Acquiring Social Interaction Behaviours for Telepresence Robots
via Deep Learning from Demonstration

Kyriacos Shiarlis', Jodo Messias', and Shimon Whiteson?

Abstract— As robots begin to inhabit public and social spaces,
it is increasingly important to ensure that they behave in
a socially appropriate way. However, manually coding social
behaviours is prohibitively difficult since social norms are
hard to quantify. Therefore, learning from demonstration (LfD),
wherein control policies are inferred from demonstrations of
correct behaviour, is a powerful tool for helping robots acquire
social intelligence. In this paper, we propose a deep learning
approach to learning social behaviours from demonstration.
We apply this method to two challenging social tasks for a
semi-autonomous telepresence robot. Our results show that
our approach outperforms gradient boosting regression and
performs well against a hard-coded controller. Furthermore,
ablation experiments confirm that each element of our method
is essential to its success.

I. INTRODUCTION

In recent years, robots have been migrating out of con-
ventional, constrained, industrial environments and into more
social and less structured ones such as museums [1], airports
[2], restaurants [3] and care centres [4]. This shift poses
countless challenges for robotics, from hardware to high-
level behaviour design. A particularly vexing challenge is
to imbue robots with sufficient social intelligence, i.e., to
ensure that they respect social norms when interacting with
humans or completing tasks in the presence of humans. For
example, a robot facing a group of people must maintain an
appropriate distance, orientation, level of eye contact, etc.

Because socially acceptable behaviour is difficult to de-
scribe procedurally, it is typically infeasible to manually code
social intelligence. Furthermore, even traditional approaches
to learning behaviour, such as reinforcement learning, are not
practical because social norms are too difficult to quantify
in the form of a reward or cost function.

A compelling alternative is learning from demonstration
(LfD) [5], wherein control policies are inferred from example
demonstrations of correct behaviour. Because demonstrating
socially appropriate behaviour is typically straightforward for
humans, obtaining the data needed to learn social intelligence
from demonstration is highly feasible. In addition, many
different behaviours can be learned with the same LfD
algorithm, allowing non-roboticists to program personalised
robotic behaviours simply by demonstrating the task.

However, to be practical for real robots, LfD must over-
come some challenges of its own. First, it must learn control
policies that are robust to inevitable errors in the robot’s

Informatics Institute, University of Amsterdam, The Netherlands,
{k.c.shiarlis, j.messias}@uva.nl

2Department of Computer Science, University of Oxford, United King-
dom, shimon.whiteson@cs.ox.ac.uk

Fig. 1: The two social interaction tasks we consider in
this paper. (a) The group interaction task: the robot should
reconfigure itself to facilitate conversation in a group. (b) The
following task: the robot should follow a group of people.
These pictures were taken during a human evaluation session
where DBSoC was compared to different baselines.

perception system. For example, a social robot must be
able to detect and localise people in its environment. If
errors in such perception occur while demonstration data is
being collected, then the LfD algorithm may misinterpret the
demonstration, e.g., by inferring that the robot was avoiding a
person when actually no person was present. Furthermore, if
perception errors occur when the learned policy is deployed,
then the robot may behave incorrectly [6].

A second challenge is to cope with the dynamic size of the
perceptual input. A robot that interacts with a group of people
must be able to cope with groups of different sizes, and
even people coming and going within a single conversation.
This is a poor match for most LfD methods, which assume
observations in the form of fixed-length feature vectors.

Third, in order to be useful for non-experts, the LfD
algorithm must be sufficiently generic. In other words, it
should be able to learn a wide set of behaviours with a single
algorithm, by varying only the data.

