
Computational Intelligence, Volume 00, Number 000, 2012

E�cient Abstraction Selection in Reinforcement Learning

Harm van Seijen

Department of Computing Science
University of Alberta
Edmonton, Canada

Shimon Whiteson
Informatics Institute

University of Amsterdam
Amsterdam, The Netherlands

Leon Kester
Distributed Sensor Systems Group
TNO Defence, Security and Safety

The Hague, The Netherlands

This article addresses reinforcement learning problems based on factored Markov decision

processes (MDPs) in which the agent must choose among a set of candidate abstractions, each build
up from a di↵erent combination of state components. We present and evaluate a new approach
that can perform e↵ective abstraction selection that is more resource-e�cient and/or more general
than existing approaches. The core of the approach is to make selection of an abstraction part of
the learning agent’s decision-making process by augmenting the agent’s action space with internal
actions that select the abstraction it uses. We prove that under certain conditions this approach
results in a derived MDP whose solution yields both the optimal abstraction for the original MDP
and the optimal policy under that abstraction. We examine our approach in three domains of
increasing complexity: contextual bandit problems, episodic MDPs, and general MDPs with context-
specific structure.

Key words: reinforcement learning, model-free learning, structure learning,
abstraction selection

1. INTRODUCTION

In reinforcement learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998; Szepesvri, 2010),
an agent learns a control policy by interaction with an initially unknown environment. The agent
adapts its behaviour in response to the rewards it receives in order to maximize its expected return,
the discounted sum over rewards. When the RL problem is modelled as a Markov decision process
(MDP) (Bellman, 1957a), the agent’s policy can be represented as a mapping from states to actions.

Learning in MDPs is challenging because of the curse of dimensionality : the size of the state
space grows exponentially with respect to the number of problem parameters. Consequently, finding
a good policy can require prohibitive amounts of memory, computation time, and/or sample experi-
ence (i.e., interactions with the environment). Fortunately, many real-world problems have internal
structure that can be leveraged to dramatically speed learning.

A common structure in factored MDPs (Boutilier et al., 1995), wherein each state is described by
a set of state component values, is the existence of irrelevant (or near-irrelevant) state components,
which do not a↵ect the next state or reward. When the irrelevant components are identified,

Address correspondence to Harm van Seijen, University of Alberta, 2-21 Athabasca Hall, Edmonton,
Alberta, Canada T6G 2E8; email: harm.vanseijen@ualberta.ca

iC
2012 The Authors. Journal Compilation

iC
2012 Wiley Periodicals, Inc.

2 Computational Intelligence

exploiting this structure is trivial: the irrelevant state components can simply be removed from the
state description, causing an exponential decrease in the state space size in the number of components
that are removed. For tasks with unidentified irrelevant components, exploiting the structure is non-
trivial and requires a form of structure learning. Ideally, the agent will identify, after some learning
period, the minimal component set, i.e., the smallest subset of the total set of state components that
contains all the relevant information.

The task of identifying and removing irrelevant state components has long been recognized as
crucial in tackling problems with large state spaces. For example, McCallum (1995) proposed a
method (U-tree) that learns a tree for e�cient representation of a policy that uses only task-relevant
state distinctions. However, the number of statistical tests that have to be performed to learn this
tree depends of the size of the full set of state components, making the method impractical for large
problems. More recently, methods have been proposed that aim to select the best abstraction, i.e.,
combination of state components, from a set of candidate abstractions (Diuk et al., 2009; Konidaris
and Barto, 2009).1

From the point of view of structure learning, the set of candidate abstractions encodes prior
knowledge about (combinations of) irrelevant state components that can be leveraged to reduce the
problem size. A set of candidate abstractions can model prior knowledge of the problem’s structure
that ranges from full knowledge (i.e., the set contains only the minimal abstraction) to no knowledge
(i.e., the set contains all possible combinations of state components). When evaluating the candidate
abstractions, the total number of states the agent must reason about is the sum of the state spaces
induced by these abstractions. If there are many irrelevant state components and su�cient prior
knowledge about it is encoded in the set of candidate abstractions, then this sum can be exponentially
smaller than the state space resulting from using all components. Consequently, abstraction selection
has the potential to make learning feasible on very large problems.

Diuk et al. (2009) propose an abstraction selection method based on their k-meteorologists algo-
rithm, called SCRAM-R

max

. Their method applies abstraction selection to select a type abstraction
of a relocatable action model (Le✏er et al., 2007). A type abstraction clusters the state space into
areas with similar transition dynamics. Besides a set of candidate abstractions their method requires
as input a next-state function. This function requires a high degree of prior knowledge about the
general transition function. For domains where this knowledge is available, learning can be performed
very e�ciently. On the other hand, when this knowledge is not available their method cannot be
applied.

By contrast, Konidaris and Barto (2009) present an abstraction selection strategy that uses as
input only a set of candidate abstractions. They propose to select abstractions based on the Bayesian
Information Criterion (BIC) (Schwarz, 1978) and introduce a method that incrementally processes
samples for computing the BIC value of a candidate abstraction. However, the space and computation
costs for processing a single sample scale quadratically with the size of the abstraction. In addition,
the computation cost for selection scales cubicly. Consequently, their approach is unsuitable in
settings where such resources are highly constrained.

We present and evaluate an alternative approach for abstraction selection that requires less prior
knowledge than that of Diuk et al. but is more e�cient than that of Konidaris and Barto. The core
of our approach is to make the selection of the abstraction part of the RL agent’s decision-making
process by adding internal ‘switch actions’ to the action set that allow the agent to switch from one
abstraction to another. The selected abstraction is then used for external action selection. E↵ectively,
this process constructs from the original MDP and the set of candidate abstractions an abstract,
derived RL task, which we call the abstraction-selection task. Due to the reasons mentioned above,
the state space of this task can be exponentially smaller than that of the original MDP. In addition,
o↵-policy learning can be employed to reduce the sample e�ciency even further.

Our approach evaluates candidate abstractions in a fundamentally di↵erent way than the two
approaches mentioned above. Rather than determining which abstractions best predict the observed
data according to some statistical measure, our approach estimates the return each abstraction
will produce, given the data seen and updates performed so far. This is achieved by trying out
the di↵erent abstractions and updating the corresponding switch actions with the return produced

1Diuk et al. (2009) call this task ‘feature selection’.

Efficient Abstraction Selection in Reinforcement Learning 3

by these abstractions. Because abstractions are evaluated based on the quality of their current
policy, small abstractions that quickly learn a decent policy will be selected in the early learning
phase, while abstractions that need more data to obtain an accurate policy will be selected later. In
addition, because the selection problem is transformed into a single derived task, it can be solved
with resource-e�cient model-free methods, making abstraction selection available in settings with
strong constraints on computation and memory.

The main contribution of this article lies in specifying under which conditions the derived task is
itself an MDP. In this case, basic RL methods are guaranteed to converge to the optimal abstraction
and the optimal policy under that abstraction. In addition, we present model-free update strategies
for o↵-policy updating abstractions that are not selected, in order to improve the sample e�ciency
in settings with more resources. We also empirically compare di↵erent model-free update strategies.

We explore our learning approach in three domains of increasing complexity. The first domain
is a contextual bandit task, a variation on the regular bandit task where the expected return of an
arm is conditioned on context information, represented by a set of state components. Abstraction
selection in this case involves selecting an e�cient combination of state components for describing
the context states. After each arm pull a di↵erent abstraction can be selected.

The second domain considers abstraction selection for an episodic MDP. In this domain, abstrac-
tion selection occurs at the start of each episode and the selected abstraction is then used throughout
the episode. We demonstrate that for this domain, in contrast to the contextual bandit domain, not
every set of candidate abstractions will result in a Markov abstraction-selection task. Specifically, in
order to obtain a Markov abstraction-selection task, all candidate abstractions have to be Markov.
We prove that a Markov abstraction can be constructed by removing certain state component types
from the set of all state components.

The third domain considers general MDPs with context-specific structure, i.e., MDPs where in
di↵erent parts of the state space di↵erent state components are relevant. For this domain, partial
knowledge of the structure is assumed. Specifically, knowledge is assumed about which states share
the same relevant components (but not which components are relevant for those states). By clustering
states that share the same relevant components, the state space can be divided into di↵erent regions,
such that each region shares the same relevant components. Abstraction selection occurs whenever
the agent moves out (or in) such a region. In this domain, to obtain a Markov abstraction-selection
tasks, additional restrictions hold. Since a contextual bandit task can be seen as a special case of
an MDP, the theory discussed in this domain also applies to contextual bandit tasks with context-
specific structure.

2. RELATED WORK

In this section, we discuss the related work regarding abstraction selection, and more generally
structure learning.

2.1. Abstraction Learning

In principle, all abstraction selection methods can achieve an exponential decrease in the problem
size compared to using all state components, given that the problem contains a large number of
irrelevant components and su�cient prior knowledge about them. However, abstraction selection
methods di↵er greatly in terms of their generality and e�ciency. In this section, we discuss several
related abstraction selection methods and contrast them with our approach.

Konidaris and Barto (2009) evaluate each abstraction from a set of candidate abstractions by
determining its BIC value, a standard criterion for model selection that explicitly penalizes high-
dimensional abstractions. They propose an algorithm for iteratively determining the BIC value for
skills represented using options (Sutton et al., 1999). Since only a few state components may be
relevant for a given skill, using only those components can greatly speed learning. The set of candidate
abstractions (which they call ‘library of abstractions’) for a new skill can be constructed from the
abstractions used for other skills. Their algorithm iteratively processes each incoming sample and
computes the BIC value after m samples have been observed. Because they combine this approach
with function approximation, it can be applied to continuous domains. It requires O(q2

i

) memory

4 Computational Intelligence

and computation at each time step and O(q3
i

) computation for selection pertime step candidate
abstraction i using a function approximator with q

i

features.
By contrast, we do not consider function approximation in this article. Nonetheless, combining

our abstraction-selection tasks with function approximation is straightforward and requires no addi-
tional algorithmic developments. In such a setting, our approach would require only O(q

i

) memory
and computation per time step for each candidate abstraction. Updating the switch actions and
selecting an abstraction adds no significant extra cost. Thus, our approach is substantially more
e�cient and thus better suited for settings with strong restrictions on memory and computational
resources.

Unfortunately, the work of Konidaris and Barto does not specify a complete RL method,
preventing a meaningful empirical comparison between our approach and theirs. Performing such
a comparison would require developing a new RL method in which their algorithm appears as a
subroutine. Doing so is beyond the scope of this article.

Diuk et al. (2009) propose the adaptive k-meteorologists algorithm, a general method for learning
a probabilistic concept, i.e., a function h : X ! Y , with Y = [0, 1], where Y corresponds with a
probability. In the meteorologist example, after which their algorithm is named, Y is the probability
of rain and X are the state components that can be used to predict this probability. The algorithm
learns which function h, from a set of functions H, best predicts a series of stochastic observations
z
t

2 {0, 1}, generated by an unknown h⇤. Since the algorithm is based on the KWIK framework
(Li et al., 2008), it outputs ? (“I don’t know”) when it is not sure about its prediction. Using this
algorithm, they construct a method for learning an abstraction among a set of candidate abstractions
(SCRAM-R

max

).
Despite the generality of the adaptive k-meteorologists algorithm, its use for abstraction selection

is limited because it compares predictions about the same variable. Since the transition dynamics of
di↵erent candidate abstractions make predictions about the values of di↵erent state components, the
adaptive k-meteorologists algorithm cannot e↵ectively compare them. Hence, SCRAM-R

max

does
not apply to the problem of selecting among state abstractions. Therefore, their method can only be
used for selecting among type abstractions for a relocatable action model (Le✏er et al., 2007). This
requires a di↵erent, more advanced form of prior knowledge of the transition function.

More specifically, a type is a mapping : S ! C that clusters the state space into regions that
share the same transition dynamics. This transition dynamics is expressed using t : C ⇥A! P (O),
which maps a type c 2 C and action a 2 A to a probability distribution over possible outcomes.
These outcomes are a state-independent specification of an action’s e↵ects (e.g. “agent moves one
step to the left”). By combining this outcome with a next-state function ⌘ : S⇥O ! S, which maps
states and observations to next states, the next state can be computed. SCRAM-R

max

requires as
input a set of type mappings and the next-state function ⌘. The function ⌘ requires a high degree of
prior knowledge about the transition function. In fact, in a deterministic environment, this function
is similar to the transition function, making the problem more of a planning problem than an RL
problem. The core property that allows for the k-meteorologists algorithm to be used is that each
type mapping can be evaluated based on predictions about the same outcome variable O.

The task on which SCRAM-R
max

is evaluated is similar to our extended Mars rover task (see
Section 7.5). Both are navigation tasks and require a robot to find its way from start to goal locations,
while encountering di↵erent terrain types. A di↵erence is that in the SCRAM-R

max

domain, terrain
types share equal action e↵ects, while in the extended Mars rover task they share equal irrelevant
components (and can have di↵erent action e↵ects). The key di↵erence, however, is that the learning
problem presented to SCRAM-R

max

is much smaller than the learning problem captured by the
extended Mars rover task, since the function ⌘ is assumed to be known in the SCRAM-R

max

domain.
The candidate abstractions used for SCRAM-R

max

consists of only single binary components, i.e.,
these abstractions have a size of only 2. By contrast, the size of a candidate abstraction in the
extended Mars rover domain, which consists of a position component and a structural component,
is 900. Note that, since Diuk’s method relies on restrictive assumptions that do not hold for our
extended Mars rover task, we do not compare to it directly.

Efficient Abstraction Selection in Reinforcement Learning 5

2.2. Other Methods Exploiting Structure

Whereas abstraction selection seeks to identify state components that can be excluded from
the state space completely, related approaches seek to identify conditional independence between
components, typically expressed using a dynamic Bayesian network (DBN) (Dean and Kanazawa,
1989; Murphy, 2002), also referred to as a two-slice temporal Bayesian network. In planning prob-
lems, DBNs enable e�cient solution methods that do not require explicit enumeration of the state
space (Boutilier et al., 1995). Similarly, in learning problems where the structure of the DBN is
known (but not its parameter values), near-optimal performance can be obtained using only samples
and computation polynomial in the number of parameters of the DBN, which may be exponentially
smaller than the number of states (Kearns and Koller, 1999).

