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ABSTRACT
Shaping functions can be used in multi-task reinforcement
learning (RL) to incorporate knowledge from previously ex-
perienced tasks to speed up learning on a new task. So far,
researchers have pre-specified a separate representation for
shaping and value functions in multi-task settings. However,
no work has made precise what distinguishes these represen-
tations, or what makes a good representation for either func-
tion. This paper shows two alternative methods by which
an evolutionary algorithm can find a shaping function in
multi-task RL without pre-specifying a separate represen-
tation. The second method, which uses an indirect fitness
measure, is demonstrated to achieve similar performance to
the first against a significantly lower computational cost. In
addition, we define a formal categorisation of representa-
tions that makes precise what makes a good representation
for shaping and value functions. We validate the categori-
sation with an evolutionary feature selection method and
show that this method chooses the representations that our
definitions predict are suitable.

Categories and Subject Descriptors
H.1 [Systems and Information Theory]: Value of infor-
mation

Keywords
reinforcement learning, genetic algorithms, feature selection,
shaping

1. INTRODUCTION
Reinforcement learning (RL) is a well-established field for

learning control policies for intelligent agents. An RL agent
engages in a sequential decision process in which it interacts
with an environment by choosing an action based on sen-
sory input, or state, it receives from the environment. For
each action, the agent receives a real-valued reward from
the environment’s reward function. It uses this to update
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its value function, which for each state-action pair estimates
the expected cumulative reward, or return, after picking that
action in that state. The agent’s goal is to maximise return
by constructing a policy – a mapping from states to actions
– that picks the highest valued actions.

RL has until recently mainly been applied to single-task
settings. However, in real life, agents should be able to cope
with multiple different, but related tasks. Imagine a mobile
robot that should be able to find a charge station. Each
new environment that it is placed in – for example, differ-
ent buildings – comprises a separate task, that nonetheless
shares structure with the other tasks. We call a distribu-
tion over tasks a domain. Thus, a charge station domain
could be one composed of different buildings with randomly
placed charge stations. Näıve agents might try to learn each
task from scratch. A better approach is to apply knowledge
from previously experienced tasks to some new task from
the domain.

Shaping functions [12] capture prior knowledge about a
task and speed up learning by providing the agent with ad-
ditional informative “guideposts” that reward for desired ac-
tions. In a multi-task setting, this prior knowledge can be
learned from previously experienced tasks in the domain. A
shaping function is thus a good candidate to transfer knowl-
edge and speed up learning across similar tasks.

Konidaris and Barto [6] were the first to take this ap-
proach. In their work, an agent in a multi-task setting
uses knowledge from experienced tasks to learn an estimator
of state value across tasks, which is then used as a shap-
ing function that significantly accelerates learning on new
tasks. A drawback of their method is that it requires the
pre-specification of a separate sensory representation for the
shaping function, which is based on those sensory features
that are “consistently present and retain the same semantics
across tasks” [6]. In other words, the representation consists
of the features on which similarities across tasks are based.
Other work that focuses on discovering a shaping function
across tasks [15] similarly uses a separate representation.
However, no work has made precise what distinguishes that
representation from others, or what makes a good represen-
tation for a shaping function.

In this paper, we employ two alternative methods by which
an evolutionary algorithm can find a shaping function in a
multi-task RL setting without the pre-specification of a sepa-
rate representation. In addition, we formalise what it means
for a feature to retain the same semantics.

In particular, this paper makes the following main contri-
butions. Firstly, we show that an evolutionary algorithm can



find a shaping function in a multi-task setting without pre-
specifying on which features the shaping function should be
based. Secondly, we propose an alternative fitness measure
that significantly speeds up the evolutionary algorithm, and
analyse the cost / performance trade-off. Finally, we propose
a formal definition of what it means for a feature to retain
the same semantics across tasks, and therefore whether a
feature can be used for shaping. Our experimental results
show that the evolutionary algorithm finds the same features
as our definitions predict.

2. RELATED WORK
Artificial shaping was introduced by Dorigo and Colom-

betti [1] in a robotics application, and in a more functional
form by Matarić [11], who called shaping functions“progress
estimators”. In order to prevent divergence from the opti-
mal policy such as in [14], Ng et al. [12] provided a rigorous
theoretical foundation that showed that in order to retain
the optimal policy, a shaping function should consist of a
difference of potential functions over states.

