
Switching between Representations in
Reinforcement Learning

Harm van Seijen, Shimon Whiteson and Leon Kester

Abstract This chapter presents and evaluates an on-line representation selection
method for factored MDPs. The method addresses a special case of the feature se-
lection problem that only considers certain sub-sets of features, which we call candi-
date representations. A motivation for the method is that it can potentially deal with
problems where other structure learning algorithms are infeasible due to a large de-
gree of the associated dynamic Bayesian network (DBN). Our method uses switch
actions to select a representation and uses off-policy updating to improve the policy
of representations that were not selected. We demonstrate the validity of the method
by showing for a contextual bandit task and a regular MDP that given a feature set
containing only a single relevant feature, we can find this feature very efficiently
using the switch method. We also show for a contextual bandit task that switching
between a set of relevant features and a subset of these features can outperform the
performance of both individual representations, since the switch method combines
the fast performance increase of the small representation with the high asymptotic
performance of the large representation.

1 Introduction

In reinforcement learning (RL) [7, 13], an agent seeks an optimal control policy for
a sequential decision problem. When the sequential decision problem is modeled
as a Markov decision process (MDP) [2], the agent’s policy can be represented as

Harm van Seijen and Leon Kester
TNO Defense, Safety and Security, Oude Waalsdorperweg 63, 2597 AK The Hague, The Nether-
lands, e-mail: harm.vanseijen@tno.nl, leon.kester@tno.nl

Shimon Whiteson
University of Amsterdam, Science Park 107, 1098 XG Amsterdam, The Netherlands, e-mail:
s.a.whiteson@uva.nl

1

2 Harm van Seijen, Shimon Whiteson and Leon Kester

a mapping from each state it may encounter to a probability distribution over the
available actions.

RL suffers from what is often called the ‘curse of dimensionality’: the state space
grows exponentially as function of the number of problem parameters and it be-
comes quickly infeasible to solve. For the sub-domain of factored MDPs, where
the state space is described through a set of features, one can often considerably
reduce the complexity of the problem by making use of its structure. Boutilier et
al. [3] showed for the planning case that by representing the transition and reward
functions as a dynamic Bayesian network (DBN) and representing the associated
conditional probability tables (CPTs) as a tree, it becomes possible to avoid the
explicit enumeration of states. This allows the computation of value estimates and
policy to be performed on partitions instead of individual states. They later extended
this work by using an even more compact way to represent the CPTs, algebraic de-
cision diagrams [6], and by combining it with approximate dynamic programming
techniques [11].

The success of this approach inspired other people to use the idea of representing
the transition and reward function as a DBN to speed up learning of the model
in model-based RL. Although these methods still use explicit state enumeration,
since the model is more efficiently learned also the sample efficiency is improved.
The early work assumed the structure of the DBN is known, and only focussed on
learning the values of the decision trees [8]. Strehl et al. [12] were able to relax
the prior knowledge by showing how the structure of the DBN could be efficiently
learned with only the degree of the DBN as prior knowledge. This work recently got
extended by combining it with the KWIK framework [9] resulting in a method with
better bounds [4].

Although these recent methods can learn the structure efficiently when the degree
is small, the representation size grows exponentially in the degree N of the DBN [12,
4, 1], therefore for large values of N learning the DBN model becomes infeasible.

We present in this chapter an alternative approach that can potentially better deal
with cases, where the current structure learning algorithms are infeasible. Our ap-
proach is different in two major ways. First, our method searches for the feature set
that has currently the best performance, instead of searching for the feature set that
has the highest performance in the limit. A second difference is that our method
relies on knowledge in the form of relevant feature combinations. The advantage of
this form of prior knowledge is that it allows for representing more specific domain
knowledge than just the degree of the DBN, effectively reducing the problem size.

The general principle behind the algorithm is a very intuitive one. Each subset
of features forms a candidate representation. At the start of each episode the agent
selects one candidate representation and uses its policy to perform action-selection
and policy updating till the end of the episode. If the episode is finished the value of
the representation as a whole is updated.

Selection of the representation suffers from the same exploration-exploitation
dilemma as regular action selection, i.e. the agent can choose either the represen-
tation that has the highest current estimated value, or it can choose a suboptimal
representation in order to improve its policy and its estimate of that policy. Due to

Switching between Representations in Reinforcement Learning 3

this exploration cost there is a trade-off between the performance gain by using a
more compact representation and the performance decrease due to the exploration
of sub-optimal representations. To reduce the exploration cost we defined a number
of conditions under which off-policy updating is possible of the policies of the un-
selected representations and of the value of the representation as a whole. This can
increase the performance considerably.

The rest of this chapter is organized as follows. In section 2 we give a formal
definition of a factored MDP. In section 3 we define different types of features and
relate these to valid candidate representations. Section 4 describes the algorithm the
case of a contextual bandit problem, a variation to the classical multi-armed bandit
problem where the outcome of pulling an arm depends on context information. In
section 5 we extend the ideas from section 4 to the case of an MDP. In section 6 we
provide empirical results for the contextual bandit case and the full MDP case. We
finish this chapter with a conclusion and a future work section.

