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Abstract
An ambitious goal of transfer learning is to learn
a task faster after training on a different, but re-
lated, task. In this paper we extend a previously
successful temporal difference (Sutton & Barto,
1998) approach to transfer in reinforcement learn-
ing (Sutton & Barto, 1998) tasks to work with
policy search. In particular, we show how to con-
struct a mapping to translate a population of poli-
cies trained via genetic algorithms (GAs) (Gold-
berg, 1989) from a source task to a target task.
Empirical results in robot soccer Keepaway, a
standard RL benchmark domain (Stone et al.,
2006), demonstrate that transfer via inter-task
mapping can markedly reduce the time required
to learn a second, more complex, task.

1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 1998) prob-
lems are characterized by agents making sequential deci-
sions with the goal of maximizing total (possibly delayed)
reward. Recent work has focused on speeding up learning
across tasks with different state and action spaces via trans-
fer learning. Transfer learning allows agents to first learn
an initial source task and then in a second, typically more
complex, target task. Transfer learning is successful if the
target task can be learned faster (or with better final per-
formance) after using knowledge learned in the source task
than if learners train only on the target task.

One approach to transfer learning is to construct a trans-
lation functional that maps the final value function learned
in the source task to an initial value function in the target
task (Taylor et al., 2005). This method, which works even
when the two tasks have different state and action spaces,
effectively transferred knowledge learned with temporal dif-
ference (TD) methods (Sutton & Barto, 1998). While it has
succeeded with several different kinds of function approxi-
mators, it has not been shown to work with RL methods that
do not learn value functions.

In this paper, we extend the approach of transfer via inter-
task mapping and show how to construct a mapping to trans-
late a set of policies (a population of organisms) trained via
a genetic algorithm (GA) (Goldberg, 1989) on a source task
to form the initial population for training on a target task.

We evaluate this method in robot soccer Keepaway, a stan-
dard RL benchmark domain (Stone et al., 2006). Results
demonstrate that transfer via inter-task mapping reduces the
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time a GA takes to learn a target task. Furthermore, the total
training time of both source and target tasks is less than the
training time needed to learn the target task from scratch.

2. NEAT

GAs are search and optimization methods with signifi-
cant empirical success evolving policies to solve RL tasks.
This paper uses NeuroEvolution of Augmenting Topologies
(NEAT) (Stanley & Miikkulainen, 2002) as a representative
GA. NEAT, which trains populations of neural networks, is
an appropriate choice because of past empirical successes
on difficult RL tasks such as pole balancing (Stanley & Mi-
ikkulainen, 2002), robot control (Stanley & Miikkulainen,
2004), and Keepaway (Taylor et al., 2006). Additionally,
unlike many other optimization techniques, NEAT automat-
ically learns appropriate representations for the solution, of-
ten discovering small networks that learn relatively quickly.

Since NEAT is a general purpose optimization technique, it
can be applied to a wide variety of problems. When used for
policy search in RL problems, NEAT typically evolves ac-
tion selectors, which directly map states (input nodes) to the
action (an output node) the agent should take in that state.
The agent performs the action whose corresponding output
has the highest activation.

3. MDP Terminology

Transfer via inter-task mapping relies on leveraging rela-
tionships between pairs of RL tasks. To define such a rela-
tionship, we use standard notation for Markov decision pro-
cesses (MDPs) (Puterman, 1994). An agent’s knowledge of
the state of its environment, s ∈ S is a vector of k state
features, so that s = x1, x2, . . . , xk. The agent has a set
of actions, A, from which to choose. A reward function,
R : s 7→ R, defines the instantaneous environmental re-
ward of a state. A policy π : S 7→ A defines how an agent
interacts with the environment. The success of an agent’s
policy is defined by how well it maximizes the total reward
it receives in the long run while following that policy. The
action selectors evolved by NEAT thus have k inputs, one
for each state feature, and |A| outputs, one for each action.

4. Constructing an Inter-Task Mapping

To perform transfer via inter-task mapping with NEAT, we
need a way to convert the population1 of networks trained
on the source task into a population of networks suitable

1Transferring a population, rather than a single policy, allows
search to begin in the target task from a variety of locations in pol-
icy space, which increases the chances of finding a good starting
point for learning. Informal results showed transferring a popula-
tion was more effective than transferring a few of the best policies.
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for training on the target task. However, we cannot simply
transfer the policies unaltered because, in the general case,
the state and actions spaces may be different for the two
tasks. In this section we define a translation mapping ρ such
that ρ(πsource) 7→ πtarget to properly perform this transfer.