In this paper, we propose deep behavioural social cloning
(DBSoC), a new LfD architecture that overcomes these
challenges. Behavioural cloning is an approach to LfD in
which a control policy is directly inferred using supervised
learning, i.e., the demonstrated actions are treated as labels
for the corresponding observations, and a mapping from
observations to actions is learned. By leveraging the power of
deep learning, DBSoC makes behavioural cloning practical
for social robotics. In particular, DBSoC ‘paints’ the output
of the robot’s person detection and localisation system onto
a 2D ‘image’, which is then fed to a convolutional neural
network. In this way, DBSoC can cope elegantly with varying

numbers of people, as well as automatically discover useful
features for selecting actions. In addition, DBSoC employs
long short-term memory (LSTM) [7] network layers, al-
lowing it to condition action selection on its history of
observations and thus filter out transient perceptual errors.

We apply DBSoC to learn two social behaviours for
a semi-autonomous holonomic telepresence robot. In the
first task, the robot must continually adjust its position
and orientation while interacting with a group of people of
dynamic size and position. In the second task, the robot must
follow two people as their relative positions change.

We evaluated DBSoC on these two tasks by deploying
the learned policies on a real telepresence robot and having
it interact with actual human subjects. Our quantitative and
qualitative results show that DBSoC performs well against
a naive controller and outperforms a gradient boosting re-
gression baseline. Furthermore, ablation experiments confirm
that each element of DBSoC is essential to its success.

II. PROBLEM STATEMENT

In this paper, we consider two social tasks for a telepres-
ence robot. Such a robot acts as an avatar for a remotely
present pilot controlling the machine. While telepresence
robots are typically manually controlled, we aim to automate
low-level control so that the pilot need only give high-
level commands telling the robot, e.g., to follow a particular
person or support a conversation with appropriate body
poses. Because telepresence robots are inherently social, and
especially since they represent their pilots as avatars, it is
essential that any learned behaviour be socially appropriate.
In this section, we describe the two particular telepresence
tasks considered in this paper, and the demonstration data we
collected. For both tasks, we assume the robot is equipped
with an imperfect person detection and localisation system.
We also assume it is operating in an unstructured environ-
ment containing a dynamic number of people, some of whom
may not be involved in the pilot’s conversation.

A. Group Interaction Task

In the first task, the robot must maintain a socially appro-
priate position and orientation as the location, position, and
size of the group with which the pilot is interacting changes.
To do so, the robot must distinguish people who are part of
the conversation from those who are merely in the scene.
Though this task, shown in Figure la, looks deceptively
simple, manually coding such behaviour, or even deciding
on what features such behaviour should condition, is quite
difficult in practice, making it an ideal application for LfD.

Previous work has considered what effect robot reposition-
ing following a change in a group’s size and shape has on
the people in that group [8], [9]. Here, we consider how to
automate such repositioning using LfD. Other work considers
detecting groups of people in crowded environments [10]
and then interacting with them. In our approach, groups are
not explicitly detected, but the learned control policy may
implicitly do so when deciding how to act.

B. Following Task

In the second task, the interaction target(s) are moving
and the robot should follow them. The robot should be able
to deal with variability in the formation of the people it is
following. Furthermore, it should be robust to false positive
detections and be able to retain a following behaviour despite
detecting other people who are in the scene but not relevant
to the task. This task is shown in Figure 1b. Following
behaviours can be challenging because the robot’s sensors
often suffer from reliability issues as velocities increase [11].

Previous work used an extended social force model en-
riched with a goal prediction module to allow a robot to walk
side by side with a person [12]. The system tests different
social forces parameters and allows the user to give feedback
about the experience. Based on this feedback, the robot learns
to adapt itself to the specific person. Our work investigates
the possibility of bypassing such models and simply learning
the required behaviour robustly through data.

Knox et al. [13] train a robot to perform several tasks
that are similar to ours, such as maintaining a conversational
distance and “magnetic control”. However, training is done
using human generated reward and reinforcement learning
through the TAMER framework [14]. Furthermore, in con-
trast to our work, their approach can handle only a single
interaction target and assumes perfect sensing.

