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ABSTRACT
HyperNEAT is a popular indirect encoding method for evo-
lutionary computation that has performed well on a number
of benchmark tasks. This paper presents a series of experi-
ments designed to examine the critical factors for its success.
First, we determine the fewest hidden nodes a genotypic net-
work needs to solve several of these tasks. Our results show
that these tasks are easy: they can be solved with at most
one hidden node and require generating only trivial regu-
lar patterns. Then, we examine how HyperNEAT performs
when the tasks are made harder. Our results show that Hy-
perNEAT’s performance decays quickly: it fails to solve all
variants of these tasks that require more complex solutions.
Next, we examine the hypothesis that fracture in the prob-
lem space, known to be challenging for regular NEAT, can
be even more so for HyperNEAT. Our results suggest that
quite complex networks might be needed to cope with frac-
ture and HyperNEAT can have difficulty discovering them.
Finally, we connect these results to previous experiments
showing that HyperNEAT’s performance decreases on irreg-
ular tasks. Our results suggest irregularity is an extreme
form of fracture and that HyperNEAT’s limitations might
be more severe than those experiments suggested.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Algorithms, Experimentation, Performance

Keywords
HyperNEAT, Evolutionary Computation, Indirect Encoding

1. INTRODUCTION
Unlike traditional direct encodings in evolutionary com-

putation, in which the genotype is identical or isomorphic
to the phenotype, indirect encodings [1, 14, 19, 24] employ a
more complex process to develop the phenotype from the
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genotype. Indirect encodings hold enormous promise for
evolutionary computation because they enable the reuse of
genes, i.e., each gene can be expressed in multiple places
throughout the phenotype. As a result, not only do they en-
courage phenotypes with the regular structure often needed
for complex tasks, they also have the potential for greater
scalability, since the dimensionality of the phenotype can be
far larger than that of the genotype [24].

However, getting indirect encodings to work in practice
has proven challenging, and the best way to represent the
mapping from genotype to phenotype has long been un-
clear. Fortunately, substantial progress has been made in
the last few years. In particular, HyperNEAT [22] has re-
cently become a popular indirect encoding method for neu-
ral networks. Unlike previous indirect encoding methods,
which build the phenotype temporally, in step-by-step fash-
ion [1, 14, 19], HyperNEAT “captures the essential proper-
ties of natural developmental encoding without implement-
ing a process of development” [21]. In particular, it uses a
genotypic compositional pattern producing network (CPPN)
to draw the connectivity of the phenotypic substrate network
on the inside of a hypercube. By exploiting a geometric
representation of the space in which the substrate resides,
HyperNEAT “can produce spatial patterns with important
geometric motifs that are expected from generative and de-
velopmental encodings and seen in nature.” [22].

HyperNEAT has often empirically outperformed direct
encodings. It performed translation-invariant detection of
objects [22] and discovered a controller for food-gathering [22]
and line-following [12] robots. HyperNEAT also evolved the
walking behavior of a quadruped robot [4], controllers for
robot keepaway [26], produced an evaluation function for
checkers [13], and simultaneously evolved controllers for mul-
tiple agents using a single genotype [9].

However, few studies have specifically examined why Hy-
perNEAT succeeds in these tasks. Do these results in fact
provide evidence that “symmetry, imperfect symmetry, rep-
etition, and repetition with variation...are compactly repre-
sented and therefore easily discovered”[22]? This paper aims
to help answer this question by examining the critical fac-
tors in the empirical performance of HyperNEAT on some of
these tasks. Our primary goal is to ascertain to what degree
the reasons for this success correspond with the motivating
intuition behind HyperNEAT.

To this end, we first examine the complexity of several
tasks in which HyperNEAT has succeeded. For each task,
we establish an upper bound on complexity by determining
the smallest number of hidden nodes the CPPN must have



to solve it. Surprisingly, our results indicate that all of these
tasks are extremely easy once transferred to the connectiv-
ity hypercube encoding, as they can be solved by CPPNs
with at most one hidden node. Consequently, they require
generating only the most trivial regular patterns.

Next, we examine how HyperNEAT performs when the
complexity of these tasks is increased. Unfortunately, these
results indicate that HyperNEAT’s performance decays quick-
ly. In fact, it fails to solve all variants of these tasks in which
a more complex—but still regular—solution is required.