2 Background

2.1 Factored MDP

In this section we will describe the framework of a factored MDP. We will adopt the
notation from [5]. A MDP is formally defined as a 4-tuple 〈X ,A,T,R〉 where

• X is the set of all states the agent can encounter
• A is the set of all actions available
• T (x,a,x′) = P(x′|x,a) is the transition function
• R(x,a) = E(r|x,a), is the reward function.

An MDP satisfies the equations for the Markov property:

P(xt+1,rt+1|xt ,at) = P(xt+1,rt+1|xt ,at ,rt ,xt−1,at−1, ...,r1,x0,a0) (1)

for all xt+1,rt+1 and all possible values of xt ,at ,rt , ...,r1,x0,a0.
For a factored MDP, the state space is described using a set of state variables or

f eatures: X = {X1, ...,Xn}, where each Xi takes on values in some domain Dom(Xi).
We will only consider discrete and finite domains throughout this chapter. We will
use the notation D to indicate the set of values with non-zero probablity. As an
example consider a feature set X consisting of two indentical features X1 and X2, for
the size of X the following holds:

|Dom(X)|= |Dom(X1)| · |Dom(X2)|
while

|D(X)|= |D(X1)|= |D(X2)|

4 Harm van Seijen, Shimon Whiteson and Leon Kester

A state x defines a value x(i) for each variable Xi. We will refer to the set of
variables that describes a state-space as a representation. For an instantiation y ∈
D(Y) and a subset of these variables Z ⊂ Y , we use y[Z] to denote the value of the
variables Z in the instantiation y.

The goal of a RL agent is to find an optimal policy π∗ = P(a|x), which maximizes
the expected discounted return 〈Rt〉 for state st , with Rt defined as:

Rt = rt+1 + γ rt+2 + γ2 rt+3 + ... =
∞

∑
k=0

γkrt+k+1 (2)

where γ is a discount factor with 0≤ γ ≤ 1.

3 Feature Selection in Factored MDPs

In this section we define several classes of features and show how these relate to
constructing a valid candidate representation.

3.1 Feature Types

Definition 1. A feature Xk ⊆ X is irrelevant with respect to Y if the following holds
for all x−t+1,y

+
t ,at

P(x−t+1,rt+1|y−t ,at) = P(x−t+1,rt+1|y+
t ,at) (3)

with

x−t+1 ∈ D(X \Xk)

y+
t ∈ D(Y ∪Xk)

y−t = y+
t [Y \Xk]

Informally spoken, an irrelevant feature is a feature whos feature value doesn’t effect
the next value of any other feature (except potentially its own value), nor the reward
received when a representation is used with all features from Y ∪Xk are present.

The complement class is the class of relevant features:

Definition 2. A feature Xk ⊆ X is relevant with respect to Y if it is not irrelevant
with respect to Y .

We can devide the irrelevant feature class into three subclasses: constant, empty
and redundant features.

Definition 3. A constant feature Xk ⊆ X is a feature with |D(Xk)|= 1.

Switching between Representations in Reinforcement Learning 5

A constant feature is a feature that never changes value. Note that a feature that stays
constant during an episode, but changes value in between episodes is not constant
according to this definition nor is it irrelevant. The difference between the two is that
a feature with |D(Xk)|= 1 can be removed from a representation, without effecting
the markov property (as we will proof in section 3.2), while removing a feature of
the second type can cause a violation of the Markov property. The Markov property
can be violated since the history might reveal something about the current value of
the feature and therefore effect the transition probability.

Since if we leave out a feature of the second type, the history might reveal some-
thing about its value and therefore effect the transition probability.

Definition 4. An empty feature Xk ⊆ X is a feature for which the following holds

|D(Xk)|> 1

P(x−t+1,rt+1) = P(x−t+1,rt+1|x(k)t)

for all x−t+1 ∈D(X \Xk),rt+1,x(k)t .
An empty feature, is a feature that contains no usefull information, i.e. it is irrel-

evant with respect to the empty set.

Definition 5. A feature Xk ⊆ X is redundant with respect to Y if it irrelevant with
respect to Y and non-emtpy.

A redundant feature does contain usefull information, however this information is
shared with some other features in Y . By removing some feature-set Z from Y ,
feature Xi can become a relevant feature with respect to Y \Z.

Apart from the relevant/irrelevant classification, we define two other classifica-
tions: dependent and independent features.

Definition 6. A feature Xk ⊆ X is independent if for all xt+1,xt ,at the following
holds

P(xt+1(k)) = P(xt+1(k)|x−t+1,rt+1,xt ,at) (4)

with

xt+1(k) = xt+1[Xk]
x−t+1 = xt+1[X \Xk]

So the value of an independent feature doesn’t depend on the previous state or cur-
rent values of other features or the reward just received. Note that this doesn’t pre-
vent an independent feature to influence the next feature value of other features or
the next reward. An independent feature is unique in the sense that it can contain rel-
evant information, but leaving the feature out still gives a Markov representation as
we will proof in the next subsection. Therefore, the regular methods still converge,
although the resulting policy is not optimal in X . However, since we are primarily in-
terested in the best online performance instead of the optimal performance, omitting
independent features can play an important role in finding the best representation.

6 Harm van Seijen, Shimon Whiteson and Leon Kester

For sake of completeness, we also define the counterpart of an independent fea-
ture:

Definition 7. A feature Xk ⊆ X is dependent if it is not independent.