Since then, there have been a number of successes in dis-
covering shaping functions automatically for RL problems,
both for single- and multi-task settings. In a single-task set-
ting, Laud and DeJong [8] introduced “dynamic shaping”, in
which a shaping function based on the experimenters’ rough
intuition on a task gets refined while the agent interacts with
the task. Other single-task research includes that of Marthi
[10], in which a shaping function is discovered given a set of
state- and temporal abstractions, and Grzes and Kudenko
[4], in which learning the shaping function relies on an initial
model of the task that is refined as the agent progresses on
the task. Thus, these approaches all provide some form of
prior knowledge. Elfwing et al. [2] evolve a shaping function
that, when transferred to a real robot, resulted in better
performance than when transferring Q-values.

All single-task work naturally involves cases in which the
value- and shaping function are based on the same repre-
sentation. A multi-task setting makes this impossible, since
usually not all the features retain the same meaning across
tasks. A shaping function in a multi-task setting is thus a
powerful tool for speeding up learning since it allows for the
automatic incorporation of prior knowledge (from previous
tasks), and allows for a separation of representations, one
about which knowledge can be retained across tasks (for the
shaping function), and one about which knowledge has to
be re-learned (for the value function).

Work on multi-task settings has so far focused on the
automatic incorporation of knowledge from previous tasks.
Konidaris and Barto [6] were the first to learn a shaping
function automatically in a multi-task environment by learn-
ing an estimator of the value function. However, they pre-
designed the representation on which the shaping function
was based, just like in [15], where an “optimal reward func-
tion” equivalent to a shaping function is searched on a dis-
tribution of tasks, and [16], in which the performance of
different shaping function representations is compared on a
dynamic task.

Some work from the transfer learning community has fo-
cused on discovering or constructing relevant features for
multi-task reinforcement learning, such as [3, 9], but these
methods have focused only on value function representa-
tions, and do not exploit task-invariant knowledge in the
domain. Although there are other transfer learning meth-

ods that do, their approach is not based on feature selection
or construction (for an extensive overview of these and other
transfer learning approaches, see [17]).

Our work differs from the previous in that it focuses on
a multi-task setting in which different representations are
relevant for the value and shaping function, and it does not
pre-specify the representations for either function. In addi-
tion, it provides a categorisation of features that makes it
clear which features should be used for both the value- and
the shaping function, which could be used by regular feature
selection methods.

3. BACKGROUND: SINGLE-TASK RL
This section provides a brief background on RL. In RL,

a task is generally a Markov decision process (MDP),
which is a tuple M = 〈S, A,P, γ,R〉, where S is a set of
states; A is a set of actions; P(s′|s, a) is the transition
model that defines the probability of ending up in s′ given
state s and action a; γ ∈ [0, 1] is the discount factor;
and R(r|s, a, s′) is the reward function that defines a
probability distribution over the immediate reward r ∈ R
when taking action a in state s and transitioning to state
s′. R(s, a, s′) denotes the expected reward in (s, a, s′), i.e.,
R(s, a, s′) = E[R(r|s, a, s′)].

A policy over a set of states S is a function π : S ×A 7→
[0, 1], i.e. π(s, a) gives the probability of taking action a in
state s. Given such a policy, the value of taking action a in
state s under that policy is the expected return (expected
cumulative discounted reward) received when starting in s,
taking action a, and following π thereafter, and is defined
by the action value function, or Q-function, Qπ(s, a):

Qπ(s, a) =
X

s′

P(s′|s, a)

"

R(s, a, s′) +
X

a′

π(s′, a′)γQπ(s′, a′)

#

All optimal policies share the same optimal Q-function

Q∗(s, a) =
X

s′

P(s′|s, a)

»

R(s, a, s′) + γ max
a′

Q∗(s′, a′)

–

(1)
An often-used algorithm to learn Q-values is Q-learning

[18], which uses the following update rule to update the Q-
value for a given state-action pair:

Q(s, a)← Q(s, a) + α

»

r + γ max
a′

Q(s′, a′)−Q(s, a)

–

where α is the learning rate and r is the immediate reward
received after taking a in s. Frequently, a learning agent
is evaluated on the MDP for a number of episodes. In
each episode, the agent interacts with the MDP until an
“absorbing” state is encountered, which is often a goal state
that the agent needs to reach.

