
puted. At the end of each iteration, an average gradient is
calculated and the cost function is updated. At convergence,
the learned weights are returned.

In addition to saving computation time, the use of caching
encourages consistency between the gradients computed in
each iteration, as they are estimated from the same sampled
points. The effect on the gradients, which resembles that of
momentum [17], can improve performance, as our results in
the next section show.

For RRT∗, the dependance of Z̃oi,gi on the time budget T
is hard to quantify since it depends on the size and nature
of S as well as the cost function we are using, which also
changes with every iteration. For this reason, we resort to an
experimental assessment of the ability of RRT∗ to sample



Algorithm 2 planCachedRRT∗(P ,sinit,c())
1: E ← ∅
2: V ← sinit
3: for i = 0 . . . |P | do
4: (snearest, snew)← Pi
5: (Sfwd, Sbwd)← Pi
6: (Pathsbwd, Pathsfwd)← Pi
7: V ← V ∪ snew
8: smin ← snearest
9: cmin ← Cost(snearest) + c(pathsnearest,snew )

10: for j = 0 . . . |Sfwd| do
11: sfwd = Sjfwd
12: pathfwd = Pathsjfwd
13: Cnear ← Cost(sfwd) + c(pathfwd)
14: if Cnear < cnew then
15: smin ← sfwd; cmin ← cnear
16: end if
17: end for
18: E ← E ∪ {(smin, snew)}
19: for j = 0 . . . |Sbwd| do
20: sbwd = Sjbwd
21: pathbwd = Pathsjbwd
22: Cnew ← Cost(snew) + c(pathbwd)
23: if Cnew < Cost(snear) then
24: sparent ← Parent(sbwd)
25: E ← E r (sparent, sbwd) ∪ (snew, sbwd)
26: end if
27: end for
28: end for
29: ζmin ← minCostPath(V,E, c())
30: return ζmin

Algorithm 3 RLT∗(D, p, η, λ, δ)
1: w ← initialiseWeights
2: F̃← ∅
3: R← ∅
4: for ζi in D do
5: F̃ζi ← FeatureSums(ζi)

6: F̃← F̃ ∪ F̃ζi
7: ri ← cacheRRT(p, sζ

i

init, η)
8: R← R ∪ ri
9: end for

10: repeat
11: ∇w ← 0
12: for ζiin D do
13: c()← getCostmap(w) + L(ζi)
14: ri ← R{i} ; F̃i ← F̃{i}
15: ζ ← planCachedRRT∗(ri, x

i
init, c())

16: Fi ← FeatureSums(ζ)
17: ∇w ← ∇w + F̃i − Fi
18: end for
19: ∇w ← w + λ

|D|∇w

20: w ← w − δ∇w

21: until convergence
22: return w

the right constraints at every iteration of RLT∗ and hence
effectively learn a cost function from demonstration.

V. EXPERIMENTS

We evaluate RLT∗ by comparing it to MMP, implemented
using an A∗ planner, and RLT∗-NC, an ablated version
of RLT∗ that does not use caching. We consider three
experimental settings: 1) a simulated holonomic robot, 2)
a simulated non-holonomic robot, and 3) a real telepresence
robot.

Our experiments take place in the context of socially
intelligent navigation. IRL has been widely used in this
setting [7], [9], [13] because it is usually infeasible to hard-
code the cost functions that a planner should use in complex
social situations. Having the ability to quickly and effectively

learn social navigation cost functions from demonstration
would be a major asset for robots that operate in crowded
environments such as airports [18], museums [19] and care
centres [20].

