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Foreword

It is a great pleasure and honor to write the forward for thasky representing
the culmination of Shimon Whiteson’s Ph.D. thesis reseatchhe University of
Texas at Austin. When | arrived at UT Austin in the fall for 20@himon was one
of the first students to walk into my office and we began doirsgaech together
almost immediately. Our research helped form the nucleusyfesearch group,
the Learning Agents Research Group, and Shimon became mpliifs. graduate
in the spring of 2007.

Shimon was an ideal first student for a new assistant prafddschas a strong
sense of what he wants to learn, and is never satisfied witht@lpgnswer to any
guestion. Most importantly for this book, he is self-assuaad is willing to take
risks in order to achieve meaningful results.

After several initial contributions that built upon my owagi research, Shimon
set off on his own towards his most important technical dbation so far, namely
the development of a novel algorithm, NEAT+Q, capable oféug neural network
function approximators for reinforcement learning agemte technical details of
NEAT+Q are well-presented in the book, so suffice it to sayhkat his work on
adaptive representations for reinforcement learningstaksubstantial step towards
addressing one of the key current issues in the field of madeiarning, namely
how to select the underlying representation that an agestwhen learning.

Perhaps more importantly, Shimon’s work actively bringseggchers in tempo-
ral difference learning and evolutionary computation — ta@ely disjoint com-
munities that focus on similar problems — closer togethetbbing recognized
and respected in both communities. This cross-discipfinapect of his work was
the biggest risk involved, especially for a Ph.D. studenbwilas an eye towards
academia. There was a chance that the research would natéped by anybody.
Instead, he was able to achieve recognition in both areas.

By way of the research presented in this book, Shimon hablestad himself as
one the pre-eminent worldwide experts on machine learmngdquential decision
making tasks. A particular strength of the research is itaildel empirical analysis
of both the capabilities and the limitations of all variaotéis proposed algorithms.
In addition, Shimon’s clear writing style, full explanati@f background material,
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and detailed survey of related work make his book useful beyts own research
contributions.

In short, for both newcomers to the field and for practitierieoking for nuanced
detail, this book has plenty to offer!

Austin, TX, Peter Stone, Associate Professor
December 2009 University of Texas at Austin



Preface

This book presents the main results of the research | coadws a Ph.D. stu-
dent at The University of Texas at Austin, primarily betwef®4 and 2007. The
primary contributions are new algorithms feinforcement learninga form of ma-
chine learning in which an autonomous agent seeks an e#entintrol policy for
tackling a sequential decision task. Unlike in supervigaining, the agent never
sees examples of correct or incorrect behavior but receinbsa reward signal as
feedback. One limitation of current methods is that theydsity require a human
to manually design a representation for the solution (éag.internal structure of
a neural network). Since poor design choices can lead tslgreaboptimal poli-
cies, agents that automatically adapt their own repregensshave the potential to
dramatically improve performance. This book introduces havel approaches for
automatically discovering high-performing represeotadi

The first approach synthesizes temporal difference methbddraditional ap-
proach to reinforcement learning, with evolutionary mekhovhich can learn rep-
resentations for a broad class of optimization problemss $$inthesis is accom-
plished via 1)on-line evolutionary computatiorwhich customizes evolutionary
methods to the on-line nature of most reinforcement legrmroblems, and 2)
evolutionary function approximationvhich evolves representations for the value
function approximators that are critical to the temporékdéence approach.

The second approach, callediaptive tile codingautomatically learns repre-
sentations based on tile codings, which form piecewisesteo approximations of
value functions. It begins with coarse representationsgradually refines them
during learning, analyzing the current policy and valuection to deduce the best
refinements.

This book also introduces a novel method for devising inppteésentations. In
particular, it presents a way to find a minimal set of featwé$icient to describe
the agent’s current state, a challenge known addéhture selectioproblem. The
technique, calledreature Selective NEAIE an extension to NEAT, a method for
evolving neural networks used throughout this work. WhileAY evolves both the
topology and weights of a neural network, FS-NEAT goes oep &trther by learn-
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ing the network’s inputs too. Using evolution, it automatig and simultaneously
determines the network’s inputs, topology, and weights.

In addition to introducing these new methods, this book gmesextensive em-
pirical results in multiple domains demonstrating thasth&echniques can substan-
tially improve performance over methods with manual repnéstions.

The research presented in this book would not have beenbp@sgithout the
critical contributions of many collaborators. These idUPeter Stone, my Ph.D.
advisor; Risto Miikkulainen, a member of my thesis comnaiftend my colleagues
Nate Kohl, Ken Stanley, and Matt Taylor. In addition, thisearch was supported
in part by grants from IBM, NASA, NSF, and DARPA and by an IBM.BhFel-
lowship.

Amsterdam, The Netherlands, Shimon Whiteson, Assistant Professor
February, 2010 University of Amsterdam
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Chapter 1
Introduction

The goal ofreinforcement learning149) is to enable autonomous agents to learn
effective control policies for challenging tasks. Ratheart relying on directions
from a human expert, a reinforcement learning agent usegjsrience interacting
with the world to infer a strategy for solving the given preinl. Unlike supervised
learning methods (96), reinforcement learning methodsodoeed access to exam-
ples of correct or incorrect behavior. Instead, the ageatis®nly a reward signal
to quantify the immediate effects of its actions and it carriea control policy to
maximize the reward it accrues in the long term.

The agent’s control policy is a function mapping eathtethe agent may expe-
rience to theactionit should take in that state. Ideally, an autonomous agentavo
discover this policy without any human assistance, merglgarning from experi-
ence. In practice, however, current methods require satistanput from a human
designer in order to perform well. The designer typicallystrselect an appropriate
learning algorithm, set parameters for that algorithm, spekcify a representation
for the agent’s policy. This representation typically dstssof the following parts:

1. thestate representatiqgrwhich could consist of low-level sensory data or high-
level salient features extracted from that data,

2. theinternal representatiorwhich specifies a set of parameters and the way the
policy is computed from those parameters, and

3. theaction representationwhich could consist of low-level actuator settings or
high-level operations that require many steps to complete.

The bulk of this book focuses on automating the design of dwrsd of these
parts, the internal representation. Hence, the centratiunethis book addresses
is: given adequate representations for states and actiomscan a reinforcement
learning agent automatically discover an internal reprig®n for a control policy
that maps those states to actions? This chapter discussemtivation for address-
ing this question, outlines the approach taken, and briefgrneews the contents
of the following chapters. Throughout the remainder of tosk, “representation”
refers to the agent’s internal representation, unlesgwibe specified.
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1.1 Motivation

Intelligent systems are adaptive by nature; hence, madbaraing methods are
critical to the progress of artificial intelligence. Manyaptical methods have been
developed for supervised learning, where the agent leaonsdéxamples of correct
and incorrect behavior, and have been successfully apaliadange of real-world
problems, from spam filtering (7) to credit card fraud detet(34).

However, there are many important problems (e.g., robatrohmame playing,
and system optimization) to which supervised learning w@timay not be appli-
cable because no human expert is available to provide ¢lyrdabeled training
examples or because doing so is infeasibly expensive. Hawam agent can still
learn to solve such problems if the human designer can desitsi goal or, more
generally, quantify aeward function The challenge of reinforcement learning is to
devise algorithms that enable an agent, while interactiith its environment, to
find an effective control policy given feedback only fromgtineward function.

Many methods already exist for solving reinforcement lgagproblems. How-
ever, such methods often do not perform well in domains trehghly stochas-
tic and/or have large or continuous state spaces. As a réseite have been rela-
tively few successful real-world applications of reinfengent learning, e.g. (151;
38; 104).

A chief limitation of current methods is their reliance omman expertise to de-
sign critical aspects of the agent’s solution. Though neledb training examples
are provided, the human designer still must determine wieizining algorithm to
use, how to set its parameters, and how to represent the'sagehition. For rein-
forcement learning methods to become more practical, thest perform well even
when the expertise necessary to perform such design steps évailable. Hence,
the development of new methods that automate this desigregsas a critical goal.

This book takes a step in that direction by introducing méghat enable a re-
inforcement learning agent to automatically discoveraf¥e internal representa-
tions. It also presents empirical results verifying thastamethods can substantially
improve performance over manually designed representaiioseveral reinforce-
ment learning tasks.

1.2 Approach

This book presents two fundamentally different approadbedevising adaptive
representations for reinforcement learning. The first agpin synthesizes temporal
difference methods, the traditional approach to reinfoveet learning, with evolu-
tionary methods, which can learn representations for adoctess of optimization
problems. The first step towards this synthesmridine evolutionary computation
a method which borrows exploratory mechanisms traditignasled in temporal dif-
ference methods and uses them to help evolutionary metlomstmetter with the
on-linenature of most reinforcement learning problems.



1.2 Approach 3

Customizing evolutionary methods for on-line problemsgsathe way foevo-
lutionary function approximationthe second step in synthesizing these two ap-
proaches. Evolutionary function approximation fully igtates temporal difference
and evolutionary methods by evolving representationsfargbolicies, but for the
value function approximators central to the temporal défee approach. Each
member of the population, rather than remaining fixed duitsdifetime, learns
via temporal difference methods. Hence, this appreadivesagents that are better
able tolearn.

The resulting method is an improvement over traditionalperal difference
methods because it automates the design of value functimodmator representa-
tions. It is also an improvement over the traditional evioludry approach because
it 1) uses temporal difference methods to exploit the spesifucture of the rein-
forcement learning problem and 2) enables powerful syegdretween evolution
and learning, such as tiBaldwin Effect Furthermore, when combined with on-line
evolutionary computation, this method can excel at on#irss.

This book also presents a variation of evolutionary functgpproximation de-
signed to be moresample-efficienti.e., to minimize the number of interactions
with the real world required to learn a good policy. By savexperience gath-
ered from previous generations, sample-efficient evahatip function approxima-
tion can train each new generation off-line using only cotapan time: no addi-
tional sample episodes are needed. The resulting functiprogimators can then
be evaluated and selectively reproduced in many fewer épgso

In principle, evolutionary function approximation is ajgalble to any type of
representation that can be evolved, though this book stuatily its application to
neural networks. By contrastdaptive tile codingthe second approach to devising
adaptive representations for reinforcement learningpégi$ic to one type of repre-
sentation: tile coding. Tile coding is a simple, linear eg@ntation that has enjoyed
considerable empirical success (144; 140). It works bydilig the state space into
disjoint tiles which are used to learn a piecewise-constahte function approxi-
mation. However, it requires a human designer to correellycs the width of each
tile in each dimension.

Adaptive tile coding automates this design process byistawith large tiles
and making them smaller during learning by splitting exigttiles in two. Unlike
neural networks, which tend to operate like “black boxe#g’ todings are typi-
cally much easier to interpret: changes to the representéti.g., splitting tiles in
two) have consequences that are largely predictable. Hanaagent, by analyzing
its own behavior, can reason about how to improve its tileirpdepresentation
without the need for expensive evolution. In addition tcomdtically finding good
representations, this approach gradually reduces theidimnapproximator’s level
of generalization over time, a factor known to criticallyeaft performance in tile
coding (126).

Both evolutionary function approximation and adaptive tibding focus on au-
tomating the design of the agenirgernal representation. However, this book also
presents a novel method for devisistgiterepresentations. In particular, it presents
a way to find a minimal set of features sufficient to descriteedayent’s current
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state, a challenge known as fleature selectioproblem (24). The technique, called
Feature Selective NEA{FS-NEAT) is an extension to NEAT (137), a method for
evolving neural networks used throughout this book. WhileAW evolves both the
topology and weights of a neural network, FS-NEAT goes oep &trther by learn-
ing the network’s inputs too. Using evolution, it automatig and simultaneously
determines the network’s inputs, topology, and weights.

1.3 Overview

The remainder of this book is organized as follows. Chapfenfides a brief intro-

duction to reinforcement learning. It describes the steshdainforcement learning
framework and describes the two main approaches to soleinforcement learn-
ing problemstemporal differencenethods angbolicy searchmethods and details
the specific base learning algorithms used throughout ok b

Chapter 3 introducesn-line evolutionary computationvhich customizes evo-
lutionary methods to the on-line nature of many reinforcettearning problems
This chapter introduces three variations of on-line evohary computation and
presents detailed empirical results comparing theseti@igto the original off-
line approach in two reinforcement learning tasks: the naiarcar and server job
scheduling domains.

Chapter 4 describesvolutionary function approximatigmvhich harnesses the
representation-learning power of evolutionary methodsfarove temporal differ-
ence function approximators. This chapter presents @etainpirical results in the
mountain car and scheduling domains comparing this apprtmat) evolutionary
methods in the absence of temporal difference methods ateroral difference
learning alone with a range of manually designed functiopreximators. It also
compares the best results to other learning and non-leaapproaches to these
domains, compareBarwinian and Lamarckianimplementations of evolutionary
function approximation, and presents some additionas téett offer insight into
why certain methods outperform others in these domains dwad factors can make
neural network function approximation difficult in praeic

Chapter 5 presentsample-efficienevolutionary function approximation and
compares its performance to the original evolutionary fiemcapproximation method
in a variation of the server job scheduling task that is desigto be deterministic,
the case where sample-efficient learning is most critical.

Chapter 6 introduceBeature Selective NEATFS-NEAT) and evaluates it in
RARS, a challenging automobile racing task. This chaptesgmts experiments
comparing FS-NEAT to the original NEAT method in terms offpemance as well
as the size and number of inputs of the evolved networks.elxgseriments are re-
peated across a range of increasingly difficult featurectiele problems by varying
the number of irrelevant and redundant features availatileet agent.

Chapter 7 describes two variations adaptive tile codingvhich use different
criteria for determining which tiles to split, one based apected changes to the
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value function and the other based on expected changes fmtitg. This chap-
ter presents experiments comparing both versions of adsagii# coding to various
manually designed tile codings in both the mountain car armtlf@ world domains.
It also examines qualitative properties of the final learpelicies and value func-
tions to better understand why the methods perform as they do

Chapter 8 surveys a broad range of previous research thatai®d in terms
of both methods and goals to the work presented in this baakistusses other
methods for optimizing representations in supervisediegt reinforcement learn-
ing, and evolutionary computation. It also overviews otlessearch about combin-
ing evolution and learning with applications to both supgsd and reinforcement
learning tasks. Furthermore, it surveys previous work darmang exploration and
exploitation, in the context df-armed bandit problems, associative search, and re-
inforcement learning. Finally, this chapter discussesipres work on feature selec-
tion, surveying bottiilter andwrappermethods and discussing their relationship to
FS-NEAT.

Chapter 9 enumerates the primary conclusions of this boehtions some neg-
ative results obtained in the course of this research, addsesome of the broader
implications of the book, and outlines ideas for future work






Chapter 2
Reinforcement Learning

Reinforcement learnin¢p7; 149) is a type ofmachine learning96) in which an
agent seeks an effectiymlicy for solving a sequential decision task. Such a pol-
icy dictates how the agent should behave in estateit may encounter. Unlike
supervised learninghe agent never sees examples of correct or incorrect lmehav
but instead receives only a numerical reward signal. Thatagactions affect not
only the immediate reward it receives but also the next #tatgeriences and, con-
sequently, future opportunities for reward. Hence, a mtgment learning agent
seeks a policy that maximizes, not the immediate rewardhsipnt the total reward
accrued over the long term.

Reinforcement learning is an important tool in many scersatiat require adap-
tive agents (e.g., robot control, game playing, and systptimization). Often, the
human designer does not know how an agent should behave arehsot gen-
erate the examples necessary for supervised learning. \l¢owi€ he or she can
describe the agent’s goal or, more generally, quantify tgtscand benefits of dif-
ferent outcomes, then the agent can autonomously discaveifective policy via
reinforcement learning. In other words, if the designewjites the reinforcement,
the agent can learn to maximize it.

This chapter provides a brief introduction to reinforcetdearning. First, it de-
scribes the standard reinforcement learning frameworkt,Niedescribes two main
approaches to solving reinforcement learning probleeraporal differencé147)
andpolicy searchmethods, and details the specific base learning algoritrsed u
throughout this book.

2.1 Reinforcement Learning Framework

The standard reinforcement learning framework, depiatdeigure 2.1, consists of
an agent repeatedly interacting with its environment atréig intervals (67; 149).
At each timestep, the agent perceives the environment’s current stateS, where
Sis the set of all possible states, and selects an agfianA, whereA is the set of
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all possible actions. The environment responds with a réwignalr; ;1 € [0 and a
new states ;. Often we assume the state spadagtored in which case each state
is a vector ofn statefeatures s = (xg,Xp, ..., Xn) € O".

actions

Agent Environment

states,rewards

Fig. 2.1 The reinforcement learning framework, in which an agenesak series of actions, each
of which generates a reward and a new state.

We also typically assume that the environment satisfiedvthekov property
which holds when the probability that the agent perceivelsengstate and reward
depends only on the previous state and action. In other wtiredMarkov property
is satisfied if the following equation always holds:

Pr{si1=5,ry1=r|s,a,Mn,S 1,8 1,....1,%,30} = Pr{s;1=9,rp1=r|s,a}

A reinforcement learning task that satisfies the Markov priypis called avlarkov
decision proces¢MDP) (21) and can be described as a four-tu8eA, T,R). As
before,Sis the set of all states arflis the set of all actionsl : Sx Ax S — [0,1]
specifies the probability of transitioning to any state,

T(sas)=Pr{s1=s|s=sa=a}
andR: Sx A x S— [ specifies the expected immediate reward,
Risas)=E{r1|ls =sa=2as1=5}

The goal of the agent is to maximize the long-term discourgaghrd it will accrue
in the future, which at timeis 3>, Y¥riiks1 wherey € [0,1] is a discount parame-
ter. To maximize this quantity, the agent must learn a paiic$— A. 11(s) specifies
the action the agent takes in stat&very policy has an associatstite value func-
tion V: S— [ which specifies the expected long-term discounted rewaredlent
will receive starting in state and following policyr thereafter:
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V7(s) = E{ Z Vi | s = s}
k=0

Every policy also has aaction value function @: Sx A [J, which specifies the
expected long-term discounted reward the agent will reciiit takes actiora in
states and follows policyrt thereafter:

Qn(sa a) = E{ %VkrtJrkJrl | s =Sa = a}
K=

For every MDP there exists an optimal value functigh such thatV*(s) =
max;V"(s), an optimal action value functio®* such thaf)* (s a) = max;Q"(s,a),
and at least one optimal poligy* such that:

' (s) = argmaxQ’(s,a) = argmaégT(s, a,9)[R(s,a,s) + W*()]

The goal of a reinforcement learning agent is to find or apipnete r7*. WhenT
andR are unknown, the agent can learn only by interacting withetdronment
and observing state transitions and rewards. The rest®©s#dtion introduces two
major approaches for doing so.

2.2 Temporal Difference Methods

Value and functions are important, not just for measuriegtbrth of a given policy,
but for discovering good policies. In fact, many reinforarlearning algorithms
do not directly search for policies at all but instead sttivdind the optimal value
function.

If Sis finite and the agent has a model of its environment, (f.&,andR are
known), then the optimal value function can be computedgidymamic program-
ming (20). Dynamic programming works by exploiting the closeatieinship be-
tween consecutive states, as expressed in the Bellmanaijpyirequation:

V() =maxy T(sa,s)[R(sas)+ W ()]
g

This relationship means that an estimate of the value of amngtate can be con-
structed based on estimates of the states that might ocgtiries bootstrapping
process is the central premise of dynamic programming andbeaachieved by
turning the Bellman optimality equation into an update réder exampleyalue it-
eration(114) is a dynamic programming method that begins with aitrarly value
functionV® and applies the following update rule for eah S:

VKHl(s) = ma)ggT(s, a,9)[R(s,a,8) + WK(F)]
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Value iteration and other dynamic programming methods aaeanteed to converge
to the optimal value function whefis finite. However, their practical usefulness is
limited by the assumption that a model is available.

