
Efficient Abstraction Selection in Reinforcement Learning
(Extended Abstract)

Harm van Seijen
Department of Computing Science

University of Alberta
Edmonton, Canada

Shimon Whiteson
Informatics Institute

University of Amsterdam
Amsterdam, The Netherlands

Leon Kester
Distributed Sensor Systems Group
TNO Defence, Security and Safety

The Hague, The Netherlands

Abstract

This paper introduces a novel approach for abstraction selec-
tion in reinforcement learning problems modelled as factored
Markov decision processes (MDPs), for which a state is de-
scribed via a set of state components. In abstraction selection,
an agent must choose an abstraction from a set of candidate
abstractions, each build up from a different combination of
state components.

1 Introduction
In reinforcement learning (RL) (Sutton and Barto 1998;
Szepesvári 2010), an agent learns a control policy by inter-
action with an initially unknown environment, described via
a set of states, while trying to optimize the (sum of) rewards
it receives, resulting from its actions. An RL problem is typ-
ically modelled as a Markov decision process (MDP) (Bell-
man 1957).

One of the main obstacles for learning a good policy is
the curse of dimensionality: the problem size grows expo-
nentially with respect to the number of problem parameters.
Consequently, finding a good policy can require prohibitive
amounts of memory, computation time, and/or sample expe-
rience (i.e., interactions with the environment). Fortunately,
many real-world problems have internal structure that can
be leveraged to dramatically speed learning.

A common structure in factored MDPs (Boutilier, Dear-
den, and Goldszmidt 1995), wherein each state is described
by a set of state component values, is the existence of ir-
relevant (or near-irrelevant) state components, which affect
neither the next state nor the reward. Removing such com-
ponents can results in a dramatic decrease in the state space
size. Unfortunately, in an RL setting, where the environment
dynamics are initially unknown, learning which components
are irrelevant is a non-trivial task that typically requires a
number of statistical tests that depends on the size of the full
state space (see for example (McCallum 1995)).

More recently, methods have emerged that focus on se-
lecting the best abstraction, a subset of state components,
from a set of candidate abstractions (Diuk, Li, and Leffler
2009; Konidaris and Barto 2009). The complexity of these
methods depends only on the size of the abstractions used,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which can be exponentially smaller than the full state space.
The existing methods treat abstraction selection as an in-
stance of model selection. Consequently, an abstraction is
evaluated by measuring how well it predicts the outcome of
an action, using some statistical measure.

In an RL setting, the model selection approach has a num-
ber of disadvantages. First, it does not take into account the
on-line nature of RL, which requires the agent to balance
exploration and exploitation. In order to effectively balance
exploration and exploitation, it is important to know which
abstraction is currently the best, given the samples observed
so far. For example, small, fast-learning abstractions might
be preferred in the early learning phase, while larger, more
informative abstractions might be preferred later on. This
creates a fundamental conflict with model selection, which
is based on the premise that there is a single best abstrac-
tion that needs to be found. Second, an abstraction that is
selected on the basis of the accuracy of its predictions is not
guaranteed to be the abstraction that results in the most re-
ward; an abstraction can be way off in its predictions, as
long as it correctly guesses what the best actions are, it will
results in high total reward.

We introduce a new, intuitive approach for abstraction se-
lection that avoids the disadvantages of model selection. Our
approach evaluates an abstraction by using the abstraction
for action selection for a certain period of time and determin-
ing the resulting rewards. To maintain accurate estimates for
the different abstractions, the agent needs to switch the ab-
straction it uses for action selection frequently. A key insight
behind our approach is that an agent that has to choose be-
tween abstractions faces a similar exploration-exploitation
dilemma as when choosing between its actions. Therefore,
we formalize the task by introducing internal actions that al-
low the agent to switch between the different abstractions.
The value of an internal action, which estimates the sum of
future rewards, can be updated using regular RL methods.
We call the derived task that includes the switch actions the
abstraction-selection task. If the Markov property holds for
this derived task, which states that the outcome of an action
only depends on the current state and not on the history, the
derived task is an MDP itself. In this case, convergence is
guaranteed to the abstraction that is asymptotically the best,
as well as to the optimal policy of that abstraction.