However, when the structure of the DBN is not known in advance, the problem becomes much
harder. Learning is still possible in a sample-e�cient way, either by requiring prior knowledge of the
maximum degree of the DBN (Strehl et al., 2007; Diuk et al., 2009; Kroon and Whiteson, 2009) or by
placing restrictions on the planning horizon (Chakraborty and Stone, 2011). However, the time and
space requirements of such methods are linear in the number of states, making them impractical for
large problems (as an example, the largest problem Diuk’s DBN learning method is tested on consists
of only 512 states). While abstraction selection requires more prior knowledge (a set of candidate
abstractions), this knowledge can be leveraged to tackle problems with huge state spaces: we show
good results for large size bandit problems (1045 states, see Section 5.4) as well as large size MDPs
(1020 states, see Section 6.3). Such tasks are far beyond the reach of DBN learning methods.

Also related to our approach is the work on automatically finding good state abstractions
(instead of selecting the best abstraction among a set of candidate abstractions). In a planning
context, such methods can be roughly divided in exact and approximate methods. Exact methods
aggregate states for which the transition and reward functions are equal (Givan et al., 2003; Boutilier
et al., 2000; Ravindran and Barto, 2003). By contrast, approximate methods aggregate states for
which the transition and reward functions are similar according to some metric (Dean et al., 1997;
Ferns et al., 2004). These methods di↵er from ours in that they focus on planning and thereby
assume complete knowledge of the transition dynamics, whereas we focus on learning, in which such
knowledge is absent.

There also exist methods for automatically finding good abstractions for the learning setting.
For example, Chapman and Kaelbling, L.P. (1991) propose a method for on-line state abstraction of
states with the same reward and Q-value for each action. Similarly, Jong and Stone (2005) propose
a method that can learn to aggregate states with the same optimal action. Since these approaches
learn the structure without relying on prior knowledge, they typically require large amounts of data,
limiting their application to transfer learning (Taylor and Stone, 2009), where abstractions learned
in one task can be used to speed learning in other, related tasks. By contrast, our methods are
e↵ective in an on-line setting by exploiting because they exploit prior knowledge about irrelevant
components.

Abstractions with context-specific structure are related to hierarchical learning. Dietterich (2000)
presents a method, called MAX-Q, which decomposes a task is into subtasks which are solved
separately. It has the advantage that a subtask does not have to use all state components. Instead, it
can only use the components that are relevant to the specific subtask, reducing the overall problem
size. A context-specific abstraction can also achieve this problem reduction by dividing the task into
regions with di↵erent relevant components. A di↵erence is that for MAX-Q the solution of a subtask
is independent of other subtasks. This has a number of advantages. For example, the policy of a
subtask will converge more quickly and it is easier to apply transfer learning. A disadvantage of
MAX-Q is that in general only recursively optimal solutions can be guaranteed. By contrast, the
solution of an abstraction with context-specific structure is globally optimal (assuming each ‘region’
contains all the local relevant components). The options framework (Sutton et al., 1999) also provides
task hierarchy. Options combine multiple primitive actions (actions that finish after a single time
step) into extended actions that control the agent for multiple time steps until some termination
condition is met. By adding options to a task, while leaving in the primitive actions, hierarchical
optimality of the solution can be guaranteed in the limit, instead of only recursive optimality. The
downside of leaving in the primitive actions is that the overall problem size increases instead of
decreases.

6 Computational Intelligence

3. MARKOV DECISION PROCESSES

In this section, we discuss the standard framework for describing MDPs and factored MDPs and
discuss basic solution strategies. But first we discuss some notational conventions used throughout
this article.

3.1. Notation

We use capital letters to denote random variables (e.g., X) and small letters to denote their
values (e.g., x). We use a calligraphic font to denote a set (e.g., X), and small letters in greek
font to denote functions (e.g., µ). We use boldface to denote a multivariate random variable (e.g.,
X = (X1, X2)) or product set (e.g., X = X 1 ⇥ X 2), and superscripts to denote di↵erent elements
in a multivariate variable or a product set. Subscripts are reserved to denote the time index of a
random variable (e.g., X

t

). If P is a distribution or probability measure, then X ⇠ P means X is a
random variable drawn from P . X 2 X means that the values the random variable X can have are
the elements from X .

Furthermore, a set-superscript for a vector or product set indicates that only certain components
are used. For example, let X = X 1⇥X 2⇥· · ·⇥XN = ⇥N

i=1

X i be a product set, and S ✓ {1, 2, . . . , N}
be a subset of component indices. Then XS indicates the product set spanned by the components
in X with an index in S: XS = ⇥

i2SX i. For example, X {1,3} = X 1 ⇥ X 3. In addition, for the
multivariate random variable X = (X1, . . . , XN), with Xi 2 X i, XS = (Xi : i 2 S). For example,
X

{1,3} = (X1, X3). Similarly, for x = (x1, . . . , xN) 2 X , with xi 2 X i, xS = (xi : i 2 S).

3.2. Markov Decision Processes

Markov decision processes (MDPs) (Bellman, 1957a) are used to model sequential decision
problems, where a decision maker, the agent, interacts with its environment in a sequential way.
An MDP is defined by a 4-tuple (X ,A, ⌧, ⇢) where X is a finite set of states of size |X |, and A is
a finite set of actions. The state transition function ⌧ gives, for each triple (x, a, y) 2 X ⇥ A ⇥ X ,
the probability of moving to state y, when taking action a in state x. The reward function ⇢ gives
for each triple (x, a, y) 2 X ⇥ A ⇥ X a probability distribution over R. The semantics are that the
reward received by the agent when taking action a in state x and moving to state y is drawn from
the distribution ⇢(x, a, y). In general, not all actions from A are accessible in each state x 2 X . We
denote the subset of actions accessible in x as A(x) ✓ A.

The interaction with the environment occurs at discrete time steps t = {0, 1, 2, 3, ...}. This
interaction happens as follows. Let X

t

2 X and A
t

2 A be random variables that denote the state
of the environment and the action taken by the agent at time step t. Once the action is selected, it
is sent to the environment, which makes the transition:

X
t+1

⇠ ⌧(X
t

, A
t

, ·) (1)

R
t+1

⇠ ⇢(X
t

, A
t

, X
t+1

) (2)

After the agent observes the next state X
t+1

and reward R
t+1

, the agentstate space chooses a new
action A

t+1

2 A and the process is repeated.
The agent can select its actions at a certain time step based on the complete history. An MDP

M, the action-selection strategy of the agent and some random initial state X
0

together define a
random state-action-reward sequence ((X

t

, A
t

, R
t+1

); t > 0). For this sequence, the following holds,
for all U ✓ X ⇥ R:

Pr((X
t+1

, R
t+1

) 2 U |X
t

, A
t

) = Pr((X
t+1

, R
t+1

) 2 U |X
t

, A
t

, R
t

,, R
1

, X
0

, A
0

)

In other words, the future and history are conditionally independent, given the current state and
action. This is called the Markov property.

The return for time step t, G
t

, is defined as the discounted sum over future rewards:

G
t

= R
t+1

+ �R
t+2

+ �2 R
t+3

+ ... =
1X

k=1

�k�1 R
t+k

, (3)

Efficient Abstraction Selection in Reinforcement Learning 7

where 0 6 � 6 1 is the discount factor. In general, at time step t, an agent will try to select action
A

t

in such a way that the expected value of G
t

is maximized.
Some MDPs have terminal states, which divide the agent’s interaction with the environment

into episodes. When a terminal state is reached, the current episode ends and a new one is started by
resetting the environment to the initial state. The infinite sum from Equation (3) does not continue
across episodes. In other words, if a terminal state is reached at time step T , the sum terminates
after reward R

T

.

3.3. Factored Markov Decision Processes

A factored MDP is an MDP where the set of states, X , is constructed from N state components:

X = X 1 ⇥ X 2 ⇥ ...⇥ XN

= {(x1, x2,, xN)|xi 2 X i, 1 6 i 6 N} .
Occasionally, we say something like “for this state, the value of X k is 0”. This is shorthand for saying
“the value of the k-th component of this state, which is an element of state component X k, is 0”.

The size of a factored state space, which we indicate by |X |, is the number of distinct component
value combinations that can potentially be observed by the agent. This number is in general smaller
than the product of the state component sizes (i.e., |X | 6 Q

N

i=1

|X i|), because of correlation between
component values. For example, a state space spanned by two identical state components of size K,
also has a size of K, and not of K2.

Sometimes the structure of a problem dictates that a state component is only meaningful
depending on the value of other state components. For example, suppose we have a component
TransportVehicle = {‘car’, ‘boat’ } and a component WheelSize = {‘small’,‘large’ }. Because a boat
does not have any wheels, the wheel-size component is meaningless in this context. We call a state
space where the number of components that describe a state varies across the state space a context-
specific state space. Because it is conceptually unintuitive to use a state space where the elements are
vectors of di↵erent size, we will model a context-specific state space as a factored state space, spanned
by all the possible state components, with a special value added to each component, indicated by #.
When a state has value # for one of its components, this indicates that this state component
is actually not defined for that state. For example, a boat in the state space TransportVehicle
⇥ WheelSize is described by the vector (‘boat’, #). With this way of modelling context-specific
structure, formally, each state has the same number of components. Note that the size of a context-
specific state space is not a↵ected by this approach (to see why, enumerate the states for the example
above; keep in mind that the size is determined by the number of component-value combinations
that can potentially be observed).

Context-specific state spaces are related to hierarchical RL. We discussed this relation in the
related work section (Section 2).

3.4. Solution Strategies

Actions are selected according to a policy. A stationary, deterministic policy ⇡ is a mapping
⇡ : X ! A, where ⇡(x) is the action the agent takes in state x 2 X . Each policy ⇡ is associated
with a state-value function V ⇡ : X ! R that maps a state x 2 X to the expected return from that
state when following policy ⇡:

V ⇡(x) = E
⇥
G

t

|x
t

= x,⇡
⇤

Related to the state-value function is the action-value function Q
⇡

: X ⇥ A ! R, which gives the
expected return when taking action a in state x and following policy ⇡ thereafter:

Q⇡(x, a) = E
⇥
G

t

|x
t

= x, a
t

= a,⇡
⇤
.

Terminal states (in episodic MDPs) have by definition a value of 0. This can be related to the infinite
sum in Equation 3 by interpreting them as states with only a single action with zero reward that
points to themselves.

In a planning context, the transition and reward functions of the MDP are known to the agent.
The goal in this case is to compute an optimal policy ⇡⇤, which maximizes the expected return for

8 Computational Intelligence

each state. In a reinforcement learning context, the transition and reward functions are not (fully)
known by the agent, preventing direct computation of an optimal policy. Instead, the agent has to
interact with the environment to learn about the environment and improve its policy. The goal of the
agent in an RL setting is to maximize its on-line performance, i.e., the return accrued while learning.
Underlying the RL problem is the exploration/exploitation dilemma: the agent can either exploit its
current knowledge by taking the action that is best according to its current value estimates, or it
can explore by taking an action currently deemed suboptimal in order to improve the corresponding
value estimate.

RL problems are often solved by iteratively improving the state-value or action-value function.
This can be done in amodel-based way(Sutton, 1990; Moore and Atkeson, 1993; Brafman and Tennen-
holtz, 2002; Kearns and Singh, 2002), by using the interactions with the environment to estimate the
transition and reward functions and then computing the optimal state-value or action-value function
for the estimated model via o↵-line planning techniques such as dynamic programming (Bellman,
1957b; Puterman and Shin, 1978). Alternatively, an RL problem can be solved in a model-free way,
in which case experience is used to directly update the state-values or action-values. A common form
for updating the action-values, or Q-values, is:

Q(x
t

, a
t

) (1� ↵)Q(x
t

, a
t

) + ↵�
t

, (4)

where ↵ is the learning rate, x

t

and a
t

are the state and action at time step t, and �
t

is the
update target. Many di↵erent update targets are possible, e.g., a Monte Carlo (MC) update uses the
complete return: �

t

= G
t

. Temporal-di↵erence (TD) methods (Sutton, 1988) use an update target
that is based on the Q-values of other state-actions pairs. An example is the Q-learning (Watkins
and Dayan, 1992) update target:

v
t

= r
t+1

+ � max
a

Q(x
t+1

, a) , (5)

where r
t+1

is the reward received after taking action a
t

in state x

t

. Once the optimal state-value or
action-value function has been learned, an optimal policy can easily be derived.

4. ABSTRACTIONS

The size of the state space can grow exponentially in the number of state components. Therefore,
when the number of state components is large, the state space can become prohibitively large. To
overcome this, the agent can choose to ignore certain components, for example, those that it knows
are irrelevant. Ignoring certain state components is an example of an abstraction. More generally, an
abstraction is a function that maps states from one state space to states from a di↵erent state space.
E↵ectively, an abstraction defines a di↵erent task that the agent can interact with. Under certain
conditions, this task also obeys the Markov property, i.e., it forms an MDP by itself, in which case
standard RL methods can be used to solve it. If this is the case, we call the abstraction a Markov
abstraction. In this section, we prove that Markov abstractions can be constructed by removing
certain types of state components.

4.1. Markov Abstractions

An abstraction is a function that maps states from one state space to states from a di↵erent
state space:

µ : X ! Y .

Before we define what a Markov abstraction is, we reiterate what the Markov property of an MDP
is based on. In Section 3.2, we showed that an MDP M = (X ,A, ⌧, ⇢), an action-selection strategy
based on history values, and an initial state X

0

together define an (infinite) sequence of random
variables of the form:

(X
0

, A
0

, R
1

,X
1

, A
1

, R
2

, . . .) ,

with X

t

2 X , A
t

2 A for t > 0 and R
t

2 R for t > 1. The Markov property is defined based on this
sequence.

Given M, an action-selection stategy, an initial state X

0, and an abstraction µ, we can define

Efficient Abstraction Selection in Reinforcement Learning 9

a di↵erent sequence of random variables.

(Y
0

, A
0

, R
1

,Y
1

, A
1

, R
2

, . . .) , (6)

with Y

t

= µ(X
t

) for t > 0, and X

t

and R
t

for t > 1 generated according to equations (1) and (2).
A

t

is determined by the agent’s action-selection strategy and the (abstracted) history:
(Y

0

, A
0

, R
1

, . . . , R
t

,Y
t

). We call µ a Markov abstraction if the Markov property applies to the
sequence specified by (6).

Definition 1: The abstraction µ : X ! Y is a Markov abstraction if for the sequence of random
variables defined by (6) the following holds, for all U ✓ Y ⇥ R:

Pr((Y
t+1

, R
t+1

) 2 U |Y
t

, A
t

) = Pr((Y
t+1

, R
t+1

) 2 U |Y
t

, A
t

, R
t

,, R
1

,Y
0

, A
0

) .