A. Simulated Experiments

We first consider randomly generated social environments
in simulation, such as the one shown in Figure 1a. Each
arrow in the figure represents a person’s position and ori-
entation. The robot is given the task of navigating from
one point in the room to another. While it is aware of the
orientation and position of different people, it has no idea
how to trade off reaching the target quickly with avoiding
people and obstacles, i.e., the cost function is unknown.
Instead, the robot is given a dataset of demonstrations D.
Each demonstration ζi is a set of configurations s = (x, y)
representing positions of the robot in the configuration space
and each demonstration takes place for a different random
configuration of the social environment, i.e., the people are
at different positions and orientations every time. The task
is to use D to extract a cost function that enables socially
intelligent behaviour.

(a) Example setting (b) Cost function

Fig. 1: (a) A randomised instance of the social navigation
task. Arrows denote the position and orientation of people
in the scene. The robot is represented by the magenta box
and the goal location is represented by the green box. (b)
The corresponding cost function. Red denotes low cost, while
purple denotes high cost.

The features we use can be divided into three categories.
The first category encodes proxemics to the people present
in the scene, i.e., the social features. Within this category
we consider two variations, for reasons explained in the
following section.
• Social feature set 1 (S1): Three isotropic Gaussian

functions with different means, centred in front, behind,
and on the person.

• Social feature set 2 (S2): Three field-of-view features.
The features have a value of 1 if the robot is within a
certain distance and angle from the person.

The second category of features encodes the distance from
the target location using linear, exponential, and logarithmic
functions. The third category encodes the obstacle cost using
a stable function of the reciprocal of the distance from the
nearest obstacle. Figure 1b shows an example cost function



over the whole configuration space for the configuration in
Figure 1a. We use different functions for human and target
proximity, to allow for more degrees of freedom when mod-
elling the underlying cost function. Sufficient regularisation
ensures that that the model does not overfit.

1) Evaluation: To evaluate our algorithms, we generate
a dataset D by planning near-optimal paths from initial
configurations so to goal configurations sg under a ground-
truth cost function cgt() derived from ground-truth weights
wgt and features Fgt. A fully optimal path can only be
derived asymptotically in terms of either time for RRT∗,
or resolution for A∗. In practice, however, we found that
planning for 100 seconds using RRT∗ achieves a path that
is nearly optimal; running longer leads to negligible changes
in path cost. The resulting ground truth dataset enables a
quantatitive empirical evaluation, which is otherwise prob-
lematic in IRL [9], [21]. For each path ζ generated by the
learning algorithm, we know its cost under the ground-truth
cost function and features is simply wT

gtFgt(ζ). Furthermore,
we can compute the cost difference between the learned path
and the demonstrated path with respect to ground truth:

Q(ζ, ζi,wgt) = wT
gt(Fgt(ζ)− Fgt(ζi)), (15)

which is our primary performance metric. Note that, if
the demonstration path ζi is optimal under wgt, then
Q(ζ, ζi,wgt) ≥ 0. For our holonomic simulated experiments,
we consider two learning scenarios.

1) Unknown weights: only wgt is unknown. The demon-
strations and the learning algorithm share social feature
set S1.

2) Unknown weights and features: wgt and Fgt are
unknown. S2 is used to generate the demonstrations
and S1 is used for learning.

The first scenario evaluates each algorithm’s ability to
learn good cost functions when provided only with limited
demonstrations of the task. The second scenario introduces
a feature discrepancy to better simulate real-world settings,
since it is unlikely that the features we define will exactly
match those implicitly used by the human demonstrator.

We also document the total learning time for K iterations
for the algorithms under comparison. All algorithms were
implemented in Python, share similar functions, and were not
optimised for speed apart from the caching scheme in RLT∗.
Finally, we perform a qualitative evaluation by visually
comparing the learned cost functions for each algorithm and
the paths they generate against ground truth.

2) Holonomic Robot Results: Our dataset D consists of
20 trajectories from random social social situations. We split
D into Dtrain and Dtest, each with 10 trajectories. After
training on Dtrain, the cost difference of a cost function
is evaluated on Dtest using (15). The process is repeated
7 times for the same dataset but with different random
compositions of Dtrain and Dtest. All learning algorithms
are initialised using the same cost function that only favours
shortest paths.