In reinforcement learning, an agent interacts with an emvirent for which nei-
therT norRare known. As a result, dynamic programming methods areirexttty
applicable for two reasons. First, the value iteration wpdannot be computed.
Second, it is no longer sufficient to leavit since computingt* from it requires
knowingT andR. However, if the agent can lea@, it can derivert* from it with-
out knowingT andR. Fortunately,Q* can be learned without a model by using
temporal differencenethods (147), which synthesize dynamic programming with
Monte Carlo methods. Each time an agent in statakes an actiom;, the reward
riy1 it receives and the statg, 1 to which it transitions can be used to estimate the
role of T andR in the update. For exampl&-learning(158), a popular temporal
difference method, employs the following update rule:

Qls, &) « (1—0)Q(s, &) + a[rey 1+ ymaaQ(s+1,)]

wherea € [0,1] is a learning rate parameter. The update rule moves the tid es
mateQ(s,a) closer to an estimatetrget r1 + ymaxQ(s.1,a) by an amount
controlled bya.

SinceT andR are unknown, temporal difference methods cannot simpistiee
overSandA to perform updates. Instead, the agent can only performtapd@ased
on transitions and rewards it observes while interactint) W environment. Like
value iteration, Q-learning converges to the optimal vdlurection whenSis finite
but only if the agent explores its environmentin a manndrgharantees it visits ev-
ery state infinitely often. Hence, temporal difference rodthare typically coupled
with exploration mechanisms which ensure that the agethierghan always behav-
ing greedily with respect to its current value function, stimes tries alternative
actions. The simplest exploration mechanism is cadlegieedy exploratior{158),
whereby at each timestep the agent takes a random actiopreitlability e and the
greedy action otherwise.

In simple reinforcement learning tasks, the value functian be represented in
a table, with one entry for each state-action pair. Howdeemost real-world tasks
this approach is infeasible becauSegrows exponentially with respect to the num-
ber of state features, a problem Bellman dubbed the “curdext#nsionality” (20).
Hence, the agent may be unable to even store such a table,lessdearn correct
values for each entry in reasonable time. Moreover, manylpnas have continuous
state features, in which caSas not finite and a table-based approach is impossible
even in principle.

In such cases, temporal difference methods reljumetion approximationin
this approach, the value function is not represented gxbtlinstead approximated
via a parameterized function. Typically, those parametersncrementally adjusted
via supervised learning methods to make the function’sututpore closely match
estimated targets generated from the agent’s experieraey bifferent methods of
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function approximation have been used successfully, dhetutile coding, radial
basis functions, and neural networks (149).

Algorithm 1 Q-LEARN(S A, 0,c,0,Y,A, &q,€)

1: /I S: set of all states, A: set of all actions; standard deviation of initial weights

2: Il c: output scaleg: learning rate,y: discount factorA: eligibility decay rate

3: /I &q: exploration rate, e: total number of episodes

4:

5. N < INIT-NET(S A, 0) /I make a new network N with random weights

6: fori— ltoedo

7. s,§ < null, INIT-STATE(S) /I environment picks episode’s initial state

8: repeat

9: Q[] «+ cxEVAL-NET(N,S) /I compute value estimates for current state
10: with-prob (&4) @ < RANDOM(A) /I select random exploratory action
11: elsea «— argmaxQlj] /I or select greedy action
12: if s null then
13: BACKPRORN, s, a, (r + ymaxQ[j])/c, a,y,A) /I adjust weights toward target
14: sa«—¢g,a
15: r,s « TAKE-ACTION(&) / take action and transition to new state

16: until TERMINAL-STATE?(S)

Algorithm 1 describes the Q-learning algorithm when a neneawork is used
for function approximation. The inputs to the network désethe agent’s current
state; the outputs, one for each action, represent the'sgentent estimate of the
value of the associated state-action pairs. The initiaghtsi of the network are
drawn from a Gaussian distribution with mean 0.0 and stahdeeviationo (line 5).
TheEeVAL-NET function (line 9) returns the activation on the network’spuis after
the given inputs are fed to the network and propagated fatw&ince the network
uses a sigmoid activation function, these values will alirb¢0, 1] and hence are
rescaled according to a parameteAt each step, the weights of the neural network
are adjusted (line 13) such that its output better matcheesuhrent value estimate
for the state-action pair. The adjustments are made viataxPROP function,
which implements the standard backpropagation algoritt2d Y with the addition
of accumulating eligibility traces controlled by (147). The agent usesgreedy
selection (lines 10-11) and interacts with the environnwéathe TAKE-ACTION
function (line 15), which returns a reward and a new state.

By addressing large and continuous state spaces, fungbjprox@mation can
greatly extend the applicability of temporal differencethoels. However, using
function approximators successfully in practice requiresking crucial represen-
tational decisions, e.g., choosing the number of hiddetsamd initial weights of a
neural network. Much of this book focuses on simplifyinggbelecisions via meth-
ods that automatically discover effective function appmator representations (see
Chapters 4, 5, and 7).
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2.3 Policy Search Methods

Dynamic programming and temporal difference methods relgvily on the no-
tion of value functions for solving reinforcement learnipgblems. By contrast,
policy search methods do not use value functions at alle&ustthey use opti-
mization techniques (e.g., gradient methods (145; 105,07 Evolutionary meth-
ods (101; 172; 137)) to directly search the space of polifme®ne that accrues
maximal reward. To assess the performance of each candidity, the agent
typically employs the policy for one or more episodes and stime total reward
received.

Among the most successful approaches to policy seaméLieevolutior(172),
which usesevolutionary computatio(52) to optimize a population of neural net-
works. In a typical neuroevolutionary system, the weigtita aeural network are
strung together to form an individual genome. A populatiérswch genomes is
then evolved by evaluating each one and selectively reginduhe fittest individ-
uals through crossover and mutation. Most neuroevolutioggstems require the
designer to manually determine the network’s represemdtie., how many hid-
den nodes there are and how they are connected).

However, some neuroevolutionary methods can automatieatilve represen-
tations along with network weights. In particular, Neurokion of Augment-
ing Topologies (NEAT) (137) combines the usual search fiwaek weights with
evolution of the network structurelt has amassed numerous empirical successes
on difficult reinforcement learning tasks like non-Markawidouble pole balanc-
ing (137), game playing (139), robot control (138; 150), diath filtering in high
energy physics (1; 166). In reinforcement learning tagks,etworks that NEAT
evolves have a similar configuration to those used by Q-legrim Algorithm 1:
there is one input for each state feature, one output for aatibn, and the agent
takes the action whose corresponding output has the higlegsation. However,
since the network represents a policy, not a value functlom activations on the
output nodes do not represent value estimates. In factutpeits can have arbitrary
activations so long as the most desirable action has thedaagtivation.

Algorithm 2 contains a high-level description of the NEABatithm applied to
an episodic reinforcement learning problem. NEAT beginsi@ating a population
of random networks (line 4). In each generation, NEAT repdigtiterates over the
current population (lines 6—7). During each step of a giyeisae, the agent takes
whatever action corresponds to the output with the highetstadion (lines 10-12).
NEAT maintains a running total of the reward accrued by thisvaek during its
evaluation (line 13). Each generation ends adtepisodes, at which point each net-
work’s average fitness N. fitnesg'N.episodesin stochastic domaing, typically
must be much larger thgP| to ensure accurate fitness estimates for each network.
NEAT creates a new population by repeatedly callinggReeD-NET function (line
18), which performs crossover on two highly fit parents. Tee nesulting network
can then undergo mutations that add nodes or links to itststm (lines 19-20).

1 parts of the following description were adapted from thgiogl NEAT paper (137).
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Algorithm 2 NEAT(S A, p, My, M, g, €)

1: /I S: set of all states, A: set of all actions, p: populatioresim: node mutation rate
2: /I my: link mutation rate, g: number of generations, e: episodesgeneration

3
4: P[] < INIT-POPULATION(S A, p) /I create new population P with random networks
5: for i+ 1togdo

6: for j«—1toedo

7 N,s,s « P[j % p], null, INIT-STATE(S) /I select next network

8: repeat

9: Q[] «+ EVAL-NET(N,S) /I evaluate selected network on current state
10: a « argmaxQ)[i] /I select action with highest activation
11: sa«¢g,d
12: r,s « TAKE-ACTION(d) // take action and transition to new state
13: N. fitness— N. fitness+r /I update total reward accrued by N
14: until TERMINAL-STATE?(S)
15: N.episodes— N.episodes- 1 /I update total number of episodes for N
16: P[] « new array of sizep /I new array will store next generation
17: for j«— 1ltopdo
18: P'[j] < BREED-NET(P[]) /I make a new network based on fit parents in P
19: with-probability m,: ADD-NODE-MUTATION (P'[]) // add node to new network
20: with-probability m: ADD-LINK -MUTATION (P'[]]) /I add link to new network
21: P[]« P

The remainder of this section provides an overview of thea@pctive process that
occurs in lines 17-20. Stanley and Miikkulainen (137) pnésefull description.

Unlike other systems that evolve network topologies andghitsi (57; 172)
NEAT begins with a uniform population of simple networks lwito hidden nodes
and inputs connected directly to outputs. New structureti®duced incrementally
via two special mutation operators. Figure 2.2 depictsetmgserators, which add
new hidden nodes and links to the network. Only the struttataations that yield
performance advantages tend to survive evolution’s seéeptessure. In this way,
NEAT tends to search through a minimal number of weight disiats and find an
appropriate complexity level for the problem.

Outputs Outputs
Add Node Add Link
Hidden Mutati Hidden :
Nodes utation Nodes Mutation
—_— —_—
Inputs o Inputs )
(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Fig. 2.2 Examples of NEAT'’s mutation operators for adding structoreetworks. In (a), a hidden
node is added by splitting a link in two. In (b), a link, showitiwa thicker black line, is added to
connect two nodes.
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Evolving network structure requires a flexible genetic etieg. Each genome in
NEAT includes a list otonnection genggach of which refers to twmeode genebe-
ing connected. Each connection gene specifies the in-neeleut-node, the weight
of the connection, whether or not the connection gene isessged (an enable bit),
and aninnovation numberwhich allows NEAT to find corresponding genes during
crossover.

In order to perform crossover, the system must be able tavtetih genes match
up betweernyindividuals in the population. For this purpose, NEAT ketpsk of
the historical origin of every gene. Whenever a new geneaggthrough structural
mutation), aglobal innovation numbeis incremented and assigned to that gene.
The innovation numbers thus represent a chronology of eyeng in the system.
Whenever these genomes cross over, innovation numberkerited genes are pre-
served. Thus, the historical origin of every gene in theeaysts known throughout
evolution.

Through innovation numbers, the system knows exactly whetes match up
with which. Genes that do not match are eitkéjoint or excessdepending on
whether they occur within or outside the range of the otheemi#s innovation
numbers. When crossing over, the genes in both genomes hvéithkame innova-
tion numbers are lined up. Genes that do not match are ielddriom the more fit
parent, or if they are equally fit, from both parents randorligtorical markings
allow NEAT to perform crossover without expensive topotajianalysis. Genomes
of different organizations and sizes stay compatible thhawt evolution, and the
problem of matching different topologies (118) is essdigtevoided.

In most cases, adding new structure to a network initialjuces its fitness.
However, NEAT speciates the population, so that individummpete primarily
within their own species rather than with the populatioraegé. Hence, topological
innovations are protected and have time to optimize theicsire before competing
with other niches in the population.

Historical markings make it possible for the system to dimvide population into
species based on topological similarity. The distaddgetween two network en-
codings is a simple linear combination of the number of ex@&sand disjoint D)
genes, as well as the average weight differences of matgeings\{V):

cE oD —

0= N N +c3-W
The coefficients, ¢y, andcs adjust the importance of the three factors, and the
factor N, the number of genes in the larger genome, normalizes favrgersize.
Genomes are tested one at a time; if a genome’s distance todamdy chosen
member of the species is less thiapa compatibility threshold, it is placed into this
species. Each genome is placed into the first species whemtidition is satisfied,
so that no genome is in more than one species. The reprodunggchanism for
NEAT is explicit fithess sharing52), where organisms in the same species must
share the fithess of their niche, preventing any one speres faking over the
population.
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Evolutionary methods such as NEAT assess the value of eutiieies, rather
than reasoning about the value of particular state-actiins pThe holistic nature of
this approach is sometimes criticized. For example, SwtmhBarto write:

Evolutionary methods do not use the fact that the policy ereysearching for is a function
from states to actions; they do not notice which states amitheal passes through during its
lifetime, or which actions it selects. In some cases thigrinfation can be misleading (e.g.,
when states are misperceived) but more often it should emabte efficient search (149, p.
9).

In some contexts, these facts put evolutionary methodsatadtical disadvantage.
For example, in some circumstances dynamic programminigadstare guaranteed
to find an optimal policy in time polynomial in the number cditgts and actions (85).
By contrast, evolutionary methods, in the worst case, mesite over an exponen-
tial number of candidate policies before finding the best one

However, in practice, evolutionary methods have provenegeffective and at
least sometimes outperform temporal difference metho8g;(165). There are
many possible explanations for these results, such as fligy @b such methods
to cope with non-Markovian environments or the fact thaigies are sometimes
simpler to represent than value functions. But perhaps rritital is the ability
of methods like NEAT to automatically discover effectivgresentations. Much of
this book focuses on new ways of harnessing this ability, Itgriag evolutionary
methods to make them more suitable for reinforcement lagr(Chapter 3), syn-
thesizing them with temporal difference methods so as ttvevepresentations for
value functions (Chapters 4 and 5), or extending them tonaatically select useful
state features (Chapter 6).






Chapter 3
On-Line Evolutionary Computation

Sutton and Barto’s criticism of evolutionary methods remtsthe fact that such
methods do not exploit the specific structure of the reirdorent learning prob-
lem. Instead, they just treat it like any other optimizatimoblem, using total re-
ward accrued as a fitness function. Much of this book focusesliminating this
shortcoming by customizing such techniques to the uniqaeadteristics of the
reinforcement learning problem. As a result, the repredimt-learning power of
methods like NEAT can be harnessed without sacrificing theihges of other
reinforcement learning approaches, such as temporatelifée methods. The heart
of this customization is presented in Chapter 4, which desstow to synthesize
evolutionary and temporal difference methods so as to evapresentations for
value functions.

Before doing so, however, this chapter describes how tcomige evolution-
ary methods to then-linenature of many reinforcement learning problems. While
methods like NEAT have excelled on many challenging reicdarent learning
problems, their empirical success is largely restricteaftdine scenarios, in which
the agent learns, not in the real-world, but in a “safe” emwmnent like a simulator.
This chapter introduces methods that make it possible todsarthe representation-
learning capacity of methods like NEAT in on-line scenarigkere an agent inter-
acts with the real world and adjusts its policy as it goes.

In off-line scenarios, an agent’s only goal is to learn a gpolicy as quickly as
possible. It does not care how much reward it accmiete it is learningbecause
those rewards are only hypothetical and do not corresporehtenvorld costs. If the
agent tries disastrous policies, only computation times. IAt any point during
learning, the performance of an off-line agent is simplydhality of the best policy
it has found so far.

Unfortunately, many reinforcement learning problems cae solved off-line
because no simulator is available. Sometimes the dynarfiles task are unknown,
e.g., when a robot explores an unfamiliar environment or esstplayer plays a
new opponent. Other times, the dynamics of the task are toplex to accurately
simulate, e.g., user behavior on a large computer netwotlkeonoise in a robot’s
sensors and actuators.

17
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In such domains, the agent has no choice but to learn onHtira® on-line learn-
ing scenario, it is not enough for an agent to learn a gooctpajuickly. It must
also maximize the reward it accrues while it is learning lbisesthose rewards cor-
respond to real-world costs. For example, if a robot leaymn-line tries a policy
that causes it to drive off a cliff, then the negative rewdmel agent receives is not
hypothetical; it corresponds to the very real cost of fixingeplacing the robot.

To measure the performance of an on-line agent it is esseéat@nsider the
quality of the policycurrently in use which may be different from the best pol-
icy discovered so far. Since the agent is interacting withrésml-world, it must be
“charged” for each policy or action it tries. In the contekeoolutionary methods,
this means examining the average performance of the emtelation, not just the
generation champion. The goal of the agent is to maximizéotfaéreward accrued
during learning, i.e., the area under a typical learningeur

To excel in on-line scenarios, a learning algorithm mustaiely balance two
competing objectives. The first objective @gploration in which the agent tries
alternatives to its current best policy in the hopes of imprg it. The second ob-
jective isexploitation in which the agent follows the current best policy in order t
maximize the reward it receives.

Exploitation is important because, in practice, on-lirerteng problems have a
finite horizon which means reward can be accrued for only a limited timeeauth-
ing must occur during that same time. For example, an autonsmobot gathering
rocks on Mars can accrue reward only until its parts wear lbtite agent simply
explores, it may discover a great policy, i.e., how to find blest rocks. However,
unless a similar robot will be deployed in the same regiom@future, this policy
is not useful after the robot stops working. Hence, the agerst exploit in order to
maximize the reward accrued before time expires.

Evolutionary methods already strive to balance explonagiod exploitation. In
fact, Holland (62) argues that the reproduction mechanistograges exploration,
since crossover and mutation result in novel genomes, sotscourages exploita-
tion, since each new generation is based on the fittest mermb#re last one. How-
ever, reproduction allows evolutionary methods to balaxgdoration and exploita-
tion onlyacrossgenerations, natithin them. Once the members of each generation
have been determined, they all typically receive the sarakiation time.

This approach makes sense in deterministic domains, wiereraember of the
population can be accurately evaluated in a single epigddeever, most real-
world domains are stochastic, in which case fitness evaluatnust be averaged
over many episodes. In these domains, giving the same ¢iaduame to each
member of the population can be grossly suboptimal becaiitsen a generation, it

1 The termon-line learningis sometimes used in a very different way: to refentm-stationary
learning problems where the agent’s environment is chanigimays that alter the optimal policy.
In such problems, the agent must continually adapt to perfeell. The problems of non-stationary
learning and on-line learning (as the term is used here)rdnegonal. A learning scenario can be
stationary but on-line, as when an agent trains in a staticdal-world environment. A learning
scenario can also be non-stationary but off-line, as wheagant trains on a simulator that is being
continually refined. This book does not address non-statjolearning problems.
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is purely exploratory. Instead, an on-line evolutionagoaithm should exploit the
information gained earlier in the generation to systenadlfigive more evaluations
to the most promising individuals and avoid re-evaluatimgweakest ones. Doing
so allows evolutionary methods to increase the reward adaduring learning.

This chapter presents a novel approach, calledine evolutionary computation
(161; 162), which strives to achieve this balance. Instdagiving each individual
the same number of episodes, on-line evolutionary comipatakploits the infor-
mation gained from early episodes to favor the most promgisandidate policies
and thereby boost the reward accrued during learning. Thikiod works by bor-
rowing action selection mechanisms traditionally use@mporal difference meth-
ods and applying them in evolutionary computation. TD mdthaaturally excel in
on-line scenarios because they use action selection misaiato control how of-
ten the agent exploits (by behaving greedily with respectitoent value estimates)
and how often it explores (by trying alternative actiongjisichapter describes ways
to borrow the selection mechanisms used by TD methods tosehiodividual ac-
tions and use them in evolution to choose policies for evalnaThis approach
enables evolution to excel on-line by balancing exploratind exploitation within
andacross generations.

In a sense, the problem faced by evolutionary methods is ppesite of that
faced by TD methods. Within each generation, evolutionagyhmds naturally ex-
plore, by evaluating each member of the population equaitig, so need a way to
force more exploitation. By contrast, TD methods naturahyploit, by following
the greedy policy, and so need a way to force more exploratlowever, the goal
is the same: a proper balance between the two extremes.