In addition, we dig deeper into the cause of HyperNEAT’s
poor performance on more complex regular tasks by exam-
ining the hypothesis that fracture in the problem space,
which is known to be challenging for the original NEAT
method [16], can be even more problematic for HyperNEAT.
Our results suggest that quite complex CPPNs are needed
to cope with even modest fracture, and HyperNEAT can
have difficulty discovering such CPPNs.

Finally, we connect these results to previous experiments
showing that HyperNEAT’s performance decreases as irreg-
ularity in the required solution increases [7]. Our analysis
suggests that irregularity is actually an extreme form of frac-
ture and that HyperNEAT’s limitations are thus more severe
than was suggested by those previous experiments.

2. BACKGROUND
NeuroEvolution of Augmenting Topologies (NEAT) is a

method for using evolutionary computation to optimize neu-
ral networks [23]. It evolves not only the weights but also the
topology of the network, by way of mutation operators that
add new nodes and new connections. NEAT starts with a
population of minimal topologies and adds complexity grad-
ually through mutations, thereby keeping the search space
small in early generations. Furthermore, NEAT adds histor-
ical markings to keep track of genealogies: during selection
and reproduction, individuals with similar historical mark-
ers are put in the same species, wherein they share fitness.
This speciation helps maintain population diversity.

Figure 1: HyperNEAT evolves CPPNs that gener-
ate connection weights for the substrate networks
applied to the task. The geometric locations of each
pair of substrate nodes are fed to the CPPN to yield
the weight of the connection between those nodes.

HyperNEAT is the indirect encoding extension of NEAT
[22]. Instead of applying the evolved network directly to the
task, HyperNEAT uses it as a compositional pattern pro-
ducing network (CPPN), i.e., a genotype that defines the
connections for a—possibly much larger—substrate network,
i.e., the phenotype that is actually applied to the task. In
particular, HyperNEAT expresses the connectivity of the
substrate network in terms of the geometric location of its
nodes, i.e., the substrate is represented by its connectivity

hypercube. A CPPN is a way to represent this relation be-
tween node locations and connection weights. The CPPN is
evolved by NEAT but the mutation operators are extended
to allow different node types. Regular NEAT generates net-
works containing only sigmoid nodes, but HyperNEAT uses
an expanded set: a sine, a bounded linear function, a Gaus-
sian, a sigmoid, and an absolute value. A substrate net-
work is constructed by querying the CPPN for the connec-
tion weight between each pair of nodes in the substrate,
with those nodes’ Cartesian coordinates as input. Thus, the
CPPN is a compound function of pairs of node coordinates:
CPPN(x1, y1, x2, y2) = weight(n1, n2) (see Figure 1).

In this way, HyperNEAT tries to exploit the fact that,
in many tasks, a human with some domain knowledge can
often place substrate nodes in a space such that there is
regularity in the desired connection weights. For example, it
is natural to place the nodes representing a checkers board in
a rectangular grid, so that HyperNEAT can exploit the fact
that the board has two sides belonging to opposite players
(symmetry), and that pieces can move to adjacent spaces
throughout the board (repetition) [13].

3. RELATED WORK
Some previous research has also analyzed different factors

in HyperNEAT’s performance. In particular, [3] shows that
HyperNEAT does not always generate modular solutions to
problems that would benefit from modularity, and [27] shows
that HyperNEAT can be modified to encourage modular-
ity. These results are consistent with those we present in
Sections 4 and 5, which suggest that HyperNEAT may be
biased towards globally uniform connection patterns.

Other research showed that decreasing the regularity of
the required solutions increases the difficulty for HyperNEAT,
such that a direct encoding eventually performs better [5, 7].
Similarly, [6] examines the sensitivity of HyperNEAT to dif-
ferent arrangements of substrate nodes, showing that ran-
dom configurations, by introducing irregularity, negatively
impact performance, even though HyperNEAT still outper-
forms a direct encoding in some cases. In Section 6, we
relate these effects to the concept of problem space fracture,
which has been shown to be a critical factor in the perfor-
mance of regular NEAT [16]. Our experiments regarding
fracture confirm those of previous experiments showing that
irregularity decreases performance, but also show that Hy-
perNEAT fails even at moderate levels of fracture, which
correspond to very low levels of irregularity. [2] replaces
the NEAT part of HyperNEAT with genetic programming,
which improved performance on the line following task; this
approach is similar to our wavelet baseline (see Section 6)
but was not tested on more difficult problems.