2 (Factored) Markov Decision Processes
Markov decision processes (MDPs) (Bellman 1957) are
used to model sequential decision problems, where a deci-
sion maker, the agent, interacts with its environment in a se-
quential way. An MDP is defined by a 4-tuple (X ,A, τ, ρ)
where X is a finite set of states, and A is a finite set of ac-
tions. The state transition function τ gives, for each triple
(x, a, y) ∈ X ×A×X , the probability of moving to state y,
when taking action a in state x. The reward function ρ gives
for each triple (x, a, y) ∈ X ×A×X a probability distribu-
tion over R. The semantics are that the reward received by
the agent when taking action a in state x and moving to state
y is drawn from the distribution ρ(x, a, y). In general, not
all actions from A are accessible in each state x ∈ X . We
denote the subset of actions accessible in x as A(x) ⊆ A.

The agent takes actions at discrete time steps t =
{0, 1, 2, 3, ...}. The agent’s behaviour is determined by its
policy π : X → A, which specifies for each state the action
to take. Typically, an agent tries to find the policy that max-
imizes the expected value of the return Gt, which is defined
as the (infinite) sum over future discounted rewards:

Gt = Rt+1 + γ Rt+2 + γ2Rt+3 + ... (1)

MDPs can have terminal states, which divide the agent’s
interaction with the environment into episodes. When a ter-
minal state is reached, the current episode ends and a new
one is started by resetting the environment to its initial state.
The infinite sum from Equation (1) does not continue across
episodes. In other words, if a terminal state is reached at
time step T , the sum terminates after reward RT .

A factored MDP is an MDP where the set of states, X , is
constructed from N state components:1

X = X 1 ×X 2 × ...×XN

= {(x1, x2, ...., xN )|xi ∈ X i, 1 ≤ i ≤ N} .
A context-specific state space is a state space for which

different states are described by different components. Be-
cause using a state space where the elements are vectors
of different size is unintuitive, we model a context-specific
state space as a factored state space, spanned by all the pos-
sible state components, with a special value added to each
component, indicated by #. When a state has value # for one
of its components, this indicates that this state component is
actually not defined for that state.

In reinforcement learning the environment dynamics (that
is, the functions τ and ρ) are unknown. Value-function based
methods improve the policy by iteratively improving esti-
mates of the optimal value function using observed samples.
The optimal value of a state gives the expected return for
that state when following an optimal policy.

3 Abstractions
An abstraction is a function that maps states from one state
space to states from a different state space:

µ : X → Y .

1We use the term ‘component’ rather then ‘feature’, because our
definition (based on a set) differs slightly from the typical definition
of a feature (based on a function).

We consider only abstractions that correspond with ignoring
certain components. We use a set-superscript to indicate the
components that are used:

µ(x) = xS , for all x ∈ X ,

with X = X 1 × ... × XN and S ⊆ {1, 2, ..., N}. For
example, for x = (3, 5, 8, 2, 0) and S = {1, 3}, µ(x) =
(3, 8).

A context-specific abstraction is an abstraction that maps
states to a context-specific state space. An example of such
an abstraction is:

µ(x) =

{
x{1,3} if x{5} = 0

x{2,4} otherwise ,
for all x ∈ X .

In this case, xS means that all the components with an index
not in S get the value #. For example, withx = (3, 5, 8, 2, 0)
and µ as defined above, µ(x) = (3, #, 8, #, #).

An abstraction µ applied to an MDPM defines a derived
task with state space Y . If for this derived task the Markov
property holds, we say that abstraction µ is a Markov ab-
straction for MDP M. If this is the case, the derived task
itself is also an MDP.