In this article, we only consider two types of abstractions. The first type corresponds with
ignoring certain components. In other words, it is an abstraction of the form:

µ(x) = x

S , for all x 2 X ,

with X = X 1 ⇥ ... ⇥ XN and S ✓ {1, 2, ..., N}. For example, for x = (3, 5, 8, 2, 0) and S = {1, 3},
µ(x) = (3, 8).

The second type of abstraction is a mapping to a context-specific state space (see Section 3.3),
where di↵erent states are described by di↵erent state components of X . This state space is spanned
by all the components of X , with for each component the element # added, which value indicates
the component is not active. An example of such a mapping is:

µ(x) =

(
x

{1,3} if x{5} = 0

x

{2,4} otherwise ,
for all x 2 X .

In this case, xS means that all the components with an index not in S get the value #. For example,
with x = (3, 5, 8, 2, 0) and µ as defined above, µ(x) = (3,#, 8,#,#). We call an abstraction that
maps to a context-specific state space a context-specific abstraction.

Next, we show how Markov abstractions can be constructed by ignoring certain component
types.

4.2. State Component Types

In this section, we define several types of state components. We use a dynamic Bayesian network
(Dean and Kanazawa, 1989; Murphy, 2002), shown in Figure 1, as a running example to illustrate
the di↵erent types. At the end of this section, we show that a Markov abstraction can be constructed
by ignoring certain component types.

Throughout this section, we consider the MDP M = (X ,A, ⌧, ⇢), with X consisting of N state
components: X = X 1⇥ ...⇥XN . In addition, S ✓ {1, 2, ..., N} is a subset of component indices. XS

is the state space spanned by the components of X with an index in the set S, and X

S is a vector
of random variables corresponding with the components specified by S. The definitions are specified
for X k, the k-th state component of X .

We start by defining irrelevant state components.

Definition 2: X k is irrelevant for XS , if k /2 S and for all U ✓ XS ⇥ R the following holds:

Pr((XS
t+1

, R
t+1

) 2 U | XS
t

, A
t

) = Pr((XS
t+1

, R
t+1

) 2 U | XS
t

, Xk

t

, A
t

) , (7)

Informally, an irrelevant state component is a component that a↵ects neither the next value
of any component in XS , nor the reward. In Figure 1, X 1 is irrelevant with respect to X 3 ⇥ X 4

because it a↵ects neither those components nor the reward. Similarly, X 3 is irrelevant with respect
to X 1 ⇥ X 2 ⇥ X 4 because it a↵ects only itself. The complement class is the class of relevant state
components:

Definition 3: X k is relevant for XS , if it is not irrelevant for XS .

10 Computational Intelligence

X1t+1

X2t+1

X3t+1

X4t+1

Rt+1

X1t

X2t

X3t

X4t

Rt

Figure 1. A DBN of the transition dynamics of a factored MDP with state space X = X 1 ⇥X 2 ⇥
X 3 ⇥ X 4, illustrating various state component types. Xi

t

, Xi

t+1

2 X i for 1 6 i 6 4.

In Figure 1, X 1 is relevant for X 2 ⇥X 3 ⇥X 4 because it a↵ects X 2. Furthermore, X 4 is relevant for
all product sets XS , because it a↵ects reward.

We can divide the irrelevant state component class into three subclasses: constant, empty and
redundant components.

Definition 4: X k is constant, if |X k| = 1.

A constant component is a state component that never changes value. It is therefore irrelevant for
all XS with k /2 S.

Definition 5: X k is empty, if |X k| > 1 and X k is irrelevant for all product sets XS , with k /2 S.
An empty state component is a component that only a↵ects itself. In Figure 1, X 3 is an example of
either a constant or an empty component (depending on whether its value stays constant or not).

Definition 6: X k is redundant for XS , if X k is irrelevant for XS , but there exists a product set
XS0

with S 0 ⇢ {1, 2, ..., N} and k /2 S 0 for which X k is relevant.

A redundant component X k either a↵ects the value of a component not part of XS or it a↵ects a
component of XS , but X k is fully correlated with some other component(s) of XS , hence adding
X k to XS does not a↵ect the predictions. In this last case, by removing components from XS , X k

could become relevant with respect to this reduced product set.
Apart from the relevant/irrelevant classification, we define another classification: dependent and

independent state components.

Definition 7: X k is independent if for all U ✓ X k the following holds:

Pr(Xk

t+1

2 U) = Pr(Xk

t+1

2 U | R
t+1

,X
t

, A
t

) . (8)

Thus, the value of an independent component does not depend on the values of previous state
components or the reward just received. Note that an independent component can a↵ect the next
value of other components or the next reward. In Figure 1, X 1 and X 4 are independent because no
variables a↵ect them.

As we prove in the next subsection, an independent state component is unique in the sense
that it can contain relevant information, but omitting it still gives a Markov abstraction. Therefore,
standard RL methods still converge when using such an abstraction, though the resulting policy is

Efficient Abstraction Selection in Reinforcement Learning 11

not optimal for MDP M. However, since we are primarily interested in the best online performance
instead of the optimal policy, omitting independent components can play an important role in finding
an e�cient abstraction.

For completeness, we also define the counterpart of an independent state component:

Definition 8: X k is dependent if it is not independent.

In Figure 1, X 2and X 3 are dependent because their values at time step t+ 1 depend on the values
from time step t: X 2 depends on the values of X 1 and X 2 at the previous time step, and X 3 depends
on the values of X 2 and X 3.

The following theorem shows that a Markov abstraction can be constructed by removing certain
components from X . We prove this theorem in Appendix A.

Theorem 1: Consider the MDP M = (X ,A, ⌧, ⇢) with X = X 1 ⇥ X 2 ⇥ ... ⇥ XN . Abstraction
µ(x) = x

S with S ✓ {1, 2, ..., N} is a Markov abstraction if each component X k from X with k /2 S
is either irrelevant for XS or an independent component.

Note that using a Markov abstraction to learn a task, guarantees that the performance will
converge using basic RL method. However, it does not guarantee that the asymptotic performance is
equal to the asymptotic performance of an agent using all state components. If relevant, independent
components are ignored, the performance may be lower.

To illustrate this, consider a navigation task where the agent has to reach a goal location.
The task is deterministic when two state components are used: one specifying the position and
one relevant, independent binary component. This binary state component has a value of zero 90%
of the time, but once in a while, 10% of the time, its value changes to one. The e↵ect of this
component having value 1 is that all action e↵ects are opposite (i.e., a ‘left’ action results in a ‘right’
movement, and so on). An agent that includes this binary component in its state abstraction is able
to counter this e↵ect. On the other hand, an agent that does not includes this component perceives
the environment as stochastic, causing the selected action to have an opposite e↵ect than expected
10% of the time. Since the agent cannot compensate for this e↵ect, its best policy will have an
expected return that is less than the best policy of the agent that uses both state components.

5. ABSTRACTION SELECTION FOR CONTEXTUAL BANDIT PROBLEMS

In this section, we introduce and evaluate abstraction-selection algorithms for a contextual bandit
problem (Wang et al., 2005; Pandey et al., 2007), which can be viewed as a special case of an MDP
that only consists of single-action episodes. Contextual bandit problems are a useful way to model
many real-world tasks, e.g., selecting ads to place alongside web pages (Langford and Zhang, 2007;
Langford et al., 2008). In this section, we discuss the simplest form of abstraction selection, where
a single abstraction is used for the full state space. In Section 7.4 we discuss the case of contextual
bandit problems with context-specific structure.

5.1. Contextual Bandit Problems

A multi-armed bandit problem (Lai and Robbins, 1985; Auer et al., 2002) is a task in which a
choice has to be repeatedly made between the same set of actions. The action produces a reward
drawn from an unknown probability distribution corresponding to that action, and the goal is to
maximize the total reward over a series of action selections. The term ‘multi-armed bandit’ is derived
from the analogy to a slot machine (traditionally called a ‘one-armed bandit’) with multiple arms
instead of one.

A contextual multi-armed bandit problem is an extension of the multi-armed bandit problem for
which the reward distributions of the bandit arms are correlated with observed context information.
This context information is generated by a fixed probability distribution and changes after each arm
pull. This problem maps to an RL problem by interpreting the arms as actions and the context
information as states. The task involves learning the average reward of each arm conditioned on the

12 Computational Intelligence

context information. The optimal policy is simply a policy that selects at each moment the arm with
the highest average reward given the current context.

A (contextual) multi-armed bandit problem can be viewed as a special case of an episodic MDP
problem: each episode ends after only a single action. For a regular multi-armed bandit problem the
initial state is always the same, while for a contextual multi-armed bandit problem, the initial state
is drawn from a (fixed) probability distribution over states. Note that the Markov property always
holds for a (contextual) multi-armed bandit problem, since there is no history to consider.

5.2. Abstraction Selection

Our approach for abstraction selection is to evaluate the various candidate abstractions by
learning with them and measuring the average reward accrued. A key insight behind our approach
is that an agent trying out di↵erent abstractions in a task faces a similar exploration/exploitation
dilemma as an agent choosing between regular actions in such a task. As a result, the choice of
which abstraction to use can be modelled as an action internal to the agent. We call such actions
switch actions. Before we explain our abstraction selection strategy, we would like to motivate why
abstraction selection is important with an example.

5.2.1. Motivating Example. To see the potential benefits of abstraction selection, consider an
ad-placement problem. Because companies that serve ads are typically paid per click, the goal is to
select the ads that maximize the chance of being clicked. This task can be modelled as a contextual
bandit problem wherein available ads are actions, web pages are states, and rewards are payments
for clicked ads.

Typically, the web page is described using a large set of components. These can include the
frequency of each term in the web page, a categorization of the page (e.g., news, entertainment,
shopping), the number of incoming or outgoing links, the length of the URL, etc. Since the size of the
state space depends critically on the number of state components used, selecting a good abstraction
is essential. The chosen abstraction must be rich enough to allow the system to determine what ad
to place and yet be small enough to make learning feasible.

Suppose that a large set of low-level components is used to construct a set of ten abstract,
high-level components, each of which can take on five values. This yields 510 ⇡ 107 states. One
option would be for an agent to try to learn an accurate action-value function for each state-action
pair. However, doing so for such a large state space would be immensely challenging. Instead, the
system designer could try to select the most useful components. For example, if three components
are chosen, the size of the state space is only 125. However, due to the unpredictability of user
behaviour, selecting the right components would require enormous domain expertise.

Alternatively, the designer could opt to have the agent learn by itself what the best combination
of three components is by using an abstraction selection strategy. There are

�
20

3

�
= 1140 candidate

abstractions consisting of three components, each consisting of 53 = 125 states. Hence, the total
number of states the agent has to consider is 1140⇤125 ⇡ 1.4⇥105, which is two orders of magnitude
smaller than the number of states of a state space based on all components.

5.2.2. The Abstraction-Selection Task. We now formally describe the derived task that models
the ability to select di↵erent abstractions. We call this derived task the abstraction-selection task.
We define it in a general way, so it can serve as a stepping stone for the domain of episodic MDPs,
discussed in Section 6. At the end of this section, we prove that the abstraction-selection task of
a contextual bandit is always Markov. Hence, it can be solved with standard RL techniques. Note
that the abstraction-selection task of a contextual bandit task is itself not a contextual bandit task.
Instead, it is small episodic task with exactly two actions per episode, the first action being a switch
action and the second action being a regular action.

Consider a contextual bandit problem modelled by the MDP M = (X ,A, ⌧, ⇢) and a set of K
candidate abstractions µ = {µ1, . . . , µK}. The abstraction-selection task for M is a task resulting
from applying a context-specific abstraction to an extended version of M that includes switch actions
and an extra state component that indicates which of the candidate abstractions is currently selected.
We indicate this extended version by M+, and the context-specific abstraction applied to it by µ+.

Efficient Abstraction Selection in Reinforcement Learning 13

First, we define the extended version of M: M+ = (X+,A+, ⌧+, ⇢+). The state space X+

extends X by adding a special abstraction component:

X+ = X abs ⇥X ,

with X abs = {0, 1, . . . ,K}. The values in X abs refer the indices of the candidate abstractions. The
value 0 means that there is currently no candidate abstraction selected. The initial value of X abs is
always 0.

The action set A+ is created by adding K switch action to A, one corresponding to each
candidate abstraction:

A+ = A [{asw,1, . . . , asw,K}
The switch actions are only available in states for which component X abs has value 0 (i.e., x{abs} = 0).
In such states, no regular actions are available:

A+(x) =

(
{asw,1, . . . , asw,K} if x{abs} = 0

A if x{abs} 6= 0 ,
for all x 2 X+. (9)

The e↵ect of taking switch action asw,i is that the value of component X abs is set to xabs,i for
1 6 i 6 K. Because a switch action is an internal action it does not a↵ect any of the other component
values. In addition, the agent receives no reward for taking an internal action. Taking a regular action
has no e↵ect on the value of X abs. The e↵ect of a regular action on the other component values is
defined by M.

While M+ contains switch actions and a component to keep track of the selected abstraction,
no abstractions have been applied yet. To get the abstraction-selection task, the context-specific
abstraction µ+ has to be applied to M+, which is defined as:

µ+(x) =

(
x

{abs} if x{abs} = 0

(x{abs}, µi(x{1,...,N})) if x{abs} = i, 1 6 i 6 K
for all x 2 X+. (10)

The optimal policy of the abstraction-selection task yields the best switch action, i.e., the best
abstraction, as well as the optimal policy for each abstraction. The following theorem proves that
the abstraction-selection task is in fact Markov, allowing the use of standard RL methods for solving
it.

Theorem 2: The abstraction-selection task of a contextual bandit problem obeys the Markov
property.

Proof. To prove that the abstraction-selection task is Markov, we have to prove that M+ is Markov
and that µ+ is a Markov abstraction for M+. That M+ is Markov can be checked easily, because
it contains all the state components from MDP M and the dynamics of the switch actions are
not a↵ected by the history. For µ+ to be a Markov abstraction, the transition probabilities for the
abstract states should be independent of all possible histories. An episode of the abstraction-selection
task consists of two actions: a switch action followed by a regular action. The switch action always
obeys the Markov property since there is no history yet. On the other hand, because the history
of a regular action is always the same for a given state, this action also always obeys the Markov
property. Hence, abstraction µ+ is Markov, and therefore the abstraction-selection task as well.