3.2 Candidate Representation

A subset of features Y ⊆ X forms a candidate representation. We will now define
what we mean by a valid candidate representation.

Definition 8. Consider the MDP M = 〈X ,A,T,R〉. A subset of features Y ⊆ X is a
valid candidate representation if the Markov property applies to it, i.e. if the follow-
ing conditions hold :

P(yt+1,rt+1|yt ,at) = P(y′|yt ,at ,rt ,yt−1,at−1, ...,r1,y0,a0) (5)

for all yt+1 ∈D(Y),rt+1 and all possible values of yt ,at ,rt , ...,r1,y0,a0.

The full feature set X is per definition Markov. The following theorem shows how
different feature sets can be constructed from X that maintain the Markov property,
i.e. that are valid candidate representations. We will only consider valid candidate
representations in the rest of this chapter.

Theorem 1. Consider the MDP M = 〈X ,A,T,R〉. A subset of features Y ⊂ X is a
valid candidate representation if for the set of missing features the following holds

∀Xi /∈ Y : Xi is irrelevant w.r.t. Y or Xi is an independent feature.

Proof. To proof the theorem above it suffices to proof that if for an arbitrary set Z
with Y ⊆ Z ⊆ X the markov property holds, it also holds for Z \Zk if Zk is irrelevant
w.r.t. Y or independent.

For the proof we will make use the following formulas that can be easily deduced
from the Bayesian statistics rules:

P(a|b,c) ·P(b|c) = P(a,b|c) (6)
P(a|b) = P(a|b,c,d) ⇒ P(a|b) = P(a|b,c) (7)

P(a,bi|c) = P(a,bi|c,d) for all i ⇒ P(a|c) = P(a|c,d) (8)

with P(bi,b j) = 0 for all i 6= j and ∑i P(bi) = 1.
First we will proof that the Markov property is conserved if Zk is an irrelevant

feature.

Switching between Representations in Reinforcement Learning 7

P(zt+1,rt+1|zt ,at) = P(zt+1,rt+1|zt ,at ,rt ,zt−1,at−1, ...,r1,z0,a0)

P(z−t+1,rt+1|zt ,at) = P(z−t+1,rt+1|zt ,at ,rt ,zt−1,at−1, ...,r1,z0,a0) using rule (8)

P(z−t+1,rt+1|z−t ,at) = P(z−t+1,rt+1|zt ,at ,rt ,zt−1,at−1, ...,r1,z0,a0) using rule (3)

P(z−t+1,rt+1|z−t ,at) = P(z−t+1,rt+1|z−t ,at ,rt ,z−t−1,at−1, ...,r1,z−0 ,a0) using rule (7)

Now for an indepedent feature:

P(zt+1,rt+1|zt ,at) = P(zt+1,rt+1|zt ,at ,rt ,zt−1,at−1, . . . ,r1,z0,a0)

P(z−t+1,rt+1|zt ,at) = P(z−t+1,rt+1|zt ,at ,rt ,zt−1,at−1, . . . ,r1,z0,a0) using rule (8)

We now multiply both sides with P(z(k)t) and rewrite the left part as

P(z−t+1,rt+1|zt ,at) ·P(z(k)t)

= P(z−t+1,rt+1|z(k)t ,z−t ,at) ·P(z(k)t |z−t ,at) using rule (4)

= P(z−t+1,rt+1,z(k)t |z−t ,at) using rule (6)

and the right part as:

P(z−t+1,rt+1|zt ,at ,rt ,zt−1,at−1, ...,r1,z0,a0) ·P(z(k)t)

= P(z−t+1,rt+1|z(k)t ,z
−
t ,at ,rt ,zt−1,at−1, ...,r1,x0,a0)

·P(z(k)t |z−t ,at ,rt ,zt−1,at−1) using rule (4)

= P(z−t+1,rt+1|z(k)t ,z
−
t ,at ,rt ,zt−1,at−1, ...,r1,x0,a0)

·P(z(k)t |z−t ,at ,rt ,zt−1,at−1, ...,r1,z0,a0) using rule (5)

= P(z−t+1,rt+1,z(k)t |z−t ,at ,rt ,zt−1,at−1, ...,r1,z0,a0)

Combining these results gives:

P(z−t+1,rt+1,z(k)t |z−t ,at) = P(z−t+1,rt+1,z(k)t |z−t ,at ,rt ,zt−1,at−1, ...,r1,z0,a0)

P(z−t+1,rt+1|z−t ,at) = P(z−t+1,rt+1|z−t ,at ,rt ,z−t−1,at−1, ...,r1,z−0 ,a0) using (7),(8)

ut

4 Representation Selection for a Contextual Bandit

In this section we describe our representation selection method for a contextual
bandit, a subclass of MDP problems where only a single action has to be taken.
We will start by introducing an example contextual bandit task that will serve as a
reference for the rest of this section. In section 4.2 we will explain how formally

8 Harm van Seijen, Shimon Whiteson and Leon Kester

the selection problem can be seen as solving a derived MDP. Section 4.3 shows
how a representation can be evaluated. Section 4.4 describes the performance of our
method can be increased by off-policy updating the Q-values of the representations
and of the switch actions. Note that for a contextual bandit, each subset of features
forms a valid candidate representation, since there is no history to consider and
therefore the Markov property is never violated.