Finally, [28] demonstrates that the CPPNs generated un-
der a “loose” fitness function (humans selecting which im-
ages they prefer) could not be reproduced by NEAT under
a “tight” fitness function (minimizing distance to one spe-
cific image generated under the loose fitness function). On
the one hand, these results are consistent with ours, as we
also show (in Section 6) that HyperNEAT repeatedly fails
when a specific nontrivial regularity is required. Our results
show that this phenomenon also holds for much easier tasks
of this type. On the other hand, we also show (in Section
5) that tasks with looser fitness functions, in the sense that
they do not demand a specific target phenotype, can also be
problematic for HyperNEAT, even when the tasks are only
slightly harder than those considered in previous work.



4. COMPLEXITY
In this section, we examine the complexity of several tasks

in which HyperNEAT has previously succeeded, where com-
plexity is defined as the minimum number of CPPN hidden
nodes required to solve the task. To do so, we apply a vari-
ant of HyperNEAT that limits the number of hidden nodes
a CPPN can have: beyond that limit, node-insertion muta-
tions are no longer executed. To establish an upper bound
on a task’s complexity, we apply this variant with the limit
set to different levels. Unless stated otherwise, all results use
the same parameter settings as the original published results
and are averaged over 30 runs. The bars in each figure show
the standard error for selected intervals. We used the peas
implementation (https://github.com/noio/peas/tags) of
HyperNEAT for the visual discrimination and line follow-
ing tasks. For the walking gait task we used the original
implementation (http://jeffclune.com/research.html).

4.1 Visual Discrimination
The visual discrimination task, one of the first to show Hy-

perNEAT’s effectiveness [22], mimics how the same pattern
can be recognized equivalently at different places throughout
the visual field. This is a kind of regularity: there should
be a similar response at each location where the pattern
appears and therefore similar substrate weights at each of
these locations. The input to the task is an 11 × 11 image,
containing a 3× 3 target square and 1× 1 distractor square.
The goal is to “point out” the target square by giving the
highest activation to the node at its center. Fitness is in-
versely proportional to the distance between the node with
the highest activation and the target square’s center. The
substrate is a sandwich network : an input layer connects
directly to an output layer, both matching the image size.

We use the deltas setting of the original task, so the CPPN
receives an additional input of x1−x2 and y1− y2. In addi-
tion, in our experiment, the distractor object is placed ran-
domly, in contrast to the original experiment, which placed
it at a fixed location relative to the target square. Random
placement ensures each target square location is paired with
different distractor square locations during fitness evalua-
tion, making the task more difficult.

Figure 2: Average distance to target location of gen-
eration champions on visual discrimination task.

Figure 2 displays our results, which show that perfor-
mance does not degrade when limiting HyperNEAT to CPPNs
without hidden nodes. This is surprising, since such a CPPN
can compute only single functions of a linear combination
of its inputs. Examining these solutions reveals that they
mostly rely on the fact that the target square has a larger
area and thus a higher imprint on the substrate activation.

Figure 3: Solution to the visual discrimination task,
showing incoming connections for two sample nodes.
The target and distractor squares are activated and
darker values indicate higher activation.

To accumulate this higher activation in the target loca-
tion, each input node need only be connected to adjacent
nodes in the output layer, as shown in Figure 3. Thus, as
mentioned in [22], the task can be solved by any CPPN that
gives high values to connections if x1 − x2 ≈ y1 − y2 ≈ 0. A
function such as gauss(w1x1 + w2x2 + w3y1 + w4y2) meets
this requirement when w1 ≈ −w2 and w3 ≈ −w4, and this
is exactly the function that nearly all the champions com-
pute in runs where no hidden nodes are allowed. Hence,
solving this problem requires optimizing only four weights.
This kind of regularity, where connections are strong be-
tween adjacent nodes, is one of the most trivial, with only
degenerate functions, e.g., outputting an equal weight for
every connection, being simpler. By contrast, final champi-
ons of regular HyperNEAT runs used on average 11 hidden
nodes to compute a similar function, suggesting substantial
superfluous complexity.