5.2.3. Example. Consider a simple contextual bandit problem with two actions, a1 and a2, and
a state space consisting of four states described by two binary components: X = X 1 ⇥ X 2, with
X 1 = {true, false} and X 2 = {true, false}. All four states have the same probability of occurring.
Action a1 always produces a reward of 0, while the expected value of the reward for action a2

depends on the state, as shown in Table 1. Because a contextual-bandit problem has a trivial next
state (a terminal state), the reward function is expressed only as function of a state-action pair.
From this table, the optimal policy can be easily deduced: action a2 should be taken in states where
X1 = true and action a1 should be taken in the other states. The expected reward of this policy isP

x

12X1
,x

22X2 P0

(x1, x2) · max
a

⇢((x1, x2), a) = 1.5. Although the state space of this task is small
enough to use both components, for illustrative purposes we assume that the agent must choose

14 Computational Intelligence

Table 1. Expected rewards and initial state probability P
0

for X = (X1, X2) 2 X

X1 X2 P
0

(X) E[⇢(X, a1)] E[⇢(X, a2)]

true true 0.25 0 +4.0
true false 0.25 0 +2.0
false true 0.25 0 -2.0
false false 0.25 0 -4.0

between using either component X 1 or component X 1. That is, its set of candidate abstractions is
µ = {µ1, µ2}, where µ1(x) = x

{1} and µ1(x) = x

{2} for x 2 X .
Given the contextual-bandit task described above, the extended state space and action space

are defined as follows:

A+ = {a1, a2, asw,1, asw,2} ,
X+ = X abs ⇥ X 1 ⇥ X 2 ,

with X abs = {0, 1, 2}. Action asw,i sets the value-component of a state corresponding with X abs to
i for i 2 {1, 2}.

In addition, the mapping µ+ is defined as follows:

µ+(x) =

8
><

>:

x

{abs} if x{abs} = 0

x

{abs,1} if x{abs} = 1

x

{abs,2} if x{abs} = 2 ,

for all x 2 X+. (11)

The complete MDP resulting from applying µ+ to M+ = (X+,A+, ⌧+, ⇢+) is visualized in Figure 2.
The value shown behind each action identifier is the expected value of the reward when taking that
action from the corresponding state. The reward after a switch action is always zero. For actions
a1 and a2 the expected reward can be derived from Table 1. For example, the expected value of
⇢(X, a2) given X1 = true is (0.25 ⇤ 4 + 0.25 ⇤ 2)/0.5 = +3. On the other hand, the expected value
of ⇢(X, a2) given X2 = true is only (0.25 ⇤ 4 + 0.25 ⇤ (�2))/0.5 = +1. Overall, abstraction µ1 is
the better choice, because selecting it results in an expected reward of +1.5, which is same as the
expected reward when no abstraction is used. By contrast, selecting abstraction µ2 results in an
expected reward of only +0.5.

5.3. Model-Free Updating

In this section, we present an update scheme for the abstraction-selection task of a contextual
bandit problem. Since the state space of the abstraction-selection task can be exponentially smaller
than that of the original MDP, using this task can greatly reduce the computational, memory, and
sample requirements of learning. Furthermore, since the abstraction-selection task obeys the Markov
property, it is itself an MDP. Consequently, standard TD methods can be used to solve it.2. However,
in this section we show how the special properties of the abstraction-selection task can be exploited
to speed learning even further. In particular, since the agent can observe all components, even those
that are not part of the currently selected abstraction, it can construct a parallel experience sequence
for each abstraction that is not selected. This parallel sequence can be used, under certain conditions,
for e�cient o↵-policy updating.

5.3.1. Updating Switch Actions. An episode of the abstraction-selection task consists of a switch
action followed by a regular action. Since a regular action always results in a terminal state, its
Q-value is simply the expected immediate reward, which can be trivially estimated by averaging the
corresponding observed sample rewards. However, estimating the Q-values of switch actions is less
straightforward.

Before describing how to do this, we illustrate why learning such Q-values is necessary. After all,

2In this article, we focus on model-free updates. But model-based methods could also be applied.

Efficient Abstraction Selection in Reinforcement Learning 15

a : 0

a : +3 2(1, true, #)

(1, false, #)

(2, #, true)

(2, #, false)

(0, #, #)

t
e
r
m
i
n
a
l

s
t
a
t
e

a : 0 1

a : -3 2

a : 0 1

a : +1 2

a : 0 1

a : -1 2

a : 0sw,2

p = 0.5

p = 0.5

a : 0sw,1 p = 0.5

p = 0.5

1

Figure 2. MDP resulting from applying µ+ to M+ for the contextual bandit task described in Table
1. Circles indicate states. If states have the same colour, they use the same candidate abstraction.
The small black dots indicate actions. Actions with stochastic transitions have multiple arrows. p
refers to the transition probabilities for a stochastic action. The value after each action identifier is
the expected value of the reward when taking that action from the corresponding state.

because switch actions are internal actions, the agent already knows what the next state will be before
it takes a switch action. Thus, it may seem that learning Q-values for switch actions is unnecessary
since they could simply be inferred from the next state. To see why such a strategy fails, consider
the example presented in Section 5.2.3. If the current state for MDP M is (X1 = false,X2 = true),
abstraction µ1 predicts action a1 is best, yielding a reward of 0. On the other hand, abstraction µ2

predicts action a2 is best, yielding an average reward of +1 (see Figure 2). If abstractions selection
was done merely on the basis of the state values of each abstraction, then abstraction µ2 would
be chosen, since it predicts a higher reward. However, for state M is (X1 = false,X2 = true)
a1 is actually the best action (see Table 1). The problem is that this strategy implicitly uses both
components to select the switch action while the abstraction uses only a single component, resulting
in a non-Markov task.

Thus, learning separate Q-values for the switch actions is essential. However, it is not obvious
what the best way to do this is. Using a simple Q-learning update is not ideal because it bootstraps
the value of the switch action with values of the corresponding candidate abstraction. If this candidate
abstraction is large and has optimistically initialized Q-values, then the Q-value of the switch action
will have a positive bias for a long time, even if the abstraction itself is poor. To get an estimate of
how good a candidate abstraction is more quickly, a Monte Carlo update can be used, which updates
a Q-value with the complete observed return and is therefore not biased by values of the candidate
abstraction.

The regular Monte Carlo update is an on-policy update: the policy the agent follows (the
behaviour policy) is the same as the policy whose Q-values are being estimated (the estimation policy).
Alternatively, an o↵-policy update can be performed, in which case the behaviour and estimation
policies are di↵erent. For example, Sutton and Barto (1998) present an o↵-policy MC update that
evaluates the greedy policy, while following an ✏-greedy behaviour policy (i.e, one that selects the
greedy action with 1� ✏ probability, while selecting a random action otherwise).

The main disadvantage of o↵-policy Monte Carlo updates is that learning is ine�cient for long
episodes because a state-action pair can be updated only when all subsequent actions are greedy,
which occurs only rarely given an ✏-greedy behaviour policy. Fortunately, the derived task of a
contextual bandit problem has episodes that are only 2 actions long, reducing the o↵-policy MC
update to a particular simple form. In Appendix B, we show that for the abstraction-selection task
of a contextual bandit problem, the o↵-policy MC update reduces to one based on the immediate
reward of the regular action under the condition that this regular action is the greedy action (with

16 Computational Intelligence

respect to the Q-value estimates):

Q(x
0

, a
0

) = (1� ↵)Q(x
0

, a
0

) + ↵ r , if ‘regular action is greedy’ , (12)

where x

0

is the initial state, r is the reward after the regular action, and a
0

is the first action
selected in the abstraction-selection task, which is always a switch action. The condition that the
regular action should be greedy is required to ensure that the update is unbiased.

5.3.2. O↵-Policy Updating Regular Actions. The concept of o↵-policy updating can be used for
more than merely evaluating the greedy policy while using an ✏-greedy behaviour policy. In fact,
we can also use o↵-policy updating to simultaneously update the state-action pairs of candidate
abstractions that are not currently selected, which can speed learning considerably.

Since the agent observes all the available components, it can construct a parallel experience
sequence for each candidate abstraction that was not selected. For example, consider the abstraction-
selection task from Section 5.2.3, and assume the current state in M is (X1 = true,X2 = false),
and the action taken by the agent is asw,1. The experience sequence from the abstraction-selection
task observed by the agent is:

(0,#,#)! asw,1 ! (1, true,#)! a! r , (13)

where a is the regular action taken by the agent, and r is the resulting reward. Even though the agent
did not take action asw,2, it can deduce what would be the resulting next state, because this state
is based on X2, which it can also observe. The agent can therefore construct a parallel experience
sequence corresponding to abstraction µ2:

(0,#,#)! asw,2 ! (1,#, false)! a! r . (14)

This parallel sequence can be used to update the regular action a for abstraction µ2 as well as the
switch action asw,2.

That said, the updates performed using such a sequence may be biased, since regular actions for
abstraction µ2 are updated but action selection is based on abstraction µ1. This bias is a consequence
of the fact that state (2,#, true) is actually an aggregation of two states in the original state space
X 1 ⇥ X 2: (X1 = false,X2 = true) and (X1 = true,X2 = true). The expected reward for action
a2 in state (2,#, true) is a weighted average of the expected rewards of these two underlying states.
Since abstraction µ1 aggregates the states from original state space in a di↵erent way, these states
correspond to two di↵erent states in abstraction µ1. Therefore, if the selection probability of a2 is
di↵erent for those states, the rewards are not properly weighted to correctly estimate the expected
reward.

To avoid this problem, the agent can perform such o↵ policy-updates only under certain condi-
tions that guarantee no bias will be introduced. The following theorem establishes those conditions.
Note that the theorem is stated in terms of an MDP, of which a contextual bandit problem is a
special case.

Theorem 3: Consider MDP M with state space X = X 1⇥ · · ·⇥XN and the candidate abstractions
µ1(x) = x

S1 and µ2(x) = x

S2 , S
1

,S
2

✓ {1, . . . , N}, which are both Markov abstractions for M .
Assume the agent selects abstraction µ1. Then an unbiased, single-step update for abstraction µ2 can
be performed, based an the parallel experience sequence, if either one of the following two conditions
hold:

(1) S
1

✓ S
2

(2) If the action was an exploratory action under an exploration scheme that does not depend upon
the specific state (e.g., an ✏-greedy exploration scheme).

Proof. Bias is introduced if a group of states from X map to a single state in XS2 , but to multiple
states in XS1 , while the action outcomes of these multiple states are incorrectly weighted. Under the
first condition, a single state in XS2 always corresponds to a single state of XS1 , and therefore no
incorrect weighting can occur. For the second condition, recall that sinceXS2 is a Markov abstraction,
components with an index in S

1

but not in S
2

are either independent components or components that
are irrelevant for XS2 . Components that are irrelevant for XS2 result in states with equal one-step
models, therefore the action outcomes can never be incorrectly weighted. States based on di↵erent

Efficient Abstraction Selection in Reinforcement Learning 17

values of an independent component occur with a probability that scales with the component value
probability, since the agent has no control over the value of independent components. Therefore, if
the exploration scheme does not depend on the state, a particular action will also be selected with
a probability that scales with the component value probability, hence correctly weighting the action
outcomes.

Thus, when one of the conditions of Theorem 3 holds, the reward can be used to update the
regular action of the unselected abstraction.

5.3.3. O↵-Policy Updating Switch Actions. To be able to perform an unbiased Monte Carlo
update based on the parallel experience sequence, all transitions involved must be unbiased. In the
previous section, we showed that an update of the regular action is unbiased if one of the conditions
of Theorem 3 holds. However, the switch action update is always unbiased because the state to which
it belongs is the same for all switch actions. Therefore, when one of the conditions of Theorem 3
holds, an unbiased Monte Carlo update can also be performed for the corresponding switch action.
In other words, both the switch and regular actions of a candidate abstraction can be updated
without selecting that abstraction. As a result, in contextual bandit problems, abstractions can be
fully evaluated in an o↵-policy manner. An immediate consequence is that the agent can use greedy
action selection for the switch actions, since exploring the switch actions is unnecessary.

Table 2 summarizes our action selection and update strategy for the abstraction-selection task
of the contextual bandit problem. In the next section, we illustrate the performance improvements
that this update scheme makes possible.

Table 2. Action selection and update strategy for the abstraction-selection task of a contextual
bandit problem. The ‘if subset/on explore’ condition refers to the two conditions of Theorem 3.

action selection update, current abs. update, other abs.

regular action ✏-greedy average reward if subset/on explore: average reward
switch action greedy MC update if subset/on explore: MC update

5.4. Experimental Results

In this section, we present two experiments involving abstraction selection for a contextual
bandit problem. For both experiments we use the action selection and update strategy described in
Table 2. In the first experiment, we consider a contextual bandit problem with n state components,
where only one of the components is relevant, while the others are empty. The agent knows this,
but does not know which component is relevant. Hence, there are n candidate abstractions, one for
each component. We compare switching between these abstractions with using all components for
n = 3 and n = 4. To demonstrate that our switching method can deal with huge state spaces, we
also show the performance for switching with n = 50. Due to the size of the state space, evaluating
the performance of using all components is infeasible for this setting. Finally, as an upper bound, we
show the performance for using only the relevant component.

Each of the n components has eight values, which are initialized randomly after each arm pull.
The bandit has two arms, with opposite expected rewards: one arm has an expected reward of +1,
and the other �1. Each reward is drawn from a normal distribution with a standard deviation of 2.
Which arm has the positive reward depends on the context. For half of the values of the relevant
component, the first arm has the +1 expected reward. Therefore, when this component is ignored,
the expected reward is zero.

For the switching method, we use a step-size of 0.01 for the switch action, and an ✏ of 0.2 for
✏-greedy selection of the regular action. To kick-start the switch method, we use ✏ = 1.0 for the first
50 arm pulls. Since all candidate abstractions are updated during this exploration phase, this has a
positive e↵ect on the overall performance.

Figure 3 shows the results, averaged over 10,000 independent runs and smoothed by additional
averaging over intervals of 10 arm pulls. The performance of the switch method illustrates how

18 Computational Intelligence

e↵ectively it can exploit prior knowledge about the set of candidate abstractions. While the size
of the full abstraction grows exponentially in the number of components (512 states for a set of 3
components and 4096 for a set of 4 components), the total number of states for the switching methods
grows only linearly (24 states for a set of 3 components and 32 states for a set of 4 components).
Simultaneously updating the abstractions increases the performance even further, making it nearly
indistinguishable for n = 3 and n = 4 from the agent that knows in advance which candidate
abstraction is correct. For n = 50, the performance is only slightly lower, demonstrating that the
switching method can tackle huge problems (note that the state space size of the full abstraction is
850 in this case).