One way to construct a Markov abstraction is by removing
irrelevant components from X . These are components that
neither affect the reward received by the agent, nor the value
of any other component (besides itself). But also removing
relevant components can yield a Markov abstraction. It can
be shown that removing independent components from X
also results in a Markov abstraction, even when the removed
components contained relevant information. An indepen-
dent component is a component whose value is drawn, at
each time step, from the same, fixed, probability distribu-
tion; hence, its next value is not affected by current compo-
nent values or values from the past. An independent compo-
nent can model a seemingly random, but relevant environ-
ment process. For example, such a component could rep-
resent a smartphone app that provides real-time information
to a daily commuter on the early-morning traffic conditions.
The agent will experience the removal of a relevant, inde-
pendent component as increased environment stochasticity.
Therefore, the performance will be lower in general.

4 Abstraction Selection for a
Contextual Bandit

We now demonstrate how to construct the abstraction-
selection task of a contextual bandit problem. A contextual
bandit task can be modelled as an episodic MDP that ter-
minates after a single action. Each arm of the contextual
bandit task corresponds with an action, while each context
corresponds with a state.

As a motivating example for abstraction selection in this
domain, consider the task of placing the most relevant ads
on a large number of different websites. If websites are de-
scribed by 50 binary state-components, there are 250 ≈ 1015

states. Because for each state, the click-through rate of each
ad needs to be learned, using all state components is not
practical. Instead, the best combination of three components
could be learned. This requires evaluation of

(
50
3

)
= 19, 600



abstractions, each consisting of 23 = 8 states. So, the total
number of states is reduced to 19, 600 × 8 = 160, 000, a
difference of a factor 1010.

4.1 Abstraction-Selection Task
Consider a contextual bandit problem modelled by the MDP
M = (X ,A, τ, ρ) and a set of K candidate abstractions
µ = {µ1, . . . , µK}. The abstraction-selection task for M
is a task resulting from applying a context-specific abstrac-
tion to an extended version of M that includes switch ac-
tions and an extra state component, indicating the candidate
abstractions currently selected. We indicate this extended
version byM+, and the context-specific abstraction applied
to it by µ+.

First, we define the extended version of M: M+ =
(X+,A+, τ+, ρ+). The state space X+ extends X by
adding a special abstraction component:

X+ = X abs ×X ,

with X abs = {0, 1, . . . ,K}. The values in X abs refer to
the indices of the candidate abstractions. The value 0 means
that there is currently no candidate abstraction selected. The
initial value of X abs is always 0.

The action set A+ is created by adding K switch action
to A, one corresponding to each candidate abstraction:

A+ = A ∪ {asw,1, . . . , asw,K}

The switch actions are only available in states for which
component X abs has value 0 (i.e., x{abs} = 0). In such
states, no regular actions are available. Hence, for all x ∈
X+:

A+(x) =

{
{asw,1, . . . , asw,K} if x{abs} = 0

A if x{abs} 6= 0 ,

The effect of taking switch action asw,i is that the value of
component X abs is set to i for 1 ≤ i ≤ K. Because a switch
action is an internal action it does not affect any of the other
component values. In addition, the agent receives no reward
for taking an internal action. Taking a regular action has no
effect on the value of X abs. The effect of a regular action on
the other component values is defined byM.

While M+ contains switch actions and a component to
keep track of the selected abstraction, no abstractions have
been applied yet. To get the abstraction-selection task, a
context-specific abstraction µ+ has to be applied to M+.
µ+ is defined, for all x ∈ X+, as:

µ+(x) =

{
x{abs} if x{abs} = 0

(x{abs}, µi(x{1,...,N})) if x{abs} = i, i 6= 0

The following theory holds:

Theorem 1 The abstraction-selection task of a contextual
bandit problem obeys the Markov property.

This theory holds, because the history of an abstraction state
just consists of the initial state and the switch action, which
is always the same for the same state. Because the task is
Markov, standard RL methods can be used to solve it.