To apply TD action selection mechanisms in evolutionary gotation, we must
modify the level at which selection is performed. Evolution algorithms cannot
perform selection at the level of individual actions be@alecking value functions,
they have no notion of the value of individual actions. Hoarethey can perform
selection at the level of episodes, in which entire polieiesassessed holistically.
The same selection mechanisms used to choose individiahgadh TD methods
can be used to select policies for evaluation, allowing @vmh to excel on-line by
balancing exploration and exploitation within and acrossegations.

This chapter investigates three methods based on this agipréhe first, based
on e-greedy selection (158), switches probabilistically bestw searching for better
policies and re-evaluating the best known policy. The sdctiased on softmax
selection (149), distributes evaluations in proportioe&ch individual’s estimated
fitness. The third, based on interval estimation (66), cagpaonfidence intervals
for the fitness of each policy and always evaluates the pulittythe highest upper
bound.

These methods were evaluated by implementing them in NEATesting their
performance in two domains: 1) mountain car, a canonicafeetement learning
benchmark task, and 2) server job scheduling, a large stticlainforcementlearn-
ing task from the field ohAutonomic computing69). The results demonstrate that
these techniques can substantially improve the on-linwpaance of evolutionary
methods and that softmax selection and interval estimaiiermore effective than
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the simples-greedy approach. As a result, the ability of NEAT to disaosféec-
tive representations can be harnessed, not just in offsi@emarios, but in on-line
scenarios too.

3.1 £-Greedy Evolution

Whene-greedy selection is used in TD methods, a single pararaetentrols what

fraction of the time the agent deviates from greedy behafzach time the agent
selects an action, it chooses probabilistically betwegrcgation and exploitation.
With probability €, it explores by selecting randomly from the available atdio
With probability 1— &, it exploits by selecting the greedy action.

In evolutionary computation, this same mechanism can be aistéhe beginning
of each episode to select a policy for evaluation. With philiig €, the algorithm
selects a policy randomly. With probability-1, the algorithm exploits by selecting
the best policy discovered so far in the current generafibe.score of each policy
is just the average reward per episode it has received sidah time a policy is
selected for evaluation, the total reward it receives isiiporated into that average,
which can cause it to gain or lose the rank of best policy.

To applye-greedy selection to NEAT, we need only alter the way netwanle
selected for evaluation. Instead of iterating through tbpyation repeatedly until
e episodes are complete (lines 6—7 in Algorithm 2), NEAT dsléar evaluation, at
the beginning of each episode, the policy returned b¢tgeeedy selection function
described in Algorithm 3. This function returns a poligwhich is either selected
randomly or which maximize$(p), the fithess op averaged over all the episodes
for which it has been previously evaluated.

Algorithm 3 €-GREEDY SELECTIONP, €)
1: /I P: population,e: NEAT'’s exploration rate

2:
3: with-prob (&) returnRANDOM(P) // select random member of population
4: elsereturn argmay.p f (p) /I or select current generation champion

Using e-greedy selection in evolutionary computation allows ithdve in on-
line scenarios by balancing exploration and exploitatiéor. the most part, this
method does not alter evolution’s search but simply inéds it with exploitative
episodes that increase average reward during learningn@ktesection describes
how softmax selection can be applied to evolution to createi@ nuanced balance
between exploration and exploitation.



3.2 Softmax Evolution 21

3.2 Softmax Evolution

When softmax selection is used in TD methods, an action’sairitity of selection
is a function of its estimated value. In addition to ensutingt the greedy action
is chosen most often, this technique focuses exploraticth@most promising al-
ternatives. There are many ways to implement softmax setebut one popular
method relies on a Boltzmann distribution (149), in whickean agent in state
chooses an actiomwith probability

eQ(sa)/T

Za/eA eQ(sa)/t (3.1)

wherer € [0, ] is a parameter controlling the degree to which actions wighér
values are favored in selection. The higher the valug tifie more equiprobable the
actions are.

As with e-greedy selection, we can use softmax selection in evelduticelect
policies for evaluation. At the beginning of each generatéach individual is eval-
uated for one episode, to initialize its fithess. Then, tleaiainge — |P| episodes
are allocated according to a Boltzmann distribution. Befeach episode, a policy
p € Pis selected with probability

ef(p)/l’

Y wep€ (P)/T s
wheref (p) is the fithess of policy, averaged over all the episodes for which it has
been previously evaluated. In NEAT, softmax selection igliag in the same way
ase-greedy selection, except that the policy selected foruatan is that returned
by the softmax selection function described in Algorithnwheree(p) is the total
number of episodes for which a poligyhas been evaluated so far.

Algorithm 4 SOFTMAX SELECTIONP, T)

1: /I P: population,T: softmax temperature

2:

3:if Ipe P|e(p) =0then

4:  returnp /I give each policy one evaluation first
5: else

6: total — y,cpefP/T /I compute denominator in Boltzmann expression
7. forall pePdo

8: with-prob (%) return p /I decide whether to select p
9: elsetotal — total — ef(P)/T II'if not, adjust denominator

Softmax selection provides a more nuanced balance betwgsoration and
exploitation thans-greedy because it focuses its exploration on the most gromi
ing alternatives to the current best policy. Softmax s&actan quickly abandon
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poorly performing policies and prevent them from reduchmgiteward accrued dur-
ing learning.

3.3 Interval Estimation Evolution

An important disadvantage of bothgreedy and softmax selection is that they do
not consider the uncertainty of the estimates on which tlaegltheir selections. One
approach that addresses this shortcoming is interval astm(66). When used in
TD methods, interval estimation computel@0— a)% confidence interval for the
value of each available action. The agent always takes tt@naeith the highest
upper bound on this interval. This strategy favors actioitls high estimated value
and also focuses exploration on the most promising but teiceactions. Thex
parameter controls the balance between exploration anditatpn, with smaller
values generating greater exploration.

The same strategy can be employed within evolution to selgaties for eval-
uation. At the beginning of each generation, each indiMidaiavaluated for one
episode, to initialize its fithess. Then, the remainéng|P| episodes are allocated
to the policy that currently has the highest upper bound ®radnfidence interval.
In NEAT, interval estimation is applied just as érgreedy and softmax selection,
except that the policy selected for evaluation is that regdrby the interval estima-
tion function described in Algorithm 5, wheif®,z(x)] is an interval within which
the area under the standard normal curve i§(p), o(p) ande(p) are the fitness,
standard deviation, and number of episodes, respectieelgplicy p.

Algorithm 5 INTERVAL ESTIMATION (P, a)
. I/ P: population,a: uncertainty in confidence interval

if 3peP|e(p) =0then
returnp

else
return argmaggp[f(p)Jrz(_loz%—oa) a(p) )

3.4 Testbed Domains

The methods described above were tested in two differenfargiement learn-
ing domains. The first domain, mountain car, is a standardagiement learning
benchmark task. The second domain, server job schedusirag)arge, stochastic
domain from the field of autonomic computing.



3.4 Testbed Domains 23

3.4.1 Mountain Car

In the mountain car task (28), depicted in Figure 3.1, an tgferes to drive a car
to the top of a steep mountain. The car cannot simply acdeléevard because its
engine is not powerful enough to overcome gravity. Instéalagent must learn to
drive backwards up the hill behind it, thus building up sugfitt inertia to ascend to
the goal before running out of speed.

2D Mountain Car
1
0.8
0.6
0.4 Goal
0.2
0
-0.2
-0.4
-0.6
-0.8
_1 .
-12 -1 -08 -06 -04-02 0 0.2 04 06
X

Mountain Height

Fig. 3.1 The mountain car task, in which an underpowered car strivesach the top of a moun-
tain.

The agent’s state at timestégonsists of its current positiop and its current
velocity . It receives a reward of 1 at each time step until reaching the goal, at
which point the episode terminates. The agent’s threeablailactions correspond
to the throttle settings 1, 0, andl. The following equations control the car's move-
ment:

Pr+1 = boundh(px + Vt+1)
Vt+1 = bound,(v +0.001a — 0.0025053p))

whereg; is the action the agent takes at timedtdpound, enforces-1.2 < pry1 <
0.5, andbound, enforces—0.07 < vt ; < 0.07. In each episode, the agent begins
in a state chosen randomly from these ranges. To preveradgssrom running
indefinitely, each episode is terminated after 2,500 stefigiagent still has not
reached the goal.

To represent the agent’s current state to the network, gatehfeature is divided
into ten regions. One input was associated with each redaora(total of twenty
inputs) and was set to one if the agent’s current state fellahregion and to zero
otherwise. Hence, only two inputs were activated for anggistate. The agent’s
state could be represented more compactly, using one abade/input for position
and another for velocity. However, informal experimentsrfd that this representa-
tion did not perform as well. The networks have three outpash corresponding
to one of the actions available to the agent.
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3.4.2 Server Job Scheduling

While the mountain car task is a useful benchmark, it is a gample domain. To
assess whether on-line evolutionary computation can szalenuch more complex
problem, a challenging reinforcement learning task cadksster job scheduling was
used. This domain is drawn from the burgeoning field of autoic@omputing (69).
The goal of autonomic computing is to develop computer systthat automati-
cally configure themselves, optimize their own behaviod diagnose and repair
their own failures. The demand for such features is growamidly, since computer
systems are becoming so complex that maintaining them witham support staff
is increasingly infeasible.

The vision of autonomic computing poses new challenges toynaaieas of
computer science, including architecture, operatingesyst security, and human-
computer interfaces. However, the burden on artificiallligence is especially
great, since intelligence is a prerequisite for self-mampgystems. In particular,
machine learning will likely play a primary role, since coater systems must be
adaptive if they are to perform well autonomously. Thereraemy ways to apply
supervised methods to autonomic systems, e.g., for inmudetection (46), spam
filtering (39), or system configuration (169). However, thare also many tasks
where no human expert is available and reinforcement legrisi applicable, e.g
network routing (27), job scheduling (160), and cache allion (53).

One such task is server job scheduling, in which a serveh asa website’s
application server or database, must determine in whatr dodprocess the jobs
currently waiting in its queue. Its goal is to maximize theyaagate utility of all
the jobs it processes. Atility function (not to be confused with a TD value func-
tion) for each job type maps the job’s completion time to thiktyiderived by the
user (157). The problem of server job scheduling becomdteciging when these
utility functions are nonlinear and/or the server must psscmultiple types of jobs.
Since selecting a particular job for processing neceysdeiays the completion of
all other jobs in the queue, the scheduler must weigh difficatle-offs to maxi-
mize aggregate utility. Also, this domain is challengingdngse it is large (the size
of both the state and action spaces grow in direct propottitime size of the queue)
and probabilistic (the server does not know what type of jdbasrive next).

The server job scheduling task is quite different from tiiadal scheduling tasks
(173; 174). In the latter case, there are typically multiglsources available and
each job has a partially ordered list of resource requiresn&erver job scheduling
is simpler because there is only one resource (the serveralajobs are indepen-
dent of each other. However, it is more complex in that penforce is measured via
arbitrary utility functions, whereas traditional schadgltasks aim solely to mini-
mize completion times.

Our experiments were conducted in a Java-based simuldtersimulation be-
gins with 100 jobs preloaded into the server’'s queue and ehés the queue be-
comes empty. During each timestep, the server removes brisjm its queue and
completes it. During each of the first 100 timesteps, a newojod randomly se-
lected type is added to the end of the queue. Hence, the agestimake decisions
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about which job to process next even as new jobs are arri@irge one job is

processed at each timestep, each episode lasts 200 tisidsbepach job that com-
pletes, the scheduling agent receives an immediate reveednined by that job’s
utility function.

Four different job types were used in our experiments. Hetieetask can gen-
erate 4% unique episodes. Utility functions for the four job typee ahown in
Figure 3.2. Users who create jobs of type #1 or #2 do not caoetabeir jobs’
completion times so long as they are less than 100 timeda&ysnd that, they get
increasingly unhappy. The rate of this change differs betwhe two types and
switches at timestep 150. Users who create jobs of type #3l evaht their jobs
completed as quickly as possible. However, once the jobrhesdl00 timesteps
old, it is too late to be useful and they become indiffererit.tAs with the first two
job types, the slopes for job types #3 and #4 differ from edhbbroand switch, this
time at timestep 50. Note that all these utilities are negdtinctions of completion
time. Hence, the scheduling agent strives to bring aggeagdity as close to zero
as possible.

Utility Functions for All Four Job Types
T

20

40

Job Type #2 Job Type #1

60 -

Utility

-80 -

100 | Job Type #3

-120 + /

Job Type #4
140 |

160 L L L
0 50 100 150 200

Completion Time

Fig. 3.2 The four utility functions used in the server job scheduliagk.

A primary obstacle to applying reinforcement learning noelthto this domain is
the size of the state and action spaces. A complete statamt@&stincludes the type
and age of each job in the queue. The scheduler’s actionsstofselecting jobs
for processing; hence a complete action space includeg jeNein the queue. These
spaces were discretized to make them more manageable.rideaBjob ages from
0to 200 is divided into four sections and the scheduler @ ttleach timestep, how
many jobs in the queue of each type fall in each range, reguti 16 state features.
The action space is similarly discretized. Instead of $ilga particular job for
processing, the scheduler specifies what type of job it wanggocess and which
of the four age ranges that job should lie in, resulting in idigct actions. The
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server processes the youngest job in the queue that matehggpe and age range
specified by the action.

These discretizations mean the agent has less informaimut $he contents of
the job queue. However, its state is still sufficiently dethto allow effective learn-
ing. Although the utility functions can change dramatigaliithin each age range,
their slopes do not change. It is the slope of the utility fiorg not the utility func-
tion itself, which determines how much utility is lost by dging a given job.

The server job scheduling domain is a perfect example ofrdiariement learn-
ing task that needs to be solved on-line. Though a simulatoséd for the purpose
of experimental research, creating an accurate simulatbeireal world would not
be practical. Such a simulator would have to precisely mtduekerver’s internal
workings and the behavior of all the system’s users, inclgdiow that behavior
changes in response to different scheduling policies. Eleggmod policies can prob-
ably only be learned on-line, by trying them out on real sesvin such scenarios,
maximizing on-line performance is critical, since lost eed/corresponds to delays
for real users.

3.5 Results

As a baseline of comparison, we applied the original, afélversion of NEAT to
both the mountain car and server job scheduling domains egr@dged its perfor-
mance over 25 runs. The population sj2¢ was 100 and the number of episodes
per generatior was 10,000. Hence, each member of the population was egdluat
for 100 episodes. Table 3.1 provides more details on the NEa&&meters used in
our experiments. Next, we applied taegreedy, softmax, and interval estimation
versions of NEAT to both domains using the same paramet@émgetEach of these
on-line methods has associated with it one additional patranwhich controls the
balance between exploration and exploitation. For eaclhodetve experimented
informally with approximately ten different settings oese parameters to find ones
that worked well in the two tasks. Finally, we averaged thdquenance of each
method over 25 runs using the best known parameter settings.

Parameter Valu Parameter Valu Parameter Valu
weight-mut-power | 0.5 recur-prop 0.0 disjoint-coeff €;) 1.0
excess-coeff@) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25
mutate-link-weights-prop 0.9 |[mutate-add-node-prolmg)| 0.02 |[mutate-add-link-probng)| 0.1
interspecies-mate-rate 0.01 mate-multipoint-prob | 0.6 || mate-multipoint-avg-prop 0.4
mate-singlepoint-prob| 0.0 mate-only-prob 0.2 recur-only-prob 0.0
pop-size ) 100 dropoff-age 100 newlink-tries 50
babies-stolen 0 num-compat-mod 0.3 num-species-target | 6

Table 3.1 The NEAT parameters used in the experiments described srctapter. Stanley and

Miikkulainen (137) describe the semantics of these pararaéh detail.
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Those settings were as follows. Foigreedy,e was set to 0.25. This value is
larger than is typically used in TD methods but makes intaiense, since explo-
ration in NEAT is safer than in TD methods. After all, even whH¢EAT explores,
the policies it selects are not drawn randomly from policsgcg On the contrary,
they are the children of the previous generation’s fittesepis. For softmax, the
appropriate value of depends on the range of fithess scores, which differs dra-
matically between the two domains. Hence, different valuese required for the
two domains: we set to 50 in mountain car and 500 in server job scheduling. For
interval estimationg was set to 20, resulting in 80% confidence intervals.

Figure 3.3 summarizes the results of these experimentsditing a uniform
moving average over the last 1,000 episodes of the totalrceacrued per episode
for each method. We plot average reward because it is amenmretric: it measures
the amount of reward the agent accrues while it is learniig. Best policies dis-
covered by evolution, i.e. the generation champions, perfeubstantially higher
than this average. However, using their performance as @noation metric would
ignore the on-line cost that was incurred by evaluating #s of population and
receiving less reward per episode. Figure 3.5 plots, foistirae experiments, the
total cumulative reward accrued by each method over thesenitin. In both graphs,
error bars indicate 95% confidence intervals and Studetg'sts confirm, with 95%
confidence, the statistical significance of the performatifference between each
pair of methods except between softmax and interval estimat

Uniform Moving Average Score Per Episode Uniform Moving Average Score Per Episode

Estimation ~ Soffmax -10500 -

. . -10000 T T T T T T T T
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Interval Estimation i

-11000 [
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i il il ilitlibialididLi IWHHW 11500

-12000
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(a) Mountain Car (b) Server Job Scheduling

Fig. 3.3 The uniform moving average reward accrued by off-line NE&dmpared to three ver-
sions of on-line NEAT in the mountain car and server job salird domains. In both domains,
all rewards are negative so the agents strive to get aveesged as close to zero as possible.
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Fig. 3.4 A close-up of the early part of learning, showing the unifamoving average reward
accrued by each method. Intervals corresponding to eaokraién of evolution are evident at
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Fig. 3.5 The cumulative reward accrued by off-line NEAT, comparethtee versions of on-line
NEAT in the mountain car and server job scheduling domaim&adth domains, all rewards are
negative so the agents strive to keep cumulative rewardas ¢t zero as possible.

3.6 Discussion

The results shown in Figure 3.3 clearly demonstrate that§eh mechanisms bor-
rowed from TD methods can dramatically improve the on-lis@rmance of evo-
lutionary computation. All three on-line methods substdiyt outperform the off-
line version of NEAT. In addition, the more nuanced stragsgf softmax and in-
terval estimation fare better thaagreedy. This result is not surprising since the

1000
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e-greedy approach simply interleaves the search for bettkei@s with exploita-

tive episodes that employ the best known policy. Softmagcdden and interval
estimation, by contrast, concentrate exploration on thstmmising alternatives.
Hence, they spend fewer episodes on the weakest individuasachieve better
performance as a result.

For the on-line methods, particularly interval estimatiemolution consists of
a series of 10,000-episode intervals. These intervalsspecally evident in Fig-
ure 3.4, which shows a close-up of the early part of learritagh of these intervals
corresponds to one generation. The performance improvsmithin each genera-
tion reflect the on-line methods’ ability to exploit the imfieation gleaned from ear-
lier episodes. As the generation progresses, these mdileadme better informed
about which individuals to favor when exploiting and averagward increases as a
result.

While these intervals reveal an important feature of thdim&methods’ behav-
ior, they can make it difficult to compare performance. Faregle, in the mountain
car domain, interval estimation begins each generatidmavibt of exploration and,
consequently, relatively poor performance. However, éxgloration quickly pays
off and its average performance rises slightly above thabfinax. Which of these
two methods is receiving more reward overall? It is diffi¢altell from plots of av-
erage reward. However, plots of cumulative reward, showFigire 3.5, are more
revealing in this respect. Not surprisingly, the off-lirersion of NEAT accumulates
much less reward than the on-line methods argteedy accumulates less reward
than the other on-line approaches. These graphs also shgvintimountain car, in-
terval estimation’s exploration early in each generatiapgoff, as it earns at least
as much reward overall as softmax.