4.2 Line Following

Figure 4: Left: sensor layout for line following task;
middle: road that the robot must stay on; right:
observation in the task variation from Section 5.2.

In the line following task, a simulated wheeled robot must
drive on a flat terrain with zones of different friction (e.g.,
roads and grass) [2, 12]. The goal is to maximize average
speed by staying on the roads, where the friction is lowest.
The robot has 5× 3 sensors mounted on antennae that can
detect the type of terrain under them (see Figure 4). Two
independently controlled wheels enable driving and steering.
The task has two forms of regularity. First, the robot is
symmetrical as the antennae are laid out radially and the
wheels are opposite each other. Second, the five antennae
are identical in length and response function.

The substrate consists of two layers: a bottom layer con-
taining all the sensor inputs and a top layer containing hid-
den nodes and the output nodes that control the wheels. The
CPPN is supplied with the angle and radius of each sensor
location, scaled to a value between −1 and 1. The top layer
has only 3×3 nodes; the output nodes are on the mid-left and
mid-right, controlling the left and right wheel respectively.
The other nodes in the top layer serve as hidden nodes. The
CPPN has three output nodes, which specify connections
from the bottom to the top layer, internal connections in
the top layer, and the top layer bias, respectively.

Figure 5 shows our results. Though convergence is some-
what slower, final performance is just as good when Hyper-



Figure 5: Average speed of generation champions
on the line following task.

NEAT is restricted to one hidden node. Final performance is
slightly lower without hidden nodes. By contrast, the cham-
pions at the end of the regular HyperNEAT runs had an
average of 13 hidden nodes. Analyzing the evolved solutions
reveals why the task is so easy: a high friction area observed
on either side causes a high activation to input nodes on that
side; by sending that high output to the wheel on that side,
the robot steers in the other direction, away from it. Thus,
the apparent symmetry need not be exploited explicitly. As
with the visual discrimination task, solving it requires only
that nodes be connected to others nearby, which is trivial in
a connectivity hypercube.

4.3 Walking Gait
In the walking gait task, a four-legged table-shaped robot

simulated in a physics engine has to walk as far as possible
[4]. Since finding stable and energy efficient gaits for walking
robots is known to be challenging, HyperNEAT’s success on
this task is considered a significant result. Each leg has three
joints: two in the hip that allow anteroposterior and lateral
motion of the upper leg and one in the knee for flexing of
the leg. Values on the substrate’s output layer determine
target angles for each of the 3 × 4 joints. The input layer
specifies the current angle of each joint, the angle of the
body (roll, pitch, and yaw), whether each leg is touching
the ground, and a time-based sine signal. The substrate has
a single hidden layer and no recurrent connections. The task
is regular because the legs have identical structure and likely
need to behave similarly. While the walking behavior also
displays temporal regularity due to the repeated motion, this
periodicity is provided externally by the sine input.

Figure 6: Average fitness of generation champions
on the walking gait task.

Figure 6 displays our results, which show that this task
can be solved by a CPPN without hidden nodes. Such a
CPPN computes only a sigmoid function of a linear combi-
nation of its inputs. By contrast, the champions at the end

of the regular HyperNEAT runs had an average of nearly 12
hidden nodes. Analyzing the solutions reveals that for most
solutions, all joints move in synchrony with the supplied sine
pulse, yielding a rigid hopping behavior. This explains why
such a simple CPPN can solve the task: only the signal from
the sine input needs to be sent to all the motor actuators.
Generating the substrate connections using a connectivity
hypercube leaves very little for NEAT to optimize.

5. SCALABILITY
The results presented above show that the considered tasks

can be solved with trivial CPPNs. On the one hand, this is
a success for HyperNEAT since the point of indirect encod-
ings is to enable large phenotypes to be evolved using simple
genotypes. HyperNEAT’s encoding does so efficiently, since
it dramatically reduces the number of parameters needed to
solve these problems. On the other hand, it seems likely
that, even after maximal compression, many realistic tasks
require nontrivial genotypes. These results show that pre-
viously published HyperNEAT successes on the considered
tasks do not confirm its ability to do so. In this section, we
present results of experiments designed to fill this gap.