4.1 A Contextual Bandit Example

The standard multi-armed bandit problem represents a class of RL tasks, based on a
traditional slot-machine but with multiple arms. Pulling an arm results in a reward
drawn from a distribution associated with that arm. The goal of an agent is to max-
imize its reward over iterative pulls. The agent has no prior knowledge about the
distributions associated with each arm. The dilemma the agent faces when perform-
ing this task is to either pull the arm that has currently the highest expected reward
or to improve the estimates of the other arms. This is often referred to as the explo-
ration versus exploitation dilemma. The contextual bandit problem is a variation of
the multi-armed bandit problem where the agent observes context information that
can affect the reward distributions of the arms. We can connect the bandit problem
to an MDP, by interpreting the arms as actions and the context as the state. When
the context is described through features, we can interpret the problem as a factored
MDP where episodes have length 1.

We will now describe an example of a contextual bandit that will be used as a ref-
erence for the next sections. Consider a contextual bandit with two arms: a0 and a1.
The context is described by two binary features: X and Y. The expected reward for
a0 is 0 for all context states, while the expected reward for a1 can be either positive
or negative depending on the context state. Figure 1(a) shows the expected reward
for arm a1 for all feature value combinations. The agent is given two candidate rep-
resentations to choose from on this task. Representation SX consists of only feature
X, while representation SY consists of only feature Y. Both representations partition
the original state space into two abstract states, one corresponding to each feature
value. We can calculate the expected reward for these states from the full table in
1(a) and the prior probabilities of the feature values, which we assume to be 0.5 for
both values of X and Y. Figures 1(b) and (c) show the expected reward of arm a1 for
representation SX and SY respectively. Note, that the optimal policy of representa-
tion SX has an expected reward of 1.5 (action a0 will be chosen when X = 1), while
the optimal policy for representation SY has an expected reward of 0.5.

In the next section, we will show for this example task how the concept of repre-
sentation selection can be interpreted as solving a derived MDP.

Switching between Representations in Reinforcement Learning 9

Fig. 1 Expected return of arm a1 for the full representation (a) and representation SX (b) and SY
(c) assuming a prior probability of 0.5 for the features-values 0 and 1 of feature X and Y.

4.2 Constructing the Switch Representation

Formally, the representation is one of the elements that defines an MDP task. There-
fore, an agent that can choose between multiple representations, actually chooses
between multiple MDP tasks, each of them having a different state space X , transi-
tion function T and reward function R, but with equal action set A. We can combine
these multiple MDP tasks into a single ‘switch’ MDP task by defining switch ac-
tions, actions that have no effect on the environment but merely select the subtask
the agent will try to solve.

In figure 2 we can see how this switch MDP is constructed from the individual
MDPs for the example task described earlier. The agent can choose between an
MDP that uses representation SX , based on feature X, and SY , which is based on
feature Y. Switch actions are defined that let the agent use either representation
SX or SY . The state space of the switch MDP consists of 6 states, a single start
state from which the representation selection occurs, the non-terminal states from
representations SX and SY and one terminal state. Note that by including switching
actions, the derived MDP has episodes of length 2. The switch actions are stochastic
actions with 0 reward.

Defining a single start state from which switch actions are selected, guarantees
that the Q-values of the switch actions are set independent from the feature val-
ues. We will motivate this approach, by demonstrating what happens for our bandit
example if the representation is selected based on the Q-values of the candidate rep-
resentations. Assume that the current state is defined by features values (x = 1, y =
0). From figure 1(a) we can see that the expected reward is -2. Representation SX ,
which only sees feature X, predicts a reward of -3 in this case, while representation
SY predicts a reward of +1. Therefore, if the representation selection would be based
on the Q-values of the representations under consideration, SY would be selected in
this case, and arm a1 would be pulled which, despite the prediction of +1, would
result in a reward drawn from a distribution with a mean of -2. On the other hand, if
we had selected SX , action a0 would be the optimal action, which has an expected
reward of 0. This illustrates that using the Q-values of the individual representations
can lead to incorrect behavior. By defining switch-actions with specific Q-values

10 Harm van Seijen, Shimon Whiteson and Leon Kester

Fig. 2 The individual MDPs for the contextual bandit example and the derived switch MDP. The
circles indicate specific states, the square indicates the end state and the black dots indicate actions.
Stochastic actions have multiple arrows.

this problem is avoided, since these Q-values represent the average performance of
a representation, which is 1.5 for SX and 0.5 for SY .

The switch MDP is an MDP with special properties. One of its properties is
that not all the actions are external actions. Although the MDP framework does not
distinguish between internal or external actions, for our performance criteria it does
matter, since we want to optimize only with respect to the external actions. In the
next sections we will see how this property can be exploited to increase the on-line
performance.

4.3 Evaluation of a Representation

In the example bandit task, the agent has to choose between only two equally sized
representations. In the general case however, there can be many candidate represen-
tations of different sizes and information content. The policy of a representation is
not the same at each time step, but it will improve over time until all of its Q-values
have converged. Since small representations converge faster, a good on-line strategy
can be to use a small representations for the early phase of learning and switch to

Switching between Representations in Reinforcement Learning 11

a larger representations with more information content, at a later stage. To be able
to switch from one representation to another at the right moment, the agent needs
to know the current expected return for each representation, which we define as
follows:

Definition 9. The current expected return of a representation is the expected return
of the start state of that representation, assuming the current policy of the represen-
tation is used. If the start state is drawn from a probability distribution of start states,
then the current expected return refers to the weighted average of the expected re-
turns of the start states, weighted according to their probability.