Together, these results demonstrate that borrowing sabestechanisms from
TD methods can greatly improve the on-line performance ofgionary computa-
tion. However, they do not address how on-line evolutioe@# the quality of the
best policies discovered. Does excelling at on-line metniecessarily hurt perfor-
mance on off-line metrics? To answer this question, we sadeithe best policies
discovered by each method (i.e. the final generation chamspand evaluated them
each for 1,000 additional episodes.

In mountain car, using on-line evolution has no noticeafflece the best poli-
cies of off-line and all three versions of on-line NEAT reeean average score of
approximately—52, which matches the best results achieved in previousrese
on this domain (129; 144). While the mountain car domainrg$e enough that all
the methods find approximately optimal policies, the sanm®tgrue in scheduling,
wheree-greedy performs substantially worse. Its best policiegike an average
score of approximately11,100, whereas off-line and the other two versions of on-
line NEAT all receive an average score of approximately0,100. This result is
not surprising: since-greedy evolution spends most of its episodes re-evalyatin
the best policy, its fithess estimates for the rest of the [adjom are less accurate.
By focusing exploration on the most promising individuasftmax and interval
estimation offer the best of both worlds: they excel at thdio@ metrics without
sacrificing the quality of the best policies discovered.
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Overall, these results verify the efficacy of these methddsédine evolution. It
is less clear, however, which strategy is most useful. Smftatearly outperforms-
greedy but may be more difficult to use in practice because ffazameter is harder
to tune, as evidenced by the need to assign it different satuéhe two domains.
As Sutton and Barto write:

Most people find it easier to set tisgparameter with confidence; settimgequires knowl-
edge of the likely action values and of powerseglL49, pages 27-30).

In this light, interval estimation may be the best choicer &periments show that
it performs as well or better than softmax and anecdotalemgd suggests that the
o parameter is not overly troublesome to tune.



Chapter 4
Evolutionary Function Approximation

The methods presented in Chapter 3 allow the representi@doning capacity of
evolutionary algorithms like NEAT to be harnessed in bofHiof and on-line sce-
narios. However, that capacity is still limited in scope wigy search methods.
Hence, Sutton and Barto’s criticism (that policy searchhmds, unlike temporal
difference methods, do not exploit the specific structurénefreinforcement learn-
ing problem) still applies. To address this problem, we neethods that can opti-
mize representations, not just for policies, but value fiomcapproximators trained
with temporal difference methods.

At present, temporal difference methods typically reqaifeuman designer to
manually design an appropriate representation for thetimmapproximator. Poor
design choices can result in estimates that diverge fronoftienal value func-
tion (13) and agents that perform poorly. Even for methodk guaranteed conver-
gence (14; 76), achieving high performance in practiceiregdinding an appropri-
ate representation for the function approximator. As Latadis and Parr observe:

The crucial factor for a successful approximate algoritisnthie choice of the paramet-

ric approximation architecture(s) and the choice of thggution (parameter adjustment)
method (76, p. 1111).

Nonetheless, representational choices are typically maateually, based only on
the designer’s intuition.

This chapter introducesvolutionary function approximatio(l61), a new ap-
proach to TD function approximation which harnesses theessmtation-learning
power of evolutionary methods. This approach synthesizetigonary and TD
methods into a single method that automatically selectstfoim approximator rep-
resentations that enable efficient individual learning.eWlevolutionary methods
are applied to reinforcement learning problems, they sihicevolve a population
of action selectors, each of which remains fixed during iteefs evaluation. The
central insight behind evolutionary function approxiroatis that, if evolution is
directed to evolve value functions instead, then thoseev@lactions can be up-
dated, using TD methods, during each fitness evaluatiorhignway, the system
canevolvefunction approximators that are better abldearn via TD. This bio-
logically intuitive combination has been applied to congiginal systems in the

31
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past (61; 2; 25; 50; 56; 106) but never, to our knowledge, dotla¢ discovery of
good temporal difference function approximators.

This approach requires only 1) an evolutionary algorithipatde of optimizing
representations from a class of functions and 2) a TD methatduses elements of
that class for function approximation. This book focusegerforming evolution-
ary function approximation with neural networks. Theresaeeral reasons for this
choice. First, they have great experimental value. Noalifignction approximators
are often the most challenging to use; hence, success fartiewary function ap-
proximation with neural networks is good reason to hope tmcess with linear
methods too. Second, neural networks have great poteotialriction approxima-
tion, since they can represent value functions linear niticannot (given the same
basis functions). Finally, employing neural networks iasiéle because they have
previously succeeded as TD function approximators (38) Hatl sophisticated
methods for optimizing their representations (57; 13®adly exist.

In addition to automating the search for effective représ@ns, evolutionary
function approximation can enable synergistic effectsvben evolution and learn-
ing. How these effects occur depends on which of two possipfgoaches is em-
ployed. The first possibility is hamarckianapproach, in which the changes made
by TD during a given generation are written back into theioaggenomes, which
are then used to breed a new population. The second pagsibila Darwinian
implementation, in which the changes made by TD are disceadd the new pop-
ulation is bred from the original genomes, as they were & bir

It has long since been determined that biological syster<Darwinian, not
Lamarckian. However, it remains unclear which approacteitel computationally,
despite substantial research (110; 168; 171). The potemhieantage of Lamarck-
ian evolution is obvious: it prevents each generation frawithg to repeat the same
learning. However, Darwinian evolution can be advantagemecause it enables
each generation to reproduce the genomes that led to sundbssprevious gen-
eration, rather than relying on altered versions that mayhréve under continued
alteration. Furthermore, in a Darwinian system, the leaymionducted by previous
generations can be indirectly recorded in a populatiom®gees via a phenomenon
called theBaldwin Effec{15), which has been demonstrated in evolutionary compu-
tation (61; 2; 25; 9). The Baldwin Effect occurs in two stageghe first stage, the
learning performed by individuals during their lifetimgsegds evolution, because
each individual does not have to be exactly right at birthgigéd only be in the right
neighborhood and learning can adjust it accordingly. Inséaeond stage, those be-
haviors that were previously learned during individuafgtimes become known at
birth. This stage occurs because individuals that posskgstise behaviors at birth
have higher overall fithess and are favored by evolution.

Hence, synergistic effects between evolution and learaiiagossible regardless
of which implementation is used. In Section 4.2.4, we coraplae two approaches
empirically. The following section details NEAT+Q, the ilementation of evolu-
tionary function approximation used in our experiments.
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4.1 NEAT+Q

All that is required to make NEAT optimize value functionstiead of action se-
lectors is a reinterpretation of its output values. Thecddtree of neural network
action selectors (one input for each state feature and otpribfor each action)
is already identical to that of Q-learning function approators. Therefore, if the
weights of the networks NEAT evolves are updated during tiiteiess evaluations
using Q-learning and backpropagation, they will effedjivevolve value functions
instead of action selectors. Hence, the outputs are no targédrary values; they
represent the long-term discounted values of the assdcstége-action pairs and
are used, not just to select the most desirable action, hytdate the estimates of
other state-action pairs.

Algorithm 6 summarizes the resulting NEAT+Q method. Not this algorithm
is identical to Algorithm 2, except for the delineated secttontaining lines 13-16.
Each time the agent takes an action, the network is backpetpd towards Q-
learning targets (line 16) aredgreedy selection occurs just as in Algorithm 1 (lines
13-14). Ifa andggq are set to zero, this method degenerates to regular NEAT.

A|90r|thm 6 NEAT+Q(Sa A7 C, pa My, My 7ga €a, Y, )\ ) £td)

1: /I S: set of all states, A: set of all actions, c: output scg@lepopulation size

2: /I my: node mutation rate, mlink mutation rate, g: number of generations

3: // e: number of episodes per generation,learning rate, y: discount factor

4: /I A eligibility decay rate,&q: exploration rate

5:

6: P[] < INIT-POPULATION(S A, p) /I create new population P with random networks

7: for i+ ltogdo

8. for j«—1toedo

9: N,s s « P[j%p], null, INIT-STATE(S) /I select next network
10: repeat
11: Q[] < cx EVAL-NET(N,S) /I compute value estimates for current state
12:
13: with-prob (&4) @ < RANDOM(A) /I select random exploratory action
14: elsed «— argmaxQ[K] /I or select greedy action
15: if s# null then
16: BACKPROHRN, s, a, (r + ymaxQ[K))/c,a,y,A) /I adjust weights
17:
18: sa«¢g,d
19: r,s « TAKE-ACTION(d) // take action and transition to new state
20: N. fitness— N. fitness+r /I update total reward accrued by N
21: until TERMINAL-STATE?(S)
22: N.episodes— N.episodes- 1 /I update total number of episodes for N
23: P[] < new array of sizep /I new array will store next generation
24: for j«—1topdo
25: P'[j] < BREED-NET(P[]) /I make a new network based on fit parents in P
26: with-probability m,: ADD-NODE-MUTATION (P'[]) // add node to new network
27: with-probability m: ADD-LINK -MUTATION (P'[]]) /l add link to new network

28: P[P
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NEAT+Q combines the power of TD methods with the ability of NEo learn
effective representations. Traditional neural networkction approximators put all
their eggs in one basket by relying on a single manually aesigetwork to repre-
sent the value function. NEAT+Q, by contrast, explores tface of such networks
to increase the chance of finding a representation that asifbpm well.

In NEAT+Q, the weight changes caused by backpropagatiomnagiate in the
current population’s networks throughout each generatiginen a network is se-
lected for an episode, its weights begin exactly as they \aethe end of its last
episode. In the Lamarckian approach, those changes aredcback into the net-
works’ genomes and inherited by their offspring. In the Daran approach, those
changes are discarded at the end of each generation.

4.2 Results

We conducted a series of experiments in the mountain careamdrgob scheduling
domains (described in Section 3.4) to empirically evaltfa¢emethods presented in
this chapter. Section 4.2.1 compares manual and evolugidaaction approxima-
tors. Section 4.2.2 tests evolutionary function approxiomcombined with on-line
evolutionary computation. Section 4.2.3 compares theselrapproaches to pre-
vious learning and non-learning methods. Section 4.2.4peses Darwinian and
Lamarckian versions of evolutionary function approxiratiFinally, Section 4.2.5
presents some additional tests that measure the effechthoal learning on func-
tion approximators. The results offer insight into why e@rtmethods outperform
others in these domains and what factors can make neurabriefwnction approx-
imation difficult in practice.

Each of the graphs presented in these sections includebareindicating 95%
confidence intervals. In addition, to assess statistialificance, we conducted
Student’s t-tests on each pair of methods evaluated. Thétses these tests are
summarized in Appendix A.

4.2.1 Comparing Manual and Evolutionary Function
Approximation

For an initial baseline, we used the same off-line NEAT rssptesented in Sec-
tion 3.5. Next, we performed 25 runs in each domain using NETwith the same
parameter settings. The eligibility decay ratevas 0.0. and the learning radewas
set to 0.1 and annealed linearly for each member of the ptpalantil reaching
zero after 100 episodédn schedulingy was 0.95 andyq was 0.05. Those values
of y andgq work well in mountain car too, though in the experiments présd here

1 Other values oft were tested in the context of NEAT+Q but had little effect @mfprmance.
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they were set to 1.0 and 0.0 respectively, since Sutton (fod4id that discounting
and exploration are unnecessary in mountain car. The ostplgc was set to-100
in mountain car and-1000 in scheduling.

We tested both Darwinian and Lamarckian NEAT+Q in this manBeth per-
form well, though which is preferable appears to be domapeddent. For sim-
plicity, in this section and those that follow, we presersulés only for Darwinian
NEAT+Q. In Section 4.2.4 we present a comparison of the twiy@gches.

To test Q-learning without NEAT, we tried 24 different configtions in each
domain. These configurations correspond to every possiloidbmation of the fol-
lowing parameter settings. The networks had feed-forwardlbgies with 0, 4, or 8
hidden nodes. The learning ratevas either 0.01 or 0.001. The annealing schedules
for a were linear, decaying to zero after either 100,000 or 25Dgd}Isodes. The
eligibility decay rated was either 0.0 or 0.6. The other parametgande, were set
just as with NEAT+Q, and the standard deviation of initiaigi#s o was 0.1. Each
of these 24 configurations was evaluated for 5 runs. In additve experimented
informally with higher and lower values @f, higher values of, slower linear an-
nealing, exponential annealing, and no annealing at aldh none performed as
well as the results presented here.

In these experiments, each run used a different set of limiggghts. Hence,
the resulting performance of each configuration, by aveagver different initial
weight settings, does not account for the possibility tloahe weight settings per-
form consistently better than others. To address this,dohe&lomain, we took the
best performing configuratidrand randomly selected five fixed initial weight set-
tings. For each setting, we conducted 5 additional runallyirwe took the setting
with the highest performance and conducted an additionali@, for a total of
25. For simplicity, the graphs that follow show only this €atning result: the best
configuration with the best initial weight setting.

Figure 4.1 shows the results of these experiments. For eatioh, the corre-
sponding line in the graph represents a uniform moving @eowver the aggregate
reward received in the past 1,000 episodes, averaged 02&rrains. Using average
performance, as we do throughout this book, is somewhathmdox for evolution-
ary methods, which are more commonly evaluated on the pedioce of the gen-
eration champion. There are two reasons why we adopt avpeafgmance. First,
it creates a consistent metric for all the methods testetijding the TD methods
that do not use evolutionary computation and hence have merggéon champions.
Second, it is an on-line metric because it incorporateéshe reward the learning
system accrues. Plotting only generation champions is ghdithy off-line metric
because it does not penalize methods that discover goaalgsohut fail to accrue
much reward while learning. Hence, average reward is areti&ric for evaluating
on-line evolutionary computation, as we do in Section 4.2.2

To make a larger number of runs computationally feasibleh DMEAT and
NEAT+Q were run for only 100 generations. In the scheduliogndin, neither

2 Mountain car parameters were: 4 hidden nodes; 0.001, annealed to zero at episode 100,000,
A = 0.0. Server job scheduling parameters were: 4 hidden nades.01, annealed to zero at
episode 100,0004 = 0.6.
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Fig. 4.1 A comparison of the performance of NEAT, NEAT+Q, and Q-léagrwith the best of 24
different manually designed neural network function agprators in the mountain car and server
job scheduling domains.

method has completely plateaued by this point. However nalfid of trials con-
ducted for 200 generations verified that only very small &oidal improvements
are made after 100 generations, without a qualitative effe¢he results.

Note that the progress of NEAT+Q consists of a series of 1Dd}flsode inter-
vals. Each of these intervals corresponds to one generatidthe changes within
them are due to learning via Q-learning and backpropaga#itthough each in-
dividual learns for only 100 episodes on average, NEAT $esysof randomly se-
lecting individuals for evaluation causes that learningécsspread across the entire
generation: each individual changes gradually during #reegation as it is repeat-
edly evaluated. The resultis a series of intra-generatieaming curves within the
larger learning curve.
For the particular problems we tested and network configuratve tried, evo-
lutionary function approximation significantly improvesrformance over manu-
ally designed networks. In the scheduling domain, Q-lesyhéarns much more
rapidly in the very early part of learning. In both domainswever, Q-learning soon
plateaus while NEAT and NEAT+Q continue to improve. Of ceyafter 100,000
episodes, Q-learning’s learning ratehas annealed to zero and no additional learn-
ing is possible. However, its performance plateaus welbtead reaches zero and,
in our experiments, running Q-learning with slower anne&atir no annealing at all
consistently led to inferior and unstable performance.

Nonetheless, the possibility remains that additional megiing of the network
structure, the feature set, or the learning parametersdrggihificantly improve Q-
learning’s performance. In particular, when Q-learningtésted with one of the best
networks discovered by NEAT+Q and the learning rate is aedesggressively, Q-
learning matches NEAT+Q’s performance without directlyngsvolutionary com-
putation. However, it is unlikely that a manual search, ndtemghow extensive,
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would discover these successful topologies, which coriteégular and partially
connected hidden layers. Figure 4.2 shows examples ofaypatworks evolved by
NEAT+Q.

(a) Mountain Car (b) Server Job Scheduling

Fig. 4.2 Typical examples of the topologies of the best networksvadby NEAT+Q in both the
mountain car and scheduling domains. Input nodes are orothent, hidden nodes in the middle,
and output nodes on top. In addition to the links shown, eaphtinode is directly connected
to each output node. Note that two output nodes can be direotinected, in which case the
activation of one node serves not only as an output of the ar&tvibut as an input to the other
node.

NEAT+Q also significantly outperforms regular NEAT in botbrdains. In the
mountain car domain, NEAT+Q learns faster, achieving bgigeformance in ear-
lier generations, though both plateau at approximately#me level. In the server
job scheduling domain, NEAT+Q learns more rapidly and alsoverges to sig-
nificantly higher performance. This result highlights treue of TD methods on
challenging reinforcementlearning problems. Even wheANIE employed to find
effective representations, the best performance is aetliesly when TD methods
are used to estimate a value function. Hence, the relatpety performance of
Q-learning is not due to some weakness in the TD methodolagylerely to the
failure to find a good representation.

Furthermore, in the scheduling domain, the advantage of NMERAover NEAT
is not directly explained just by the learning that occueshéckpropagation within
each generation. After 300,000 episodes, NEAT+Q cleantjopms better even at
the beginning of each generation, before such learning basred. Just as pre-
dicted by the Baldwin Effect, evolution proceeds more glyiak NEAT+Q because
the weight changes made by backpropagation, in additiomgwaving that indi-
vidual's performance, alter selective pressures and napielly guide evolution to
useful regions of the search space.

4.2.2 Combining On-Line Evolution with
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Evolutionary Function Approximation

Sections 3.5 and 4.2.1 verify that both on-line evolutignesmputation and evo-
lutionary function approximation can significantly boostformance in reinforce-
ment learning tasks. This section presents experimentadsass how well these
two ideas work together.

Figure 4.3 presents the results of combining NEAT+Q withreak evolutionary
computation, averaged over 25 runs, and compares it to esiolg of these meth-
ods individually, i.e., using off-line NEAT+Q (as done inc®ien 4.2.1) and using
softmax evolutionary computation with regular NEAT. Fomglicity, we do not
present results faa-greedy or interval estimation NEAT+Q since softmax NEAT+Q
performed the best in Section 3.5.
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Fig. 4.3 The performance of combining evolutionary function appmation with on-line evo-
lutionary computation compared to using each individuatlthe mountain car and server job
scheduling domains.

In both domains, softmax NEAT+Q performs significantly bethan off-line
NEAT+Q. Hence, just like regular evolutionary computatiewolutionary function
approximation performs better when supplemented withctele techniques tra-
ditionally used in TD methods. Surprisingly, in the mountear domain, softmax
NEAT+Q performs only as well softmax NEAT. We attribute teessults to a ceil-
ing effect, i.e., the mountain car domain is easy enough ffiatn an appropriate
selection mechanism, NEAT is able to learn quite rapidlgrewithout the help of
Q-learning. In the server job scheduling domain, softmayANE) does perform
better than softmax NEAT, though the difference is rathedest. Hence, in both
domains, the most critical factor to boosting the perforogeof evolutionary com-
putation is the use of an appropriate selection mechanism.
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4.2.3 Comparing to Other Approaches

The experiments presented thus far verify that the novehaukst presented in this
chapter can improve performance over the constituent tgaba upon which they
are built. This section presents experiments that comgpergérformance of the
highest performing novel method, softmax NEAT+Q, to pregi@pproaches. In
the mountain car domain, we compare to previous resultsubatTD methods
with a linear function approximator (144). In the server mtheduling domain,
we compare to a random scheduler, two non-learning schesdiuéen previous re-
search (95; 160), and an analytical solution computed usteger linear program-
ming.