4.2 Example Abstraction-Selection Task
Consider a simple contextual bandit problem with two ac-
tions, a1 and a2, and a state space spanned by two binary
components: X = X 1 × X 2, with X 1 = {true, false}
and X 2 = {true, false}. All four possible states have the
same probability of occurring. The expected value of the re-
wards of the two actions, conditioned on the state, is shown
in Table 1. Because a contextual-bandit problem has a trivial
next state (a terminal state), the reward function is expressed
only as function of a state-action pair. From this table, the
optimal policy can be easily deduced: action a2 should be
taken in states where X1 = true and action a1 should be
taken in the other states. The expected reward of this policy
is
∑
P0(x

1, x2) · maxa E[ρ((x1, x2), a)] = 1.5. Although
the state space of this task is small enough to use both com-
ponents, for illustrative purposes we assume that the agent
must choose between using either component X 1 or compo-
nent X 2. In other words, its set of candidate abstractions is
µ = {µ1, µ2}, where µ1(x) = x{1} and µ1(x) = x{2} for
x ∈ X .

Table 1: Expected rewards and initial state probability P0

forX = (X1, X2) ∈ X
X1 X2 P0(X) E[ ρ(X, a1) ] E[ ρ(X, a2) ]
true true 0.25 0 +4.0
true false 0.25 0 +2.0
false true 0.25 0 -2.0
false false 0.25 0 -4.0

Given the contextual-bandit task described above, the ex-
tended state space and action space are defined as follows:

A+ = {a1, a2, asw,1, asw,2} ,
X+ = X abs ×X 1 ×X 2 ,

with X abs = {0, 1, 2}. Action asw,i sets the value-
component of a state corresponding with X abs to i for
i ∈ {1, 2}.

In addition, the mapping µ+ is defined, for all x ∈ X+,
as follows:

µ+(x) =


x{abs} if x{abs} = 0

x{abs,1} if x{abs} = 1

x{abs,2} if x{abs} = 2 ,

The complete MDP resulting from applying µ+ to M+ is
visualized in Figure 1. The expected rewards for actions
a1 and a2 can be derived from Table 1. For example, the
expected value of ρ(X, a2) given X1 = true is (0.25 ∗ 4 +
0.25 ∗ 2)/0.5 = +3. Overall, abstraction µ1 is the better
choice, because selecting it results in an expected reward
of +1.5. By contrast, selecting abstraction µ2 results in an
expected reward of only +0.5.

The switch actions are key to ensure that the best abstrac-
tion is selected. To understand why, consider an abstraction
selection approach that does not use switch action, but sim-
ply select the abstraction whose current abstract state pre-
dicts the highest reward (note that the agent can observe the



a : 0 

a : +3 2
(1, true, #)

(1, false, #)

(2, #, true)

(2, #, false)

(0, #, #)

t

e

r

m

i

n

a

l

s

t

a

t

e

a : 0 1 

a : -3 2

a : 0 1 

a : +1 2

a : 0 1 

a : -1 2

a     : 0sw,2

p = 0.5

p = 0.5

a     : 0sw,1 p = 0.5

p = 0.5

1 

Figure 1: Abstraction-selection task for the contextual ban-
dit task example. Circles indicate states. States with the
same colour, use the same candidate abstraction. The small
black dots indicate actions. p refers to the transition prob-
abilities for a stochastic action. The value after each action
identifier is the expected value of the reward when taking
that action from the corresponding state.

abstract states from all abstractions simultaneously, because
it has access to all state-components). If this strategy would
be applied to the example task described above and the cur-
rent state would be (X1 = false,X2 = true), then, after
learning the correct expected rewards for each state, abstrac-
tion µ1 predicts action a1 is best, yielding a reward of 0 (see
Figure 1). On the other hand, abstraction µ2 predicts ac-
tion a2 is best, yielding an expected reward of +1. Hence,
the agent would choose abstraction µ2 and select action a2.
However, from Table 1 is can be observed that a1 is actu-
ally the better action (a2 results in an expected reward of -
2). This conflict occurs because this strategy implicitly uses
both components to select the switch action while the ab-
straction uses only a single component, resulting in an un-
derlying task that is non-Markov.