The Q-value of a switch action gives an estimate of the current expected return of
the corresponding representation. To get a meaningful estimate, this Q-value cannot
be updated by bootstrapping from the Q-values of the representation, since these
converge too slowly and give not an accurate estimate for the current policy. Instead
we use a monte-carlo update, which uses the complete return. Since the policy of a
representations changes during learning, the most recent return gives the least biased
estimate for determining the current expected return. However, since the variance
on the return is very high it is necessary to average over multiple returns to get an
accurate estimate. Tuning the learning rate is therefore essential for a good trade-
off between the error due to variance and the error due to bias. The learning rate
of the switch-actions is therefore set independently from the learning rate for the
representations.

4.4 Improving Performance by Off-Policy Updating

Since the agent has to consider multiple representations, the exploration cost in-
creases. Fortunately, the exploration cost can be reduced considerably by using off-
policy updating techniques to simultaneously improve the policy of all representa-
tions. We can reduce the exploration cost further by also using off-policy updating
for the switch actions. Off-policy updating means that the policy used to generate
the behavior, i.e. the behavior policy, is different from the policy we try to evaluate,
i.e. the evaluation policy.

4.4.1 Updating of the Unselected Representations

At the start of an episode, the agent selects via a switch action the representation
it will use to base its external action selection on. If we assume that the agent can
observe the full feature set, it can also observe what state it would end up in had it
taken a different switch action. Therefore, parallel to the real experience sequence
from the selected representation, an experience sequence for the other candidate
representations can be constructed. These sequences can be used to perform extra
updates.

12 Harm van Seijen, Shimon Whiteson and Leon Kester

Given our example task, assume that the context is described by feature values
x = 0 and y = 1 and assume that representation SX is selected for action selection.
A possible experience sequence is then

sstart → aSX → sx:0 → a1 → r,send
With this sequence we can update Q(sx:0,a1). By observing feature Y we can create
an experience sequence for SY

sstart → aSY → sy:1 → a1 → r,send
This parallel sequence can be used to update Q(sy:1,a1). We have to take into ac-
count however that the update is biased since the action selection is based on repre-
sentation SX .

Underlying this bias is that state sy:1 is actually an aggregation of two states from
the full features set: (x = 0,y = 1) and (x = 1,y = 1). The expected reward for
state-action pair (sy:1,a1) is a weighted average of the expected rewards of these
two underlying states. Since representation SX aggregates the states from the full
features set in a different way, the two states underlying sy:1 corresponds to two
different states in representation SX . Therefore, if the selection probability of a1
for those states is different, the rewards are not properly weighted to estimate the
expected reward for (sy:1,a1).

This bias can be avoided by only updating an unselected representation under
certain conditions.

Theorem 2. Assume that action selection occurs according to representation S1 and
we want to update representation S2 based an a parallel experience sequence. We
can perform an unbiased update of S2 if one of the following two conditions hold:

1. if the feature set of S1 is a subset of the feature set of S2
2. if the action was an exploratory action under an exploration scheme that does

not depend upon the specific state, like an ε-greedy exploration scheme

Proof (sketch). Under the first condition, a single state of S2 always corresponds to
a single state of S1, and therefore the states aggregated by S2 never get incorrectly
weighted. For the second case, remember that both S1 and S2 are constructed from
X by removing irrelevant and independent features. Therefore, all the features that
are in S1, but not in S2 are either irrelevant or independent. If they are irrelevant,
the one-step model is the same regardless of the feature value and therefore using
a different weighting of the aggregated states doesn’t matter. If the feature is an
independent feature, the one-step model should be weighted according to the feature
value probability. When taking an exploration action, the selection probability of an
action is the same regardless the underlying state, and therefore this garantees that
we correctly weigh the aggregated states.

By off-policy updating of the unselected representations, we can improve the
policy of a representation even if we do not select it, resulting in an overall bet-
ter performance for the switching method. Besides updating the Q-values of the
unselected representations, we can also update the Q-values of the switch actions
corresponding to the unselected representations. This is discussed in the next sec-
tion.

Switching between Representations in Reinforcement Learning 13

4.4.2 Updating the Unselected Switch-actions

Since the switch actions are updated using Monte Carlo updates we cannot apply
the conditions from the previous section for off-policy updating of the switch ac-
tions. Off-policy Monte Carlo updating can be achieved using a technique called
importance sampling [10].