When learning using a shaping reward function F in
addition to the reward function R provided by the MDP, the
agent finds an optimal policy for MDP M = 〈S, A, T, γ, R〉
by learning on a transformed MDP M ′ = 〈S, A, T, γ, R′〉,
where R′ = R+F . Ng et al. [12] showed that for an optimal
policy in M ′ to also be optimal in M , F must be a differ-
ence of potentials: F (s, a, s′) = γΦ(s′) − Φ(s), where Φ is
a potential function over states. Wiewiora [19] showed that
using Φ for shaping is equivalent to using it to initialise the
Q-function for the original MDP M .



Figure 1: Simulation environment (real size 10x10).

4. A MULTI-TASK RL MODEL
To investigate the automatic discovery of shaping func-

tions in a multi-task setting, the problem domain should
be composed of a series of multiple different, but related
tasks. In addition, states should be represented such that it
is possible to distinguish separate features that correspond
to various sensor readings. This section describes how we
model this setting.

A task t is an MDP as defined previously. A domain D
is characterized by a fixed distribution over tasks that de-
fines the probability of a given task t to occur. The agent
faces a series of tasks sampled from the domain. We extend
the definition of the transition- and reward function to make
explicit the dependency on the task: P(s′|s, a, t) is the tran-
sition model that, given task t, defines the probability of
ending up in s′ given state s and action a; and R(s, a, s′, t)
is the expected reward in (s, a, s′) given t: R(s, a, s′, t) =
E[R(r|s, a, s′, t)]. For simplicity, we assume that the dis-
tribution over tasks is such that all tasks share the same
action space. However, the reward- and transition function
may change between tasks.

We consider a particular implementation of this model in
which a single task consists of a deterministic, non-toroidal,
10x10 grid world and a goal. The agent should find the
shortest path to the goal from a given start state, and can
move forward or backward, or rotate 90◦ left or right. Fol-
lowing Konidaris and Barto [6], we place five beacons in the
world, with the first beacon placed at the goal location and
the other four distributed randomly (figure 1). Beacons emit
a signal that the agent can detect. The domain consists of
a uniform distribution over tasks with the goal and the last
four beacons placed randomly, and the first beacon always
at the goal.

In order to be able to distinguish separate features, we
define an observation function O : S 7→ X, where X ∈ Rd

maps the true underlying states of the MDP to factored
agent observations X = (X1, . . . , Xd). For a given s ∈ S,
O(s) returns a corresponding observation (an assignment
of values to the features) x = (x1, . . . , xd). This essentially
places our problem definition in a Partially Observable MDP
(POMDP) framework, where the observation function pro-
vides the agent with observations that correlate with, but
do not completely resolve, the underlying state. However,
we assume full observability if all features are observed: the

Figure 2: Methods: simulation-based fitness (a) and
regression-based fitness (b). R is the base reward function
of the MDP, whereas F = γΦ(s′)−Φ(s) is the shaping func-
tion based on the potential function Φ(·). Note that the
regression-based method does not explicitly evaluate the ef-
fect of the shaping function on return.

function O(·) is defined such that there is a one-to-one map-
ping from observations to states. The observation function is
useful because the task might become POMDP if the agent
observes less than the full feature set, which might happen
if features that are deemed useless are removed.

We assume that all tasks share the same set of features.
The beacon domain has nine: (x, y) is the position on the
grid, angle is the agent’s current angle, coinflip randomly
takes on the value 0 or 1 on each step, and beaconi is Man-
hattan distance to beacon i ∈ [1, 5].

5. METHODS
We wish to investigate whether it is possible to find a

shaping function in a multi-task setting, such as the one
specified in section 4, without pre-specifying which of the
features it should be based on. Evolution is a good candi-
date because of its inherent ability to find properties that
are consistently present and retain the same meaning across
tasks; moreover, it has proven successful in finding shaping
functions in a single-task setting [2].

We employ two different methods, and investigate the pros
and cons of each (see figure 2 for a schematic representa-
tion). The first, simulation-based evolution, evaluates the
fitness of a shaping function by simulating the agent on a
sample of tasks and measuring how much reward it accrues.
The second, regression-based evolution, calculates fitness by
measuring how well the shaping function predicts state value
V ∗(s) = maxa Q∗(s, a).