0 500 1000 1500 2000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

arm pulls

re
w

a
rd

perfect information

all, 3 components

all, 4 components

switch, 3 components

switch, 4 components

switch, 50 components

Figure 3. The performance of the switch method on a contextual bandit problem with in total
3, 4 or 50 components (for the original MDP), compared to a näıve method that uses all the
available components and one that knows in advance which candidate abstraction is correct (‘perfect
information’).

The second experiment is a variation on the first. The state space consists of three components:
X 1⇥X 2⇥X 3. Each component has eight values and is initialized randomly (with equal probability
for each value) after each arm pull. This time, however, there is not a single relevant component;
instead, all three components contain some relevant information. From Table 3, which shows the
corresponding rewards and probabilities, it follows that the expected reward of the optimal policy
for this abstraction is +1. The size of the state space of this abstraction is 83 = 512.

Table 4 is deduced from Table 3 and shows the initial probability distribution for X1 as well as
the expected reward conditioned on X1. While all three state components are necessary to achieve an
expected reward of +1, using only component X1 results in an expected reward that is only slightly
less than using all components, while the state space size is considerably smaller (8 states). We
compare the performance of 1) learning with an abstraction containing only component X 1 (‘small
abstraction’), 2) learning with an abstraction containing all three components (‘large abstraction’),
and 3) using the switch method given both abstractions as candidates (‘switching’). We use a learning
rate of 0.001 for the switch action and an ✏ of 0.2 for the ✏-greedy selection of the regular action for
all methods. The switch method uses an ✏ of 1.0 for the first 100 arm pulls.

Figure 4 shows the average reward for the first 20,000 arm pulls, averaged over 10,000 indepen-
dent runs and smoothed by additional averaging over intervals of 10 arm pulls. For approximately
the first 5000 arm pulls, the small abstraction outperforms the large one since it learns more quickly.
However, since its abstraction does not contain all relevant information, it plateaus below the final

Efficient Abstraction Selection in Reinforcement Learning 19

Table 3. Expected rewards and initial state probability P
0

for X = (X1, X2, X3) 2 X 1 ⇥
X 2 ⇥X 3. The true/false labels are derived from the real component values: for X1 and X2, 4 of the
8 values correspond to a ‘true’ label, while the other values correspond to a ‘false’ label. For X3, 6
of the 8 components correspond to a ‘true’ label, while the other values correspond to a ‘false’ label.

X1 X2 X3 P
0

(X) E[⇢(X, a1)] E[⇢(X, a2)]

true true true 0.1875 +1 -1
true true false 0.0625 -1 +1
true false true 0.1875 +1 -1
true false false 0.0625 +1 -1
false true true 0.1875 -1 +1
false true false 0.0625 +1 -1
false false true 0.1875 -1 +1
false false false 0.0625 -1 +1

Table 4. Initial probability P
0

for X1 and expected reward conditioned on X1

X1 P
0

(X1) E[⇢(X, a1)|X1] E[⇢(X, a2)|X1]

true 0.5 0.75 -0.75
false 0.5 -0.75 0.75

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

arm pulls

re
w

a
rd

small abstraction

large abstraction

switching

Figure 4. Average reward for a contextual bandit when switching between a large and a small
abstraction.

performance of the large abstraction. After the initial exploration phase, the switch method quickly
catches up with the small abstraction after which the performance shows a small dip before climbing
above that of rep-large.

We explain this dip as follows: while the small abstraction is quickly recognized as the better
one initially, the agent uses o↵-policy updating to keep improving the Q-values of both the large
abstraction and the switch actions. In some runs, once the Q-value of the switch-action for the large
abstraction approaches that of the small abstraction, the estimates will prematurely indicate that
the large one is better, causing a small dip in the performance. After the dip, the Q-values estimates

20 Computational Intelligence

of the large abstraction improve further, exceeding those of the small abstraction and causing the
second climb in performance.

Interestingly, the switch method outperforms the large abstraction at each point during learning.
The reason is that the exact point where large abstraction outperforms the small one is slightly
di↵erent for each run. Since the switch method uses an up-to-date estimate of the expected reward
for each abstraction, it simply makes longer use of the small abstraction for those runs where the
Q-values of the large abstraction improve more slowly than average. Therefore, once the Q-values of
the small abstraction have been properly learned, the performance of the small abstraction forms a
lower bound for the remaining arm pulls. This lower bound is not present for the large abstraction,
whose performance is bounded only by zero, leading to lower average performance.

The results of this experiment underscore an important advantage of the switching method.
Because it evaluates candidate abstractions on-line, it can automatically identify, not only the best
abstraction to use in the long run, but also the best one to use during learning. For example, the
small abstraction, although in the long run inferior to the large one, is preferable early in learning
when insu�cient data is available for the large abstraction to be e↵ective. The switch method gets
the best of both worlds, mimicking the performance of the small abstraction early in learning and
that of the large abstraction later on.

6. ABSTRACTION SELECTION FOR EPISODIC MDPS

In the previous section, we showed that a contextual bandit problem with abstraction selection
can be modelled as an MDP with a context-specific state space. The solution of this derived MDP not
only yields the best candidate abstraction for the contextual bandit problem, but also the optimal
policy of that abstraction. In this section, we discuss abstraction selection for episodic MDPs. As
with a contextual bandit problem, abstraction selection for an episodic MDP can be modelled by
introducing switch actions. In this case, after taking a switch action to select an abstraction, the
agent takes not one but a series of regular actions until a terminal state is reached. The regular
actions are chosen based on the Q-values of the selected abstraction.

The definition of the abstraction-selection task of an episodic MDP is similar to that of a
contextual bandit problem. However, we show that the conditions under which this task is Markov
are more restrictive. In Section 7 we discuss abstraction selection for general MDPs with context-
specific structure.

6.1. Abstraction-Selection Task

The abstraction-selection task of an episodic MDP is constructed in exactly the same way as
for a contextual-bandit problem (see Section 5.2.2), because we formalized a contextual-bandit task
as an episodic MDP with only a single action.

Although the construction process is the same, the resulting abstraction-selection task is of
course not the same. Specifically, the abstraction-selection task of a contextual-bandit problem
consists a selecting a switch action, and then selecting a single regular action, which terminates
the episode. In case of an episodic MDP the switch action can be followed by a long series of regular
actions before the episode terminates. Note that the abstraction is always selected at the start of an
episode and never changes within an episode.

Because the abstraction-selection task of an episodic MDP has longer episodes, an additional
condition is required to ensure that the abstraction-selection task is Markov.

Theorem 4: The abstraction-selection task of an episodic MDP M obeys the Markov property if
all candidate abstractions are Markov abstractions with respect to M.

Proof. An episode of the abstraction-selection task of an episodic MDP starts with a switch action,
selecting a candidate abstraction, and then a series of regular actions until a terminal state is reached.
The switch action always obeys the Markov property since there is no history yet. The history of the
first regular action is always the same for a given state. Hence, it always obeys the Markov property

Efficient Abstraction Selection in Reinforcement Learning 21

as well. For the regular actions after that the Markov property follows from the condition that all
candidate abstractions are Markov.

The reason that the condition of Markov abstractions is not required for the abstraction-selection
task of a contextual-bandit problem is that for a contextual-bandit problem every abstraction is
always Markov, because there is no history to consider. Hence, this condition can be ignored.

6.2. Model-Free Updating

In this section, we discuss two di↵erent update strategies. As before, for simplicity, we restrict
ourselves to model-free learning. The first strategy adapts the update scheme used for contextual
bandit problems to the MDP setting. For this strategy, the regular actions are updated with Q-
learning updates. As with contextual bandit problems, a parallel experience sequence is created for
each candidate abstraction. In the MDP setting, this parallel sequence is used to perform o↵-policy
Q-learning updates. These updates are applied to the regular actions of all unselected candidate
abstractions for which at least one of the conditions of Theorem 3 holds, guaranteeing that the
updates are unbiased.

As before, a Monte Carlo (MC) update is used for the switch action. However, the o↵-policy
MC update described in Section 5.3.1 is ine�cient for the MDP case, since it can only be performed
when all actions following the switch action are greedy. Therefore, we use an on-policy MC update
instead. Updating the switch actions of other abstractions with an MC update requires that all
actions are unbiased, which is not the case in general. Therefore, such updates are not performed.
A consequence is that each switch action needs to be explored in order to obtain accurate Q-value
estimates for that action. We call the resulting update scheme, summarized in Table 5, the Monte
Carlo update scheme since a Monte Carlo update is used for the switch action.

Table 5. Monte Carlo update scheme. The “if subset/on explore” condition refers to the two
conditions of Theorem 3.

action selection update, current abs. update, other abs.

regular action ✏-greedy Q-learning if subset/on explore: Q-learning
switch action ✏sw-greedy MC-update -

The second strategy uses a Q-learning update for the regular actions as well as for the switch
actions. The update of a switch action is performed for all candidate abstractions before selecting
the switch action, since the agent can already observe the result of a switch action before taking it.
Performing the update before selecting the action is preferable, since the selection is then based on
more accurate Q-values. We call this technique just-in-time (JIT) updating, because the updates are
performed right before the Q-values are needed (for action selection). Since the regular actions as
well as the switch action of a candidate abstraction can be updated without selecting it, exploring
the switch actions is unnecessary and thus the agent can always choose the greedy switch action.

We call the resulting update scheme, summarized in Table 6, the Q-learning update scheme since
a Q-learning update is used for the switch action.

Table 6. Q-learning update scheme. The “if subset/on explore” condition refers to the two
conditions of Theorem 3.

action selection update, current rep update, other reps

regular action ✏-greedy Q-learning if subset/on explore: Q-learning
switch action greedy JIT Q-learning JIT Q-learning

Each scheme has its advantages and disadvantages. On the one hand, the MC update scheme
has switch actions that are not biased by the values of the candidate abstractions; therefore, it is
expected to more quickly learn an accurate estimate of an abstraction’s value. On the other hand,

22 Computational Intelligence

it does not update the switch actions o↵-policy; therefore, more exploration is required. The Q-
learning update scheme can perform o↵-policy updates of the regular actions as well as of the switch
actions, allowing greedy selection of the switch action. However, the values of the switch actions
are bootstrapped from the abstractions. Thus, each candidate abstraction needs to be su�ciently
explored before its switch action has an accurate value. In the next section, we empirically compare
both update schemes.

6.3. Experimental Results

In this section, we present experimental results evaluating both the Monte Carlo and Q-learning
update schemes described above. These experiments are conducted on an MDP we call the Mars
rover task. Suppose a rover on a Mars mission must frequently navigate between its home base
and a research site. The area the rover must cross can be described by a 15 ⇥ 15 square grid,
with the home base and research site in opposite corners. The rover observes its current position
and has four movement actions: north, south, east and west, which, on a regular surface, cause a
movement of one square in the corresponding direction. However, on the sandy soil of Mars, the
rover’s action outcomes are heavily distorted. The e↵ect of the distortion can be modelled as an
additional (clockwise) rotation of either 0, 90, 180 or 270 degrees applied before the directional
movement. A north action can for example lead to an east movement if the distortion is 90 degrees.

The distortion is a↵ected by the local sand structure of the rover’s current location, which
consists of a number of ditches of di↵erent sizes. These ditches are described by a set of structural
state components that the agent observes along with its position component (see Figure 5). Each
structural component corresponds to a di↵erent ditch size, while its value indicates the number of
ditches of that size on the local square. The structure is not static, but changes each time the rover
enters a square, according to some probability distribution, due to the interaction between the rover
and the sand.

By learning the relationship between the structural properties and the distortion for a certain
square, the rover can compensate for the distortion. However, learning with all structural components
is prohibitively slow. Fortunately, experiments on Earth showed that only ditches of one size cause the
distortion, i.e., only one structural component is relevant. The grain size of the sand, which cannot
be observed, determines which of the structural components is relevant. The rover uses abstraction
selection to determine what the relevant component is.

S

G

N

EEW

S

Figure 5. Mars rover task: the agent must move from S to G using four directional actions: (N)orth,
(S)outh, (E)ast and (W)est. The local sand structure, consisting of ditches of di↵erent sizes, causes a
distortion of the regular action outcome. If the agent learns the relationship between the local sand
structure and the distortion, it can compensate for it and thus reach the goal location more quickly.

We perform experiments where the local sand structure is described by 5 components and by

Efficient Abstraction Selection in Reinforcement Learning 23

30 components. In each case, we assume the components are independent and consist of 4 values
each, with equal probability. Together with the position component, these (full) state space consists
of 2 · 105 states and 3 · 1020 states, respectively. Each of the 4 values of the relevant component
corresponds with a di↵erent distortion value (0, 90, 180 or 270 degrees). In addition to the distortion
caused by the local sand structure, there is a 10% chance on an additional distortion, modelled as
another rotation of 0, 90, 180 or 270 degrees (each value has equal probability).

Under these settings, the transition probabilities conditioned on only the position component
(i.e., ignoring the relevant structural component) are the same for all actions. Consequently, with
only the position component, the agent cannot learn an e↵ective policy, since all actions have the
same e↵ect and the agent moves randomly through the grid, until it lands on the goal state. When
the agent does consider the relevant component, it can learn to compensate for the distortion caused
by the sand structure, causing near-deterministic action outcomes (the additional 10% distortion
cannot be compensated for).

Our experiments compare the performance of the Monte Carlo and Q-learning abstraction selec-
tion algorithms described in Section 6.2 with both 5 and 30 structural components. We also compare
against an algorithm that uses perfect information, i.e., that uses only the position component and
the relevant structural component. As in the experiments presented in Section 5.4, this algorithm
provides an upper bound on performance. In addition, to get lower bounds, we compare against an
algorithm that uses only on the position component and an algorithm that uses all components. The
latter algorithm is evaluated only in the setting with 5 structural components since doing so with 30
components is infeasible.

For each algorithm, we measure the average return over the first 1000 episodes. All algorithms
use ✏-greedy selection for the regular action with ✏ = 0.1, and a step-size with an initial value ↵

0

of
1.0 that is decayed according to:3

↵(x, a) = ↵
0

dn(x,a) , (15)

where n(x, a) is the number of times action a was previously selected in state x. We optimize the
decay rate d for each method. For the switch methods, the extra parameters are also optimized. The
range for which parameters are optimized is determined by performing some initial experiments to
find roughly the settings with the best performance. For the Q-learning update scheme, we use full
exploration for the first z episodes (the value of z is optimized). We do not do this for the Monte
Carlo update scheme since the initial experiments showed that this extra parameter causes negligible
performance improvement. All results are averaged over 200 independent runs and smoothed.