In the mountain car domain, the results presented above obedethat softmax
NEAT+Q can rapidly learn a good policy. However, since theseilts use an on-
line metric, performance is averaged over all members ofpthfulation. Hence,
they do not reveal how close the best learned policies arptimal. To assess the
best policies, we selected the generation champion frorfirtakbgeneration of each
softmax NEAT+Q run and evaluated it for an additional 1,0p&edes. Then we
compared the results to the performance of a learner usirsg,SaTD method simi-
lar to Q-learning (149), with tile coding, a popular lineanttion approximator (4),
using a setup that matches that of Sutton (144) as closelyssiiye. We found their
performance to be nearly identical: softmax NEAT+Q receige average score of
—52.75 while the Sarsa tile coding learner receives?.02. We believe this perfor-
mance is approximately optimal, as it matches the bestteepublished by other
researchers, e.g. (129).

This result does not imply that neural networks are the foncapproximator
of choice for the mountain car domain. On the contrary, Stgttile coding con-
verges in many fewer episodes. Nonetheless, these resutisnstrate that evolu-
tionary function approximation and on-line evolution makéeasible to find ap-
proximately optimal policies using neural networks, sdmrej that some previous
approaches (28; 115), using manually designed network®, weable to do.

Since the mountain car domain has only two state featuiisgaissible to visual-
ize the value function. Figure 4.4 compares the value fonstlearned by softmax
NEAT+Q to that of Sarsa with tile coding. For clarity, the gha plot estimated
steps to the goal. Since the agent receives a rewardldor each timestep until
reaching the goal, this quantity is equivalenttonax,(Q(s,a)). Surprisingly, the
two value functions bear little resemblance to one anoihile they share some
very general characteristics, they differ markedly in bsitlape and scale. Hence,
these graphs highlight a fact that has been noted beforg: (bt TD methods can
learn excellent policies even if they estimate the valuetiom only very grossly. So
long as the value function assigns the highest value to threataction, the agent
will perform well.

In the server job scheduling domain, finding alternativerapphes for compari-
son is less straightforward. Substantial research abbwggbeduling already exists
but most of the methods involved are not applicable hereusectney do not allow
jobs to be associated with arbitrary utility functions. Fsample, Liu and Lay-
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Fig. 4.4 The value function, shown as estimated steps to the goabliigs learned by softmax
NEAT+Q and Sarsa using tile coding.

land (86) present methods for job scheduling in a real-timérenment, in which
a hard deadline is associated with each job. McWherter €04l present methods
for scheduling jobs with different priority classes. Howewnlike the utility func-
tions shown in Section 3.4.2, the relative importance oftatype does not change
as a function of time. McGovern et al. (91) use reinforcenleatning for CPU
instruction scheduling but aim only to minimize complettone.

One method that can be adapted to the server job scheduskgst#éhe gener-
alizedcu rule (95), in which the server always processes at tirttee oldest job
of that typek which maximize<C; (ox)/p«, whereC, is the derivative of the cost
function for job typek, o is the age of the oldest job of typgeand py is the av-
erage processing time for jobs of tygeSince in our simulation all jobs require
unit time to process and the cost function is just the adalitiverse of the utility
function, this algorithm is equivalent to processing thaest job of that typé& that
maximizes—Uy (o), whereUy is the derivative of the utility function for job type
The generalizedu rule has been proven approximately optimal given convek cos
functions (95). Since the utility functions, and hence tbstdunctions, are both
convex and concave in our simulation, there is no theolegcarantee about its
performance in the server job scheduling domain. To see helvitxperforms in
practice, we implemented it in our simulator and ran it f&@0D episodes, obtaining
an average score 6f10,891.

Another scheduling algorithm applicable to this domairhis insertion sched-
uler, which performed the best in a previous study of a vamjlar domain (160).
The insertion scheduler uses a simple, fast heuristionvigs selects for processing
the job at the head of the queue but it keeps the queue ordeaaday it hopes will
maximize aggregate utility. For any given ordering of a et wbs, the aggregate
utility is:
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whereU;(-), a, andp; are the utility function, current age, and position in the ag,
respectively, of joki. Since there ar@]|! ways to order the queue, it is clearly in-
feasible to try them all. Instead, the insertion schedusesuhe following simple,
fast heuristic: every time a new job is created, the inseditheduler tries inserting

it into each position in the queue, settling on whicheveiitposyields the highest
aggregate utility. Hence, by bootstrapping off the presioudering, the insertion
scheduler must consider on|¥] orderings. We implemented the insertion sched-
uler in our simulator and ran it for 1,000 episodes, obtajran average score of
—13,607.

Neither thecu rule nor the insertion scheduler perform as well as softmax
NEAT+Q, whose final generation champions received an aeesagre of—9,723
over 1,000 episodes. Softmax NEAT+Q performed better tee¢ipe fact that the
alternatives rely on much greatpriori knowledge about the dynamics of the sys-
tem. Both alternatives require the scheduler to have ageelimodel of the system,
since their calculations depend on knowledge of the ufilictions and the amount
of time each job takes to complete. By contrast, softmax NEATlike many rein-
forcement learning algorithms, assumes such informasitvidden and discovers a
good policy from experience, just by observing state ttéors and rewards.

If, in addition to assuming the scheduler has a model of ttstesy, we make
the unrealistic assumption that unlimited computationvalable to the scheduler,
then we can obtain an informative upper bound on performakiceach time step
of the simulation, we can compute the optimal action anediy by treating the
scheduling problem as an integer linear program. For edeh §oJ and for each
position | in which it could be placed, the linear program contains dade x; <
{0,1}. Associated with each variable is a weight = U;(a; + j), which represents
the reward the scheduler will receive when jobompletes given that it currently
resides in positiorj. Since the scheduler’'s goal is to maximize aggregate yytilit
the linear program must maximizg; y ; wijx;;. In addition to the constraint that
Vij :xj € {0,1}, the program is also constrained such that each job is irtlgate
position:Vi : 3 ; x;j = 1 and that each position holds exactly one jop: y;xj = 1.

A solution to the resulting integer linear program is an oirtgthat will maxi-
mize the aggregate utility of the jobs currently in the quéithe scheduler always
processes the job in the first position of this ordering, it béhave optimallyas-
suming no more jobs arriveSince new jobs are constantly arriving, the linear pro-
gram must be re-solved anew at each time step. The resuktimgyior may still be
suboptimal since the decision about which job to processadenwithout reason-
ing about what types of jobs are likely to arrive later. Ndredess, this analytical
solution represents an approximate upper bound on perfarena this domain.

Using the CPLEX software package, we implemented a schedated on the
linear program described above and tested in our simulatdk,000 episodes, ob-
taining an average score of7,819. Not surprisingly, this performance is superior
to that of softmax NEAT+Q, though it takes, on average, 7Ates as long to run.
The computational requirements of this solution are na&lyiko scale well either,
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since the number of variables in the linear program growslcaiecally with respect
to the size of the queue.

Figure 4.5 summarizes the performance of the alternatikedsding methods
described in this section and compares them to softmax NEAT#also includes,
as a lower bound on performance, a random scheduler, whietivesl an average
score of—15,502 over 1,000 episodes. A Student’s t-test verifiedttteadifference
in performance between each pair of methods is statistisadhificant with 95%
confidence. Softmax NEAT+Q performs the best except foritteal programming
approach, which is computationally expensive and reliea orodel of the system.
Prior to learning, softmax NEAT+Q performs similarly to thendom scheduler.
The difference in performance between the best learnedipsland the linear pro-
gramming upper bound is 75% better than that of the baselimbom scheduler and
38% better than that of the next best method ghecheduler.

-4,000

-8.000

Average Score

-12,000

-16.000

Random Insertion C-Mu Rule Softmax NEAT+Q  Linear Programming

Method

Fig. 4.5 A comparison of the performance of softmax NEAT+Q and sé@tarnative methods
in the server job scheduling domain.

4.2.4 Comparing Darwinian and Lamarckian Approaches

As described in the beginning of this chapter, evolutiorfamyction approxima-
tion can be implemented in either a Darwinian or Lamarckashfon. The results
presented so far all use the Darwinian implementation of NEA. However, it
is not clear that this approach is superior even though itenetwsely matches bi-
ological systems. In this section, we compare the two ambesempirically in
both the mountain car and server job scheduling domainsyNdéimer empirical
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comparisons of Darwinian and Lamarckian systems have beeducted previ-
ously (168; 171; 110) but ours is novel in that individualridag is based on a
TD function approximator. In other words, these experiraautdress the question:
when trying to approximate a TD value function, is a Darwin@ Lamarckian
approach superior?

Figure 4.6 compares the performance of Darwinian and Laki@rdNEAT+Q
in both the mountain car and server job scheduling domainisoth cases, we use
off-line NEAT+Q, as the on-line versions tend to mute thdal#nces between the
two implementations. Though both implementations perfaeti in both domains,
Lamarckian NEAT+Q does better in mountain car but worse imesgob schedul-
ing. Hence, the relative performance of these two appraasdems to depend crit-
ically on the dynamics of the domain to which they are applladhe following
section, we present some additional results that elucidhateh factors affect their
performance.

Uniform Moving Average Score Per Episode Uniform Moving Average Score Per Episode
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Fig. 4.6 A comparison of Darwinian and Lamarckian NEAT+Q in the maimtar and server job
scheduling domains.

4.2.5 Continual Learning Tests

In this section, we assess the performance of the best netveiscovered by
NEAT+Q when evaluated for many additional episodes. We @mpwnvo scenar-
ios, one where the learning rate is annealed to zero afteep®des, just as in
training, and one where it is not annealed at all. Compargropmance in these
two scenarios allows us to assess the effect of continuadileg on the evolved
networks.
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We hypothesized that NEAT+Q’s best networks would perforefi wnder con-
tinual learning in the mountain car domain but not in sereér $cheduling. This
hypothesis was motivated by the results of early experimeith NEAT+Q. Origi-
nally, we did not anneal at all. This setup worked fine in the mountain car domain
but in scheduling it worked only with off-line NEAT+Q; onAé NEAT+Q actually
performed worse than off-line NEAT+Q! Annealing NEAT+Qé&alrning rate elimi-
nated the problem, as the experiments in Section 4.2.2vHriinding weights that
remain stable under continual learning is more difficultdheduling than in moun-
tain car, it could explain this phenomenon, siregreedy and softmax selection,
by giving many more episodes of learning to certain netwocksild cause those
networks to become unstable and perform poorly.

To test the best networks without continual learning, weaeld the final genera-
tion champion from each run of off-line Darwinian NEAT+Q aexhluated it for an
additional 5,000 episodes, i.e., 50 times as many episadiésaw in training. Dur-
ing these additional episodes, the learning rate was asthéakero by episode 100,
just as in training. To test the best networks with contineatning, we repeated this
experiment but did not anneal the learning rate at all. Tegmeany unnecessary
discrepancies between training and testing, we repeagearipinal NEAT+Q runs
with annealing turned off and used the resulting final geiimra&hampions.

Figure 4.7 shows the results of these tests. In the mountim@main, per-
formance remains relatively stable regardless of whetienetworks continue to
learn. The networks tested without annealing show moreudiicin but maintain
performance similar to those that were annealed. Howeweahe scheduling do-
main, the networks subjected to continual learning rapiilynmet in performance
whereas those that are annealed continue to perform asithieytchining. These re-
sults directly confirm our hypothesis that evolutionary patation can find weights
that perform well under continual learning in mountain cat bot in scheduling,
which explains why on-line NEAT+Q does not require an ane@é&tarning rate in
mountain car but does in scheduling.

These tests also shed light on the comparison between Danxand Lamarck-
ian NEAT+Q presented in Section 4.2.4. A surprising featfréhe Darwinian ap-
proachis thatitis insensitive to the issue of continuaiie®y. Since weight changes
do not affect offspring, evolution need only find weightsttfeanain suitable during
one individual’s lifetime. By contrast, in the Lamarckigopaoach, weight changes
accumulate from generation to generation. Hence, the Tatggdhat helped in
early episodes can hurt later on. In this light it makes mtrfense that Lamarck-
ian NEAT+Q performs better in mountain car than in schedylmhere continual
learning is problematic.

These results suggest that the problem of stability undetirnaal learning can
greatly exacerbate the difficulty of performing neural natvfunction approxi-
mation in practice. This issue is not specific to NEAT+Q, silf@-learning with
manually designed networks achieved decent performangendren the learning
rate was properly annealed. Darwinian NEAT+Q is a novel wiagoping with this
problem, since it obviates the need for long-term stabilityon-line evolutionary
computation annealing may still be necessary but it is legigal to set the rate
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Fig. 4.7 A comparison of the performance of the best networks evdyeNEAT+Q when tested,
with and without annealing, for an additional 5,000 episode

of decay precisely. When learning ends, it prevents onlyargindividual from
continuing to improve. The system as a whole can still pregjras evolution exerts
selective pressure and learning begins anew in the nextaj@ne

4.3 Discussion

The results in the mountain car domain presented in thistehaemonstrate that
NEAT+Q can successfully train neural network function apmators in a do-
main which is notoriously problematic for them. However, NE-Q requires many
more episodes to find good solutions (by several orders ofninate) than tile
coding does in the same domain. This contrast highlightsrgpoitant drawback
of NEAT+Q: since each candidate network must be trained Emaugh to let Q-
learning work, it has very high sample complexity. Howeuethe next chapter, we
introduce an enhancement to NEAT+Q that dramatically redits sample com-
plexity.

Itis not surprising that NEAT+Q takes longer to learn théadbding because it
is actually solving a more challenging problem. Tile codilike other linear func-
tion approximators, requires the human designer to engangtate representationin
which the optimal value function is linear with respect togh state features (or can
be reasonably approximated as such). For example, wheecotilimg was applied
to the mountain car domain, the two state features were ¢idejunctively (144).
By contrast, nonlinear function approximators like newetivorks can take a sim-
pler state representation alehrn the important nonlinear relationships. Note that
the state representation used by NEAT+Q, while discretideds not include any
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conjunctive features of the original two state featurese Trhportant conjunctive
features are represented by hidden nodes that are evolt@datically by NEAT.

Conjunctively tiling all state features is feasible in mtain car but quickly be-
comes impractical in domains with more state features. kamgle, doing so in
the scheduling domain would require 16 tile codings, onestmh action. In addi-
tion, each tile coding would have multiple 16-dimensioiiadgs. If 10 tilings were
used and each state feature were discretized into 10 buthetsesulting function
approximator would have 1610 x 10 cells. Conjunctively tiling only some state
features is feasible only with a large amount of domain eig®rHence, methods
like NEAT+Q that automatically learn nonlinear represéntes promise to be of
great practical importance.

The results in the scheduling domain demonstrate that tbpoged methods
scale to a much larger, probabilistic domain and can lednedders that outper-
form existing non-learning approaches. The differencesiriggmance between the
best learned policies and the linear programming upper ¢@ii5% better than
that of the baseline random scheduler and 38% better tharoththe next best
method, thecu scheduler. However, the results also demonstrate thatazoning
methods can do quite well in this domain. If so, is it worth theuble of learn-
ing? We believe so. In a real system, the utility functioret the learner maximizes
would likely be drawn directly from Service Level Agreem&(ELAS), which are
legally binding contracts governing how much clients pajrtkervice providers as
a function of the quality of service they receive (157). Hereven small improve-
ments in system performance can significantly affect theiseprovider’s bottom
line. Substantial improvements like those demonstratexlirresults, if replicated
in real systems, could be very valuable indeed.

Overall, the main limitation of the results presented is tthiapter is that they ap-
ply only to neural networks. In particular, the analysisatttbe effects of continual
learning (Section 4.2.5) may not generalize to other typéstion approximation
that are not as prone to instability or divergence if ovaired. While evolutionary
methods could in principle be combined with any kind of fuocapproximation, in
practice itis likely to work well only with very concise reggentations. Methods like
tile coding, which use many more weights, would result innlarge genomes and
hence be difficult for evolutionary computation to optimi#®wever, as Chapter 7
will demonstrate, other strategies which do not rely on etiohary computation
can effectively optimize such representations.



Chapter 5

Sample-Efficient Evolutionary Function
Approximation

As mentioned in Section 4.3, evolutionary function appneation suffers from one
important disadvantage: high sample complexity. Each icael representation in
the population must be evaluated for many episodes beforepdates have a sig-
nificant effect. High sample complexity is undesirable hseesample episodes are
typically the scarcest resource: each new episode may suhstantial real-world
costs whereas additional memory and CPU cycles are rdjainexpensive.

This chapter presents an enhancement to evolutionaryifunapproximation
designed to make it dramatically more sample-efficients EBmhancement relies on
TD methods that areff-policy, i.e., that can estimate the optimal value function
regardless of what policy the agent is following. By storgxperience from the
previous generation, sample-efficient evolutionary fiocapproximation can train
each new generation off-line using only computation time:additional sample
episodes are needed. The resulting function approximatordhen be evaluated
and selectively reproduced in many fewer episodes.

We implemented this enhancement in NEAT and tested thetimgidample-
efficient NEAT+Q algorithm in a deterministic variant of ger job scheduling. The
results demonstrate that sample-efficient NEAT+Q can |&atter policies than
NEAT or Q-learning alone and can do so in many fewer episduas the original
NEAT+Q approach.

5.1 Sample-Efficient NEAT+Q

For both NEAT and NEAT+Q, the number of episodes per germratimust be
much greater than the population sjB¢in domains that are highly stochastic. Such
domains have noisy fitness functions and hence each nesyoekformance must
be averaged over many episodes. For NEAT+Q, however, tharsgcond reason to
sete high, which applies even if the domain is deterministic:é@rhing needs time
to learn. In most domains, TD updates will not have substhimtipact in a single
episode. Consequently, the original NEAT+Q method is Jikel offer a practical

a7
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advantage over regular NEAT only in highly stochastic dameawheree must be
set high anyway. Otherwise, even if NEAT+Q ultimately digexs better policies,
it will take many more episodes to do so. Figure 5.1 illugtsahis problem.
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Fig. 5.1 A comparison of the number of episodes necessary for ewatuand learning in both
NEAT and NEAT+Q. No learning occurs in regular NEAT and ewdions can occur in a sin-
gle episode in deterministic domains (bottom left) but iegumany episodes in stochastic do-
mains (top left). NEAT+Q requires many episodes to trairhestwork but in stochastic domains,
those episodes were already necessary for evaluationifiof). tHence, the problematic case for
NEAT+Q occurs in deterministic domains, where many moresages are required for learning
than would have been for evaluation (bottom right).

This section presents sample-efficient NEAT+Q (163), aat@m designed to
remedy this shortcoming. By training networks on saved Bgpee, Q-learning
can have a substantial impact even wken|P|. As a result, NEAT+Q can improve
performance even in completely deterministic domains. [ Sasafficient NEAT+Q
works by exploiting the off-policy nature of Q-learning. &eise Q-learning’s up-
date rule is independent of the policy the agent is followimge network can be
updated while another is controlling the agent. Furtheenmametwork can be up-
dated based on data saved from previous sample episodas]lesg of what policy
was used during those episodes. Consequently, it is noss&geto use different
episodes to train each network. On the contrary, by savitg flam the episodes
used by the previous generation, each network in the papaole&n be pre-trained,
using computation time but no additional sample episodéiselfitness function is
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not too noisy then, once trained, the resulting functiorrapipnators can be evalu-
ated by NEAT+Q using onlyP| episodes.

To achieve this sample-efficiency, NEAT+Q records all trensition samples,
of the form(s,a,r,s), from the episodes used to evaluate the previous generation
Then, at the beginning of each generation (i.e., after lineAlgorithm 6), it calls
thePRETRAIN function described in Algorithm 7. In the first generationsamples
have been collectedT(| = 0) and no pre-training occurs.