More generally, in social robotics settings, LfD has been
used to learn high level behaviours [15], [16] and cost
functions for social path planning through the use of inverse
reinforcement learning (IRL) [17], [18]. In this work, we
show how low level reactive social policies can be learned
from demonstration. Outside of social settings, LfD is most
commonly used for complex manipulation tasks [5]. Deep
learning has also been used in an end-to-end fashion to per-
form behavioural cloning in self-driving cars [19]. However,
such an approach is highly intensive in terms of both data
and computation. By contrast, we rely for people detection
on a sensor fusion pipeline that uses both the RGBD camera
and the laser rangefinders of the robot to enable 360°
tracking. Consequently, we require only a modest amount
of demonstration data (approximately one hour), perform
all processing on the robot, and cope successfully with the
robot’s limited RGBD field of view.

C. Data and Experiments

To collect the data required for learning, we performed
one set of experiments for each of the tasks described above.
Every experimental session involved two experimenters, one
or more volunteers from the University of Amsterdam, and a
TERESA' intelligent telepresence system, shown in Figure
2a. One experimenter acted as the pilot while the other
acted as an interaction target. The interaction target also
instructed the volunteers to join or leave the interaction
and change the shape of the interaction group (triggering
an appropriate reaction from the pilot) in order to generate
sufficient variability in the data. For the follow task, the two

http://www.teresaproject.eu.

experimenters walked with the robot, making sure that at
least one of them was tracked at all times, in order to prevent
false data from being recorded.

During these interactions, we recorded the positions and
linear velocities of all people detected and tracked by the
robot. We also recorded a binary label, indicating the primary
interaction target for the robot, i.e., the most important person
in the interaction, as indicated by the pilot. The observation
o; of K people tracked at time t, where the first person is
the primary interaction target, is therefore defined as, o; =
{(pla é1, 01, ¢1> 1)7 "'(p7¢Kume ¢Kt?0)}t7 where pj and
¢y, are the distance and angle from the robot respectively and
pr and b represent the associated velocities (see Figure 2b).
We also recorded the linear and angular velocity commands
given by the pilot, a; = (v¢, w;), where a; denotes the action
at time t. Recording took place at 10Hz, which is the control
rate the robot uses. Data was gathered in multiple different
environments, each containing different numbers of people
and different sources of false positives for people detection.
We collected in total 43512 and 27311 data points for the
following task and group interaction tasks, respectively. This
amounts to approximately two hours of data.

Interaction Group

\e, % o

(@ (b)

Fig. 2: (a) The TERESA telepresence robot used in our
experiments; (b) the data collected for a single frame ()
during our experiments.

III. METHOD

In this section, we describe deep behavioural social
cloning (DBSoC), the learning architecture used to learn a
mapping from robot observations to actions for the tasks
described above. We first describe our behavioural cloning
approach and motivate the use of neural networks in this
application. We then build the network architecture piece by
piece by looking at different aspects of the data such as input
representations, temporal aspects, and output mappings.

A. Behavioural Cloning

Behavioural cloning is a simple approach to LfD that treats
the problem as one of supervised learning. The (sequences
of) observations are viewed as inputs s; and actions a; as
labels. Then, any supervised learning paradigm (regression,

classification) and algorithm (decision trees, Gaussian pro-
cesses, neural networks) [20] can be used to learn a mapping
from s; to a;, which then constitutes a control policy. As
mentioned in Section II an alternative to BC is IRL [17],
which extracts a cost function from the demonstrations that
is subsequently used to plan (or learn [21]) a policy. IRL
however, usually requires a model (or simulator) of the
social environment, which is hard to obtain in this case.
Behavioural cloning is simpler, more practical, and does not
require access to a model or the ability to try out candidate
policies during learning.

DBSoC uses behavioural cloning with neural networks
(NNs). Using NNs has two key advantages in this setting.
First, given the need for a generic algorithm that can tackle
multiple tasks, NNs can learn features, e.g., that can detect
if someone is part of a group, that can be reused across
related tasks. Second, NNs are modular, allowing us to swap
in different modules depending on the high-level application.
For example, we describe below how we use recurrent neural
networks to deal with noisy perceptual input.