5.1 Simulation-Based Evolution
It is intuitive that simulation-based evolution is a good

candidate for our goal: by explicitly simulating the agent’s
interaction with tasks sampled from the domain, it directly
optimises for shaping functions that maximise the agent’s
return across those tasks, and hence result in the fastest
inter-task learning.

The simulation-based genetic algorithm (GA) evolves a
real-valued genome that directly codes for the weights and
bias of a linear potential function Φ(x) = wᵀx+b, where b is
the bias term. For fitness evaluation (figure 2), the genome
is decoded by setting each weight in the potential function to
the value specified by the corresponding gene in the genome.
A Q-learning agent using the decoded potential function for



shaping is subsequently evaluated on a sample of N tasks
from the domain for M episodes, and fitness is calculated
as 1

NM

PN
i=0

PM
j=0 Rij , where Rij is the return in task i,

episode j. Return is calculated using task i’s base reward
function, i.e., excluding the additional rewards provided by
the shaping function.

5.2 Regression-Based Evolution
Simulating agent-task interaction for each fitness evalua-

tion is costly, especially for complex or realistic task sim-
ulations that are computationally intensive. Therefore, we
compare to a second, computationally cheaper, method that
requires significantly less simulation time. This method does
not optimise directly for maximisation of return across tasks,
and is instead based on the idea that a good potential func-
tion approximates the optimal value function, as also ar-
gued by Ng et al. [12]. To see why this is intuitive, consider
Wiewiora’s result on potential-based shaping [19]: using a
potential function for shaping is equivalent to using it to ini-
tialise the value function. Initialising the value function with
an approximation of the optimal value function clearly helps
to reduce convergence time, and might in addition result in
a policy that is already near-optimal. Since evolving an esti-
mator of the optimal value function does not require explicit
simulation, we can save a significant amount of simulation
time.

The gain compared to the simulation-based method is in
the fitness evaluation, which only requires simulation of the
agent-task interaction once, before starting the GA (figure
2). During simulation, a sample of N tasks is taken and
the agent is run for M episodes on each task. A data set
of E examples is then constructed by taking the union of
the agent’s value tables from each task: thus, each exam-
ple is an observation-value pair. Fitness is calculated as
− 1

E

PE
i=0 |V̂i − Vi|, where V̂i is the estimator’s estimate of

Vi, the value the agent learned for observation i.

6. FEATURE CATEGORY DEFINITIONS
As discussed previously, research that has focused on dis-

covering a shaping function across tasks has pre-specified its
representation to be based on those features that retain the
same semantics across tasks. However, a precise definition
of what this means has never been established. To the best
of our knowledge, we are the first to propose a categori-
sation of features in multi-task RL settings based on their
properties, and provide a formal definition of those proper-
ties. This definition will help us form a hypothesis about
the features that methods for finding shaping functions will
find important, as well as increase understanding of differ-
ent uses of information in multi-task settings. In addition, it
could facilitate the automatic discovery of shaping functions
without pre-specifying their representation.

It is intuitive that there is a difference in the features from
the beacon domain. First and foremost, coinflip is obvi-
ously useless since it is random. Feature beacon1 is always
placed at the goal, so a reduction in beacon1 value always
means the agent is closer to the goal. Hence this feature re-
tains the same meaning across tasks. We call such a feature
domain informative.

The other beacons are scattered randomly in each task,
so they do not seem to provide any useful information. The
x, y, angle features are useful within a task because they
uniquely identify each state; therefore, once the agent has

Figure 3: Venn diagram of feature categories.
(M)TI=(minimal) task informative; (M)DI=(minimal)
domain informative.

learned the value of each position and angle, it has solved the
task. However, the agent will have to re-learn this value in
every new task, because the goal changes position randomly.
We call features that are informative within a task but do
not retain the same meaning across tasks task informative.

Our formal definitions follow Parr et al. [13] in defining a
feature to be informative if it helps predict the immediate
reward or next state, given an observation and an action.
By this definition, a feature is informative if it provides in-
formation on the distribution over possible next states and
immediate rewards. We can use this to formally define the
feature categories as follows:

Task-informative features are features that, when ob-
served on their own, provide information on the distri-
bution over possible next states and expected immedi-
ate reward, i.e., Xi is a task-informative feature if for a
given task t there exists an a ∈ A for which P(s′|a, t) 6=
P(s′|Xi, a, t) or E [R(r|a, s′, t)] 6= E [R(r|Xi, a, s′, t)].