Table 7 shows the average performance of the di↵erent methods over the first 1000 episodes
together with the optimal parameters, while Figure 6 plots the average return (from the start of an
episode) as function of the number of episodes for these optimal parameters. As predicted, when
the structural components are ignored, no learning occurs since all actions have the same expected
outcome. The agent moves randomly through the environment, generating large negative reward. By
contrast, learning does occur when all 5 structural components are used. However, because of the
size of the resulting state space, learning is slow and the performance improvement is marginal.

In the setting with 5 structural components, both of the switching methods perform much better
than when using all components, generating up to 9 times less negative reward. Comparing the two
switching methods with each other reveals that the Q-learning update scheme outperforms the
Monte Carlo update scheme, generating 1.3 times less negative reward. Apparently, the advantage
of the Q-learning update scheme (more o↵-policy updates resulting in less exploration) outweighs
its disadvantage (bootstrapping from the abstractions values).

In the setting with 30 structural components, both switching methods perform worse than in the
setting with 5 structural components, which can be expected, since the set of candidate abstractions
is larger (30 instead of 5). The relative performance advantage of the Q-learning update scheme
compared to the Monte Carlo update scheme is much larger than in the setting with 5 structural
components. This can be explained by the fact that more o↵-policy learning occurs under the Q-

3This type of decay does not meet the requirements for convergence in the limit of many TD algo-

rithms (Jaakkola et al., 1994; Singh et al., 2000). However it gives good results in practice and is very
easy to implement.

24 Computational Intelligence

learning update scheme. With more candidate abstractions, the e↵ect of o↵-policy learning increases,
resulting in a higher performance advantage for Q-learning.

0 200 400 600 800 1000
−1400

−1200

−1000

−800

−600

−400

−200

0

episodes

re
tu

rn

perfect information

only position component

all components (1 pos. + 5 str.)

switch, MC scheme, 5 str. comp.

switch, Q−L scheme, 5 str. comp.

switch, MC scheme, 30 str. comp.

switch, Q−L scheme, 30 str. comp.

Figure 6. Performance as a function of number of episodes on the Mars rover task.

Table 7. Average performance over the first 1000 episodes and optimal parameters on the
Mars rover task.

optimal parameters average standard
return error

perfect information d = 1% -87.75 0.05
only position component (no learning occurs) -1308 2

all components (1 pos. + 5 str.) d = 1% -1226 1
switch, MC scheme, 5 str. comp. ✏sw = 0.04, dsw = 1%, dreg = 2% -180 7
switch, Q-L scheme, 5 str. comp. z = 40, dsw = 7%, dreg = 2% -138 1
switch, MC scheme, 30 str. comp. ✏sw = 0.06, dsw = 3%, dreg = 1% -345 17
switch, Q-L scheme, 30 str. comp. z = 50, dsw = 6%, dreg = 3% -184 14

These results show that tasks with a limited number of candidate abstractions can be e�ciently
solved using our abstraction-selection task. In the next section, we analyze what happens when the
candidate abstractions themselves are context-specific.

7. ABSTRACTION SELECTION FOR GENERAL MDPS WITH
CONTEXT-SPECIFIC STRUCTURE

In the previous two sections, we considered tasks for which the best abstraction had globally the
same components. However, many real-world problems have a context-specific structure. Consider
for example an extension of the Mars rover task from Section 6.3, where the rover encounters di↵erent
types of sand along its journey. The relevant component can be di↵erent for each of these types,
resulting in a context-specific abstraction. To find the best abstraction for this task, the candidate
abstractions must also be context-specific.

Efficient Abstraction Selection in Reinforcement Learning 25

The solution strategy developed in Section 6 can in principle also be applied when the candidate
abstractions are context-specific. A problem however is that the number of candidate abstractions
can increase exponentially when context-specific structure is introduced. Consider the extended Mars
rover task described above with 6 types of sand and choice between 5 di↵erent components. If the
rover can distinguish between the di↵erent sand types, then there are 65 = 7776 possible assignments
of relevant components to sand types possible, resulting in 7776 candidate abstractions. When the
agent cannot distinguish between the di↵erent sand types, things get even worse since the agent must
learn the relevant component for each position. With 225 positions (the number of positions from
the original Mars rover task), there are 2255 ⇡ 6 · 1011 candidate abstractions. Thus, the strategy
from Section 6, which results in an abstraction-selection task whose state space size is linear in the
number of candidate abstractions, is no longer feasible.

In this section, we introduce a strategy for context-specific candidate abstractions that results
in an abstraction-selection task with an exponentially smaller state space. With this strategy, the
6 · 1011 context-specific candidate abstractions from the extended Mars rover task can be evaluated
without explicit enumeration of each context-specific candidate abstraction. In short, our strategy
allows the agent to switch between abstractions in the middle of an episode, instead of just selecting
one at the start of an episode. By doing so, a small number of regular abstractions (5 in the case
of the extended Mars rover task) can be used to represent and evaluate a large number of context-
specific abstractions. In addition, this strategy can deal with MDPs that do not have terminal states,
since the agent is not required to reach a terminal state, before it can switch to a new abstraction.

7.1. Modelling Partial Knowledge of the Context-Specific Structure

Before we explain how the abstraction-selection task is constructed, we discuss the problem
description. The domain that we are interested in is an MDP with context-specific structure. In
other words, an MDP where, in di↵erent parts of the state space, di↵erent components are relevant.
When full knowledge of the context-specific structure is available, this knowledge can be exploited
by applying a context-specific abstraction that encodes this knowledge, as explained in Section
3.3. When only partial knowledge about the structure is available, this approach cannot be used. An
example of partial knowledge is knowledge that two states share the same relevant state components,
without knowing which components are relevant. While theoretically each state can have a di↵erent
set of relevant state components, in practise, many states share the same relevant components. By
aggregating states that share the same relevant state components, the state space can be divided
into regions, which we call contexts. All states that are part of the same context, share the same
relevant state components.

In this section, we consider the problem of an MDP with context-specific structure, where the
agent has knowledge about the contexts, that is, knowledge about which states share the same
relevant state components. However, the agent does not know which components are relevant for a
specific context.

Consider an MDP with a state spaceX that can be divided intoM di↵erent contexts. Knowledge
about these contexts can be modelled with an extra, artificial, state component X c = {1, 2, . . . ,M}
that specifies to which context a state belongs. States with the same value for X c share the same
relevant state components. Given a set of candidate abstractions µ = {µ1, . . . , µK}, we want the
agent to learn the best abstraction for each of the M contexts.

In a more general setting, we might want to specify a di↵erent subset of candidate abstractions
for each of the contexts. To enable this, we introduce the function � that maps each value in X c to a
subset B ✓ {1, . . . ,K} of abstraction indices. � defines which candidate abstractions the agent can
choose between for each context.

The state component X c and the function � enable encoding of two di↵erent types of partial
knowledge about the structure of an MDP. Knowledge about states sharing the same relevant state
components is modelled by X c (or more specifically, by the correlation matrix between X c and X).
On the other hand, knowledge about potentially useful abstractions for a specific context is modelled
by �. Note that if no knowledge is available about the structure, X c can still be defined. In this case,
it assigns a di↵erent value to each state. The function � can also still be defined: it assigns the set
of all abstraction indices to each context.

26 Computational Intelligence

7.2. Abstraction-Selection Task

Consider the MDP M = (X ,A, ⌧, ⇢), the state component X c = {1, 2, . . . , M} that models
the contexts, a set of K candidate abstractions µ = {µ1, . . . , µK}, and the function �, which maps
each value in X c to a subset B ✓ {1, . . . ,K} of abstraction indices. In addition, consider the switch
abstraction µ0, which specifies the state components that are used when no candidate abstraction is
selected (its purpose will become clear shortly).

As before, the abstraction-selection task for M is a task resulting from applying a context-
specific abstraction, µ+, to an extended version of M, M+ = (X+,A+, ⌧+, ⇢+). The state space
X+ extends X as follows:

X+ = X abs ⇥ X c ⇥X ,

with X abs = {0, 1, . . . ,K}. The values in X abs refer the indices of the candidate abstractions. The
value 0 means that there is currently no candidate abstraction selected (in which case abstraction
µ0 applies). The initial value of X abs is always 0.

As before, the action set A+ is created by adding K switch action to A, one corresponding to
each candidate abstraction:

A+ = A [{asw,1, . . . , asw,K}
The switch actions are only available in state x, if x{abs} = 0. Which switch actions are available is
determined by the value of component X c, x{c}, in combination with the function �:

A+(x) =

(
{asw,i : i 2 �

�
x

{c}�} if x{abs} = 0

A if x{abs} 6= 0 ,
for all x 2 X+. (16)

The e↵ect of switch action asw,i is that the value of X abs is set to xabs,i for 1 6 i 6 K. The agent
receives no reward for taking a switch action, and no other component values are a↵ected. The e↵ect
of a regular action on the state components in X is defined by M. By definition, X c fully correlated
with X . Hence, the value of X c is determined by the values of the state components in X (from the
same time step).

Our strategy for MDPs with context-specific structure is to keep the abstraction the same as
long as the agent stays in the same context. Whenever the environment changes context, the agent
chooses between the available abstractions for the new context. To enable this, we specify that the
value of X abs is set back to 0, when the agent crosses the border between two contexts (i.e., when
it takes a regular action that results in a value change for component X c). Setting X abs back to 0,
gives the agent the opportunity to select a candidate abstraction for the new context.

So far, no abstraction has been applied yet. To get the abstraction-selection task, the context-
specific abstraction µ+ has to be applied to M+, which is defined as follows:

µ+(x) = (i, µi(x{1,...,N})), with i = x

{abs} for all x 2 X+. (17)

For states with x

{abs} = 0, the switch abstraction µ0 is required to ensure convergence of standard
RL methods.

The abstraction-selection task defined above is Markov only under strict conditions. We can
relax these conditions by requiring a slightly weaker form of the Markov property, which we call
Markov with respect to relevant components. This property holds when the values of the relevant
components and the reward depend only on the current state and action.

Definition 9: A task with state space X = X 1 ⇥ ... ⇥ XN is ‘Markov with respect to relevant
components’ if for the sequence of random variables it defines the following holds, for all U ✓ XS⇥R:

Pr((XS
t+1

, R
t+1

) 2 U |X
t

, A
t

) = Pr((XS
t+1

, R
t+1

) 2 U |X
t

, A
t

, R
t

,, R
1

,X
0

, A
0

) , (18)

where S ⇢ {1, . . . , N} is a subset of indices, such that for all k 2 {1, . . . , N}: if k /2 S, then X k is
irrelevant for XS .

Because irrelevant state components neither a↵ect the values of other state components, nor
the reward, states that di↵er from each other only in their irrelevant components have the same
value. Therefore, the standard RL algorithms converge to the optimal policy of a task, when a task
is Markov with respect to the relevant state components. Note that the definition only requires that

Efficient Abstraction Selection in Reinforcement Learning 27

there exists a Markov abstraction. To obtain convergence, it is not necessary to find and use this
abstraction.

The following theorem specifies a set of conditions that guarantees the abstraction-selection task
of an MDP with context-specific structure is Markov with respect to the relevant components:

Theorem 5: Consider the task M with context-specific structure. The state space X of M consists
of N state components. In addition, consider the candidate abstractions {µ1, . . . , µK} and switch

abstraction µ0. The abstractions are defined as follows: µi(x) = x

Si
with Si ✓ {1, . . . , N}, for all

x 2 X and 0 6 i 6 K. The abstraction-selection task of M is Markov with respect to relevant
components if the following three conditions hold:

(1) All candidate abstractions are Markov with respect to M.
(2) The switch abstraction µ0 is Markov with respect to M.
(3) S0 ✓ Si for 1 6 i 6 K.

Proof. Let µ
t

(x) = x

St be the abstraction at time step t and µ
t+1

(x) = x

St+1 be the abstraction
at time step t+ 1. Because S0 ✓ S

t+1

and because µ0 is a Markov abstraction (i.e., all components
with an index not in S0 are either independent or irrelevant), S

t+1

can be decomposed as S
t+1

=
S0 [Sind [Sirr, where Sind are the indices of the independent components, and Sirr are the indices

of the components that are irrelevant with respect to XS0
.

To prove the theorem, we need to prove that Equation (18) holds, for
S = S0 [Sind. In other words, we need to prove that the components with an index in S0 [Sind are
only a↵ected by X

St , and not by the history. The independent components are not a↵ected by the
history by definition. On the other hand, the components with an index in S0 do not depend upon
the history, because µ0 is a Markov abstraction.

7.3. Model-Free Updating

The abstraction-selection task described in the previous subsection can be solved using update
schemes similar to those for the abstraction-selection task of an episodic MDP with regular candidate
abstractions (see Section 6.2). The only di↵erence arises from the fact that now a state with switch
actions can be revisited multiple times before a terminal state is reached. Therefore, using a MC
update for the switch actions is less suitable, since it is an o↵-line update that misses out on the
opportunity to update the Q-values during the episode. Hence, the MC update is replaced with an
n-step update, which accumulates the reward received after taking the switch action until the agent
re-enters a state with switch actions, i.e., until the context changes. This n-step update still has the
advantage that it does not bootstrap from the Q-values of an abstraction. However, it is also an
on-line update, i.e., it is performed during an episode. We will refer to this update scheme as the
n-step update scheme. Besides this update scheme, the Q-learning update scheme from Section 6.2
can be applied. This update scheme can be applied without making any modifications.

We summarize the update schemes for updating the Q-values of the abstraction-selection task
of an MDP with context-specific structure in Table 8 and Table 9.

Table 8. n-step update scheme.

action selection update, current abs. update, other abs.

regular action ✏-greedy Q-learning if subset/on explore: Q-learning
switch action ✏sw-greedy n-step update -

In Section 7.5, we compare these update scheme experimentally on an extension of the Mars
rover task.

28 Computational Intelligence

Table 9. Q-learning update scheme.

action selection update, current abs. update, other abs.

regular action ✏-greedy Q-learning if subset/on explore: Q-learning
switch action greedy JIT Q-learning JIT Q-learning

7.4. Contextual Bandit Problems with Context Specific Structure

Because a contextual bandit problem is a special case of an MDP, the definition of the abstraction-
selection task in Section 7.2 is also applicable to contextual bandit problems with context-specific
structure. In addition, due to the simplicity of this domain, this task is Markov under minimal
conditions, as shown by the following theorem.