To understand the difference with regular (on-policy) Monte Carlo updates con-
sider that we determine the Q-value of a state-action pair (x,a) by simply taking the
average of all returns seen so far:

Q(x,a) = ∑N
i=1 Ri(x,a)

N
(9)

where Ri(x,a) is the return followed by the i-th visit of state-action pair (x,a) and
N is the total number of returns observed for (x,a). A similar off-policy version can
than be made by taking the weighted average:

Q(x,a) = ∑N
i=1 wi(x,a) ·Ri(x,a)

∑N
i=1 wi(x,a)

(10)

where wi(x,a) is the weight assigned to the i-th return for (x,a). The value of wi(x,a)
is computed as follows. Let p(x,a) be the probability of the state action sequence
following (x,a) occurring under the estimation policy π and p′(x,a) be the proba-
bility of it occurring under the behavior policy π ′. Than the weight wi(x,a) is equal
to the relative probability of the observed experience-sequence of occurring under π
and π ′, i.e. by p(x,a)/p′(x,a). These probabilities can be expressed in their policy
probabilities by:

w(xt ,at) =
p(xt ,at)
p′(xt ,at)

=
T−1

∏
k=t+1

π(xk,ak)
π ′(xk,ak)

(11)

For a deterministic evaluation policy π the weight w is non-zero only when all
actions taken under π ′ match the action that would have been taken under π . If this
is the case, the above equation simplifies to:

w(xt ,at) =
T−1

∏
k=t+1

1
π ′(xk,ak)

if π(xk) = ak for all k ≥ t +1 (12)

where π(xk) refers to the action the agent would take at timestep k (with probability
1) when following this deterministic policy.

We will now consider again our example contextual bandit task and the state ac-
tion sequence from the unselected representation:

sstart → aSY → sy:1 → a1 → r,send
Since the state-action pair that requires off-policy updating, (sstart ,aSY), is followed
by only a single action, and since we use a deterministic evaluation policy, the
weight expression is reduced even further to

14 Harm van Seijen, Shimon Whiteson and Leon Kester

w =
1

π ′(sx:0,a1)
if π(sx:0) = a1 (13)

Given that we use an ε-greedy behavior policy and the condition that π(sx:0) = a1,
the weight w is a fixed value and can be scaled to 1 in this case.

If the external action is an optimal action, we can perform the following update
of the switch action

Q(s0,aSY) = (1−α)Q(s0,aSY)+α · r (14)

To update the switch action of an unselected representation Si, two conditions
have to hold

1. the reward should be unbiased with respect to Si, i.e., one of the two conditions
of section 4.4 should hold

2. the selected action is an optimal action according to Si

5 Representation Selection for an MDP

Although the framework introduced in the previous section is not strictly limited
to the bandit case, applying it to the more general MDP task brings up some com-
plications. As explained in the previous section, for a contextual bandit problem
any subset of features from the total feature set forms a valid candidate represen-
tations. This is not generally the case for a full MDP, since partial observability
often leads to non-Markov behavior. For a valid candidate representation theorem 1
should hold. We will only consider valid candidate representations in this section. In
the subsections below we explain how off-policy updating works in case an MDP.

5.1 Off-Policy Updating of the Unselected Representations

The method to off-policy update an unselected representation in the MDP case is
very similar to the bandit case. The only difference is that for the bandit case the
update target consists only of the reward, while for the MDP case the update target
consists of a reward and next state. For updating an unselected candidate represen-
tations, this next state is the state according to that candidate representations. So if
we have consider the representations SX and SY and select SX as the representation
for action selection, we use the sequence

...→ rt ,sxt → at → rt+1,sxt+1 → ...
To perform the update

Q(sxt ,at) = (1−α)Q(sxt ,at)+α (rt+1 + γ max
a

Q(sxt+1 ,a)) (15)

Switching between Representations in Reinforcement Learning 15

And, if one of the conditions for unbiased updates from section 4.4 holds we use the
parallel sequence of SY

...→ rt ,syt → at → rt+1,syt+1 → ...
to perform the update

Q(syt ,at) = (1−α)Q(syt ,at)+α (rt+1 + γ max
a

Q(syt+1 ,a)) (16)

5.2 Off-Policy Updating of the Unselected Switch-actions

For the contextual bandit case, it was possible to perform very efficient off-policy
Monte Carlo updates of the unselected switch-actions. Therefore, exploration of the
switch-actions is not necessary for a contextual bandit problem.

Off-policy Monte Carlo updates for the MDP case are much less efficient. For a
deterministic evaluation policy π , all the actions of an episode generated using the
behavior policy π ′ have to be equal to π to get a non-zero weight (see (13)). Since
for our switch method, the behavior policy is based on a different representation,
this rarely is the case. If an stochastic evaluation policy would be used, the weights
will always be non-zero, but the difference in weight values will be very large, also
causing the off-policy updates to be inefficient. Therefore for the MDP case, we
only perform updates of switch action corresponding to the selected representation
and use exploration to ensure all switch actions are updated.

6 Experimental Results and Discussion

6.1 Contextual Bandit Problem

In the first experiment we compare the performance of the switching method against
the performance of the full representation given prior knowledge that only one fea-
ture from a set of features is a relevant feature, while the others are empty features.
The feature values are randomly drawn from their domain values after each pull of
an arm. We make this comparison for a feature set of 3 and of 4 features. Each fea-
ture has 8 feature values. The bandit has two arms with opposite expected reward.
Depending on the context, one has an expected reward of +1, while for the other arm
it is -1. The reward is drawn from a normal distribution with a standard deviation of
2. For half of the feature values of the information-carrying feature the first arm has
the +1 expected reward. Therefore without this feature the expected reward is 0.