B. Inputs and Convolutional Layers

An important characteristic of our observation vector o, is
that its length depends on the number of people around the
robot, which varies over time. This is problematic for many
learning algorithms, which expect a fixed-length input vector.
One way to alleviate this problem would be to fix K to some
reasonable constant. If the number of people in the data is
more than K, only the K closest are kept. If the number is
smaller than K, then only the first K positions of the vector
are filled and the rest set to zeros. However, this implies
that one or more people are in the same location as the
robot, since p,§ = (0,0), which could mislead the learning
algorithm. Another option would be to add a binary feature
to our observation vector to indicate whether the detection
is a valid one, yielding, e.g.:

or = {(p1, 1, p1, 61,1, 1), "'(pKw brs Py Pk, 0, 0)}e

ey
While this representation accurately describes the observa-
tion, it is not convenient for learning. Forcing the algorithm
to learn to ignore observations about people whose last
bit is zero is an unnecessary additional complication. In
addition, the representation ignores crucial symmetries, e.g.,
rearranging the order of the people in the vector yields a
completely different input that describes exactly the same
state.

To avoid these difficulties, we instead imprint the informa-
tion in the observation onto a 2D image. In particular, we fix
a maximum distance %,,qz, Ymaz from the robot and ‘paint’
all the people around the robot within that area on a ternary
image, i.e., each pixel can have one of three values: 0 = no
person is present, 1 = a person is present, 2 = a primary
interaction target is present. We also denote the velocities of
people as lines extending from the detections in the direction
of the detected velocity and with a length corresponding to
its magnitude. Figure 3 shows an example of such an image.

It is straightforward to augment this representation with,
e.g., people’s orientations or the positions of non-human
obstacles, should they be detectable.

A potential downside of this approach, however, is a
great increase in the dimensionality of our representation.
We tackle this problem by applying convolutional neural
networks (CNNs) to this input representation. CNNs per-
form very well on spatially structured images. Although the
dimensionality of the input is large, the number of possible
images is limited. CNNs have also been proven very effective
in order to automatically extract high-level features from
the raw pixel data. This in turn means that they would be
better suited in building an implicit representation of what a
group is. Our results in the next section show that in practice
this representation together with CNNs is not only more
convenient, but also improves learning and the stability of
the resulting behaviour.

Fig. 3: Example images representing the state of the robot.
Circles denote people, lines denote velocity, and the white
circle represents the primary interaction target.

C. Dynamics and Long Short-Term Memory

Using a single observation as input to a convolutional
neural network that outputs a control signal is problematic
for three reasons:

1) A single observation instance o; does not contain
higher order information such as acceleration.

2) The people detection module is imperfect and gener-
ates some false positives. Conditioning only on the
most recent observation makes it impossible to filter
such false positives out.

3) Velocity estimates, while helpful, are also inaccurate
and noisy, and cannot be improved using only the most
recent observation.

These problems can be avoided by using recurrent neural
networks (RNNs), which implicitly allow the network to
condition on its entire history of inputs. Long short-term
memory [7] is a standard way of implementing recurrence
in NNs. Our architecture uses LSTMs to deal with the time-
dependent nature of the problem and achieve robustness in
the face of uncertain detections.

D. Outputs and Overall Architecture

After processing by the recurrent layers, the architecture
then outputs two real continuous values representing the
linear and angular velocities (Upred, Wprea) Of the robot. An
alternative would be to discretise the outputs and treat the
prediction as a classification problem. While doing so has
some benefits, e.g. allowing multimodal output distributions,
we chose regression for two reasons. First, since the right

discretisation is problem specific, a regression approach
is more general. Second, continuous outputs can generate
smoother behaviour.

To train our network, we use backpropagation with the
ADAM [22] optimiser to minimise the mean squared error
(MSE) between the network’s prediction and the data.

Figure 4 shows the complete resulting architecture. We
employ three convolutional layers consisting of 10 3 x 3
filters at each layer. We use ReLU nonlinearities followed by
max-pooling of size 2. The output from the last convolutional
layer is flattened and processed through two LSTM layers of
size 200 and 100 respectively. Finally, a densely connected
layer is used to output the two required control values.
Because the robot selects action s; at 10Hz, the trained
network must be able to forward propagate at that rate. We
found that our network could do so comfortably on an Intel
i7 processor.