Given an arbitrary pair of unknown tasks, one could not
hope to correctly define ρ, the inter-task mapping. For trans-
fer to succeed, not only must the two tasks be related, but
the human designer must understand how they are related.
Hence, when constructing ρ we assume that a human famil-
iar with the two tasks has provided two mappings, γ and β.
γ maps each state feature in the target task to the most simi-
lar state feature in the source task: γ(xi,source) = xj,target.
Similarly, β maps each action in the target task to the most
similar action in the source tasks: β(ai,source) = aj,target.
In this paper we will be applying γ and β to neural network
action selectors and thus we substitute network input nodes
for the state features and output nodes for actions. Note that
ρ is a mapping from the source task to the target task, while
β and γ are mappings from the target task to the source task.

Given γ, β, and a network πsource trained by NEAT, we
can create a new network πtarget using the following proce-
dure. πtarget begins with no links but has one input for each
state feature in the target task, one output for each action in
the target task, and one hidden node for each such node in
πsource. If a function δ represents the correspondence be-
tween these hidden nodes (δ(htarget) = hsource), then each
node n ∈ πtarget can be mapped back to a node in πsource

via ψ:

ψ(n) =

{

γ(n), if n is an input
β(n), if n is an output
δ(n), if n is a hidden node

By using ψ, we can now add links to πtarget by copying
the links that connect the corresponding nodes in πsource.
For every pair of nodes ni, nj , in πtarget, if a link exists
between ψ(ni) and ψ(nj) in πsource, a new link with the
same weight is created between ni and nj . By applying this
method to all policies in the source population, we can ini-
tialize a population of policies in the target task. This allows
all networks in the target task to be given structure and link
weights learned from the source task; this knowledge biases
the population in policy space so that NEAT can learn faster
in the target task than when learning from scratch. Algo-
rithm 1 summarizes this domain independent process.

Algorithm 1 APPLICATION OF ρ

1: for each network πsource ∈ populationsource do
2: Construct a network πtarget ∈ populationtarget where #

of input and output nodes are determined by the target task.
3: Add the same number of hidden nodes to πtarget as

πsource.
4: for each pair of nodes ni, nj ∈ πtarget do
5: if link(ψ(ni), ψ(nj)) ∈ πsource then
6: Add link(ni, nj) to πtarget with weight identical to

link(ψ(ni), ψ(nj))

5. Testbed Domain: Keepaway

To test the efficacy of transfer via inter-task mapping we
consider the RoboCup simulated soccer Keepaway domain

using a setup similar to past research (Stone et al., 2005;
Taylor et al., 2006). The agents on one team – the keepers –
choose from a set of macro-actions so as to maintain control
of the ball. Macro-actions can last more than one time step
and agents make decisions only when a macro-action termi-
nates. The macro-actions are Hold Ball, Get Open, Receive,
and Pass (Stone et al., 2005). The opposite team – the takers
– do not learn and follow a static hand-coded policy while
attempting to steal the ball.

As more players are added to the task, Keepaway becomes
harder for the keepers because the field is more crowded
and the average pass distance is shorter, forcing more er-
rors due to noisy sensors and actuators. As more takers
are added there are more players to block passing lanes and
chase down any errant passes. For these reasons, keepers in
4 vs. 3 Keepaway (i.e. 4 keepers and 3 takers) take longer to
learn an optimal control policy than in 3 vs. 2 and the best
policies in 4 vs. 3 have lower performance than the best 3
vs. 2 policies. The addition of an extra taker and keeper to
the 3 vs. 2 task also results in a qualitative change: in 4 vs.
3 a third taker is now free to roam the field and attempt to
intercept passes. See our past work (Taylor et al., 2006) for
further details.

6. Learning Keepaway with NEAT

Our Keepaway players are based on version 0.6 of the
benchmark players distributed by UT-Austin2 (Stone et al.,
2006). The keepers learn in a constrained policy space: they
have the freedom to decide which action to take only when
in possession of the ball. A keeper in possession may either
hold the ball or pass to one of its teammates. Therefore, in
3 vs. 2 Keepaway, a keeper with the ball may choose from 3
actions,A = {hold, passToTeammate1, passToTeammate2}.