As mentioned earlier, planning time and grid resolution
affect the performance of RRT∗ and A∗, respectively. To

make a fair comparison, we vary these two quantities for each
algorithm and plot cost difference against learning time at
each setting. We can then identify which algorithms at which
settings comprise the Pareto front, i.e., are undominated with
respect to cost difference and learning time.

Figures 2a and 2b show the results for the two scenarios
described earlier. MMP X (green) refers to MMP with X
meters of grid resolution while RLT X (red) and RLT∗-NC X
(blue) refer to RLT and RLT without caching, respectively,
with X seconds of planning. The shading represents an
interpolation of the performance between settings for each
method. In this way an area of single colour illustrates
hypothesized domination of that method over another, given
the same amount of time. Since lower is better for both
cost difference and learning time, the closer a point is to
the bottom left corner, the better.

(a) Unknown weights
scenario.

(b) Unknown weights and
features scenario.

Fig. 2: Learning time vs. cost difference on the holonomic
robot for MMP (green), RLT∗-NC (blue), and RLT (red) at
different planning fidelities. On both axes lower is better.

RLT∗ (red) comprises a large majority of the Pareto
front, demonstrating good performance and generalisation
in reasonable time. However, the performance of RLT∗ and
RLT∗-NC significantly degrades at very low planning times
(2 seconds) because AMMP cannot sample good enough
paths to compute a useful gradient.

Note that caching not only speeds learning in RLT∗, it
also modestly reduces cost differences. This suggests that
the caching scheme introduces extra robustness and gen-
eralisation capabilities within the algorithm. As mentioned
in Section IV-B, we hypothesise that the caching scheme
improves learning by making the gradients smoother and
more consistent, as with momentum. To confirm this, we
plot the inner product between successive gradients during
learning in Figure 3. The plot confirms that subsequent
gradients in RLT∗ are more similar.

Finally, note that MMP’s learning time scales exponen-
tially with the size of the grid. This, however, is not solely
due to the graph getting larger but also because A∗ search
scales poorly with the complexity of the cost function itself.
Since it relies on an admissible heuristic that for complex
cost functions is no longer tight, A∗ must expand many more
states. RLT∗ is less susceptible to such problems.

3) Non-Holonomic Robot Results: As mentioned earlier,
a potential advantage of RLT∗ is that it can efficiently handle



Fig. 3: Inner product of succcessive gradients during learn-
ing. The smoother curve for RLT∗ suggests that fixing the
sampled points during learning makes the gradients more
consistent.

TABLE I: Non-holonomic robot results.

RLT* RLT-NC
Average Cost Difference 0.1 2.31
Learning time (s) 1320 18530

learning in the presence of motion constraints. In this section,
we consider a robot planning in a three-dimensional space,
(x, y, θ), representing the position and orientation of the
robot. The robot’s motion is further subject to the following
motion constraints:

ẋ = v × cos(θ), (16)
ẏ = v × sin(θ), (17)

θ̇ = ω, (18)

where v, ω are the linear and angular velocities respectively.
To meet these constraints, we use the POSQ Steer function
[22]. Since this approach gives a local closed-loop policy
between two vertices of the tree, it is more robust to noise
and uncertainty in the motion than an open loop trajectory.
Furthermore, it has been shown to produce smooth paths
between feasible configurations [22]. Evaluation is done in
the same way as in the previous section, except that we
compare RLT∗ only to RLT∗-NC and not MMP, as the latter
cannot handle motion constraints. RLT∗-NC was given 100
seconds to plan, in which case about 3000 configurations
were sampled, and RLT∗’s cache was set to this size.

Figure I shows that RLT∗ is an order of magnitude faster
than RLT∗-NC, while achieving a lower cost difference. The
kinematic constraints contribute to this speedup since they
make the Steer and Safe procedures, which are cached,
more expensive. As in the holonomic case, RLT∗ resulted in
smoother learning, confirming the results of Figure 3.