Flatten

input frame t

3x3 Conv

3x3 Conv

o @

RelLU + subsample

T

LsTM LSTM
RelLU + subsample

Fig. 4: The complete DBSoC architecture. The image
representing the state passes through two convolution-
nonlinearity-subsample layers before being fed through two
LSTM layers that output the control signals (Vpred; Wpred)-

E. Preventing Covariate Shift

A well known failure mode of BC is that of covariate shift.
This arises because while policy is trained on a dataset that is
assumed to be stationary, it is deployed in an inherently non-
stationary environment. A policy trained using BC thus does
not recover easily from states not seen in the training data
and may drift. This phenomenon motivates methods such
as DAGGER [23], where the expert policy is queried for the
right action at different instances of learning. Although in our
setting DAGGER would be hard to apply, we found it was
essential to train the robot in a similar manner. Specifically,
we performed training sessions iteratively. After a partial data
collection, the robot was trained and the policy deployed.
During deployment, data of correcting actions was collected
whenever the robot behaved inappropriately. The dataset was
augmented with this data and the process was repeated.

IV. EVALUATION AND RESULTS

We evaluate DBSoC by comparing it against three other
learning baselines. The first is an off-the-shelf regression
method. Due to the mixed types in the inputs, we use
gradient boosting regression (GBR), which is considered one
of the best off-the-shelf algorithms for nonlinear regression.
We use this baseline to show that, for traditional regres-
sion methods to work well, task-specific feature engineering
would need to be performed. Inputs to this baseline are the
concatenated observation vectors for K people around the
robot (as described in Section III-B) for 7" timesteps. In this

case, K =4 and T' = 5 so the input vector representations
is K xT x 6 = 120. We did not use 7' = 20 as DBSoC
does because the explosion in input dimensionality caused a
degradation in performance. The second baseline is a deep
architecture that omits the convolutional layers and only
employs the LSTM layers. The input representation is a
vector concatenating the features of KX = 4 people around the
robot. The third baseline is an architecture with no memory
that uses only the convolutional layers.

When evaluating these algorithms, we are concerned not
only with minimising error on the data but also with how they
perform when placed on the robot and tested with humans.
Therefore, our evaluation relies on a mixture of quantitative
and qualitative metrics.

A. Mean Squared Error

Since the algorithms are trained to minimise MSE, the
first performance measure we consider is MSE on both the
training set and a test set not used during learning. In our
case, the test set contained of 20% of the data for each task,
which amounts to 8702 and 5462 data points for the follow
and group interaction tasks, respectively. Table I shows the
performance of each method on both the training and test
sets. We can see that DBSoC outperforms all baselines on
the test set, followed by the LSTM method (where no image
representation is used). GBR is the worst performer by a
significant margin.

GBR | LSIM | CONV | DBSoC

Group | Train | 0.0232 | 0.0098 | 0.0087 | 0.0018
Test | 0.0264 | 0.0120 | 0.015 | 0.0031

Follow | Train | 0.0265 | 0.00334 | 0.0079 | 0.0030
Test | 0.0323 | 0.00450 | 0.0250 | 0.0036

TABLE I: Train and test MSE for DBSoC and the baselines.

B. Output Distribution

A more qualitative yet insightful means of evaluation can
be achieved by examining the distribution of the outputs of
each learned policy, conditioned on the inputs. That is, using
a portion of the test data, we plot the predicted linear and
angular velocities (Vpyed; Wprea) and compare them with the
actual values encountered in the data (vgem,Wdem). This
gives an indication of how the output distribution of the
predictor matches that of the human demonstrator. This can
be more insightful than a single metric value because it
sheds some light on the expected behaviour of the robot.
Figure 5 overlays (Ugem,Wdem) (blue) with (Vpred,Wpred)
for our method and the baselines for the follow task. From
this figure it is clear that GBR captures the demonstrated
distribution quite poorly. Its behaviour is expected to not use
large angular velocities (y-axis) and will thus be not very
responsive. In addition, there is a lot of variance around
the origin, possibly leading to oscillatory behaviour between
positive and negative velocities. The CONV baseline also
seems unable to capture the distribution, as we see many
points that are scattered and far away from any data point, so
we can expect it to behave poorly too. The LSTM policy on
the other hand seems to have similar capabilities to DBSoC,

which clearly does a good job at matching the demonstrator’s
outputs.