The keepers’ states comprise distances and angles of the
keepers K1 − Kn, the takers T1 − Tm, and the center of
the playing region, C. Keepers and takers are ordered by
increasing distance from the ball and states are rotationally
invariant. Note that as the number of keepers n and the num-
ber of takers m increase, the number of state features also
increases so that the more complex state can be fully de-
scribed. S must change (e.g. there are more distances to
players to account for) and |A| increases as there are more
teammates for the keeper with possession of the ball to pass
to. Full details of the Keepaway domain are documented
elsewhere (Stone et al., 2005).

When playing 3 vs. 2 Keepaway, keepers’ states are defined
by 13 features, comprised of distances and angles to other
players. Keepers receive a reward of +1 for every time step
the ball remains in play. The episode finishes when a taker
gains control of the ball or the ball is kicked out of bounds.
We used NEAT to evolve teams of homogeneous agents:
in any given episode, copies of the same neural network is
used to control all three autonomous keepers on the field.

4 vs. 3 Keepaway has the same size field but an additional
keeper and taker. Hence, A = {hold, passToTeammate1,
passToTeammate2, passToTeammate3} and S is composed

2
Flash file demonstrations, source code, documentation, and mailing list are lo-

cated at http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/.
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Partial Description of γ
4 vs. 3 state feature 3 vs. 2 state feature
dist(K1, C) dist(K1, C)
dist(K2, C) dist(K2, C)
dist(K3, C) dist(K3, C)
dist(K4, C) dist(K3, C)
Min(dist(K2, T1), dist(K2, T2), Min(dist(K2, T1),
dist(K2,T3)) dist(K2, T2))
Min(dist(K3, T1), dist(K3, T2), Min(dist(K3, T1),
dist(K3,T3)) dist(K3, T2))
Min(dist(K4, T1), dist(K4, T2), Min(dist(K3, T1),
dist(K4,T3)) dist(K3, T2))

Table 1. This table describes seven example correspondences be-

tween state features in Keepaway. We denote the distance between

a and b as dist(a, b). Relevant points are the center of the field C,

keepers K1-K4, and takers T1-T3. Keepers and takers are ordered

in increasing distance from the ball and state values not present in

3 vs. 2 are bold.

of 19 state features due to the added players. Every network
needs to have 19 inputs, 1 bias input, and 4 outputs.

7. Transfer via Inter-Task Mapping in

Keepaway

In this section we define the mappings γ and β, used for
transferring between 3 vs. 2 and 4 vs. 3 Keepaway. A and
S change when the number of players is increased but we
are able to easily3 define these mappings between states and
actions to transfer knowledge between the two tasks. The
definitions of these mappings is the same as used by our
past transfer work in this domain (Taylor et al., 2005).

We define β, the mapping between actions in the two tasks,
by identifying actions that have similar effects on the world
state in both tasks. For the 3 vs. 2 and 4 vs. 3 tasks, the
action “Hold ball” is equivalent, i.e. this action has a sim-
ilar effect on the world in both tasks. Likewise, the action
“Pass to closest keeper” is analogous in both tasks, as is
“Pass to second closest keeper.” We map the novel target
action, “Pass to third closest keeper,” to “Pass to second
closest keeper” in the source task.

The state feature mapping, γ, is handled with a similar strat-
egy. Each of the 19 state features in the 4 vs. 3 task is
mapped to a similar state feature in the 3 vs. 2 task. For
instance, “Distance to closest keeper” is the same in both
tasks. “Distance to second closest keeper” in the source task
is similar to “Distance to second closest keeper” in the tar-
get task, and “Distance to third closest keeper” in the target
task. See Table 1 for more examples of state feature map-
pings.

8. Results and Discussion

One measure of success for evaluating transfer learning is
the time required to learn in the target task. By setting a
threshold level of performance in the target task, we are able
to measure the amount of training time needed to achieve
this performance. By this measure, transfer learning is ef-

3Note that other domains may not have such straightforward
mappings between tasks of different complexity.