5 Abstraction Selection for MDPs
The approach outlined for the contextual bandit task also
applies to episodic MDPs with longer episodes. The agent
chooses at the start of each episode which abstraction to use;
it does not change its abstraction within an episode. In con-
trast to the contextual bandit case, the abstraction-selection
task of a general episodic MDP is not always Markov. To en-
sure that the abstraction-selection task of a general episodic
MDP is Markov, all involved candidate abstractions must
be Markov. The presence of non-Markov candidate abstrac-
tions makes the abstraction-selection task also non-Markov.
However, the negative effects of this can be mitigated by us-
ing Monte-Carlo backups (see Section 6.2).

Figure 2 shows results for a simple navigation task: a
robot has to find its way from a start state to a goal state in
a 15× 15 square grid, using 4 directional actions. The start
state is in one corner; the goal state is in the opposite cor-
ner. Besides a component specifying the agent’s position in

the grid, the agent has access to n independent, ‘structural’
components, each consisting of 4 values. All structural com-
ponents are independent (that is, their values are drawn from
a fixed probability distribution at each time step — see Sec-
tion 3). Besides that, they are all irrelevant, except for one.
The agent does not know which structural component is rel-
evant. The relevant structural component determines which
direction each action corresponds with. Hence, an abstrac-
tion that ignores this component produces random behavior.

We compared our switching strategy, which uses n can-
didate abstractions, each consisting of the position feature
plus one of the structural features, with a strategy that sim-
ply uses all components, for n = 5 and n = 10. In ad-
dition, we compared against a method that only uses the
position component, as well as a method that knows ahead
of time which component is relevant, and ignores all irrel-
evant components. We have results only for n = 5 for the
method using all components, because the state space size
for n = 30 was infeasible (the full state space has a size
of 1020 in this case). We used two strategies for updating
the values of switch actions. One strategy updates switch
actions using regular Q-learning backups, while the other
strategy uses Monte-Carlo backups. The advantage of the
first strategy is that a value for the switch actions can be
learned off-policy (requiring less exploration). The advan-
tage of the second strategy is that the value of switch actions
is not affected by the values of a specific abstraction; it is
only affected by the actual return produced by an abstrac-
tion. The second strategy is especially useful if the candidate
set contains non-Markov abstractions (see Section 6.2).

The results show that our switching method can obtain a
performance only slightly less than optimal (i.e., knowing a
priori which component is relevant), and, as expected, much
higher than using all components.

By allowing the agent to switch abstraction in the mid-
dle of an episode, our approach can also be applied to non-
episodic MDPs. In this case, extra information has to be pro-
vided to the agent. Specifically, an extra component has to
be provided whose values divide the state space into context
regions. The semantics of these regions is that states in the
same region share the same relevant components. Instead
of learning one abstraction for the complete state space, the
agent learns a separate abstraction for each region. The
agent chooses a new abstraction whenever it crosses the bor-
der between two regions.

6 Discussion
In this section, we discuss the main advantage of candidate
abstractions, and discuss how to back up switch-action val-
ues when dealing with non-Markov abstractions or abstrac-
tions of different size.

6.1 Why Candidate Abstractions?
Learning the best abstraction from a set of candidate ab-
stractions can be interpreted as a form of structure learn-
ing. However, in contrast to many other approaches to struc-
ture learning, it assumes a high degree of prior knowledge
about the structure (represented by the set of candidate ab-
stractions). This might seem like a disadvantage, but it is



0 200 400 600 800 1000
−1400

−1200

−1000

−800

−600

−400

−200

0

episodes

re
tu

rn

 

 

pos. + relevant str. comp.

only position component

all components (1 pos. + 5 str.)

switch, MC scheme, 5 str. comp.

switch, Q−L scheme, 5 str. comp.

switch, MC scheme, 30 str. comp.

switch, Q−L scheme, 30 str. comp.