For each task, we apply HyperNEAT to the simplest ex-
tension that we could devise, in order to increment task diffi-
culty only slightly. In addition, we compare the performance
of HyperNEAT on these variations to that of a simple base-
line algorithm that we devised. Note that the goal of this
paper is not to contribute or advocate for any new method.
On the contrary, this baseline is used only to establish that
the task variants are not too difficult for any method: if Hy-
perNEAT fails at the task variant but the baseline algorithm
succeeds, then we know the results indicate a limitation of
HyperNEAT rather than an excessively difficult task.

This baseline algorithm utilizes the same connectivity hy-
percube encoding, using the node coordinates to generate
the connection weights. This is the part of HyperNEAT
that is likely to be responsible for the good performance on
the easy tasks, and so it is a good starting point for a com-
parison. However, it does not employ a CPPN to generate
the connectivity but instead computes connection weights
using a sum over a number of wavelet basis functions. A
wavelet can be seen as a brief oscillation: it is periodic, but
the amplitude starts out at zero, increases to a maximum,
and then decreases. Gabor wavelets, often used in computer
vision for image analysis, are among the simplest, as they are
the product of a sine and a Gaussian [11, 17]. In the wavelet
method, the connectivity C of nodes located at (x1, y1) and
(x2, y2), i.e., the weight of their connection, is:

C((x1, y1, x2, y2) =

N∑
i=0

Wi

([
x1 y1 x2 y2 1

])
,

where Wi, the i-th wavelet, is:

Wi(x) = αi ·G(x · ai,x · bi, σi).

Here, G is a single Gabor wavelet (see Figure 7):

G(x, y, σ) = exp

(
−x

2 + y2

2σ2

)
cos
(

2πx+
π

2

)
,

and the input coordinates are weighted by vectors ai and bi.
Thus, each wavelet has the following parameters that must

be optimized: α,a0, . . . ,an,b0, . . .bn, σ. This is done with



Figure 7: Left: a Gabor wavelet G(x, y, σ) for x, y ∈
[−2, 2] and σ = 0.5. Right G(x′, y′, σ) with x′ and y′ ob-
tained from an arbitrary linear transformation and
σ = 1.5. Lighter colors indicate higher output values.

a simple evolutionary method employing two kinds of muta-
tions. Either a new wavelet is added with probability 0.1, or,
for each wavelet, the parameters are perturbed with prob-
ability 0.3. When a new wavelet is added, it is initialized
with a value drawn from a normal distribution N (0, 0.1) for
all parameters. When a wavelet is perturbed, N (0, 0.1) is
added to each parameter. Tournament selection (k = 3)
is employed and each generation champion is carried over
unmodified to the next generation. The population size cor-
responds to the HyperNEAT settings for each experiment.

5.1 Visual Discrimination
The original visual discrimination task could be solved by

spreading out activation across the substrate and relying on
the larger area of the target square to increase activation
of the correct output. To make this task more difficult,
we turn it into a true shape discrimination task, similar to
[25], where the target and distractor objects differ only in
form, not size. Regularity is preserved because the same
objects still need to be recognized across the entire visual
field. In addition, the target and distractor objects are now
mirror images of each other: they are both triangles created
by diagonally slicing the original target square. The center
location is still at the center of the bounding square, as
indicated by the underlined entry below:

target =

1 0 0
1 1 0
1 1 1

 distractor =

1 1 1
0 1 1
0 0 1



Figure 8: Average distance to target of generation
champions on the difficult visual discrimination task.

Figure 8 shows our results. The average distance to the
center node is 3.4; this is the score obtained when the net-
work always activates the node at the center of the visual
field, regardless of input. When the generated substrate does
not discriminate between the shapes, and simply picks the
center of mass of the objects combined, a strategy similar
to that in the previous experiment, the average distance is
about 2.5. HyperNEAT performs slightly better than that
but again fails to substantially outperform the variant for-
bidden to use hidden nodes. The wavelet baseline method

performs much better and the fact that the average dis-
tance is below 2.5 indicates that it is indeed discriminating
between the two shapes and that the task is thus solvable.