Thus, the feature may or may not be seen as informa-
tive given other features present in the observation
(which potentially provide the same information), but
by this definition the feature provides information when
observed on its own, and could thus be useful.

Domain-informative features are features that, when ob-
served on their own, provide information on the distri-
bution over possible next states and expected imme-
diate reward across tasks, i.e. a feature Xi is domain
informative if P(s′|a) 6= P(s′|Xi, a) or E[R(r|a, s′)] 6=
E[R(r|Xi, a, s′)]. Note the absence of t in this defini-
tion, since the feature provides information on distri-
butions across tasks.

Note that these categories are not mutually exclusive: a
domain-informative feature might well also be a task-informa-
tive feature, such as beacon1 in our example. A purely do-
main informative feature is one that does not provide infor-
mation within a task, yet can be used to distinguish (classes
of) tasks in the domain. For example, if in tasks with a red
floor a negative reward is received when taking action a1,
but in tasks with a green floor a positive reward is received
for a1, then floor colour is domain informative. It is not
task informative because the observed colour is the same on
every time step within a given task.

Also note that, as mentioned earlier, a feature may or
may not be seen as informative given other features present
in the observation. For example, if we were to add an-
other feature that encodes the angle in radians instead of
in degrees, this would not add any information. The fea-
ture is task informative of itself, but is redundant given the
other features present. There is a minimal subset of task-
informative features, that we label MTI-features, that makes
all other task-informative features redundant within a task.



Since we are assuming full observability, in our multi-task
RL model this is a set of features that are necessary for full
observability. In the beacon domain there is one such set,
namely x, y, angle: this set uniquely identifies each state,
and removing one of the features would result in partial ob-
servability. There is a similar subset of domain-informative
features that makes all other domain-informative features
redundant, which we have labelled MDI-features (figure 3).

There is an alternative way to formulate the definitions
that enables an agent to distinguish task- and domain-infor-
mative features based on the Q-values it has learned, which
is practical in settings in which the agent does not have
direct access to the underlying states of the MDP.

Rewriting equation 1 using the observation function de-
fined earlier, and substituting x for O(s) gives

Q∗(s, a) =
X

s′

P(s′|x, a)

»

E[R(r|x, a, s′)] + γ max
a′

Q∗(s′, a′)

–

.

(2)
Note that the optimal Q-values solely depend on P(s′|x, a)

and E[R(r|x, a, s′)]. Since our definitions of feature cate-
gories also solely depend on these quantities, they can be
rewritten in terms of the information the features provide
on optimal Q-values.

By treating Q as a random variable and measuring the
task or domain “informativeness” of a feature by the change
in certainty it causes about Q∗ (when all features are ob-
served, certainty is 100%, but the fewer features are ob-
served, the more uncertain an estimator will be about Q∗),
the definitions can be rewritten as follows:

Task-informative features Xi is a task informative fea-
ture if for a given task t there exists an a ∈ A for
which

p(Q∗|a, t) 6= p(Q∗|Xi, a, t). (3)

Domain-informative features Xi is domain informative
if there exists an a ∈ A for which

p(Q∗|a) 6= p(Q∗|Xi, a). (4)

7. EXPERIMENTS AND RESULTS
As explained in section 5, we designed two alternative

methods for finding shaping functions in our domain: a
simulation-based method, which explicitly optimises for shap-
ing functions that result in the highest inter-task return; and
a computationally cheaper regression-based method, which
optimises for good predictors of V ∗ across tasks.

In the first set of experiments, we evaluate the perfor-
mance of both methods and discuss the cost of each. In
the second, we use our definitions of feature categories to
form a hypothesis about which features should be used for
the value function (task informative) and shaping function
(domain informative), and design experiments to verify this
hypothesis.

7.1 Experimental Set-up
All experiments are run on the shortest-path-to-goal grid

world problem as described in section 4. The base reward
function R provides a reward of -1 on every time step and a
reward of 0 for reaching the goal.

We use a tile coding of the 〈x, y, angle〉 features for the
linear function approximator with one tile for every feature
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(b) Regression-based GA

Figure 4: GA performance. Error bar is 1 stdev.

value. Thus, together with the 5 beacons and the coinflip
feature, the agent observes a total of 30 features.

The GA therefore uses real-valued chromosomes of length
31 (including the bias weight) in population of 60 individu-
als, and employs binary tournament selection. Mutation is
applied with p = 0.2 and adds a uniformly distributed value
δ ∈ [−0.03, 0.03] to the weight. No crossover is used.