Theorem 6: Consider the contextual-bandit problem M with context-specific structure. The state
spaceX consists ofN state components. In addition, consider the candidate abstractions {µ1, . . . , µK}
and switch abstraction µ0. The abstractions are defined as follows: µi(x) = x

Si
with Si ✓ {1, . . . , N},

for all x 2 X and 0 6 i 6 K. The abstraction-selection task of M is Markov if S0 ✓ Si for 1 6 i 6 K.

Proof. The proof closely follows the arguments as in the case of contextual bandit problems without
context-specific structure (Theorem 2). The Markov property states that the transition probabilities
and reward for a state-action pair should be independent of all possible histories. An episode of the
abstraction-selection task consists of two actions: a switch action followed by a regular action. The
switch action always obeys the Markov property since there is no history yet. In addition, because,
S0 ✓ Si for 1 6 i 6 K, the history of a regular action is always the same, for any state x in X+.
Therefore, also this action always obeys the Markov property.

The update schemes for this abstraction-selection task are the same as the update scheme for the
abstraction-selection task of a regular contextual bandit problem (Table 2).

7.5. Experimental Results

In this subsection, we consider an extension of the Mars rover task of Section 6.3. In this
extension, the area the rover has to cross to get from the start state to the goal state is divided into
4 types of sand (see Figure 7). Positions with the same sand type have the same relevant structural
component, but the relevant component can di↵er for each sand type.

G

S

Figure 7. The extended Mars rover task: the rover must move from S to G while crossing di↵erent
types of sand, each of which can have a di↵erent relevant structural component.

We consider two scenarios: in the first, the agent observes the di↵erent sand types (e.g., by

Efficient Abstraction Selection in Reinforcement Learning 29

observing the sand color) while in the second scenario it does not. When the agent observes the
sand types, it selects a new abstraction only when it crosses the border between sand types. In the
second scenario, the agent selects a new abstraction after each regular action. We compare the two
switching strategies from Section 7.3 on both these scenarios.

All switch methods use five candidate abstractions. Each candidate abstraction is based on
two components: the position component and one of the the five structural components. The switch
abstraction only uses the position component. We compare the switch methods with a method having
perfect information, a method that uses all components, and a method that uses only the position
component.This results in the following lists of methods:

• Perfect information - Single, context-specific, abstraction consisting of only the position component
and the locally relevant structural component.

• All structural components - Single abstraction taking into account the position component and
all structural components.

• Only position component - Single abstraction taking into account only the position component.
• Switch, n-step scheme, border - Abstraction selection with n-step update scheme and switching

only when the border between sand types is crossed.
• Switch, n-step scheme, always - Abstraction selection with n-step update scheme and switching

after each regular action.
• Switch, Q-L scheme, border - Abstraction selection with Q-learning update scheme and switching

only when the border between sand types is crossed.
• Switch, Q-L scheme, always - Abstraction selection with Q-learning update scheme and switching

after each regular action.

We measure the average return over the first 1000 episodes for these seven methods. All methods
use ✏-greedy action selection for the regular action with ✏ = 0.1 and decaying learning rates (according
to Equation 15) with initial values of 1 and an optimized decay rate, dreg. For the switch algorithms,
the extra parameters are also optimized. All results are averaged over 200 independent runs and
smoothed. At the start of each run, a random assignment of relevant components to sand types is
made.

Table 10 shows the average performance of the di↵erent methods over the first 1000 episodes
together with the optimal parameters, while Figure 8 plots the return as a function of the number of
episodes for these optimal parameters. Note that the perfect information method, the method that
uses all structural components, and the method using only the position component have the same
performance as in the regular Mars rover task (see Figure 6). The reason for this is di↵erent for
each method. For the perfect information method, it does not matter which structural component is
relevant, since it uses the right one by definition. For the method using all structural components, it
does not matter since the relevant is always observed and the total number of candidate abstractions
is still five. For the method using only the position component, the performance is the same since it
never uses the relevant component.

All switch methods show a large performance improvement compared to using all components.
Surprisingly, the n-step method with switching after each regular action performs remarkably well.
It yields an average reward of -123.6, while the other switch methods yield rewards between -240 to
-280.4 This result is remarkable because this method does not require the agent to distinguish the
di↵erent sand types. The methods that do require this extra knowledge (the switch methods that
only let the agent select a new abstraction when the border between sand types is crossed) perform
worse.

Apparently, the combination of the n-step update scheme with a low value of n (in our case,
n = 2) is quite powerful. This can be explained as follows. The n-step update scheme has the same
advantage as the MC update scheme from Section 6.2: the update targets for the switch actions are
not biased by the Q-values of the candidate abstractions. A disadvantage of an MC update or an
n-step update with high values of n is that the variance of the update target is very high, since many

4Around episode 300, the n-step method even yields a higher return than the perfect information graph.

However, note that the overall performance is worse at each point in time, since the return during the first
200 episodes is much lower.

30 Computational Intelligence

di↵erent state-action sequences can cause the update. When n is small, the variance of the update
target is smaller, yielding more accurate updates. Thus, the property of not bootstrapping from the
abstractions Q-value seems powerful, an e↵ect that was obscured in our previous experiments by the
high variance of the MC update targets.

0 200 400 600 800 1000
−1400

−1200

−1000

−800

−600

−400

−200

0

episodes

re
w

a
rd

perfect information

all components

only position component

switch, n−step scheme − border positions

switch, n−step scheme − all positions

switch, Q−L scheme − border positions

switch, Q−L scheme − all positions

Figure 8. Performance as a function of number of episodes on the extended Mars rover task.

Table 10. Average performance over the first 1000 episodes and optimal parameters on the
extended Mars rover task.

optimal parameters average standard
return error

perfect information dreg = 1.0% -87.83 0.06
switch, n-step scheme, border ✏sw = 0.5, dsw = 0.4%, dreg = 0.8% -278.9 0.6
switch, n-step scheme, always ✏sw = 0.2, dsw = 0.4%, dreg = 0.8% -123.6 0.2
switch, Q-L scheme, border z = 40, dsw = 0.6%, dreg = 0.4% -242.3 0.2
switch, Q-L scheme, always z = 20, dsw = 0.6%, dreg = 0.2% -270.0 0.2

all components dreg = 1.0% -1227 1
only position component (no learning occurs) -1309 2

8. DISCUSSION AND FUTURE WORK

In this section, we summarize the empirical results of the di↵erent sections, discuss the conse-
quences of non-Markov candidate abstractions and provide avenues for future work.

8.1. General

Taken together, the empirical results presented in Sections 5, 6, and 7 provide substantial evi-
dence of the importance of prior knowledge that can be expressed as a set of candidate abstractions.
Furthermore, they consistently validate the benefit of using abstraction-selection tasks to exploit
such knowledge. In contextual bandit problems, episodic MDPs, and general MDPs with context-
specific structure, the methods we propose perform much better than alternatives that do not exploit

Efficient Abstraction Selection in Reinforcement Learning 31

such prior knowledge. In addition, they often perform nearly as well as methods that are given the
optimal abstraction in advance.

For MDPs with context-specific structure, our methods can also exploit a second form of prior
knowledge. In addition to knowledge about the set of candidate abstractions, they also can exploit
knowledge about states sharing the same relevant components. This knowledge is represented by the
state component X c, which labels each state with a context identifier. Surprisingly, the extended
Mars rover experiment presented in Section 7.5 shows that, when the di↵erent contexts use the same
candidate abstractions, this additional prior knowledge does not further improve performance. On
the contrary, Figure 8 shows that the best performance is obtained by switching at all positions, i.e.,
ignoring the context information. It is an open question at this point if for certain domains, like the
one considered, knowledge about the context is never useful, or if alternative methods exist that can
exploit the context in a useful way. Nevertheless, it is not hard to imagine domains where context
knowledge would clearly improve performance. For example, in cases where the set of candidate
abstractions is di↵erent for each context. To illustrate this, suppose each sand type in the extended
Mars rover task had a di↵erent set of 5 candidate abstractions. In this case, an agent that is ignorant
of the sand type would have to explore 5 ⇥ 4 = 20 candidate abstractions at each position, instead
of 5.

Because the best performance in the extended Mars rover task is obtained when switching occurs
at all positions, these results also demonstrate that it can be beneficial to switch between abstractions
even within the same context. While these experiments evaluate only MDPs with context-specific
structure, the conclusion can be applied to all MDPs, since those without context-specific structure
are just a special case. Consequently, we hypothesize that the performance on the regular Mars rover
task (see Section 6.3) can be further improved, by using the abstraction-selection task presented in
Section 7.2 in combination with the n-step update scheme (Table 8). In fact, performance on this
task should be the same as on the extended Mars rover task, since the two tasks are actually identical
from an algorithmic point of view. In both cases, the agent must learn which component out of a
set of 5 components is relevant for each position. We intend to investigate such variations in future
work.

8.2. Non-Markov Candidate Abstractions

In this article we focus on abstraction-selection tasks that are Markov, since this results in
convergence guarantees of basic RL methods. For the contextual bandit problem, every set of
candidate abstractions results in a Markov task (see Theorem 2). For contextual bandit problem
where the candidate abstractions share the same context-specific structure, the only condition to
achieve a Markov abstraction-selection task is that the components used for the switch abstraction
are also part of the component sets of the candidate abstractions (Theorem ??). This condition
can be easily met by adding the components from the switch abstraction to components sets used
by the candidate abstractions. Obtaining a Markov abstraction-selection task for a general MDP is
less straightforward. In the case of an episodic MDP, all candidate abstractions have to be Markov
(Theorem 4). For MDPs with context-specific structure the switch abstraction must also be Markov
(Theorem 5). This can be a serious constraint. It is likely, however, that good empirical results can
be obtained even when this condition is not fully satisfied, i.e., when the set of candidate abstractions
contains non-Markov abstractions.

When a candidate abstraction is not Markov, the expected return depends on the history. This
results in incorrect Q-values for this candidate abstraction. When the Q-values of the switch actions
are bootstrapped from those of the candidate abstractions, as occurs in the Q-learning update
scheme (Table 6), such incorrect values can cause incorrect values for the switch actions, resulting
in incorrect abstraction selection. On the other hand, when a Monte Carlo update scheme (Table 5)
is used, switch actions are updated by the complete return produced by an abstraction and hence
incorrect values of a candidate abstraction have no direct e↵ect. A candidate abstraction that is not
Markov will likely produce a bad policy, and consequently a bad return. Hence the corresponding
switch action gets updated with low values and the agent will learn to avoid these abstractions.

In the case of abstraction selection for MDPs with context-specific structure, an analysis of the
consequences of non-Markov candidate abstractions is less straightforward. However, it is again likely

32 Computational Intelligence

that the Q-learning update scheme will result in incorrect abstraction selection, for the same reason
as mentioned above. On the other hand, with the the n-step update scheme (Table 8), the Q-values
of switch actions are not bootstrapped from Q-values from a candidate abstraction. Therefore, we
expect that non-Markov candidate abstractions can be dealt with e↵ectively in this setting also.
However, we do expect that the switch abstraction has to be Markov in order to achieve e↵ective
abstraction selection. Confirming these hypotheses experimentally is a topic for future research.

8.3. Additional Future Work

In addition to the possibilities mentioned above, there are two additional avenues for future
work. In this article, we focussed on model-free methods, to get maximum e�ciency in terms of
space and computation time. In future work, the abstraction-selection task could be combined with
model-based learning. This will increase the space requirements (storing the transition table of a
candidate abstraction scales quadratically with its size), but allows the required computation time
to be traded for improved performance, for example by controlling the number of updates per
time step in prioritized sweeping (Moore and Atkeson, 1993), which focuses its computation on the
updates expected to have the largest e↵ect. Alternatively, by combining the framework with best-
match learning (van Seijen et al., 2011), the space requirements can also be tuned to optimally
exploit the available resources for improving performance.

Another direction of future work is to combine the abstraction-selection task with function
approximation. This would further improve the sample e�ciency through generalization and make
the approach applicable to domains with continuous state spaces. We expect that the conditions for
o↵-policy learning (Theorem 3) will still be Markov when function approximation is applied.

9. CONCLUSIONS

This article presented a new strategy for on-line abstraction selection for factored MDPs.
The proposed approach addresses a special case of the structure learning problem in which prior
knowledge can be used to restrict the set of candidate abstractions that must be considered. The
problem of abstraction selection was formalized by defining an abstraction-selection task that extends
the action set with internal switch actions that select the abstraction to be used for regular (external)
action selection. We proved that this abstraction-selection task is Markov (or ‘Markov with respect
to relevant components’) under various conditions related to the type of components that are ignored
by the candidate abstractions. This result enables the use of resource-e�cient model-free learning
methods, while still guaranteeing convergence. In addition, we demonstrated that the learning speed
can be further improved by constructing parallel experience sequences corresponding to candidate
abstractions that are not selected. These parallel sequences can be used for o↵-policy updating of
the Q-values of these abstractions.

We demonstrated the validity of the approach via experiments on a contextual bandit problem,
an episodic MDP, and a general MDP with context-specific structure. In all three domains, a large
performance improvement was achieved by automatically discovering the best candidate abstrac-
tions. Furthermore, we demonstrated that switching between a large abstraction, and a smaller
abstraction that is based on a subset of components from this large abstraction can outperform both
individual abstractions. The reason is that by switching between them the learning speed of the
small abstraction can be combined with the high asymptotic performance of the large abstraction.

This article focussed on Markov abstractions, since this results in convergence guarantees of
basic RL methods. In future work, we want to (empirically) evaluate the e↵ect of non-Markov
abstractions, especially for MDPs with context-specific structure. In addition, we would like to
evaluate our abstraction selection strategy with model-based methods.

ACKNOWLEDGEMENTS

The authors would like to thank Csaba Szepesvari for helping out with some notational issues.
The research reported here is part of the Interactive Collaborative Information Systems (ICIS)
project, supported by the Dutch Ministry of Economic A↵airs, grant nr: BSIK03024.

Efficient Abstraction Selection in Reinforcement Learning 33

REFERENCES

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine Learning , 47(2), 235–256.

Bellman, R. E. (1957a). A Markov decision process. Journal of Mathematical Mechanics, 6, 679–684.
Bellman, R. E. (1957b). Dynamic Programming . Princeton University Press, Princeton, NJ.
Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in policy construction.