Figure 2: Performance of different methods on a small nav-
igation task.

a deliberate choice. While it restricts the application to do-
mains where such prior knowledge is either available or eas-
ily obtainable, exploiting partial prior knowledge about the
structure allows us to tackle huge problems that would be
otherwise infeasible to solve (see the ad-placement exam-
ple at the beginning of Section 4). The main problem with
structure learning methods that try to learn problem structure
from scratch is that it often takes as much effort (in terms
of samples and computation) to learn the structure and then
solve the task using this structure, as it would to solve the
task without learning the structure. Therefore, such meth-
ods are mainly limited to transfer-learning scenarios, where
the high initial cost for learning the structure can be offset
against many future applications of this structure. Extending
our method by ‘inventing’ and evaluating new abstractions
on-the-fly, would potentially cause similar issues.

Part of the appeal of our method is its simplicity: the
agent simply decides what the best abstraction is through
trial and error. This brings up the question: is it even nec-
essary to construct an abstraction-selection task? Why not
simply evaluate the abstractions one-by-one? To address
this question, we refer back to the ad-placement example
from Section 4. The primary goal is to optimize the on-line
performance, that is, the performance during learning. The
switch actions give the agent the ability to decide whether to
continue exploring an abstraction based on the performance
of other abstractions. If the relative performance of one ab-
straction is clearly below average, the agent might decide to
stop using it (or just update it by off-policy learning), even
when its performance has not converged yet. Of course, in
order for this to work, a robust performance measure is re-
quired, which we discuss next.

6.2 Robust Abstraction Selection with
Monte-Carlo Backups

Figure 2 shows that, for the simple navigational task consid-
ered, backing up the switch action values using Q-learning
backups performs (slightly) better than using Monte-Carlo

backups. However, in many domains, Monte-Carlo backups
will have the upper hand. In the considered task, all candi-
date abstractions were Markov and of the same size, which
means that the state values of the different abstractions form
a good indicator of the quality of an abstraction. However,
if some of the candidate abstractions are non-Markov, this
is no longer true. In this case, Monte-Carlo backups are
the better choice, because they use the complete return to
update the switch-action values, and do not rely on abstrac-
tion state values. Hence, the switch-action values cannot get
corrupted by incorrect abstraction values. By contrast, with
Q-learning backups, the agent could be misled into thinking
a bad abstraction is good.

A second scenario where Monte-Carlo backups are a bet-
ter choice is when the set of candidate abstractions is a mix-
ture of small and large abstractions. Small abstraction con-
verge fast and are typically a better choice in the early learn-
ing phase. However, for an agent to recognize this, it should
not only have accurate switch-action values for the small ab-
stractions, but also for the large abstractions. If the switch-
action values depend on the abstraction state values, as is the
case with Q-learning backups, reliable abstraction selection
can only occur after all abstractions have more or less con-
verged, when it is no longer beneficial to use an abstraction
of lower resolution. With Monte-Carlo backups, the small,
quickly learning abstractions can be quickly recognized as
better (in terms of return) than the larger, more informative,
slowly learning abstractions. Hence, the agent can boost its
initial performance by using the small abstractions, and only
using the large abstractions once they have sufficiently con-
verged so that their return is larger than that of the smaller
abstractions.

References
Bellman, R.E. (1957). A Markov decision process. Journal
of Mathematical Mechanics, 6:679–684.
Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Ex-
ploiting structure in policy construction. In International
Joint Conference on Artificial Intelligence, 1104–1113.
Diuk, C., Li, L., and Leffler, B.R. (2009). The adap-
tive k-meteorologists problem and its application to struc-
ture learning and feature selection in reinforcement learning.
In Proceedings of the 26th Annual International Conference
on Machine Learning.
Konidaris, G. and Barto, A. (2009). Efficient skill learning
using abstraction selection. In Proceedings of the Twenty
First International Joint Conference on Artificial Intelli-
gence, 1107–1112.
McCallum, A.K. (1995). Reinforcement Learning with Se-
lective Perception and Hidden States. Ph.D. Dissertation,
University of Rochester.
Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learn-
ing: An Introduction. Cambridge, Massachussets: MIT
Press.
Szepesvári, C. (2010). Algorithms for reinforcement learn-
ing. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 4(1):1–103.