The candidate representations for the switch algorithm consist in this case of one
representation per feature. We used a learning rate of 0.01 for the representation
evaluation and selected the representation greedy with respect to this evaluation.
The exploration scheme is ε-greedy with ε = 0.2 for all methods. To kick-start the

16 Harm van Seijen, Shimon Whiteson and Leon Kester

switch method we used only exploration for the first 50 episodes. Since all candidate
representations are updated during this exploration phase, this has a positive effect
on the total reward.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

episodes

av
er

ag
e

re
w

ar
d

perfect info
Full − 3 feat
Full − 4 feat
Switch − 3 feat
Switch − 4 feat

Fig. 3 Comparison of the switch method with the full feature set for a feature set of size 3 and size
4 for a contextual bandit problem. The perfect info graph shows what the performance would have
been had the agent known beforehand what the relevant feature would be.

Figure 3 shows the results. To get an upperbound we also plotted the performance
of a representation that consists only of the relevant feature. All results are averaged
over 10.000 independent runs and smoothed.

The advantage of the switching method is very clear for this task. While the full
representation grows exponentially with the number of features, with 512 context
states for a set of 3 features and 4096 for a set of 4, the total number of states for
the switching methods grows linear, with 24 states for a set of 3 features and 32
states a set of 4. The simultaneous updating of the representations on exploration
increases the performance even further and brings it very close to the representation
containing only the information carrying feature.

For our second experiment we consider a different contextual bandit task. For this
bandit task we have 3 information containing features, but one of them contains the
most information. We will demonstrate with this task that using a small incomplete
representation for the initial learning phase can improve the overall performance
for certain tasks. We compared in this case the performance of a representation
containing only the most important feature (REP-SMALL), with the representation
containing all 3 relevant features (REP-LARGE) and the switch method that has both

Switching between Representations in Reinforcement Learning 17

representations as candidate set (SWITCH). We used a learning rate of 0.001 for
the representation evaluation and greedy representation selection. The exploration
scheme is again ε-greedy with ε = 0.2 for all methods. The switch method uses
only exploration for the first 100 episodes. The results are averaged over 10.000
independent runs and smoothed.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

episodes

av
er

ag
e

re
w

ar
d

REP−SMALL
REP−LARGE
SWITCH

Fig. 4 Average reward for a contextual bandit when switching between a large and a small repre-
sentation.

Figure 4 shows the average reward for the first 20.000 episodes. The performance
of representation REP-SMALL is about 3/4 of that of representation REP-LARGE.
After about 500 episodes, REP-LARGE has seen enough samples to outperform
REP-SMALL. After the initial exploration phase, the switch method catches up very
quickly with REP-SMALL, then the performance shows a small ditch before it starts
climbing to new performance levels. We explain the ditch as following: while REP-
SMALL is quickly recognized as the better representation we keep improving the
Q-values of REP-LARGE as well as the Q-values of the switch actions by off-policy
updating. Once the Q-value of the selection action for REP-LARGE approaches the
Q-value of the selection action for REP-SMALL, for some of the runs the estimates
will prematurely indicate REP-LARGE as the better one, causing a small ditch in the
performance. Then, when the Q-values of REP-LARGE further improve, it will re-
ally outperform REP-SMALL causing the climb in performance. Interesting about the
performance of the switch method is that it outperforms REP-LARGE at each point
during learning. We explain this as following, the exact point where REP-LARGE
outperforms REP-SMALL is different for each run. Since the switch method uses an

18 Harm van Seijen, Shimon Whiteson and Leon Kester

up-to-date estimate of the expected reward for each representation, it simply makes
longer use of REP-SMALL for those runs where the Q-values of REP-LARGE are im-
proved more slowly than average. Therefore, once REP-SMALL has been properly
learned its performance forms a lower boundary for the remaining episodes. This
lower boundary is not present when using only REP-LARGE (which performance
boundary is 0) and therefore on average the switch method will do better at each
point during learning.

6.2 MDP task

Fig. 5 The Corridor Task. The agent has to move from S to G, while avoiding bumping into the
wall (thick black line).

The task we will consider is an episodic navigational task, where the agent has to
move through a narrow corridor while avoiding bumping into the walls. The agent
can take any of four movement actions: up, down, left and right. On top of this,
the agent moves an additional step in either the up or the down direction (think of
the corridor as being on a rocking ship). The information about the direction of the
additional step is useful, since if the additional step would cause the agent to hit
the wall, it can prevent this by making a step in the opposite direction. Whether
the additional step is in the up or down direction, depends on the context, specified
by a set of independent features that change value at each timestep. Only one of
those features contains useful information, but the agent does not know which one.
This creates an MDP equivalent of the first contextual bandit problem. Each step
results in a reward of -1 plus an additional reward of -10 if the agent hits a wall. The
environment is stochastic causing the agent to make, with a probability of 20%, a
step in a random direction instead of the direction corresponding to its action. The
discount factor is 0.95.

We compare the on-line performance of the switch method against the perfor-
mance of the full feature set for a feature set that consists, besides the position
feature, of 3 or 4 features describing the direction of the additional step. The can-
didate representations for the switch method consist of the position feature and one
additional feature. We used a learning rate of 0.05 for all states and an ε-greedy
policy with ε = 0.1 for the switch actions as well as regular actions.