In International Joint Conference on Artificial Intelligence, pages 1104–1113.
Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dynamic programming with

factored representations* 1. Artificial Intelligence, 121(1-2), 49–107.
Brafman, R. I. and Tennenholtz, M. (2002). R-max: a general polynomial time algorithm for near-

optimal reinforcement learning. Journal of Machine Learning Research, 3, 213–231.
Chakraborty, D. and Stone, P. (2011). Structure learning in ergodic factored mdps without knowledge

of the transition functions in-degree. In Proceedings of the Twenty-Eighth International
Conference on Machine Learning (ICML).

Chapman, D. and Kaelbling, L.P. (1991). Input generalization in delayed reinforcement learning:
An algorithm and performance comparisons. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, pages 726–731. Citeseer.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and causation.
Computational Intelligence, 5(2), 142–150.

Dean, T., Givan, R., and Leach, S. (1997). Model reduction techniques for computing approximately
optimal solutions for Markov decision processes. In Proceedings of the Thirteenth Conference
on Uncertainty in Artificial Intelligence, pages 124–131. Citeseer.

Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value Function
Decomposition. Journal of Artificial Intelligence Research, 13, 227–303.

Diuk, C., Li, L., and Le✏er, B. R. (2009). The adaptive k-meteorologists problem and its application
to structure learning and feature selection in reinforcement learning. In Proceedings of the 26th
Annual International Conference on Machine Learning .

Ferns, N., Panangaden, P., and Precup, D. (2004). Metrics for finite Markov decision processes.
In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages 162–169.
AUAI Press.

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model minimization in Markov
decision processes. Artificial Intelligence, 147(1-2), 163–223.

Jaakkola, T., Jordan, M. I., and Singh, S. (1994). On the convergence of stochastic iterative dynamic
programming algorithms. Neural computation, 6, 1185–1201.

Jong, N. K. and Stone, P. (2005). State Abstraction Discovery from Irrelevant State Variables. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, pages
752–757.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research, 4, 237–285.

Kearns, M. and Koller, D. (1999). E�cient reinforcement learning in factored MDPs. In International
Joint Conference on Artificial Intelligence, pages 740–747.

Kearns, M. and Singh, S. (2002). Near-Optimal Reinforcement Learning in Polynomial Time.
Machine Learning , 49(2), 209–232.

Konidaris, G. and Barto, A. (2009). E�cient skill learning using abstraction selection. In Proceedings
of the Twenty First International Joint Conference on Artificial Intelligence, pages 1107–1112.

Kroon, M. and Whiteson, S. (2009). Automatic Feature Selection for Model-Based Reinforcement
Learning in Factored MDPs. In ICMLA 2009: Proceedings of the Eighth International Confer-
ence on Machine Learning and Applications, pages 324–330.

Lai, T. L. and Robbins, H. (1985). Asymptotically e�cient adaptive allocation rules. Advances in
applied mathematics, 6(1), 4–22.

Langford, J. and Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-armed bandits.
Advances in Neural Information Processing Systems.

Langford, J., Strehl, A., and Wortman, J. (2008). Exploration scavenging. In Proceedings of the
Twenty-Fifth International Conference on Machine Learning , pages 528–535. ACM.

Le✏er, B., Littman, M., and Edmunds, T. (2007). E�cient reinforcement learning with relocat-

34 Computational Intelligence

able action models. In Proceedings of the Twenty Second National Conference on Artificial
Intelligence, page 572.

Li, L., Littman, M. L., and Walsh, T. J. (2008). Knows what it knows: a framework for self-aware
learning. In Proceedings of the 25th international conference on Machine learning , pages 568–
575. ACM New York, NY, USA.

McCallum, A. K. (1995). Reinforcemennt Learning with Selective Perception and Hidden States .
Ph.D. thesis, University of Rochester.

Moore, A. and Atkeson, C. (1993). Prioritized Sweeping: Reinforcement Learning with Less Data
and Less Real Time. Machine Learning , 13, 103–130.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning . Ph.D.
thesis, University of California.

Pandey, S., Agarwal, D., Chakrabarti, D., and Josifovski, V. (2007). Bandits for taxonomies: A
model-based approach. In SIAM Data Mining Conference. Citeseer.

Puterman, M. L. and Shin, M. C. (1978). Modified policy iteration algorithms for discounted Markov
decision problems. Management Science, 24, 1127–1137.

Ravindran, B. and Barto, A. G. (2003). SMDP homomorphisms: An algebraic approach to
abstraction in semi-Markov decision processes. In International Joint Conference on Artificial
Intelligence, pages 1011–1018. Citeseer.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461–464.
Singh, S., Jaakkola, T., Littman, M. L., and Szepesvari, C. (2000). Convergence results for single-step

on-policy reinforecement-learning algorithms. Machine Learning , 38, 287–308.
Strehl, A. L., Diuk, C., and Littman, M. L. (2007). E�cient structure learning in factored-state

MDPs. In Proceedings of the Twenty-Second National Conference on Artificial Intelligence,
page 645. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di↵erences. Machine Learning ,
3(1), 9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International Conference
on Machine Learning , pages 216–224.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, Massachussets.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1), 181–211.

Szepesvri, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 4(1), 1–103.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey.
The Journal of Machine Learning Research, 10, 1633–1685.

van Seijen, H., Whiteson, S., van Hasselt, H., and Wiering, M. (2011). Exploiting Best-Match
Equations for E�cient Reinforcement Learning. The Journal of Machine Learning Research,
12, 2045–2094.

Wang, C. C., Kulkarni, S. R., and Poor, H. V. (2005). Bandit problems with side observations. IEEE
Transactions on Automatic Control , 50, 338–355.

Watkins, C. and Dayan, P. (1992). Q-Learning. Machine Learning , 8(3-4), 9–44.

APPENDIX A. Proof of Theorem 1

Theorem 1 Consider the MDP M = (X ,A, ⌧, ⇢) with X = X 1 ⇥ X 2 ⇥ ... ⇥ XN . Abstraction
µ(x) = x

S with S ✓ {1, 2, ..., N} is a Markov abstraction if each component X k from X with k /2 S
is either irrelevant for XS or an independent component.

Proof. For the proof we will make use of three rules that can be easily deduced from the Bayesian
statistics rules. Consider the random variables A 2 A, B 2 B and C 2 C. The following rules hold:

Pr(A 2 U |B,C) · Pr(B 2 V |C) = Pr((A,B) 2 U ⇥ V |C), for all U 2 A, V 2 B (19)

Efficient Abstraction Selection in Reinforcement Learning 35

Pr(A 2 U |B) = Pr(A 2 U |B,C,D), for all U 2 A)
Pr(A 2 U |B) = Pr(A 2 U |B,C), for all U 2 A (20)

Pr((A,B) 2 U ⇥ V |C) = Pr((A,B) 2 U ⇥ V |C,D), for all U ⇥ V 2 A⇥ B)
Pr(A 2 U |C) = Pr(A 2 U |C,D), for all U 2 A (21)

Let Sind ⇢ {1, 2, ..., N} be the set of indices of the independent components that are not in S,
and Sirr ⇢ {1, 2, ..., N} be the set of indices of irrelevant components with respect to XS (these
component indices are by definition not in S).

We start by proving that the abstraction based on all components except those with an index

in Sind is a Markov abstraction. That is, µ(x) = x

S+
is Markov, with S+ = {1, . . . , N} \Sind. After

that, we prove that the abstraction based on S = S+ \ Sirr is also Markov.
Let X k, k 2 Sind be an independent component and let X�k be the product set spanned by

all components, except for X k. We first prove that an abstraction based on X�k is Markov. The
Markov property for X is:5

Pr(X
t+1

, R
t+1

|X
t

, A
t

) = Pr(X
t+1

, R
t+1

|X
t

, A
t

, R
t

,, R
1

,X
0

, A
0

).

Using (21), we can deduce the following equation:

Pr(X�k

t+1

, R
t+1

|X
t

, A
t

) = Pr(X�k

t+1

, R
t+1

|X
t

, A
t

, R
t

,, R
1

,X
0

, A
0

). (22)

We now multiply both sides of (22) with Pr(Xk

t

|X�k

t

, A
t

), Xk

t

2 X k. The left part is then rewritten
as:

Pr(X�k

t+1

, R
t+1

|X
t

, A
t

) · Pr(Xk

t

|X�k

t

, A
t

) = Pr(X�k

t+1

, R
t+1

, Xk

t

|X�k

t

, A
t

) .

For the right part, we first rewrite Pr(Xk

t

|X�k

t

, A
t

), using the definition of an irrelevant component,
as:

Pr(Xk

t

|X�k

t

, A
t

) = Pr(Xk

t

|X�k

t

, A
t

, R
t

,, R
1

,X
0

, A
0

).

Multiplying this with the right part of (22) and rewriting it, using (19), gives:

Pr(X�k

t+1

, R
t+1

, Xk

t

|X�k

t

, A
t

, R
t

,, R
1

,X
0

, A
0

).

Combining the rewritten left and right part of (22) gives:

Pr(X�k

t+1

, R
t+1

, Xk

t

|X�k

t

, A
t

) = Pr(X�k

t+1

, R
t+1

, Xk

t

|X�k

t

, A
t

, R
t

,X
t�1

, . . . , R
1

,X
0

, A
0

).

Using (21), this can be rewritten as:

Pr(X�k

t+1

, R
t+1

|X�k

t

, A
t

) = Pr(X�k

t+1

, R
t+1

|X�k

t

, A
t

, R
t

,X
t�1

, . . . , R
1

,X
0

, A
0

) ,

which in turn can be rewritten, using (20), as:

Pr(X�k

t+1

, R
t+1

|X�k

t

, A
t

) = Pr(X�k

t+1

, R
t+1

|X�k

t

, A
t

, R
t

,X�k

t�1

, . . . , R
1

,X�k

0

, A
0

) ,

By repeating this process for each independent component in Sind, the following equation is obtained:

Pr(XS+

t+1

, R
t+1

|XS+

t

, A
t

) = Pr(XS+

t+1

, R
t+1

|XS+

t

, A
t

, R
t

,XS+

t�1

, . . . , R
1

,XS+

0

, A
0

) .

Starting from this equation we now prove that the abstraction based on S is also Markov. First, we
rewrite the equation, using (21) as:

Pr(XS
t+1

, R
t+1

|XS+

t

, A
t

) = Pr(XS
t+1

, R
t+1

|XS+

t

, A
t

, R
t

,XS+

t�1

, . . . , R
1

,XS+

0

, A
0

) .

Using the definition of irrelevant components, this can be rewritten as:

Pr(XS
t+1

, R
t+1

|XS
t

, A
t

) = Pr(XS
t+1

, R
t+1

|XS+

t

, A
t

, R
t

,XS+

t�1

, . . . , R
1

,XS+

0

, A
0

) .

which, using (20), can be rewritten as:

Pr(XS
t+1

, R
t+1

|XS
t

, A
t

) = Pr(XS
t+1

, R
t+1

|XS
t

, A
t

, R
t

,XS
t�1

, . . . , R
1

,XS
0

, A
0

) .

This last equation proves the theorem.

5For notational simplicity, we leave out that (X
t+1

, R
t+1

) 2 U and that the equation holds for all U 2
X ⇥ R. This same notational simplification is used for all the equations in this proof.

36 Computational Intelligence

APPENDIX B. O↵-Policy Monte Carlo Update

In this appendix, we deduce the equation for the o↵-policy Monte Carlo update of the switch
actions for the abstraction-selection task of a contextual bandit problem. While in general, o↵-policy
Monte Carlo updates are very ine�cient, in this specific case a particular simple and e�cient equation
is obtained. In this appendix, we use ⇡(x) to refer to the action given by a deterministic policy, while
we use ⇡(x, a) to refer to the action selection probability of a stochastic policy.

The experience sequence of the abstraction-selection task of a contextual bandit problem consists
of only two actions: first a switch actions, asw

0

, and then a regular action, a
1

:

x

0

! asw

0

! x

1

! a
1

! r
2

. (23)

A Monte Carlo update is an update with the complete return, i.e., the (discounted) cumulative
reward. To understand the di↵erence with regular (on-policy) Monte Carlo updates consider that we
determine the Q-value of a state-action pair (x, a) by simply taking the average of all returns seen
so far:

Q(x, a) =

P
N

i=1

G
i

(x, a)

N
, (24)

where Gi(x, a) is the return followed by the i-th visit of state-action pair (x, a) and N is the total
number of returns observed for (x, a). A similar o↵-policy version can then be made by taking the
weighted average:

Q(x, a) =

P
N

i=1

wi(x, a) ·Gi(x, a)
P

N

i=1

wi(x, a)
, (25)

where wi(x, a) is the weight assigned to the i-th return for (x, a). The value of wi(x, a) is computed
as follows. Let p(x, a) be the probability of the experience sequence following (x, a) occurring under
the estimation policy ⇡ and p0(x, a) be the probability of it occurring under the behaviour policy
⇡0. Than the weight wi(x, a) is equal to the relative probability of the observed experience sequence
of occurring under ⇡ and ⇡0, i.e. by p(x, a)/p0(x, a). These probabilities can be expressed in their
policy probabilities as follows:

w(x
t

, a
t

) =
p(x

t

, a
t

)
p0(x

t

, a
t

)
=

T�1Y

k=t+1

⇡(x
k

, a
k

)
⇡0(x

k

, a
k

)
, (26)

where T is the time step the terminal state is reached.
For a deterministic evaluation policy ⇡ the weight w is non-zero only when all actions taken

under ⇡0 match the action that would have been taken under ⇡. If this is the case, the above equation
simplifies to:

w(x
t

, a
t

) =
T�1Y

k=t+1

1
⇡0(x

k

, a
k

)
, if ⇡(x

k

) = a
k

for all k > t+ 1 , (27)

where ⇡(x
k

) refers to the action the agent would take at time step k (with probability 1) when
following this deterministic policy.

Because for the sequence in (23), the state-action pair that requires the o↵-policy Monte Carlo
update, (x

0

, asw

0

), is followed by only a single action (a
1

), the weight expression is reduced even
further to:

w =
1

⇡0(x
0

, asw

0

)
, if ⇡(x

1

) = a
1

. (28)

Given that we use an ✏-greedy behaviour policy with fixed ✏, and the condition that ⇡(x
1

) = a
1

, the
weight w is a fixed value and can therefore be scaled to 1. Now, the o↵-policy Monte Carlo update
of the switch action is reduced to:

Q(x
0

, asw

0

) = (1� ↵)Q(x
0

, asw

0

) + ↵ · r
2

, if a
1

is greedy . (29)