Algorithm 7 PRETRAIN(P, T,c,a,y,A)

1: /I P: population, T: sample transitions, c: output scale,learning rate
2: /I y. discount factorA : eligibility decay rate

3
4: for i — 1to|P| do

5. for j«—1to|T|do

6: Qll « EvAL-NET(PJ[i], T[j].S)

7 BACKPROHRP[i], T[j].s, T[j].a, T[j].r + ymaxQ[k]/c,a,y,A)

Because it saves sample episodes for reuse, sample-affdiXT+Q bears a
close resemblance to experience replay methods for refoent learning (84).
In particular, it is similar to Neural Fitted Q Iteration @)1 which uses data from
saved episodes to train neural network TD function appraiams. The primary
difference is that these methods do not learn represengdtiecause they use saved
experience to train only one function approximator. By casi, sample-efficient
NEAT+Q uses saved experience to train an entire populafiéanztion approxi-
mators with heterogeneous representations and then ssitfjeen to evolutionary
selection.

If computational resources are plentiful, there are manyswe extend the pre-
training phase. For example, episodes could be saved figresious generations
instead of just the last one and/or each network could beddaiepeatedly on each
sample instead of just once. To make our experiments mostbfeawe do not
evaluate these alternatives in this chapter. However,xperements presented be-
low suggest that additional pre-training does not impromdgrmance.

Assuminge is reduced tgP|, this algorithm will have much higher amortized
computational complexity per episode than the original NEQ method, since
each network must be trained before evaluations can begwetlkr, it will have
much lower sample complexity since each generation regjoigny fewer episodes.
This trade-off is likely to be advantageous in practicecsisample experience is
typically a much scarcer resource than computation time.

5.2 Results

In this chapter, we consider a deterministic variation @& server job scheduling
task that was introduced in Section 3.4.2. At the beginnihgazh learning run,
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we randomly select the sequence of 200 jobs that the agelnpmwitess in each
episode. Hence, within each run, every episode uses the saguence of jobs,
though that sequence differs for each run. Making the tagkrighénistic allows us
to evaluate sample-efficient NEAT+Q in the scenario for \whittwas designed.
In the stochastic version of the task, the fitness functioveiy noisy and each
network must be evaluated for approximately 100 episodgsttan accurate fithess
estimate, giving the original NEAT+Q method enough timeigmgicantly improve
performance. In the deterministic version, each netwonkiEaaccurately evaluated
in a single episode and hence NEAT+Q will significantly img@erformance only
if it is made sample-efficient.

Figure 5.2 shows the performance of NEAT and NEAT+Q in thegheinistic
scheduling task, withP| = e= 50. The graph shows uniform moving average score
per episode averaged over the past 100 episodes. The parfcenadvantage of
NEAT+Q that was shown in Section 4.2.1 disappears becausar@ng does not
have a significant effect in one episode.
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Fig. 5.2 A comparison of the performance of NEAT with both regular aadhple-efficient ver-
sions of NEAT+Q in the deterministic server job scheduliagkt

Nonetheless, NEAT+Q can substantially improve perforreawen in the deter-
ministic version of the task if it is made sample-efficierigute 5.2 also shows the
performance of sample-efficient NEAT+Q. By pre-trainingtwsaved episodes, this
method substantially outperforms regular NEAT and theinagNEAT+Q method.
Obtaining this performance improvementrequires additioomputation time (pre-
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training requires 10,000 neural network updates for eaahiee of the population)
but the resultis a dramatic drop in sample complexity. Byrgpepisodes, NEAT+Q
can outperform NEAT even when the number of episodes perggoeis reduced
by two orders of magnitude. A Student’s t-test confirmed thatperformance dif-
ference between sample-efficient NEAT+Q and both regulaATNE) and NEAT
is statistically significant with 95% confidence.

In these experiments, sample-efficient NEAT+Q saves tiiansi from all the
episodes used to evaluate the previous generation. Heack, reetwork is pre-
trained with 50 sample episodes. Would performance improgee if additional
episodes were saved? Could the same performance be achighddss compu-
tation time if fewer episodes were saved? To address thesstiqas, we ran addi-
tional trials of sample-efficient NEAT+Q, pre-training on1®, 25, or 100 episodes
instead of 50. Figure 5.3 summarizes the results of theseriements by compar-
ing the average performance of each method after 30,000dgss Surprisingly,
pre-training with as few as 5 saved episodes (1,000 updatesgwork) still yields
a substantial performance advantage. Furthermore, girgrtg with 100 episodes
(20,000 updates per network) does not improve performaficgtudent’s t-test
demonstrated that, while the differences between eachlsagffirient version of
NEAT+Q and both regular NEAT+Q and NEAT are significant, thfedences
among them are not significant.
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NEAT NEAT+Q  N=5 N=10 N=25 N=50 N=100

Sample Efficient NEAT+Q with N saved episodes

Fig. 5.3 A comparison of the performance of NEAT, NEAT+Q and samflieient NEAT+Q with
different numbers of saved episodes. Each bar represents/énage score after 30,000 episodes
and hence is comparable to the right edge of Figure 5.2.
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5.3 Discussion

Together, these results clearly demonstrate that sanfipdeeet evolutionary func-
tion approximation can substantially improve performaraathermore, it can do
so without using more sample episodes than a traditiondugwoary approach.
The price for this sample efficiency is increased computaiioomplexity. In prac-
tice, this trade-off is likely to be beneficial, since samplgerience is typically
a much scarcer resource. Even when computational resoarredisnited, this ap-
proach can be useful, as our results demonstrate that evedastramount of pre-
training can significantly improve performance.



Chapter 6

Automatic Feature Selection for Reinforcement
Learning

Chapters 3, 4, and 5 introduced methods for automaticaliyniging representa-
tions for reinforcement learning tasks. However, thosehaas focus only on the
agent'sinternalrepresentation of its solution, i.e., the structure of tlegping from
states to actions or from state-action pairs to value egtisn&lence, they still re-
quire a human to manually designiaput representation, i.e., to find a minimal set
of features sufficient to describe the agent’s current stathallenge known as the
feature selectioproblem. This chapter presents an extension to NEAT dedigme
automate feature selection in reinforcement learning lprob. This extension en-
ables agents to automatically evolve effective represienfor their inputs as well
as their internal workings.

In many real world tasks, the set of potential inputs thatlwared to the agent
is quite large. Feature selection is the process of detémmimhich subset of these
inputs should be included to generate the best perform&@uirg so correctly can
be critical to success. If any important features are exadyd may be impossible
to find an optimal policy. On the other hand, including superdis inputs can also
impede learning. Since each input adds at least one dinretesthe search space,
even a few extraneous features can be detrimental. Howttéeconsequences of
sub-optimal feature selection are not limited just to therner’s performance. If
adding inputs costs money (e.g. putting more sensors ona)rdben pruning out
unnecessary features can be vital.

Feature selection can often be performed by a human withgheopriate do-
main expertise. However, in some domains, no one has thésiegknowledge and,
even when experts do exist, employing them can be expensivérae consuming.
In such domains, automatic feature selection is necesBlamy and Langley (24)
divide feature selection techniques into two categoffiéers and wrappers Fil-
ters (26; 70) analyze the value of a feature set without cegathe learning al-
gorithm that will use those features. Instead, they relyatreled data. The data is
analyzed to determine which features are most useful imdisishing between the
category labels. This approach has been successful busvendly in supervised
learning tasks. In reinforcement learning scenarios, wiwetabeled data is avail-
able, filtering techniques are not applicable.

53
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By contrast, wrappers (103; 108) test a feature set by applyito the given
learning algorithm and observing its performance. Labelamples are not neces-
sary so this approach can be used in reinforcement learagkg tis well. However,
it requires a meta-learner to search through the spacetoféesets; evaluating any
point in that space requires an entire machine learning futs @wn. For most
real-world problems, this approach is computationallgasible.

This chapter presents Feature Selective NeuroEvolutidrugmenting Topolo-
gies (FS-NEAT) (164), a new learning method that avoids dincitations by in-
corporating the feature selection problem into the leaytask. FS-NEAT searches
for good feature sets at the same time as it trains netwoegts¢lceive those fea-
tures as input. Hence, it does not depend on human expéatiseded data sets, or
meta-learning.

FS-NEAT is based on NEAT, which evolves both the topology aeijhts of
a neural network. FS-NEAT goes one step further than redNii&XT by learning
the network’s inputs too. Using evolution, it automatigahd simultaneously de-
termines the network’s inputs, topology, and weights. tdgret al. (59) also used
neuroevolution to find useful subsets of available feattireggh, unlike FS-NEAT,
their system still requires a human to specify the size df¢hhset in advance.

A critical feature of NEAT is that it begins with networks ofimmal topology
(i.e., with no hidden nodes and all inputs connected diyeotthe outputs). As evo-
lution proceeds, NEAT adds links and hidden nodes througtatiom. Since only
those additions that improve performance are likely to lbaimed, it tends to find
small networks without superfluous structure. Startingimally also helps NEAT
learn more quickly. When networks in its population are $nitaf optimizing over
a lower-dimensional search space; it jumps to a larger spagevhen performance
in the smaller one stagnates.

FS-NEAT further exploits this same premise. It begins wihogulation of net-
works that are even smaller than in regular NEAT. These ndgswoontain no con-
nections at all, not even those connecting inputs to outgate those added by an
initial mutation step. Hence, they are little more than gaafl inputs and outputs.
Evolution then proceeds as in regular NEAT, with hidden rsoded links added
through mutation. Feature selection occurs implicitly aky@hose links emerging
from useful inputs will tend to survive.

In addition to introducing this novel method, this chaptezgents experiments
comparing FS-NEAT to regular NEAT in a challenging reinfament learning do-
main: an autonomous car racing simulation called RARS (IB4¢ results of these
experiments confirm that when some of the available inpwsedundant or irrel-
evant, FS-NEAT can learn better and faster than regular NEA&ddition, these
results demonstrate that the networks FS-NEAT evolves ra@dler and require
fewer inputs.
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6.1 FS-NEAT

NEAT’s initial networks are small but not as small as possifihe structure of the
initial networks, in which each input is connected dire¢tyeach output, reflects
an assumption that all the available inputs are useful aodldtbe connected to the
rest of the network. In domains where the input set has bdentsd by a human
expert, this assumption is reasonable. However, in manyagtsmo such expert
is available and the input set may contain many redundantelevant features.
In such cases, the initial connections used in regular NEKT significantly harm
performance by unnecessarily increasing the size of thelsspace.

FS-NEAT is an extension of NEAT that attempts to solve thibpem by starting
even more minimally: with networks having almost no linksalit As in regular
NEAT, hidden nodes and links are added through mutation atyttibose additions
that aid performance are likely to survive. Hence, FS-NEAgibs in even lower
dimensional spaces than regular NEAT and feature seleationrs implicitly: only
those links emerging from useful inputs will tend to survive

Exactly how should we initialize the population in orderaplement this idea?
The most minimal initial topology possible would containiidden nodes or links
at all. However, such networks would not generate any ou@iously, spending
a generation to evaluate a population of such networks woeldasteful. There-
fore, for each network in the initial population, FS-NEATdomly selects an input
and an output and adds a link connecting them. Figure 6.1 assphe initial
network topologies of regular NEAT and FS-NEAT. After thétiad population is
generated, FS-NEAT behaves exactly like regular NEAT.

In most tasks, FS-NEAT’s initial networks will lack the stture necessary to
perform well. However, some will likely connect a relevanpit to an output in
a useful way and hence outperform their peers. Such eatinctions provide an
initial gradient to the evolutionary search. Complexificatthen drives that search
towards networks that use the most appropriate inputs|dgg@and weights.

Since FS-NEAT incorporates the feature selection probiemthe learning task
itself, it avoids the need for expensive meta-learners byedrappers. In addition,
since it does not rely on labeled data like filters do, it caafygied to reinforcement
learning problems. The next section describes one sucicafiph.

6.2 Testbed Domain

The experiments presented in this chapter were conductid iRobot Auto Rac-
ing Simulator (RARS) (154). This domain was selected bexzatiSIEAT's previous
success evolving controllers for it (136) and because th#éadle inputs (described
below) pose a natural feature selection challenge. FS-NEAId in principle be
applied to many other domains, including the mountain cdrsanver job schedul-
ing tasks employed in previous chapters, if irrelevant adlindant features were
added. Such experiments are left for future work.
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Outputs Q

Inputs o ®

Regular NEAT FS-NEAT

Fig. 6.1 Examples of initial network topologies for both regular NEAnd FS-NEAT. In regular
NEAT, networks in the initial population have all inputs caeted directly to all outputs. In FS-
NEAT, those networks have one link connecting a randomigcset! input and output.

RARS is a Java-based program that uses a two-dimensionalrmdimulate
cars racing around a track. The simulation is quite realestid takes into account
effects such as skidding and traction. In addition, RARS et®the noise that occurs
in real-world effectors. For example, the coefficient offion is stochastic such that
the effect of trying to accelerate is not entirely preditéalhe goal in this domain
is to develop a controller that can race an automobile arthmttack as quickly as
possible without damaging it.

The RARS simulator offers a plethora of raw data about th's tamediate envi-
ronment. This data was consolidated into a rangefindermsysteown in Figure 6.2,
that projects rays at different angles relative to the aarisent heading. These rays
measure the distance from the car to the edge of the roadhwahaws the agent to
estimate its position in the road and perceive upcomingeasurvhis sensor system
creates a very typical feature selection problem. How mangefinders does the
controller need in order to drive the car most effectivefyt®d few are included, the
networks NEAT evolves will not have enough information tostea the task. If too
many are included, NEAT will be forced to search in an unnsaely large search
space, which may substantially reduce its performance.

To test the ability of FS-NEAT to automatically address thisblem, the net-
works are provided with a set of 80 rangefinders (evenlyiisted across the 180
degree range in front of the car), which we expect to be maaia tiecessary. In
addition, another 80 irrelevant inputs are included, edalhich supplies random
numbers drawn uniformly from the rand@ 1]. The number of irrelevant and re-
dundant features was selected to ensure a challengingdesglection problem. In
Section 6.3, we examine the relative performance of FS-NBAd NEAT as the
number of irrelevant and redundant features varies.

Finally, there is one input specifying the vehicle’s cutreglocity and one bias
unit, for a total of 162 inputs. If FS-NEAT can automaticaligcover a useful subset
of these inputs, it should outperform regular NEAT, whiclfoisced to use all 162.
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(

Fig. 6.2 The range finder sensor system in RARS. A set of rays (sevdnsitase) are projected
at different angles to allow the agent to estimate its pmsitn the road and perceive upcoming
curves.

In addition to these inputs, the networks have two outpute: gpecifying the
agent’s desired speed and the other specifying the agergised heading. In our
experiments, a trial consists of 2000 timesteps on a stdidARS track called
“clkwis,” shown in Figure 6.3. This track was selected besgaitiis small enough to
allow efficient evaluations but still captures a wide rangdriving challenges (i.e.
straight sections, turns, and an S-shaped curve). Duricly #aestep, input from
the environment is fed into the network controlling the cetre network is then
activated once and the values of the outputs are used ta dagusehicle’s heading
and speed. At the end of each trial a score is computed-a®2d — b, whered
is the distance traveled aris a damage penalty computed internally by RARS
as a function of the time the vehicle spends off the trackc&the simulation is
noisy, each fitness evaluation in NEAT consists of 10 tricis;agent’s fitness is the
average of the scores received in these trials. Table 6vida®more details on the
NEAT parameters used in these experiments, which weretsdléa match those
used in previous research about applying NEAT to RARS (136).

Parameter Value Parameter Value Parameter Valu
weight-mut-power | 0.5 recur-prop 0.0 disjoint-coeff €;) 1.0
excess-coeff@) 1.0 mutdiff-coeff (cs) 2.0 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 ||mutate-add-node-prolmg)| 0.02 |[mutate-add-link-probng)| 0.1

interspecies-mate-rate 0.05 mate-multipoint-prob | 0.6 || mate-multipoint-avg-prop 0.4

mate-singlepoint-prob| 0.0 mate-only-prob 0.2 recur-only-prob 0.0
pop-size p) 100 dropoff-age 1000 newlink-tries 50
babies-stolen 0 num-compat-mod 0.3 num-species-target | 6

Table 6.1 The NEAT parameters used in the experiments described srctapter. Stanley and
Miikkulainen (137) describe the semantics of these pararaéh detail.
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Fig. 6.3 The “clkwis” track used in the FS-NEAT experiments. It captia wide range of driving
challenges (i.e. straight sections, turns, and an S-shaped).

6.3 Results

Using this setup, we performed experiments comparing eedNEAT to FS-NEAT.
For each method, we conducted 10 runs, each of which ran forg2@erations.
The results are summarized in Figure 6.4. Each line in thelgrapresents the
score received by the best network from each generatioraged over all 10 runs.
The graph demonstrates that when some of the availablesigratredundant or
irrelevant, FS-NEAT can learn better networks and learmtlf@ster than regular
NEAT. In this graph and all those presented below, a Stusléstést verified, with
95% confidence, the statistical significance of the diffeedmetween FS-NEAT and
regular NEAT.

Figure 6.5 shows, for the same experiments, how many in@ws at least one
connection emerging from them in the best network of eacleiggion. Regular
NEAT always uses all 162 inputs but FS-NEAT finds better neltwdhat use only
a small fraction of them. In fact, when FS-NEAT's performaregins to plateau
around generation 65, its performance is already 17.5%1b#tan regular NEAT
ever achieves, at which point its best network has on avesabel10% as many
connected inputs. FS-NEAT's performance continues tgxupeslowly after gener-
ation 65, improving another 4.6% by generation 200, at whaht its best network
has on average 22.9% as many inputs as regular NEAT.

Figure 6.6 shows, for the same experiments, the size of teenatwork from
each generation, where size is simply the total number oésddnly connected
inputs are counted) plus the total number of links. This grdg@monstrates that FS-
NEAT evolves substantially smaller networks than regul&”W does. When FS-
NEAT’s performance begins to plateau around generation$best network is on
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Fig. 6.4 A comparison of the performance of regular NEAT and FS-NEAThe RARS domain
with 162 available inputs, 80 of which are irrelevant to taskt Each line in the graph represents
the score received by the best network from each generatienaged over all 10 runs. By learning
appropriate feature sets, FS-NEAT learns significantlyebetetworks and learns them faster than
regular NEAT.

average only 9.7% as large as regular NEAT's. When the rumplt=ie at generation
200, FS-NEAT’s best network is on average only 18.5% as lasgegular NEAT's.
In these experiments, FS-NEAT found high performing neksdhat use only
16 inputs, which implies that the feature set we suppliecholéarners, with 80
rangefinders, was much larger than needed. How would thenpeshce of FS-
NEAT relative to regular NEAT change if the initial featuiet svere closer to ideal?
How many redundant and irrelevant features must be presémtebFS-NEAT pro-
vides a significant advantage? Does FS-NEAT's performanpedvement continue
to increase as the feature set gets larger? To address thestogs, we conducted
several additional experiments with feature sets of diffiérsizes. These experi-
ments use the setup described above but instead of 80 rashgysfitney include 5,
20, 40, or 160 rangefinders. In each case, the rangefindersached with an equal
number of irrelevant inputs. Adding the velocity and bigaits yields initial feature
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Connected Inputs of Best Net Per Generation
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Fig. 6.5 A comparison of the number of inputs used by regular NEAT aBeNEAT in the RARS
domain with 162 available inputs. Each line in the graphesents the number of inputs with at
least one connection emerging from them in the best netwibelach generation. Regular NEAT
always uses all 162 inputs but FS-NEAT evolves better nétsvtdrat uses significantly fewer of
them.

sets of size 12, 42, 82, and 322. For each size and for eactothetle conducted
10 runs, each of which ran for 200 generations.

Figure 6.7 summarizes the results of these experiments dwish, for each
method and feature set size, the performance of the besbrieimthe entire run,
averaged over all ten runs. Even when the initial featureetains only 12 inputs,
FS-NEAT still performs better. As the size of the featuregsetvs, the performance
of regular NEAT deteriorates. By contrast, the performanfcES-NEAT remains
nearly constant even as the feature selection task it famssniies ever more diffi-
cult.