Data
LST™M

Angular Velocity
°
Angular Velocity

s R

&
0

&

&
>

s
>
¥
s
@
-~
*

3 02 o4
Linear Velocity

(b) LSTM

Data H Data
CONV GBR

04 02 02 04 04 02

[
Linear Velocity

(2) DBSoC

Angular Velocity
°
Angular Velocity
°

3 02 o4
Linear Velocity

(d) GBR

04 02 02 04 04 02

[
Linear Velocity

(c) CONV

Fig. 5: Output distributions of the follow data (red) and each
of the four learned policies.

C. Human Evaluation

Since the goal of DBSoC is to learn social behaviour, it is
essential to evaluate it using human subjects. Furthermore,
the policy can only be properly assessed by deploying it on
an actual robot. A key reason for this is that behavioural
cloning treats learning as a supervised problem, but the
learned policy is ultimately deployed in a sequential decision
making setting. It is thus crucial to actually deploy the policy
and verify that the learned actions do not carry the robot to
undesirable states.

Our human evaluation consisted of 5 groups and a total
of 15 subjects from the University of Amsterdam interacting
with the learned policies as well as a hard-coded controller.
This hard-coded behaviour interprets the person closest to
the robot as the sole interaction target and attempts to keep
a constant distance (p) of 1.3m from them, in accordance
with standard proxemics [24], and an orientation (¢) of 0°.
The subjects were first briefed about the purpose of each
behaviour they were about to evaluate (i.e., follow or group
conversation). Following the briefing was a calibration step
where the subjects were shown human-level performance in
each of the tasks as well as various policies at random.
This allowed the subjects to get a feel for what to expect
from the robot. After calibration, the subjects were given
approximately two minutes to interact with each policy for
each of the tasks. The policies were given anonymously and
in a different order each time. The subjects were then given
the opportunity to rate the social performance of each policy
with a number from 1 to 10, with 10 being human-level

performance. Examples of the tasks and policies in such an
evaluation session can be seen in the associated video.?

A summary of the scores for each policy is shown as box
plots in Figure 6. The results show that different methods
perform quite differently depending on the task. For example,
the hard-coded controller is perceived to perform well for
the follow behaviour—due to the smoothness of its control—
whereas in the group interaction task that controller performs
poorly. A common comment from subjects was that the
hard-coded controller only concentrated on one person and
did not adjust to the group. A perhaps more surprising
result in that humans perceive GBR to be a decent policy
on average for the following tasks. These ratings are quite
noisy, however, because the robot’s behaviour varied a lot
depending on the situations that arose during interaction.
DBSoC performs quite well during all evaluations. Remark-
ably, it never received a score lower than 5, whereas most
of the other methods did. Furthermore, when performance is
averaged across tasks, it performed the best of all methods,
showing greater generality than the baselines. However, it
does not perform quite as well as the hard-coded controller
on the follow task. This was mainly because control was less
smooth for DBSoC, as it was for all the learning baselines.