5.2 Line Following
To make the line following task more difficult, we add a

discrepancy between the observation and the actual friction
value of the terrain. The road still looks darker than its
surroundings, but the actual values are not the same ev-
erywhere, as shown in the right part of Figure 4. To solve
this task, the substrate has to compare sensor values in or-
der to find out whether they correspond to the road. In
addition, the robot has to accumulate these values directly
into the output nodes because recurrent connections are dis-
abled, adding extra difficulty to the task. Regularity is still
present, as the layout of the robot remains unchanged.

Figure 9: Average speed of champions on the diffi-
cult line following task.

Figure 9 shows our results. Both regular HyperNEAT and
the variant restricted to one hidden node perform equally
poorly, while the wavelet method attains a substantially
higher speed. Examination of the resulting controllers shows
that those generated by HyperNEAT frequently adjust their
trajectory only when they are already off-road. The wavelet
method’s performance shows that avoiding this behavior and
staying consistently on the road is feasible.

5.3 Walking Gait
In the original walking gait task, many runs evolve the

simplest solution: a hopping behavior where all legs move
together. This is efficient because each hop propels the robot
a large distance. However, in real robots, actuators are typ-
ically much less powerful compared to the robot’s weight.
To create a more realistic simulation where hopping is not
efficient, we increased the mass of the torso in the physics
engine from 10 to 100 units. This decreases the relative force
exerted by the joint motors, with two consequences. First,
hopping is not as effective since the robot cannot hop very
far. Second, it is less stable, as it cannot always absorb the
full impact of landing on a single leg, making balance more
important. The regularity of the task remains unaltered.

Figure 10 shows our results. As expected, the Hyper-
NEAT robots cover substantially less distance than in the
original task. Analyzing the resulting gaits reveals that Hy-
perNEAT still generates hopping gaits with similar outputs
for every joint angle controller. While this makes sense for
the anteroposterior joints, the lateral joints also receive a
target angle, moving them sideways during the hop. This
leaves the robot unbalanced and, because the joint motors
have limited power, it sometimes falls over.

Of course, since the heavier torso will affect even good



Figure 10: Average distance covered by champions
on the difficult walking gait task.

walking gaits, it is important to determine whether better
performance in this task variation is possible. Unfortunately,
due to limitations in the software implementation created
in [4], we were unable to implement the baseline wavelet
method in this task. Instead, we constructed an alternative
task-specific baseline as follows. HyperNEAT evolves the
controller but, in order to generate more stable gaits, the
lateral joints are fixed by setting the target angle to zero
after the substrate has been queried for an output.

As shown in Figure 10, this baseline greatly outperforms
regular HyperNEAT. In principle, regular HyperNEAT should
be able to evolve CPPNs that generate exactly this behavior.
In fact, doing so requires only removing the connections to
all of the lateral weights, as shown in Figure 11. The fail-
ure of HyperNEAT to do so demonstrates that it does not
account for this exception and that sideways motion of the
lateral joints is an adverse effect of an overly simple solution.

Figure 11: In the difficult walking gait problem,
disconnecting the lateral joint nodes, indicated by
crosses, improves performance. HyperNEAT could
theoretically isolate these nodes but fails to do so.

6. FRACTURE
In this section, we examine the hypothesis that fracture

in the problem space, which is known to be challenging for
the original NEAT method [16], can be even more problem-
atic for HyperNEAT. For regular NEAT, fractured problems
are defined as those with “a highly discontinuous mapping
between states and optimal actions” [16]. To quantify this
notion, [16] expresses it in terms of function variation in
the output of the network generated by NEAT, measured as
the sum of the differences of adjacent values on a sampled
version of the function. For example, for a one-dimensional
function, if X0,...,n is a set of n sample points on the domain
of function f , the fracture is

∑n−1
i=0 |f(Xi)− f(Xi+1)|.

However, this definition is not appropriate for a CPPN
because even the simplest CPPNs can include a sine node
which, at the right frequency, would cause maximal function
variation. To more accurately capture the essence of frac-
ture as the degree to which regions of the generated function
have to be treated differently, we propose an alternative def-

inition of fracture for indirect encodings. Because nodes in
HyperNEAT can actually emit repeated patterns, we define
fracture as a discontinuous variation of patterns. If we are
free to construct the target function that the CPPN is to ap-
proximate, we can formalize this as the number of contigu-
ous and convex regions in the target function with different
patterns (see Figure 12). Because it is hard to distinguish
between regions and patterns in an arbitrary problem, we
use this only as a generative definition: delineating regions
in problems for which we construct the target function.