Training Times for Performance Thresholds
Threshold Scratch ρ5 ρ10 Total ρ5 Total ρ10

7.0 87.3 30.2 50.1 96.3 199.3
7.5 152.1 40.2 80.9 106.4 230.2
8.0 286.7 64.8 116.7 130.9 250.9
8.5 416.6 124.3 168.4 183.0 302.6
9.0 474.4 229.0 229.5 281.2 363.8

Table 2. This table shows the average source and total training

times (in hours) for players learning from scratch, via transfer after

5 source generations, and via transfer after 10 source generations.

fective if we learn the target task faster by utilizing policies
trained in the source task than by learning from scratch. A
stronger criterion of transfer success is that the training time
for the source and target tasks combined is shorter than the
training time to learn the target task from scratch. We will
show that transfer via inter-task mapping with NEAT is able
to meet both of these transfer goals.

To quantify how fast the agents learn, we set threshold per-
formance values for the 4 vs. 3 task. We analyze the cham-
pions of each generation after learning and determine when
the organism identified as the best by NEAT has learned to
hold the ball for at least the threshold value, averaged over
1,000 episodes. If a NEAT trial does not reach the threshold
value within 500 hours, we assign it a time of 500 hours4.

Table 2 shows that the time it takes sets of 4 agents to learn
to hold the ball for some amount of time in the target task
can be reduced by utilizing ρ5 and ρ10, which respectively
represents applying the inter-task mapping ρ after five and
ten generations of learning in the source task. Each result
is averaged over ten independent runs. A Student’s t-test
confirms that the difference between ρ and scratch is statis-
tically significant at the 95% level for all points graphed.

Table 2 also shows the total training time (3 vs. 2 plus 4
vs. 3), which is also reduced when using ρ. The differ-
ence between scratch and ρ from five 3 vs. 2 generations
is significant for all test threshold times above 7.0 seconds
when considering total training time. The difference be-
tween scratch and ρ using ten 3 vs. 2 generations is sig-
nificant for all points graphed except 8.0 seconds.

Transferring from five 3 vs. 2 episodes was more beneficial
than from ten 3 vs. 2 episodes and we hypothesize this is due
to two factors. Networks for five generations in 3 vs. 2 had
more links and nodes than those evolved for ten generations,
and more complex networks will likely take longer to train.
Secondly, training for ten generations in 3 vs. 2 may have
also overfit the task; similar results were seen our previous
work (Taylor et al., 2005) where training for less time in the
source task was more beneficial to transfer.

9. Related Work

There have been previous approaches to simplifying rein-
forcement learning by manipulating the transition function,
the agent’s initial state, and/or the reward function. For
instance, Directed training (Selfridge et al., 1985) allows

4500 hours of training time corresponds to approximately 30
generations (300,000 episodes) of Keepaway.
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a researcher to modify the transition function over time
and slowly make the task harder. Learning from easy mis-
sions (Asada et al., 1994) allows a gradual modification of
the start state so that the learner is initially placed near a goal
state and gradually placed further and further away form
it. However, these methods rely on S and A remaining the
same between pairs of tasks. Transfer via inter-task map-
ping permits this, which allows transfer to be applied to a
larger set of tasks. Furthermore, transfer via inter-task map-
ping does not preclude human modification of the transition
function, the start state, or the reward function to increase
the speed of learning and can therefore be combined with
these other methods if desired.

Learned subroutines have been successfully transfered in hi-
erarchical RL (Andre & Russell, 2002) by analyzing sub-
routines to identify those that can be directly reused in a
target task. If a task can be formulated in a relational
reinforcement learning setting, it may also be mastered
more quickly via transfer learning (Morales, 2003). Imi-
tation (Price & Boutilier, 2003) is another technique which
may transfer knowledge from one learner to another. Other
research (Fern et al., 2004) has shown that it is possible to
learn policies for large-scale planning tasks that generalize
across different tasks in the same domain without explicit
knowledge transfer.

Another related approach uses linear programming to deter-
mine value functions for classes of similar agents (Guestrin
et al., 2003). Automatically generated advice can also be
used to speed up learning in transfer (Torrey et al., 2005)
by utilizing a human to provide a mapping for this advice
into the new task, similar to ρ. Other work in transfer learn-
ing (Fernandez, 2005; Konidaris, 2005) allows speedup be-
tween tasks but does not allow S and A to differ between
the two (or more) tasks.

10. Conclusions

We have extended transfer via inter-task mapping to pol-
icy search methods and empirically shown that it can sig-
nificantly speed up learning in pairs of related RL tasks.
We utilized NEAT, a popular GA method, to learn on pairs
of Keepaway tasks with different state and action spaces.
Transferring learned policies the two tasks reduces not only
training time in the target task, but also total training time.
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