Fitness evaluation for the simulation-based approach takes
place with a Q-learning agent with learning rate α = 0.2,
discount factor γ = 1, and an ε-greedy policy with ε = 0.1.
The agent is evaluated on a sample of 5 tasks for 25 episodes
per task.

For the regression-based method, sample data is collected
once, before starting the GA, by running a Q-learning agent
with learning rate α = 0.3, discount factor γ = 1, and an
ε-greedy policy with ε = 0.9 on a sample of 20 tasks for 3000
episodes per task.

The GA is run for 300 generations. Once it has finished,
the potential function that the final population champion
codes for is used in a shaping function for a Q-learning agent
with α = 0.2, γ = 1, ε = 0.1 that is run on a sample of 5
tasks for 1000 episodes per task.

All results in the subsequent sections are averages over 10
independent runs.

7.2 Discovering a Shaping Function
Figure 4 shows that both methods significantly improve

average population fitness and population champion fitness
for both methods before converging on a stable fitness level
after 300 generations. Average population fitness is very
close to that of the champion, indicating that all individuals
in the population encode for functions that are good for
shaping (simulation-based method) or good estimators of
V ∗ (regression-based method). To accurately compare the
two and find out whether the estimators are also good for
shaping, figure 5 shows how the performance of a Q-learning
agent using the best function found by both methods for
shaping compares to the performance of a Q-learning agent
that learns without shaping. As expected, performance with
shaping is much better than performance without shaping.

Furthermore, the regression-based shaping function per-
forms nearly as well as the simulation-based one. However,
the simulation-based function causes the agent to find the
goal substantially quicker in the first episode: 140 steps on
average, versus 195 for the regression-based function. In
addition, the simulation-based function reaches a slightly
lower average number of steps after 1000 episodes: for the
final episode, the agent needs 1.6 fewer steps on average than
for the regression-based function. Both these differences are
significant (p < 0.01, Student t-test). We provide one pos-
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Figure 5: Performance of the shaping functions found by
the two methods compared to performance of a Q-learner
without shaping. Error bar is 1 stdev.

sible explanation for this difference in performance in the
next section, where we look at the weights found by both
methods.

Each method’s computation time mainly depends on two
components: simulation of agent-task interaction and com-
puting the output of the potential function Φ(·). The time
the first component requires is mainly determined by how
many episodes have to be simulated, whereas the time for the
second depends on how complex the potential function is and
how many times its output is computed. In our experiments,
the simulation-based method uses 2.25 × 106 episodes and
about 2.03×108 function evaluations for a single run, versus
6.00 × 104 and 2.88 × 108 for the regression-based method.
The number of episodes simulated by the simulation-based
method is thus around two orders of magnitude larger than
for the regression-based method. Although the exact differ-
ence depends on the experimental setting, it is clear that
the simulation-based method generally requires significantly
more simulation than the regression-based one. Thus, even
though the latter performs slightly worse than the former, it
can be a valuable alternative in cases where agent-task inter-
action is relatively expensive compared to shaping function
evaluation, which is the case in most settings.

7.3 Evaluation of Feature Definitions
Now that we know that evolution can find a shaping func-

tion without pre-specifying a separate representation in at
least two different ways, in the second set of experiments
we investigate whether evolution reaches the same conclu-
sion about feature relevance as our definitions predict. We
do this by calculating the “informativeness” of each feature,
using our definitions, to form a hypothesis about which fea-
tures should be used for the value function (task informa-
tive) and shaping function (domain informative), and test
this hypothesis by looking at the weights evolved by the
simulation- and regression-based method result of section
7.2, and by using an evolutionary method that explicitly se-
lects for features that make learning those functions easy for
gradient descent.

To determine what features our definitions predict are
domain informative, we use equations 3 and 4 to calcu-

late a feature’s information gain with respect to Q∗, based
on data sampled in the same way as for the regression-
based method. We calculate information gain based on the
Kullback-Leibler divergence [7], which measures the distance
in bits between two distributions µ and σ as DKL(µ||σ) =
P

x µ(x) log2
µ(x)
σ(x)

. To calculate the information gain of a

single feature, we follow a method similar to that used in
[5].

