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Abstract—In this paper, we approach the problem of Inverse
Reinforcement Learning (IRL) from a rather different perspec-
tive. Instead of trying to only mimic an expert as in traditional
IRL, we present a method that can also utilise failed or bad
demonstrations of a task. In particular, we propose a new IRL
algorithm that extends the state-of-the-art method of Maximum
Causal Entropy Inverse Reinforcement Learning to exploit such
failed demonstrations. Furthermore, we present experimental
results showing that our method can learn faster and better than
its original counterpart.

I. INTRODUCTION

In Inverse Reinforcement Learning (IRL) [4], an apprentice
aims to learn a policy for acting in an environment modelled
by a Markov Decision Process (MDP) for which the reward
function is not available, but samples from the policy of an
expert performing the task are given instead. An IRL algorithm
tries to find a reward function that leads the apprentice to
exhibit behaviour that is similar to the expert’s, and that
generalises well to situations for which expert data is not avail-
able. IRL methods have been applied to simulated car driving
[1] and socially appropriate navigation [2, 8]. Existing IRL
methods leverage concepts from the wider Machine Learning
community, such as maximum entropy [10] and Bayesian
formulations [5], structured classification [7], boosting [6] and
Gaussian processes [3].

Existing IRL algorithms learn only from successful trials,
i.e., from data gathered by an expert performing the task
well. This is consistent with the main motivation of IRL
since it allows learning in tasks where the reward cannot be
trivially hard-coded. For example, the reward function that
allows an agent to perform complicated manoeuvres while
flying a helicopter cannot be trivially determined, but example
demonstrations can be easily obtained from an expert.

However, in many realistic scenarios, failed trials are also
readily available. Consider for example tasks such as driving
a car. Since humans also learn this task by trial and error,
demonstrations of both successful and failed behaviour are
available. Moreover, although hand-coding a reward function
for this task would be infeasible, labelling each trial as
successful or failed is straightforward.

In this paper, we present the first IRL algorithm that can
learn from both successful and failed demonstrations. In doing
so, we address a key difficulty in IRL: the problem is typically
under-constrained since many reward functions are consistent
with the expert’s behaviour. By using failed trials, our method
reduces this ambiguity, resulting in faster and better learning.

To derive an IRL algorithm for learning from failure, we
start from the state-of-the-art method of Maximum Causal

Entropy Inverse Reinforcement Learning [10]. This approach
starts by formulating a constrained optimisation problem that
seeks a reward function that yields behaviour consist with that
of the expert. We formulate a new optimisation problem with
additional constraints that require the resulting behaviour to
also be maximally different from the failed demonstrations.
Then, by applying the method of Lagrangian multipliers, we
produce our new method, which learns from both successful
and failed demonstrations. Our empirical results show that
utilising failed trials enables learning a reward function that is
closer to that of the expert, in fewer iterations.

II. METHOD

Ziebart proposed an IRL method based on the principle
of Maximum Causal Entropy [9]. The main idea is to find
a stochastic policy π(a, s) that maximises the causal entropy
H(AT ||ST ) of all actions AT taken in a time horizon T ,
given the visited states ST , while constrained to match certain
statistics from the expert dataset D. These statistics are called
the empirical feature expectations Φ̃D. This task is formalised
as a constrained convex optimisation problem which is then
addressed using the method of Lagrangian multipliers.

Each assignment of these multipliers defines a specific
reward function, which is optimised as follows. A policy is
found under the current reward function using a Bellman
equation with a softmax operator instead of a maximum. The
feature expectations of the model are then calculated from D.
Finally, the multipliers are updated based on the comparison
between the empirical and model feature expectations.

Our method extends this approach in two key ways. First,
we relax the constraint that the model must exactly match
Φ̃D by introducing slack variables (ζ+ and ζ−). Second, we
introduce new constraints that enforce dissimilarity between
the model and Φ̃Db

, the empirical feature expectations of the
failed demonstrations. This is done through a second set of
slacks (α+ and α−). The resulting constrained optimisation
problem is:
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where s and a are states and actions in the MDP; D and C
are constants that specify how much we prioritise minimising
the ζ slacks versus maximising the α slacks. Optimisation is
performed using Lagrangian multipliers, similarly to Ziebart’s
method. The Lagrangian is first maximised with respect to
the variables in the objective function to obtain the dual. We
then update the Lagrange multipliers by taking a step in the
direction that minimises this dual.

III. RESULTS & DISCUSSION

We compared the performance of our method to Ziebart’s
original IRL method on a simulated robot control task that
requires avoiding moving obstacles. In particular, the robot
aims to reach a target state (T) of high reward, while avoiding
some states of negative reward (N). The (N) states change
throughout time.

To set up the experiments, we defined two reward functions,
Re and Rt, both of which are unknown to the learning
algorithms. Re, the expert’s reward function, is the true reward
function while Rt is the reward function used by a taboo agent
that generates the failed demonstrations. Specifically, the taboo
agent attempts to approach the (N) states rather than avoid
them, and ignores the target. Using these reward functions, we
generate the empirical feature expectations Φ̃D,k and Φ̃Db,k by
allowing agents using soft-optimal policies w.r.t. Re and Rt
to start from an initial state distribution b0,train and proceed
for T timesteps. Based on this data, we train two apprentices,
one using Ziebart’s method and one using ours. Finally, we
evaluate performance on a test distribution of initial states
b0,test.

Figure 1a shows the average value, with respect to Re,
of the policies found by the two methods, at each iteration.
Our approach learns more quickly that Ziebart’s method and
ultimately matches the value of the expert’s policy, while
Ziebart’s method plateaus lower. Figure 1b shows the average
value of the two methods with respect to Rt. In this case, lower
values are better as they correspond to performing badly on
a bad reward function. The results indicate that our method
does a better job of minimising value with respect to Rt than
Ziebart’s method. This figure also shows the performance of
the expert’s policy with respect to Rt (green). Unlike Ziebart’s
method, our method is able to accumulate less value with
respect to Rt than the expert’s policy.

These results demonstrate that taking into account failed
demonstrations of a task can allow an apprentice to generalise
better to new initial states and learn in fewer iterations than
previously possible. In the future, we aim to apply this method
to more realistic scenarios such as those involving real robots.
We also hope to examine how the similarity between the expert
and taboo datasets affect the apprentice’s ability to learn.
Finally, we would like to extend our modifications to other
popular IRL algorithms.

(a) Expert Reward Function (b) Taboo Reward Function

Fig. 1: Results from the moving obstacle avoidance task. Learning
from failure (blue) yields behaviour that is more similar to that of the
expert and more dissimilar to that of the taboo agent than Ziebart’s
IRL method (red).
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