Figure 6.8 compares the number of connected inputs in thenleésork in the
entire run, averaged over all ten runs. Regular NEAT alwags all available inputs
while FS-NEAT learns to use much smaller subsets. Even asizheof the feature
set grows, the number of inputs used by FS-NEAT's best ndtsvetays nearly
constant. Similarly, Figure 6.9 compares the sizes of tkase networks. The size
of regular NEAT’s best networks increases linearly withpexs to the number of
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Size of Best Net Per Generation
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Fig. 6.6 A comparison of the size of the networks evolved by regulaANEnd FS-NEAT in the
RARS domain with 162 available inputs. Each line in the greggiresents the number of nodes
(only connected inputs are counted) plus the number of Imkee best network of each generation.
FS-NEAT evolves significantly smaller networks than regilN&AT does.

available features, whereas FS-NEAT's best networks staylyconstant in size.
Therefore, FS-NEAT consistently uses features sets withynfiegwer extraneous
inputs than regular NEAT and, in so doing, finds better sohgifaster.

6.4 Discussion

The empirical results presented in this chapter demoestihat when some of the
available inputs are redundant or irrelevant, FS-NEAT eanri better networks and
learn them faster than regular NEAT. In addition, the neksdtlearns are smaller
and use fewer inputs. These results are consistent acrassdesets of different
sizes.

One interesting question raised by these results is whyitleeasid number of
inputs used by FS-NEAT do not plateau. For example, FigutesBows that per-
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Score of Best Net Per Run
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Fig. 6.7 A comparison of the performance of regular NEAT and FS-NEA&Tfoss feature sets of

different sizes. Each line in the graph represents the seosived by the best network in the entire
run, averaged over all 10 runs. The performance of regulakiNgets significantly worse as the

feature set gets larger whereas the performance of FS-N&4S searly constant.

formance improvements mostly level off by generation 65weleer, Figures 6.5
and 6.6 show that the size and number of inputs used by FS-ISE&Bt networks
continue to grow linearly through generation 200. Shouldneé expect them to
plateau also once the “right” size has been found? Countgtiirely, the answer
is no. The goal of both NEAT and FS-NEAT is to determine théfticomplexity
to solve a given task. Hence, when performance at a certanplexity plateaus,
these algorithms proceed to explore at higher complexitirethese experiments,
that exploration pays few dividends after generation 65.

Nonetheless, even given such exploration, we would stifleek to see size
plateau if there were a strong selective pressure aganggtrlaetworks since none
of these networks would likely become generation champi®hs fact that they
do implies that FS-NEAT is not completely intolerant of redant and irrelevant
inputs. This behavior makes sense because the presenaehdhputs may not be
harmful if, for example, NEAT can learn to set the weights egirey from them
close to zero. In this respect, FS-NEAT behaves exactly asautd wish: it selects

350
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Fig. 6.8 A comparison of the number of connected inputs in regular NBAd FS-NEAT across
feature sets of different sizes. Each line in the graph sgmts the number of inputs with at least
one connection in the best network of the entire run, averayer all 10 runs. Regular NEAT
always uses all available inputs while FS-NEAT learns togigsificantly smaller subsets.

against large networks only when their size presents afgignt disadvantage to
the learner.

In evolutionary search, it is critical that the fitness of thigial population have
some variance: unless some individuals are more promikargathers, progress is
unlikely. This issue is of particular concern in FS-NEATa@rits initial population
consists of degenerate networks that are almost compldistpnnected. While
the experiments presented in this chapter verify that F@INEéobnsistently finds
an initial gradient for learning, those experiments testely one population size:
100. We wondered if the relative performance of FS-NEAT wlodéteriorate for
smaller populations since the probability of finding anialipromising network
would decrease. However, this problem does not occur in thR$Rdomain. In
fact, informal experiments with different population szedicate that both regular
NEAT and FS-NEAT perform robustly with populations as snaalP5 and that FS-
NEAT retains its substantial advantage over regular NEASn¢#, at leastin RARS,

350
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Size of Best Net Per Run
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Fig. 6.9 A comparison of network size in regular NEAT and FS-NEAT aerfeature sets of differ-
ent sizes. Each line in the graph represents the size of gienbevork of the entire run, averaged
over all 10 runs. Regular NEAT’s best networks increase ze significantly as the number of
available features grows, whereas FS-NEAT's best netwstdgsnearly constant in size.

FS-NEAT’s smaller initial networks seemorelikely to point evolution in the right
direction.

In other settings, however, the lack of initial gradient nieya serious problem.
For example, when FS-NEAT is combined with NEAT+Q), to evdde¢h input and
internal representations of neural network function agipnators, performance is
poor, perhaps for this reason (see Section 9.2.1 for a disrusf this negative
result). Nonetheless, FS-NEAT has also been successhplied in a domain very
different from RARS, namely distributed instruction platent in compilers (37).
Hence, the initial gradient required for FS-NEAT to succéedot unique to the
RARS domain.

The most revealing test of FS-NEAT's robustness is how itBopmance changes
when the size of the initial feature set increases. As thiggets larger, feature
selection becomes more important, as confirmed by the degafinegular NEAT'’s
performance in Figure 6.7. FS-NEAT's performance, by astirdoes not decline at
all. Most strikingly, the size and number of inputs used byNESAT's best networks
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remains approximately constant across different featetrsiges, whereas regular

NEAT’s networks grow ever larger. Together, these resuiggsst that the efficacy
of FS-NEAT scales well to large feature selection problems.






Chapter 7
Adaptive Tile Coding

Chapters 4 and 5 demonstrate how an agent can automatidalty the represen-
tation of neural network function approximators. This dieagxtends that work by
introducing adaptive methods for a different type of fuantapproximator, namely
tile coding. Extending adaptive methods beyond neural okdsvis important be-
cause, while neural networks are a powerful representaties are not a panacea.
On the contrary, they have some significant drawbacks. perttaef among these
is their inscrutability. Even when neural networks perfavedl, their inner workings
are typically difficult or impossible for a human to understa

This “black box” quality means that the cause of poor perfamge is often diffi-
cult to diagnose. Hence, it is not feasible for the agem&sonabout the inadaque-
cies of its representation and how best to remedy them.ddstecan onlysearch
for a good representation, which is why Chapter 4 focusesnogvalutionary ap-
proach to finding good representations. While Chapter 5 dstnates that such an
approach can be made sample-efficient, testing each caediglaesentation re-
mains expensive.

By contrast, the behavior of linear representations sudheasodings are typi-
cally much easier to interpret. Unlike neural networks, ffects of any particular
weight are contained in a particular region of the state splgrthermore, changes
to the representation (e.g., splitting tiles in two) havasaxjuences that are largely
predictable. Hence, an agent, by analyzing its own behaaorreason about how to
improve its representation without requiring expensigce. This chapter presents
adaptive tile codinga novel method for doing so.

Tile coding, which forms a piecewise-constant approxioratf the value func-
tion, requires a human designer to choose the size of eaah #lach dimension of
the state space. Adaptive tile coding automates this psdegstarting with large
tiles and making them smaller during learning by splittingsting tiles in two. Be-
ginning with simple representations and refining them oweetis a strategy that
has proven effective for NEAT and NEAT+Q, as well as otherction approx-
imators (36; 102). In addition to automatically finding go@gresentations, this
approach gradually reduces the function approximator&l lef generalization over
time, a factor known to critically affect performance iretdoding (126).

67
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To succeed, adaptive tile coding must make smart decisibostavhich tiles
to split and along which dimension. This chapter comparesdifferent criteria
for prioritizing potential splits. Thealue criterionestimates how much the value
function will change if a particular split occurs. By corgtathepolicy criterion
estimates how much the policy will change if a given splitursc

Empirical results in two benchmark reinforcement learniagks demonstrate
that the policy criterion is more effective than the valugecion. The results also
verify that adaptive tile coding can automatically discoepresentations that yield
approximately optimal policies and that the adaptive appins speed of learning
is competitive with the best fixed tile-coding represeotadi

7.1 Background

This section briefly describes tile coding representatiand how they are used
to approximate value functions. For simplicity, this chafbcuses on MDPs that
are continuous but deterministic, though in principle thettmds presented could
be extended to stochastic domains. Hence, the transitioardics are described by
T : Sx A— Ssuch that an agent in stege Sthat takes actioa € A will transition to
stateT (s,a). As in previous work on adaptive function approximation;(886; 102),
we also assume the agent has a model of its environmenfl(isandR are known).
Hence, the agent need only ledf, notQ*.

7.1.1 Tile Coding

In tile coding (4), a piecewise-constant approximatiorhef optimal value function
is represented by a set of exhaustive partitions of the spatee calletilings. Typi-
cally, the tilings are all partitioned in the same way butdightly offset from each
other. Each element of a tiling, calledike, is a binary feature activated if and only
if the given state falls in the region delineated by that titgyure 7.1 illustrates a
tile-coding scheme with two tilings.

The value function that the tile coding represents is detethby a set of
weights, one for each tile, such that

V(s) = i bi (s)w

wheren is the total number of tiledj;(s) is the value (0 or 1) of th&h tile given
states, andw; is the weight of that tile. In practice, it is not necessargum over all
ntiles since only one tile in each tiling is activated for aggiwstate. Givemtilings,
we can simply compute the indices of theactive tiles and sum their associated
weights.
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tiling #1

tiling #2

N\

I_ I state space

<«———state feature #2 ——

<«—— state feature #| ——

Fig. 7.1 An example of tile coding with two tilings. Thicker lines iiwéte which tiles are activated
for the given stats.

Given a model of the MDP as described above, we can updatathe estimate
of a given states by computingAV (s) using dynamic programming:

AV (s) = maxy[R(s,a) + W (T(s,a))] = V(s)

and adjusting each weight so as to redAtKs):
Wi — W+ %bi ()AV(s)

whereqa is a learning rate parameter. As before, it is not necessanpdate alh
weights, only them weights associated with tiles activated by s&tAlgorithm 8
shows a simple way to learn an approximation of the optimkleséunction using
tile coding. The functiomCTIVE-TILE returns the tile in the given tiling activated
by the given state. If only one tiling is used, then there isade-off between speed
and precision of learning. Smaller tiles yield more presialeie estimates but take
longer to learn since those estimates generalize less lgrdaditiple tilings can
avoid this trade-off, since more tilings improve resolatwithout reducing capacity
for generalization.
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Algorithm 8 TILE-CODING(S,A, T,R, o, y,m,n)
: fori—21tomdo
Initialize tiling i with n/mtiles
for j < 1ton/mdo
Initialize tile j with zero weight
repeat
s« random state frons
AV(s) — maxg[R(s.) + W (T(s,2))] ~V(9)
for i +— 1tomdo
w « weight of ACTIVE-TILE(S)
10: w—w+ ZAV(s)
11: until time expires

NI~ WNE

7.2 Method

Tile coding is a simple, computationally efficient method &pproximating value
functions that has proven effective (144; 140). Howevdrai two important limi-
tations.

The first limitation is that it requires a human designer torectly select the
width of each tile in each dimension. While in principle silean be of any size and
shape, they are typically axis-aligned rectangles whoskhsiare uniform within
a given dimension. Selecting these widths appropriatetyrnaan the difference
between fast, effective learning and catastrophicallyr pesformance. If the tiles
are too large, value updates will generalize across regioB8swith disparate val-
ues, resulting in poor approximations. If the tiles are towmh, value updates will
generalize very little and learning may be infeasibly slow.

The second limitation is that the degree of generalizagdixed throughout the
learning process. The use of multiple tilings makes it gaesio increase resolu-
tion without compromising generalization, but the degrégeneralization never
changes. This limitation is important because recent reeedemonstrates that
the best performance is possible only if generalizationr&lgally reduced over
time (126). Intuitively, broad generalization at the begiy allows the agent to
rapidly learn a rough approximation; less generalizatidh@end allows the agent
to learn a more nuanced approximation.

This section presenglaptive tile codinga novel function approximation method
that addresses both of these limitations. The method begthssimple represen-
tations and refines them over time, a strategy that has preffective for NEAT
and NEAT+Q, as well as well as piecewise-linear represmmsitbased on kd-
trees (102), and uniform grid discretizations (36). Adaptile coding begins with
a few large tiles, and gradually adds tiles during learnipgilitting existing tiles.
While there are infinitely many ways to split a given tile, fbe sake of computa-
tional feasibility, our method considers only splits thatide tiles in half evenly.
Figure 7.2 depicts this process for a domain with two stedéufes.

By analyzing the current value function and policy, the agem make smart
choices about when and where to split tiles, as detailedabétoso doing, it can
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Fig. 7.2 An example of how tiles might be split over time using adaptile coding.

automatically discover an effective representation tleattes more resolution to
critical regions ofS, without the aid of a human designer. Furthermore, learning
with a coarse representation first provides a natural anohzatic way to reduce
generalization over time. As a result, multiple tilings @@ longer necessary: a
single, adaptive tiling can provide the broad generaliratieeded early in learning
and the high resolution needed later on. The remainder®&#ttion addresses two
critical issues: when and where to split tiles.

7.2.1 When to Split

Correctly deciding when to split a tile can be critical to feemance. Splitting a
tile too soon will slow learning since generalization wik prematurely reduced.
Splitting a tile too late will also slow learning, as updatgl be wasted on a repre-
sentation with insufficient resolution to further improvawe estimates. Intuitively,
the agent should learn as much as possible with a given mpet®n before refin-
ing it. Hence, it needs a way to determine when learning hete@lied.

One way to do so is by trackingellman error(i.e., AV). As long asV is im-
proving, |AV| will tend to decrease over time. However, this quantity isexely
noisy, since updates to different tiles may differ greatlyriagnitude and updates to
different states within a single tile can move the valuenestes in different direc-
tions. Hence, a good rule for deciding when to split shouldstaer Bellman error
but be robust to its short-term fluctuations.

We use the following heuristic. For each tile, the agentksabte lowes{AV |
occurring in updates to that tile. It also maintains a glamainteru, the number of
updates occurring since the updated tile had a new lo\é4t (each update either
incrementsau or resets it to 0). When exceeds a threshold paramepeithe agent
decides that learning has plateaued and selects a tileitolsmther words, a split
occurs afterp consecutive updates fail to produce a new tile-specific /.t
Hence, the agent makegbal decision about when learning has finished, since

1 There are many other ways to determine when learning hasapletl. For example, in informal
experiments, we applied linear regression to a window a&fmgdV | values. Learning was deemed
plateaued when the slope of the resulting line dropped bel@mall threshold. However, this
approach proved inferior in practice to the one describexv@bprimarily because performance
was highly sensitive to the size of the window.
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|AV| may temporarily plateau in a given tile simply because tlfiects of updates
to other tiles have not yet propagated back to it.

7.2.2 Whereto Split

Once the agent decides that learning has plateaued, it reagtedwhich tile to
split and along which dimensicghThis section presents two different approaches,
one based on expected changes to the value function andtbe @t expected
changes to the policy. Both require the agent to mairgalntiles which estimate,
for each potential split, what weights the resulting tilesad have. Since each state
is described b state features, each tile hadssub-tiles.

When a new tile is created, its sub-tile weights are initidi to zero. When the
agent updates staseit also updates thk sub-tiles that are activated lsyusing the
same rule as for regular weights, except that the updatenipated by subtracting
the relevant sub-tile weight (rather than the old valuenestie) from the target value:

Awg(s) = maxa[R(s,a) + W(T(s,a))] — wq(s)

wherewy(s) is the weight of the sub-tile resulting from a split along dimsion

d activated by state. Algorithm 9 describes the resulting method, with regular
weight updates in lines 8-9 and sub-tile weight updateseslil0-13. In line 19,
the agent selects a split according to one of the criteriailéeltin the remainder of
this section.

7.2.2.1 Value Criterion

Sub-tile weights estimate what values the tiles resultingfa potential split would
have. Thus, the difference in sub-tile weights indicateg tiasticallyv will change

as aresult of a given split. Consequently, the agent canmalyiimproveV by per-
forming the split that maximizes, over all tiles, the valdéwy , —wqg |, wherewg
andwy are, respectively, the weights of the upper and lower deb-tif a potential
split d. Using thisvalue criterionfor selecting splits will cause the agent to devote
more resolution to regions &whereV changes rapidly (where generalization will
fail) and less resolution to regions where it is relativedyistant (where generaliza-
tion is helpful).

2 The agent splits only one tile at a time. It could split mu&ifiles but doing so would be similar
to simply reducingp.
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Algorithm 9 ADAPTIVE-TILE-CODING(S A, T,R Kk, a,y,n, p)
1:u<0
2: Initialize one tiling withn tiles
3: fori«+ 1tondo
4 Initializeith tile and X sub-tile weights to zero
5: repeat
6: s« random state frons
7
8

AV(s) — maxa[R(s,a) + W (T (s,a))] - V(s)
. w<« weight of tile activated by
9:  w—w+aAV(s)
10: ford<— 1tokdo

11: wy < weight of sub-tile w.r.t split alond activated bys
12: Awg = maxg[R(s,a) + W (T (s,a))] — Wy

13: Wy «— Wq + aAwy

14: if |AV| < lowest Bellman error on tile activated Isyghen
15: u—0

16: else

17: u—u+1

18: if u> pthen

19: Perform split that maximizes value or policy criterion
20: u—~0

21: until time expires

7.2.2.2 Policy Criterion

The value criterion will split tiles so as to minimize error\i. However, doing so
will not necessarily yield maximal improvement m For example, there may be
regions ofS whereV* changes significantly butt* is constant. Hence, the most
desirable splits are those that enable the agent to improsegardless of the effect
onV. To this end, the agent can estimate, for each potentia) bplit muchrrwould
change if that split occurred.

When updating a state the agent iterates over th&| possible successor states
to compute a new target value. For each dimensi@tong which each successor
states could be split, the agent estimates whettés) would change if the tile
activated bys' were split alongd, by computing the expected changeits') that
split would cause:

AV4(S) = wy(8) —V(S)

If changingV (') by AVy4(s') would alterm(s), then the agent increments a counter
¢4, Which trackschangeable actionfor potential splitd in the tile activated by
(see Figure 7.3). Hence, the agent can maximize improvetnenby performing
the split that maximizes the value @f over all tiles. Using thipolicy criterion, the
agent will focus splits on regions where more resolution yvéld a refined policy.
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Fig. 7.3 An agent updates stasefrom which each actiog; leads to successor stafeThe figure
shows the tiles, including weights, that these succesatesstall in and shows sub-tile weights for
the middle tile. Thought(s) = 2, a horizontal split to the middle tile would makgs) = 1 (since
19.2 > 17.6), incrementingy for that split.

7.3 Testbed Domains

In addition to the mountain car domain described in Sectighl3 we evaluate
adaptive tile coding in puddle world (144), another benctkneinforcement learn-
ing domains whose continuous state features necessitatédn approximation.
In puddle world, a simulated robot is placed in a random locatvithin a two-
dimensional unit square, depicted in Figure 7.4. The rohaitmavigate this space
to reach a goal region which lies in the upper right cornethefg¢quare. To do so
efficiently, the robot must avoid two puddle regions, whicin¢urs negative reward
for passing through.

The agent's state is described by two continuous stateblaes& andy, corre-
sponding to its position in the square. The agent has foloracavailable to it, each
of which moves the robot up, down, left, or right by 0.05, thbuhe robot cannot
travel outside the square. Noise drawn from a Gaussiantgittn with a mean of
0.0 and standard deviation of 0.01 is added to the distangered by each action.
The goal region consists of the set of states for whighy > 1.9. Since we want
the robot to reach the goal as quickly as possibly, the agents a reward of-1
for each time step. In addition, since we want the robot tacktlee puddles, an ad-
ditional negative reward occurs when the robot is in a pudithe reward is—400
times the distance inside the puddle.
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Puddle
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Fig. 7.4 The puddle world domain, in which a robot must navigate a diwoensional space to
reach a goal while avoiding two overlapping puddles.