Figure 12: Increasingly fractured spaces.

Figure 13: Combining two patterns into a fractured
substrate: the outlined node forms a linear combina-
tion of the coordinate vector that emits a mask indi-
cating whether (x, y) is in the target region; regions
are zeroed out by subtracting this value from the
pattern, since values below some threshold are trun-
cated; finally, the different patterns are summed.

The reason we hypothesize that fracture can be difficult
for HyperNEAT is that it seems that many nodes are needed
to divide the substrate into such regions. Though the CPPN
can evolve nodes for generating different patterns, some mech-
anism is needed to select which pattern applies in which re-
gion. An indicator node is needed that specifies whether the
given (x, y) is inside or outside the region, which is complex
since HyperNEAT needs multiple nodes to compute a non-
linear combination of the coordinates. The simplest solution
would be to multiply the value of indicator node by that of
the pattern, yielding the pattern inside the region, and ze-
roes outside of it. This is impossible, however, because the
CPPN lacks a multiplication operator.

Workarounds are possible but they are complex. Figure 13
illustrates the simplest workaround we could devise for a
substrate divided along an infinite line. Even more nodes are
needed to isolate finite convex regions, and concave regions
must be split up into multiple convex ones. Since CPPNs
with only some of the nodes required for this workaround are
likely to perform poorly, we hypothesize that it is difficult
for HyperNEAT to evolve such workarounds incrementally.

6.1 Target Weights
To determine the effects of fracture on HyperNEAT’s per-

formance, we use the target weights task [7], whose goal is
to generate a specific weight pattern in the substrate. It was
originally used to show that performance of HyperNEAT de-
grades as irregularity increases. Irregularity was increased



by adding noise: an increasing percentage of randomly cho-
sen weights were each assigned a different random value.
This can be seen as an extreme form of fracture, since a
unique value has to be assigned to every region consisting of
a single connection weight, unless adjacent connections form
contiguous (patterned) regions by chance. The substrate in
the original experiment consists of 34 connections so, even at
10% noise, approximately eight new regions are introduced.

Therefore, if our hypothesis is correct, we should expect
that HyperNEAT would perform poorly even at low noise
levels. To assess the quality of HyperNEAT’s solutions, we
compare to a baseline consisting of a linear least-squares
solution for each problem instance, the coefficients of which
are the node coordinates that are also input to the CPPN.
Note that this is a very weak baseline, as a linear solution
cannot cope with any of the irregularity or fracture.

Figure 14: Average error of final generation champi-
ons in the target weights task with increasing noise,
averaged over 10 runs, as in the original experiment.

Figure 14 shows our results, which reproduce the original
experiment but add the HyperNEAT variant restricted to
no hidden nodes, the wavelet baseline method, and the lin-
ear least-squares solution. To be consistent with the least-
squares solution, we base the fitness function on the sum
of squared errors between the generated substrate and the
target weights. In addition, for brevity, we show only per-
formance of the champion of the last generation of each run,
grouped by noise level. These results show that HyperNEAT
is never doing much better than a linear solution, even at
10% noise, and is thus uniformly unable to account for the
aberrant regions. Thus, while the increasing magnitude of
error implies a gradual decline, HyperNEAT actually fails
to model the noise at any level, likely because it cannot
cope with the fracture such noise introduces. The wavelet
baseline method, by contrast, substantially outperforms the
linear solution.

6.2 Target Weights with Bisection
To determine what level of fracture HyperNEAT can cope

with, we devised a second target weights experiment. In-
stead of assigning a random value to single weights, we di-
vide the substrate into regions along straight lines, each time
bisecting previous regions, as illustrated in Figure 15. Each
of these regions is then assigned a single random weight.
We decrease the dimensionality of the target matrix from 34

to 82 and continue splitting until each of the 8 × 8 connec-
tions consists of its own region. The result is that fracture
increases gradually, enabling us to test fracture levels lower
than that of the lowest noise level in the original experiment.

Figure 16 shows the results, which demonstrate that, even
at very low levels of fracture, HyperNEAT cannot substan-

Figure 15: Iterative addition of fracture.

tially outperform a linear solution, though the wavelet base-
line can. Together, these results confirm our hypothesis that
fracture can be highly problematic for HyperNEAT.

