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Abstract

Reinforcement learning problems are commonly tackled with
temporal difference methodsrhich use dynamic program-
ming and statistical sampling to estimate the long-term value
of taking each action in each state. In most problems of real-
world interest, learning this value function requirefuac-

tion approximator which represents the mapping from state-
action pairs to values via a concise, parameterized function
and uses supervised learning methods to set its parameters.
Function approximators make it possible to use temporal dif-
ference methods on large problems but, in practice, the fea-
sibility of doing so depends on the ability of the human de-
signer to select an appropriate representation for the value
function. My thesis presents a new approach to function
approximation that automates some of these difficult design
choices by coupling temporal difference methods with pol-
icy search methods such as evolutionary computation. It also
presents a particular implementation which combines NEAT,
a neuroevolutionary policy search method, and Q-learning, a
popular temporal difference method, to yield a new method
called NEAT+Q that automatically learns effective represen-
tations for neural network function approximators. Empiri-
cal results in a server job scheduling task demonstrate that
NEAT+Q can outperform both NEAT and Q-learning with
manually designed neural networks.

Thesis Overview

In many machine learning problems, an agent must learn a
policyfor selecting actions based on #fste which consists

of its current knowledge about the worldReinforcement
learningproblems are the subset of these tasks for which the
agent must learn a policy without ever seeing examples of
correct behavior. Instead, it receives only positive arg ne
ative feedback for the actions it tries. Since many praktica
real world problems (such as robot control, game playing,
and system optimization) fall in this category, developing
effective reinforcement learning algorithms is criticalthe
progress of artificial intelligence.

The most common approach to reinforcement learning re-
lies ontemporal difference methodSutton & Barto 1998),
which use dynamic programming and statistical sampling
to estimate the long-term value of taking each possible ac-
tion in each possible state. Once this value function has
been learned, an effective policy can be trivially derived.
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For small problems, the value function can be represented
in a table, with one entry for each possible state-action pai
However, for most problems of real-world interest, the tab-
ular approach is infeasible because the agent would never
have a chance to visit every state much less learn the cor-
rect value for each state-action pair. In such cases, teahpor
difference methods are coupled wittiumction approxima-

tor which represents the mapping from state-action pairs to
values via a more concise, parameterized function and uses
supervised learning methods to set its parameters. Many dif
ferent methods of function approximation have been used
successfully, including CMACs, radial basis functionsg an
neural networks (Sutton & Barto 1998).

Function approximators make it possible to use temporal
difference methods on problems with large state and action
spaces. However, in practice, the feasibility of doing seo de
pends largely on the ability of the human designer to select
an appropriate representation for the function approxamat
(e.g. the topology and initial weights of the neural network
Unfortunate design choices can result in estimates that di-
verge wildly from the optimal value function (Baird 1995)
and agents that perform extremely poorly.

The primary contribution of this thesis is a new approach
to doing function approximation that automates some of
these difficult design choices. It does so by coupling tem-
poral difference methods with policy search methods such
as evolutionary computation. In particular, | use NeuroEvo
lution of Augmenting Topologies (NEAT) (Stanley & Mi-
ikkulainen 2002), a method that uses evolutionary computa-
tion to learn both the topology and weights of neural net-
works, in conjunction with Q-learning (Watkins 1989), a
popular temporal difference method. The resulting method,
called NEAT+Q, uses NEAT to learn the topology and initial
weights of networks which are then updated, via backpropa-
gation (Bishop 1995), towards the value estimates provided
by Q-learning.

In addition to automatically learning appropriate network
topologies and initial weights for Q-learning, NEAT+Q also
makes it possible to take advantage of the Baldwin Effect, a
phenomenon whereby populations whose individuals learn
during their lifetime adapt more quickly than populations
whose individuals remain static (Baldwin 1896). In the
Baldwin Effect, which has been demonstrated in evolution-
ary computation (Ackley & Littman 1991; Boers, Borst,
& Sprinkhuizen-Kuyper 1995), evolution proceeds more
quickly because an individual does not have to be exactly



right at birth; it need only be in the right neighborhood and
learning will adjust it accordingly. By combining learning
acrossfitness evaluations with learningithin fitness eval-
uations, NEAT+Q has the potential to reap the Baldwin Ef-
fect.

This thesis presents empirical results from the domain of
server job scheduling, a challenging reinforcement learn-
ing task from the burgeoning field @utonomic comput-
ing (Kephart & Chess 2003). My experiments demon-
strate that NEAT+Q, by automatically discovering appro-
priate topologies and initial weights, can dramatically-ou
perform a Q-learning approach that uses manually designed
neural networks. These experiments also demonstrate that
when NEAT is used by itself (i.e. to learn policies directly
without estimating value functions), it does not perform as
well as NEAT+Q, which harnesses the power of temporal
difference methods.

Additional Contributions

In addition to the novel method described above for synthe-
sizing temporal difference and policy search methods, this
thesis presents the following additional contributionstwio
novel enhancements to policy search methods that improve
their on-line performance by borrowing exploratory mech-
anisms from temporal difference methods, and 2) a new
method called FS-NEAT that uses neuroevolution to auto-
mate the task of feature selection in reinforcement legrnin
The following subsections provide a brief overview of these
contributions.

On-Line Policy Search

Reinforcement learning agents are typically trained us-
ing policy search methods or temporal difference methods.
While there is much debate about the efficacy of policy
search methods, there are some problems on which they
have achieved the best results to date (Bagnell & Schneider
2001; Kohl & Stone 2004). However, policy search methods
do not fare well inon-linescenarios, in which there are real-
world consequences for the agent’s behavior during learn-
ing. They do not excel in such scenarios because they lack
mechanisms for balancing the need to search for better poli-
cies (exploration) with the need to accrue maximal reward
(exploitation). This thesis presents two novel enhancésnen
to policy search methods that improve their on-line perfor-
mance by borrowing exploratory mechanisms from tempo-
ral difference methods. The first modification, which can
be applied to any policy search method, borrows the notion
of e-greedy exploration, resulting iigreedy policy search
This algorithm switches probabilistically between seargh

for better policies and re-evaluating the best known policy
to garner maximal reward. The second modification, which

requires a population-based policy search method such as a

genetic algorithm (Goldberg 1989), borrows the notion of
softmax selection, resulting softmax policy searcHt dis-
tributes evaluations in proportion to each individual'si-es
mated fitness, thereby focusing on the most promising indi-
viduals and increasing the average reward accrued. | com-
pare the resulting methods in two domains: elevator con-
trol and auto racing. The results demonstrate that these new

techniques significantly improve the on-line performante o
NEAT, a neuroevolutionary policy search method.

Automatic Feature Selection via Neur oevolution

Feature selection is the process of finding the set of inputs
to a machine learning algorithm that will yield the best per-
formance. Developing a way to solve this problem automat-
ically would make current machine learning methods much
more useful. Previous efforts to automate feature selectio
rely on expensive meta-learning or are applicable only when
labeled training data is available. This thesis presentsaln
method called FS-NEAT which extends the NEAT (Stanley
& Miikkulainen 2002) neuroevolution method to automati-
cally determine an appropriate set of inputs for the netaork

it evolves. By learning the network’s inputs, topology, and
weights simultaneously, FS-NEAT addresses the feature se-
lection problem without relying on meta-learning or laleele
data. Initial experiments in an autonomous car racing simu-
lation demonstrate that FS-NEAT can learn better and faster
than regular NEAT. In addition, the networks it evolves are
smaller and require fewer inputs. Furthermore, FS-NEAT’s
performance remains robust even as the feature selection
task it faces is made increasingly difficult.
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