Figure 4 shows an instance of the types of paths generated
by our method when compared to ground truth. This specific
example was drawn from the validation set and is thus not
a case of overfitting.

B. Real Robot Experiments

In this section, we apply RLT∗ to real, human demon-
strations using a telepresence robot, shown in Figure 5, in
a social navigation scenario. Furthermore, we deploy the
learned cost function on the actual robot.

Fig. 4: Qualitative evaluation of simulated results. The colour
map denotes the learned cost function. Red denotes (low)
cost and green high cost. The learned path (red) is quite
similar to the demonstrated path (black) with a clear im-
provement over the path before learning (purple).

Fig. 5: The telepresence robot used in our experiments.

The experiments take place in a simplified version of
the social scenarios we have seen in the previous section.
There are two people in the scene at different positions and
orientations. A human demonstrator is asked to execute paths
for different initial and final conditions across the room. The
task is similar to the one used in [13] and the purpose is
to find cost functions that account for potential relationships
between people depending on their orientation with respect
to each other. For example, if people are facing each other,
they are likely engaged in conversation or a similar activity
(e.g., taking a photograph) that should not be interrupted. By
contrast, if they are looking away from each other and there
is enough distance between them then, it might be better to
pass between them if doing so yields a shorter path.

To collect data for learning and validation, we use an
off-the-shelf telepresence system augmented with several
sensors that allow localisation and perception [20]. We use an
Optitrack motion capture system to accurately collect ground
truth data of both people and robot positions. RLT∗ learns a
cost function from this data using the social feature set S1
and the rest of the features described earlier.

Since quantitative evaluation is difficult using real data,
as no ground truth is available, we perform a qualitative
evaluation instead. Figure 6 shows some representative cases
that arose during learning. Figure 6a shows a case where
RLT∗ produced paths (red) that are quite similar to the
demonstrated ones (black). Figure 6b shows an instance



instances where the learned paths are reasonable even though
they are not similar to the demonstrated paths.

(a) (b)

Fig. 6: Real demonstrated paths (black), learned paths (red),
and shortest paths (purple). In (a), the learned path is similar
to the demonstrated path; in (b) it is different but reasonable.
The paths are laid over the learned cost function.

Finally, we successfully deployed the learned cost func-
tion, also shown in Figure 6, on a real telepresence robot.
A video demonstrating this deployment can be found in the
supplementary material. Even though our planner outputs a
full policy in terms of angular and linear velocities, to follow
the prescribed path we used an elastic bands local planner
in order to deal with dynamic changes in the environment.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed Rapidly Exploring Learning
Trees (RLT∗), which learns the cost functions of Rapidly
Exploring Random Trees (RRT) from demonstration, thereby
making inverse learning methods applicable to more complex
tasks. Our approach extends the Maximum Margin Planning
to work with RRT∗ cost functions. Furthermore, it uses
a caching scheme that greatly reduces the computational
cost and improves performance. Our results in simulated
social navigation scenarios show that RLT∗ achieves better
performance at lower computational cost, even when there is
a discrepancy between the features used for demonstration
and learning. Furthermore, our results show that RLT∗ can
handle more complex configuration spaces with motion con-
straints. Finally, we used RLT∗ to learn a cost function using
data from real demonstrations on a telepresence robot and
successfully deployed that cost function back on the robot.

In future work, we hope to extend RLT∗ to model how
features evolve over time, in order to, e.g., consider people’s
movement during planning. For complex social path planning
applications, periodic replanning has been shown to help [7],
[9]. Replanning in RRT∗ is also possible [23] and could
potentially be incorporated into RLT∗. Another interesting
avenue for future work is to attempt learning using other
sample based planning methods such as Batch Informed
Trees (BIT∗) [24] which are faster and thus perhaps more
appropriate for tasks such as manipulation.
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