Figure 16: Average error of the final generation
champions in the target weights task with increasing
bisection, averaged over 100 runs.

7. DISCUSSION & FUTURE WORK
The results presented in this paper show that the success

of HyperNEAT on the tasks we considered does not provide
much support for the hypothesis that “symmetry, imper-
fect symmetry, repetition, and repetition with variation...are
compactly represented and therefore easily discovered” [22].
On the one hand, on the simple versions of the considered
tasks, HyperNEAT succeeds because the connectivity hy-
percube encoding represents simple regularity in such a way
as to make the problem solvable by a trivial CPPN. On the
other hand, on only slightly harder versions of these tasks,
HyperNEAT does not enable the easy discovery of the more
elaborate–but still regular–phenotypes these tasks require,
as it is not able to evolve the corresponding genotypes.

This result is somewhat surprising, since incrementally
evolving complex solutions is supposed to be NEAT’s spe-
cialty. However, it seems that doing so in HyperNEAT is
more difficult than in regular NEAT, though more research
is needed to determine with certainty why that is.

There is some evidence that novelty search can improve
the performance of NEAT [18] and HyperNEAT [20]. How-
ever, applying novelty search requires some domain knowl-
edge to design an effective behavior function [15].

A caveat of our results in Section 6 is that, since each tar-
get weights task requires a specific phenotype to solve, they
consider only tight fitness functions like those in [28]. This
is a necessary limitation due to the generative nature of our
definition of fracture. There is some evidence that Hyper-
NEAT can cope with modest fracture (two regions) given
looser fitness functions [8]. However, in our experiments,
HyperNEAT could not solve the harder walking gait task,
which also has a looser fitness function, even though it re-
quires generating a pattern with only three regions (see Fig-
ure 11). More research is needed into the interplay between
the tightness of the fitness function and HyperNEAT’s abil-
ity to cope with fracture, though doing so is difficult since
these parameters cannot be directly controlled.

Of course, a key limitation of all our results is that they
consider only some of the tasks on which HyperNEAT has



succeeded. Thus, another important avenue for future work
is to repeat this sort of analysis on these other tasks. While
we can only speculate about HyperNEAT’s behavior on such
tasks, there are hints to suggest it is in at least some cases
consistent with what we report here. For example, in check-
ers [13], HyperNEAT found a winning solution in only 8.2
generations on average, which may indicate that only a triv-
ial CPPN is required. In keepaway [26], performance is
competitive with other leading methods but the compari-
son is confounded by the use of a novel “bird’s eye view”
representation. It may be that this representation obviates
the need to discover a nontrivial CPPN. Other HyperNEAT
successes may be more substantial, e.g., it solved a harder
visual discrimination task somewhat similar to ours in Sec-
tion 5 [8], evolved elaborate behaviors for teams of robots
[9, 10], and discovered more intricate walking gaits for real
robots [29]. However, whether these tasks actually require
complex solutions is not known.

To better cope with fracture, it might be beneficial to in-
troduce nodes with a radial basis function, creating “RBF-
HyperNEAT”, corresponding to “RBF-NEAT” [16], which
was shown to handle fracture better than regular NEAT.
From there it is a small step to implement nodes emitting
wavelets, which —given the results in this paper— could be
an effective extension. Alternatively, the wavelet baseline
method considered here itself showed promising initial per-
formance and could be used as a starting point for a more
robust indirect encoding method.

8. CONCLUSION
This paper studied the critical factors in the performance

of HyperNEAT. We examined the difficulty of several tasks
on which HyperNEAT has succeeded and found that all of
these tasks are easy in the sense that they can be solved
with at most one hidden node and require generating only
trivial regular patterns. Then, we examined how Hyper-
NEAT performs when the tasks are made harder and found
that HyperNEAT’s performance decays quickly: it fails to
solve all variants of these tasks that require more complex
—but still regular—solutions. Finally, we examined the role
of problem space fracture and found that, in these experi-
ments, HyperNEAT has trouble with even modest levels of
fracture. Together, these results suggest that the capacity
of HyperNEAT to capture complex regularities may be less
than was previously supposed and hence new methods may
be needed to finally fulfill the promise of indirect encodings.
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