7.3.1 Domain-Informative Features
For the domain-informative case, for calculating what our

definitions predict we define δ(x, a) = DKL(p(Q|x, a)||p(Q|a)),
which gives the gain on Q for a single feature value. In or-
der to reach the gain for a feature, we sum over all pos-
sible values of the feature, multiplied by their prior. We
need to do this for each action, and reach a single value for
the gain by taking the average over all actions: ∆(X) =
P

x
p(x)
|A|

P

a∈A δ(x, a). This results in the predictions as

shown in figure 6a.
The weights evolved by the two methods of the first set

of experiments are shown in figures 6b and 6c. As expected,
both methods base their potential function exclusively on
beacon1, the only domain-informative feature in our exper-
iments: the weights for the other features show only an in-
significant deviation from 0. This confirms the predictions
of our definitions.

Looking at the magnitude of the weights, simulation-based
evolution finds a weight of -1.4, whereas regression-based
evolution sticks to -1.0, which is probably the cause of the
difference in performance of the shaping functions. It is not
immediately clear why the difference in weights arises. The
one found by regression is “correct” since there is an almost
one-to-one mapping from goal distance to optimal Q-value.
The one for the simulation-based method might result in
a pessimistic initialisation of Q-values for states far away
from the goal, but since the agent spends most of its time
relatively close to the goal, this does not adversely affect
performance. In fact, the results show that having a weight
of greater magnitude results in a better shaping function.
This difference in weights may, however, be particular to
our domain.

In order to investigate whether an evolutionary algorithm
that explicitly selects for features for the shaping function
finds the same result as our predictions, we let the GA
evolve a population of 100 binary chromosomes that indi-
cates which features the functions should include. Single-
point crossover is applied with p = 0.8, and binary mutation
with p = 0.001. Just like in the regression-based method,
a dataset is created by letting the agent interact with the
task before starting the GA. For fitness evaluation, a lin-
ear estimator is created with inputs corresponding to the
features that are switched on in the genome. The data is
separated into a training and test set, after which the esti-
mator is trained for one epoch by on-line gradient descent
with learning rate α = 0.0006 on the training set and tested
on the test set. Like for the regression-based method, fitness
is the negative RMSE achieved on the test set. Results are
averaged over 30 independent runs.

The results for the domain-informative case are shown
in figure 6d. Not surprisingly, these results reconfirm the
predictions of our definitions. Therefore, we have shown that
our formalisation of domain-informative features is accurate.
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(a) Prediction of definitions
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(d) Explicit feature selection by
GA

Figure 6: Domain-informative features as predicted by our definitions (a), according to the weights found by the simulation-
(b) and regression-based (c) methods, and as found by explicit evolutionary feature selection (d). Error bars indicate 1 stdev.
Y-axis in (d) is ratio of times a feature was included in an individual.

7.3.2 Task-Informative Features
Contrary to the previous experiments, for distinguishing

task-informative features evolution should select for features
that result in the best estimator of Q for a single task.
Therefore, instead of treating the sampled dataset as a whole,
the estimator is trained and tested on the data for each
sampled task separately. For calculating information gain,
we now define δ(x, a, t) = DKL(p(Q|x, a, t)||p(Q|a, t)) and

∆(X) = 1
N

PN
t

P

x
p(x)
|A|

P

a∈A δ(x, a, t) (since in our domain

tasks are uniformly distributed, we can divide by the number
of sampled tasks).

The resulting predictions are shown in figure 7a. As ex-
pected, the x and y features are more task than domain
informative, although perhaps not as much as one would ex-
pect. However, we verified that if the separate features are
treated as a single feature (so one x instead of 10, and the
same for y and angle) they are more informative than bea-
con 1. Contrary to our expectations, angle is not deemed
very task informative (not even when the separate angle fea-
tures are grouped into one), even though it is necessary for
full observability. This might be because in order to reach
the goal, the agent only needs to rotate at most once, and
thus needs angle-related information only once in theory.
Even though it is hard to make out from the figure, the an-
gle features are more informative than coin, which does not
provide any information at all.

Beacon 1 is task as well as domain informative, as ex-
pected. What might at first seem counter-intuitive is that
the other, randomly scattered, beacons are also fairly task
informative. However, beacons do not change position within
a task, so they can be used as “landmarks” for estimating
position, and thus provide a fair amount of information.