Figure 6 shows the on-line performance for the first 10.000 episodes for a set
of 3 features and a set of 4. As a reference we also show the performance of a
representation consisting of only the position feature and the relevant additional
feature. The results are averaged over 100 independent runs and smoothed.

Switching between Representations in Reinforcement Learning 19

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

episodes

av
er

ag
e

R
et

ur
n

perfect info
Full − 4 feat
Full − 5 feat
Switch − 4 feat
Switch − 5 feat

Fig. 6 Comparison of the switch method with the full representation on the corridor task for a
feature set size of 4 and 5. The perfect info graph shows what the performance would have been
had the agent known beforehand what the relevant feature would be.

The performance of the full representations increases fast during the initial learn-
ing phase, but after that increases only very slowly. As expected, the switch method
performs a lot better and is close to the performance of the reference representation.
That the switch method converge to a performance slightly lower than the reference
representation is due to the additional exploration of the switch actions, causing
sub-optimal representations to be selected.

7 Conclusions

We have presented a method for on-line representation selection for factored MDPs.
The method addresses a special case of the feature selection problem, that only con-
siders certain sub-sets of features, called candidate representations. The problem
of representation selection is formalized by defining switch actions that select the
representation to be used. The switch actions combine the MDP tasks correspond-
ing to the candidate representations into a single switch MDP, that is than solved
using standard RL techniques. Since the agent can observe the full feature set, par-
allel experience sequence can be constructed corresponding to the unselected repre-
sentations. These parallel sequences can be used to off-policy update the Q-values
of unselected representations. To update the Q-values of the switch actions Monte

20 Harm van Seijen, Shimon Whiteson and Leon Kester

Carlo updates are used since this gives a better estimate of the current performance
of a representation than bootstrapping from the representations Q-values.

We demonstrated the validity of the method by demonstrating for a contextual
bandit task and a regular MDP that given a feature set containing only a single rel-
evant feature, we can find this feature very efficiently using the switch method. We
also showed for a contextual bandit task that switching between a set of relevant
features and a subset of these features our method can outperform both individual
representations, since it combines the fast performance increase of the small repre-
sentation with the high asymptotic performance of the large representation.

8 Future Work

Having a set of candidate representations, also contains some structure informa-
tion. For example, the feature set size of the largest candidate representation gives
an upper-limit for the degree of a DBN structure representation. This way, prior
knowledge about features can be translated into structural parameters. We would
like to compare our feature-based algorithm with algorithms learning the structure
based on this translation. We expect that for problems with limited learning time,
our algorithm has a higher online-performance, since from the start of an episode the
exploration-exploitation dilemma is taken into account, whereas structure-learning
algorithms typically perform exploration until they have an accurate model of the
environment. We also would like to see if we can combine some of our ideas about
online estimation of the current value of a feature set with structure learning.

Throughout this chapter we only considered valid candidate representations, i.e.
representations for which the Markov property holds. We expect however that the
method will also perform well if there are some candidate representations among the
total set of candidate representations that are non-Markov, since their lower average
performance will refrain the agent from selecting them. We would like to test this
intuition on a number of benchmark problems.

Acknowledgements The authors would like to thank Christos Dimitrakakis for discussions about
this paper.

References

1. Abbeel, P., Koller, D., Ng, A.: Learning factor graphs in polynomial time and sample com-
plexity. The Journal of Machine Learning Research 7, 1743–1788 (2006)

2. Bellman, R.E.: A Markov decision process. Journal of Mathematical Mechanics 6, 679–684
(1957)

3. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construction. In:
International Joint Conference on Artificial Intelligence, vol. 14, pp. 1104–1113 (1995)

Switching between Representations in Reinforcement Learning 21

4. Diuk, C., Li, L., Leffler, B.: The adaptive k-meteorologists problem and its application to
structure learning and feature selection in reinforcement learning. In: Proceedings of the 26th
Annual International Conference on Machine Learning. ACM New York, NY, USA (2009)

5. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution algorithms for factored
mdps. Journal of Artificial Intelligence Research 19, 399–468 (2003)

6. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: Spudd: Stochastic planning using decision dia-
grams. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
pp. 279–288. Morgan Kaufmann (1999)

7. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. Journal of
Artificial Intelligence Research 4, 237–285 (1996)

8. Kearns, M., Koller, D.: Efficient reinforcement learning in factored mdps. In: International
Joint Conference on Artificial Intelligence, vol. 16, pp. 740–747 (1999)

9. Li, L., Littman, M., Walsh, T.: Knows what it knows: a framework for self-aware learning.
In: Proceedings of the 25th international conference on Machine learning, pp. 568–575. ACM
New York, NY, USA (2008)

10. Siegmund, D.: Importance sampling in the monte carlo study of sequential tests. Annals of
Statistics 4, 673–684 (1976)

11. St-Aubin, R., Hoey, J., Boutilier, C.: Apricodd: Approximate policy construction using deci-
sion diagrams. In: Proceedings of Advances in Neural Information Processing Systems, pp.
1089–1095. MIT Press (2000)

12. Strehl, A., Diuk, C., Littman, M.: Efficient structure learning in factored-state mdps. In: Pro-
ceedings of the Twenty-Second National Conference on Artificial Intelligence, vol. 22, p. 645.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2007)

13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,
Massachussets (1998)