A more comprehensive evaluation using many more sub-
jects and a more detailed questionnaire would be necessary
to reach definitive conclusions. Nonetheless, these results
provide some confirmation of the generality and effectiveness
of DBSoC. Furthermore, the fact that the learned policies
were positively evaluated by subjects who were allowed to
interact freely with the robot (rather than having to follow a
rigid script), shows that DBSoC has learned useful policies
that generalise beyond the data on which they were trained.

s

0
GBR Hard- LSTM CONV DBSoC GBR Hard- LSTM CONV DBSoC
coded coded

(b) Following

(a) Group Interaction

Fig. 6: Box plots summarising human evaluation scores for
all baselines on the two tasks.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced DBSoC, a generic neural net-
work architecture that allows learning from demonstration for
social robotic tasks. We considered two social tasks: group
interaction and following. Our architecture was able to learn

2http://bit.ly/2vqo9Vv

both tasks well without any programming, demonstrating
its generality. Its performance was confirmed quantitatively
and also from human evaluation sessions where the learned
policies were deployed on a real telepresence robot. In the fu-
ture, we aim to use reinforcement and inverse reinforcement
learning along with behavioural cloning in order to further
improve the quality as well as the range of behaviours that
can be learned.
REFERENCES

[1] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, Dellaert et al.,
“Minerva: A second-generation museum tour-guide robot,” in Robotics
and automation, 1999., vol. 3. 1EEE, 1999.

[2] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila,
M. Chetouani, Cremers et al., “Spencer: A socially aware service robot
for passenger guidance and help in busy airports,” 2015.

[3] Y. Qing-xiao, Y. Can, F. Zhuang, and Z. Yan-zheng, “Research of
the localization of restaurant service robot,” International Journal of
Advanced Robotic Systems, vol. 7, no. 3, p. 18, 2010.

[4] K. Shiarlis, J. Messias et al., “TERESA: a socially intelligent semi-
autonomous telepresence system,” 2015.

[5] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469483, 2009.

[6] K. Dautenhahn and C. L. Nehaniv, Imitation in animals and artifacts.
MIT Press Cambridge, MA, 2002.

[71 S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[8] H. Kuzuoka, Y. Suzuki, J. Yamashita, and K. Yamazaki, “Reconfig-
uring spatial formation arrangement by robot body orientation,” in
International conference on Human-robot interaction, 2010.

[9] J. Vroon, M. Joosse, M. Lohse, J. Kolkmeier, J. Kim, K. Truong,
G. Englebienne, D. Heylen, and V. Evers, “Dynamics of social
positioning patterns in group-robot interactions,” in RO-MAN, 2015.

[10] B. Lau, K. O. Arras, and W. Burgard, “Multi-model hypothesis group
tracking and group size estimation,” International Journal of Social
Robotics, vol. 2, no. 1, pp. 19-30, 2010.

[11] M. Kobilarov, G. Sukhatme, Hyams et al., “People tracking and
following with mobile robot using an omnidirectional camera and a
laser,” in ICRA, 2006.

[12] G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu, “Robot
social-aware navigation framework to accompany people walking side-
by-side,” Autonomous Robots, pp. 1-19, 2016.

[13] W. B. Knox, P. Stone, and C. Breazeal, “Training a robot via human
feedback: A case study,” in /ICSR. Springer, 2013, pp. 460—-470.

[14] W. B. Knox and P. Stone, “Interactively shaping agents via human
reinforcement: The TAMER framework,” in K-CAP. ACM, 2009.

[15] W.-Y. G. Louie and G. Nejat, “A learning from demonstration system
architecture for robots learning social group recreational activities,” in
IROS, 2016 IEEE/RSJ International Conference on. 1EEE.

[16] A. Lockerd and C. Breazeal, “Tutelage and socially guided robot
learning,” in Intelligent Robots and Systems, 2004.(IROS 2004)., 2004.

[17] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in ICML. ACM, 2004, p. 1.

[18] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in /CRA, 2010.

[19] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv:1604.07316, 2016.

[20] C. M. Bishop, “Pattern recognition,” Machine Learning, 2006.

[21] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse
reinforcement learning.” in AISTATS, 2011, pp. 182-189.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] S. Ross, G. J. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
International Conference on Artificial Intelligence and Statistics, 2011,
pp. 627-635.

[24] E. T. Hall, “The hidden dimension,” 1966.

This work is funded by the EC-FP7 under grant agreement no.
611153 (TERESA). We would like to thank all the subjects involved
in the data collection and evaluation sessions for their time and
feedback.