Fitness of the GA is calculated as the negative of the av-
erage RMSE on each task, and thus selects for features that
on average result in the best intra-task learning. Figure 7b
shows the results. All ratios in the figure are significantly
different from random (p < 0.01, Pearson chi square test),
except beacon 4. Again, the positional features and beacon
1 are very task informative. Note that, even though each
separate x and y feature provides little information, evolu-
tion is able to detect that together they are very informative,
which is why x and y features are almost always selected.
The other evolutionary findings also match what our defi-
nitions predict: the angle features are included in only 10 -
20% of the cases, the coinflip not at all, and the randomly
scattered beacons about 50 - 70% of the time.
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(a) Prediction of definitions
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(b) Selection by GA

Figure 7: Task-informative features as predicted by our def-
initions (a), and as selected by the GA (b). Y-axis in (b)
indicates the ratio of times a feature was included in an in-
dividual.

These results show that the features deemed task informa-
tive by evolutionary feature selection also match what our
definitions predict. Although the definitions apply to single
features and a set of features may be more informative than
the sum of the separate features, this is a general character-
istic of any feature selection problem and does not contradict
the fact that each separate feature is task informative. The
results therefore show the validity of the definitions in our
domain.

8. DISCUSSION AND CONCLUSION
This paper focuses on discovering shaping functions to

speed up learning in a multi-task RL setting in which differ-
ent representations are relevant for the value- and shaping
function, without pre-specifying the representations for ei-
ther function. In addition, it provides a definition of features
that makes it clear which features should be used for both
the value- and the shaping function.

We investigate two different evolutionary methods for find-
ing a shaping function, one which evaluates fitness by ex-
plicit simulation of agent-task interaction, and a regression-
based method that evolves value function estimators across
tasks. Even though the shaping function that the latter
method finds performs slightly worse, regression-based evo-
lution is a valuable alternative in settings where simulation
of the task is relatively expensive compared to computing
shaping function output, which is the case in most settings.
Furthermore, the difference in performance between the two
methods was caused by a difference in weights for the shap-
ing function that may be particular to our domain. Future



work could investigate whether this difference also applies
to other problem domains.

We propose a categorisation of features into task informa-
tive and domain informative features and provide a formal
definition of each category. Task-informative features, in
particular the minimal subset of these features, are relevant
for the value function. Domain-informative features are use-
ful for the shaping function. In addition, using our defini-
tions we can compute exactly how informative a feature is
within or across tasks. As shown in section 7.3, this can
sometimes lead to counter-intuitive results. However, our
definitions are validated by an evolutionary method that se-
lects for the same features as those deemed informative by
our definitions. Also note that, although this paper uses the
Q-learning algorithm, the feature categories are algorithm-
independent.

Since this paper presents first results on the regression-
based GA and feature categories, we have intentionally kept
the implementation of the beacon domain simple. In partic-
ular, we have assumed a single state space for the domain.
The state space size may change through either a different
number of features (e.g., additional sensors) in the observa-
tion, or, more likely, a change in feature value range (e.g.,
different environment size). Since a feature’s relevance is
based on its prediction of value, the latter should not affect
feature categorisation, and previous work [6] has already
shown the effectiveness of shaping functions across tasks of
different size. The effect of the first scenario depends on the
prior probability of sampling a task with additional features.
Although these effects are certainly worth considering, space
limitations prevent in-depth discussion. We do, however, in-
tend to more explicitly address both cases in future work.

Although the evolutionary selection method we use is good
for evaluating the definitions we propose, it is too costly to
be beneficial. However, we believe the framework we pro-
pose is comprehensive enough to be used by more powerful
feature selection methods such as [5] that result in a lower
total cost of learning, and we are currently investigating the
use of such a method. Such a feature selection method could
also use the definition of task informativeness in value func-
tion approximation scenarios to reduce the dimensionality of
the approximator and thus further speed up learning. This
could be especially useful in high-dimensional applications
such as visual robotics, where observations consist of video
input.

In the beacon domain, the domain-informative feature
used for shaping is also task relevant. This allows the fea-
ture to be used in a shaping function based on a potential
function over states. As indicated in section 6, there are,
however, also examples of domain-informative features that
are not task informative. These kind of features cannot be
used by a potential function over states, but could possibly
be used by a potential function over state-action pairs [20].
Thus, our framework also makes clear in which settings ei-
ther type of potential function could be used, and we intend
to investigate both types of settings in future work.
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