7.4 Results

To evaluate adaptive tile coding, we tested its performamtfee mountain car and
puddle world domains. The value and policy criteria werde@separately, with
25 independent trials for each method in each domain. In &&dhthe method
was evaluated during learning by using its current policgdotrol the agent in test
episodes. The agent took one action for each update thatreddiie., one iteration
of the repeat loop in Algorithms 8 and 9). Note that since thend learns from a
model, these test episodes do not affect learning; thedr potpose is to evaluate
performance. The following parameter settings were usedl tnals: o = 0.1,y =
0.999,n = 4 (2x2 initial tilings), andp = 50.

Next, we tested 18 different fixed tile-coding representej selected by choos-
ing three plausible values for the number of tilingss {1,5,10} and six plau-
sible values for the number of tiles such that the tiles per featur’n/me
{5,10,25,50,100, 250}, wherek = 2 is the number of state features in each domain.
We tested each combination of these two parametersavith0.1 andy = 0.999
as before. We conducted 5 trials at each of the 18 paramétieigseand found that
only six in mountain car and seven in puddle world were abledaon good policies
(i.e., average reward per episade-100) in the time allotted.

Finally, we selected the three best performing fixed sedtiugd conducted an
additional 25 trials. Figure 7.5 shows the results of thegeements by plotting,
for each domain, the uniform moving average reward accrued the last 500
episodes for each adaptive approach and the best fixed appaaveraged over
all 25 trials for each method.
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Mountain Car Average Reward Puddle World Average Reward

Adaptive (Policy Criterion)

\Fixed (10X10, 10 Tilings)
Fixed (25X25, | Tiling) Adaptive (Value Criterion)
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Fig. 7.5 Average reward per episode in both mountain car and puddtklvebthe adaptive ap-
proach with value or policy criterion, compared to the hgstforming fixed representations.

7.5 Discussion

The variation in performance among the best fixed repreSensademonstrates that
the choice of representation is a crucial factor in both ffeed and quality of learn-
ing. Withouta priori knowledge about what representations are effective in each
task, both versions of the adaptive method consistentiyilgaod policies, while
only a minority of the fixed representations do so. Furtheenwhen the policy
criterion was used, the adaptive method learned approgignaptimal policies in
both domains, at speeds that are competitive with the best fepresentations.

While there are fixed representations that learn good gsli@s fast or faster than
the adaptive approach (10x10 with 10 tilings in mountairecet 10x10 with 1 tiling
in puddle world), those representations do not go on to lappnoximately optimal
policies as the adaptive approach does. Similarly, thezefiaed representations
that learn approximately optimal policies faster than ttapive approach (50x50
with 10 tilings in mountain car and 25x25 with 1 tiling in puddvorld), but those
representations take significantly longer to learn goodtjasl.

Furthermore, the fixed representations that learn goodipslifastest are not
the same as those that learn approximately optimal poleiesare different in
the two domains. By contrast, the adaptive method, with glsiparameter setting,
rapidly learns approximately optimal policies in both dansaOverall, these results
confirm the efficacy of the adaptive method and suggest it imm{sing approach
for improving function approximation when good represéaote are not knowma
priori.

To better understand why the adaptive method works, we teokést represen-
tations learned with the policy criterion, reset all the gies to zero, and restarted
learning with splitting turned off. The restarted agentted much more slowly

700
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than the adaptive agents that began with coarse represastand bootstrapped
their way to good solutions. This result suggests that tlagtiee approach learns
well, not just because it finds good representations, bt la¢sause it gradually
reduces generalization, confirming the conclusions of Sbeiand Stone (126).
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Fig. 7.6 Examples of final tile coding representations learned byatteptive methods: mountain
car in the left column, puddle world in the right column vakréerion in the top row, and policy
criterion in the bottom row.

The results also demonstrate that the policy criteriomately learns better poli-
cies than the value criterion. To understand why, we exahine structure of the
final representations learned with each approach, as @dgitfigure 7.6. In both
domains the value criterion devotes more resolution tooregiwhereV changes
most rapidly, as can be seen by comparing the top row of Figérevith Figure 7.7,
which shows typical final value functions learned with thegtile approach. In
mountain car, this region spirals outward from the centenh& agent oscillates
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Fig. 7.7 Examples of final value functions learned by adaptive tildiicg in both the mountain car
(left) and puddle world (right) domains. For greater claiihe z-axis shows the additive inverse of

V(s).
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Fig. 7.8 Examples of final policies learned by adaptive tile codingath the mountain car (left)

and puddle world (right) domains.

where reward penalties gi%ea sharp slope, and the area adjacent to the goal. How-
ever, those regions do not require fine resolution to reptegmproximately optimal

back and forth to build momentum. In puddle world, this regiovers the puddles,

policies. On the contrary, Figure 7.8, which shows typigaifpolicies learned with

the adaptive approach, reveals thdEs relatively uniform in those regions.

By contrast, the policy criterion devotes more resolutiordgions where the

policy is not uniform

6

as can be seen by comparing the botmmaf Figure 7

with Figure 7.8. In mountain car, the smallest tiles occuthmcenter and near each

wher@rtis less consistent. In puddle world, the least resolutialeisoted to

’

corner
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the puddle, where the policy is mostly uniform, and more Iggm to the right side,
where the “up” and “right” actions are intermingled. Henlog striving to refine the
agent’s policy instead of just its value function, the ppliciterion makes smarter
choices about which tiles to split and consequently leaetebpolicies.

Overall, these results demonstrate that finding the rigtresentation is critical
to the success of tile coding function approximators. Thep @emonstrate that
adaptive tile coding can automate this design processhé&umore, the success of
this adaptive approach shows that, for representatioasil&kcodings that are more
interpretable than neural networks, adaptive methods xeel @ithout expensive
search. See Section 9.3.3 for a comparison of this appraatietsearch-based
methods described in earlier chapters.






Chapter 8
Related Work

A broad range of previous research is related in terms of bwthods and goals
to the techniques presented in this book. This chapter ptes@ overview of that
research and discusses the similarities and differendésstaork.

Section 8.1 discusses methods for optimizing represenstivhich are related
to evolutionary function approximation (Chapters 4 andri) adaptive tile coding
(Chapter 7). Section 8.2 presents various approaches tbioog evolution (or
other policy search methods) with learning, which is aldateel to evolutionary
function approximation. Section 8.3 reviews work addmegshe trade-off between
exploration and exploitation, which is related to on-lin®letionary computation
(Chapter 3), and Section 8.4 reviews work on feature selectvhich is related to
FS-NEAT (Chapter 6).

8.1 Optimizing Representations

This section reviews previous work on the problem of findiffgaive represen-
tations, which has been studied extensively in the conteExssipervised learning,
reinforcement learning, and evolutionary computatioml$b discusses how these
methods relate to the representation-learning methodsdinted in this book (in
Chapters 4, 5, and 7).

8.1.1 Supervised Learning

Unlike reinforcement learningsupervised learning96). aims to approximate a
function given example input-output pairs. Suabeledtraining data can be statisti-
cally analyzed to deduce which representations might ipggbaimate the function.
Perhaps the most well-known methods that employ this appra@ the ID3 (116)
and C4.5 (117) algorithms for learnimkgcision treesA decision tree represents a

81
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discrete-valued function such that each node correspands input feature and
each branch emerging from that node corresponds to a vatubdbfeature. The
leaves of the tree are labeled with the output of the funagiwan the input repre-
sented by the path from the root to that leaf. The ID3 and Clg&rdghms perform
a top-down greedy search for a decision tree whose struist@gpropriate for the
given training data. At each step, the algorithm determimbih feature to test
at the current node of the tree. It selects the feature thatmiees theinforma-
tion gain or decrease irntropyin the training set. Hence, statistical analysis of
the training set makes it possible to automatically find e decision tree rep-
resentations for supervised learning, though the reliancgreedy search means it
converges only to a local optimum.

Methods that optimize representations for superviseaiegralso exist for neu-
ral networks. In particular, cascade-correlation netwq@7) automatically learn
how many hidden nodes to use in feed-forward networks. Lik&Nand NEAT+Q,
they start with simple networks with no hidden nodes. Ifeaftaining with back-
propagation, the error is above some acceptable threshbidden node is added,
with link weights from the inputs set to maximize the cortigla between the hidden
node’s value and the network’s error. The network is theraie¢d, with these cor-
relation weights held fixed, and the process repeats, witwahidden node added
at each step, until error drops below the threshold.

By contrast, the optimal brain damage approach (82) doesomaplexify simple
networks but rather simplifies complex ones. It does so bgipgithe links that are
the leastsalient where salience is defined as the magnitude of the changean er
that results from a small perturbation of the link’s weight.

Decision tree and cascade-correlation methods differ frloose presented in
this book in that they assume the existence of a fixed set elddttraining data
which can be analyzed to deduce what representations wéffbetive. This book
focuses on reinforcement learning, for which that assumnptioes not hold. The
next section reviews work on representation-learning oagldesigned to meet the
particular challenges of reinforcement learning.

8.1.2 Reinforcement Learning

In reinforcement learning, no human expert is availabletwigle examples of what
action to take in certain states. Consequently, no labetading data is available
and the agent must either search for a policy that maximizesvard signal (as
in policy search methods) or learn a value function (as inadyic programming
and temporal difference methods). Learning a value fundtiwolves computing
estimated labels (i.e., value estimates for states oratdien pairs) but those labels
are not fixed, since they are based on other value estimatearthalso in flux.
These complications mean that representation-optimimethods for super-
vised learning are not directly applicable to reinforceimearning problems. In
some cases, however, it may be possible to adapt those nseithoeinforcement
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learning. For example, Rivest and Precup (120) train cascadrelation networks
as value function approximators using temporal differene¢hods. Since the train-
ing examples produced by temporal difference methods appéain sequence and
quickly become stale, Rivest and Precup use a novel cackisigm that in effect

creates a hybrid value function consisting of a table anduaat@etwork.

This approach represents a promising way to marry the reptason-optimizing
capacity of cascade-correlation networks and other sigehalgorithms with the
power of temporal difference methods. However, it has sagréfecant shortcom-
ings as well. First, their approach delays the exploitatibtihe agent’s experience,
since new samples are initially added only to the cache alydmtiermittently used
to update the network. Second, the reliance on a cache Iy tikkéoe infeasible in
larger domains. Since the cache merely records which stagegsited and cannot
generalize value estimates, it may perform poorly in highehsional problems
like the scheduling task. Rivest and Precup evaluate theihod in a Tic-Tac-Toe
domain with 3 states. By contrast, the scheduling domain has4é@tes. Third,
their approach evaluates representations based only orathiiy to approximate
the value function. It does not directly favor represeotadithat yield good policies,
as evolutionary function approximation and adaptive tilding (with the policy cri-
terion) do. Relying solely on the value function as a guidsdlecting policies and
their representations can be very risky in practice. Seéi@®e8.3.2 for a detailed
discussion of this issue.

Beyond Rivest and Precup’s work, most efforts to learn regmeations in rein-
forcement learning focus on finding the right basis funcitor linear value func-
tion approximators. Value functions are rarely linear wéhpect to the original state
features supplied to the agent. However, if the right basietions can be found,
the value function can be accurately represented with adifsnction approxima-
tor. The remainder of this section surveys methods thateyrthis approach.

Santamaria et al. (122) apply skewing functions to statexapairs before feed-
ing them as inputs to a function approximator. These skevingtions make the
state-action spaces non-uniform and hence make it possilgiee more resolution
to the most critical regions. Using various skewing funatigthey demonstrate im-
provement in the performance of temporal difference methetbwever, they do
not offer any automatic way of determining how a given spdoaikl be skewed.
Hence, a human designer still faces the burdensome task miatia choosing a
representation, though in some domains using skewingifuremay facilitate this
process.

Smith (130) extends the work of Santamaria et al. by introtipa method that
uses self-organizing maps to automatically learn nonfiskawing functions for the
state-action spaces of reinforcement learning agentso8gnizing maps use un-
supervised learning methods to create spatially orgamizechal representations of
the inputs they receive. Hence, the system does not use edlydek on the perfor-
mance of different skewing functions to determine which @ost appropriate.
Instead it relies on the heuristic assumption that morduésa should be given to
regions of the space that are more frequently visited. Whiteheuristic is intuitive
and reasonable, it does not hold in general. For examplénforeement learning
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agent designed to respond to rare emergencies may spendhitsstife in safe
states where its actions have little consequence and olsamally experience
crisis states where its choices are critical. Smith’s fetigrivould incorrectly devote
most of its resolution to representing the value functiothefunimportant but fre-
quently visited states. This issue distinguishes Smithfg@ach from the methods
presented in this book. Evolutionary function approximatiintroduced in Chap-
ters 4 and 5, avoids this problem because it evaluates cargpepresentations by
testing them in the actual task. It explicitly favors thospresentations that result
in higher performance, regardless of whether they obeyendieuristic. Similarly,
adaptive tile coding devotes more resolution to regionsrevkiee value function or
policy changes the most, independent of how frequentlyethegions are visited.

Mahadevan (87) advocates learnprgto-value functionderived from a global
state space analysis. Though labeled training data is ilabl& a reinforcement
learning domain nonetheless has structural propertiesdha be analyzed to de-
termine effective representations. In Mahadevan’'s agiraae agent’s experience
is used to build a graph representing how states are comhiectiee domain. Next,
a spectral analysis of the graph Laplacian is performed.r&kelting eigenfunc-
tions, or proto-value functions, are then used as basigiirecfor a linear func-
tion approximator trained with standard reinforcementrigey methods. While the
original method is applicable only to domains with discrsti@e spaces, a recent
extension handles continuous domains as well (89; 88).rhilai work, Parr et
al. (109) also propose methods for automatically findingsbasctions for lin-
ear function approximation, in this case by using Bellmamreto automatically
selecting orthogonal basis functions.

The main drawback of the proto-value function approachas ithassumes the
agent has access to state transitions gathered on a randkwfivee domain. These
transitions are necessary to build the state graph, but wiyafeasible to obtain in
large or high-dimensional state spaces or domains wheleratipn is expensive.
This problem distinguishes Mahadevan’s approach from dagtive methods pre-
sented in this book. While both evolutionary function apgmuation and adaptive
tile coding seek the best representation for each stage iledinning process, proto-
value functions are used to find the best final representatioce the structure of
the domain is known.

Munos and Moore (102) present an approach to learning Variasolution
function approximators based on kd-trees. Their appraasimiilar to adaptive tile
coding, in that they repeatedly subdivide the state spdaoesmaller and smaller re-
gions. The primary difference is the use of piecewise-limepresentations instead
of tile coding. As a result, computing(s) once the right tile is located takes order
of kink time instead of constant time. They propose a splitting tiée is similar
to the value criterion used in adaptive tile coding. Thep @lopose examining the
policy to determine where to split, though their approacttike the policy criterion
used in adaptive tile coding, does not reason about sulbxtiights and works well
only in conjunction with a criterion based on the value fumet In addition, their
method does not reason abattento split tiles but instead runs dynamic program-
ming to convergence between each split, which may be coripo#dly inefficient.
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Their empirical evaluations measure final performanceett easolution but do not
consider, as we do in Chapter 7, the speed of learning as meghisunumber of
updates.

G-learning (35) also uses a tree structure to grow a valugtifumrepresentation.
Like adaptive tile coding, it starts with a coarse represon and refines it during
learning by adding new partitions. Partitions are madedbasghe expected change
to the value function, similar to the value criterion usedathaptive tile coding.
However, the method does not select splits that maximizeawgment to the policy,
as the policy criterion does.

Utile Suffix Memory (90) extends G-learning to automatigdiarn history-
based representations. The tree-based representatitainsoa history of recent
relevant observations. Statistical tests are used tordeterwhether a given obser-
vation is worth remembering, based on its capacity to djsiish among states with
different values. Unlike the methods presented in this bawdk the other methods
reviewed in this section, Utile Suffix Memory focuses on thetjlem of partial ob-
servability. In other words, the agent assumes that ite &atot Markovian and that
some different states will yield the same immediate obsemaConsequently, the
agent must remember some of its previous observations &r todlisambiguate its
current state. Utile Suffix Memory strives to deduce whickeations to remem-
ber. However, in so doing, it also allows generalizatioroasrstates with similar
values, and hence takes a similar approach to adaptiveotiieg.

Sherstov and Stone (126) present a tile-coding method wittdl fiile sizes but
variable generalization. They use the Bellman error geadrby temporal differ-
ence updates to assess the reliability of the function aqumiator in a given region
of the state or action space. This metric is used to autoaiptiadjust the breadth
of generalization for a tile-coding function approximatén advantage of this ap-
proach is that feedback arrives immediately, since Belleraor can be computed
after each update. A disadvantage is that the function aprpetor’s representation
is not selected based on its actual performance, which maglate poorly with
Bellman error.

Chow and Tsitsiklis (36) show how to compute the tile widthaofiniform
tiling necessary to learn an approximately optimal polibgugh they make strong
assumptions (e.g., that the transition probabilities dpsdhitz continuous). Like
adaptive tile coding, they advocate beginning with coagpeasentations and refin-
ing them over time, though refinements always occur acrassttire state space,
such that all regions always have the same size tiles.

Like adaptive tile coding, the Parti-game algorithm (9§)aatedly partitions the
state space to grow a representation suitable to the gigsgnHimwever, this method
is not designed to tackle reinforcement learning tasks imegad. On the contrary,
it applies only to tasks that consist of navigating some spaceach a goal region
whose location is known to the agempriori. In addition, Parti-game assumes the
agent has access to a greedy local controller which allotwgriavel from one tile to
another. Given these assumptions, standard shortesti@ath algorithms are used
to plan a path to the goal, with each step in the path execytedebgreedy local
controller.
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8.1.3 Evolutionary Computation

Evolutionary methods, like other stochastic optimizatechniques, search a space
of candidate solutions for one that maximizes some fitnesstion. Many such
methods evolve only the solution’s weights and require adwudesigner to spec-
ify the solution’s representation. However, other methods evolve the solu-
tion’s representation as well. Unlike the representatearning supervised meth-
ods described in Section 8.1.1, this approach does notreeguset of labeled data
to analyze. Instead, the space of candidate represergdticsearched, using the
given fitness function as a guide. Though many types of reptatons have been
evolved, this section focuses on the evolution of neuralagts, calledheuroevo-
lution (172), as it is most related to this book.

Many neuroevolutionary methods, such as Symbiotic, AdeMieuro-Evolution
(SANE) (100) and Enforced Sub-Populations (ESP) (54), rassa fixed topol-
ogy and evolve only link weights. Neuroevolutionary methdat evolve network
topologies too are sometimes callBzpology and Weight Evolving Neural Networks
(TWEANNS) (133).

Perhaps the simplest of these is the Structured Geneticriligo (sGA) (40),
in which one bit string represents each network’s connaatiatrix and another
bit string represents the weights of each link. These bihgsrare then evolved
using standard genetic algorithms. Hence, sGA can autoatlgtidiscover which
links are useful for the given task, at the same time thatdhves weights for those
links. However, the number of nodes in the network is not\ewlbut must be set
manually before evolution begins. Furthermore, the entpscheme is not concise,
since much of the genome is wasted when networks are notdatipected. More
importantly, since the initial population consists of rantbit strings, SGA does not
complexify. Instead of bootstrapping off solutions in laveémensional spaces the
way NEAT does, sGA must search the entire space of reprasergdrom scratch.
This difficulty is exacerbated by the fact that many genonoeiespond to infeasible
networks, which lack even a single path from inputs to owput

To obtain a more concise representation than sGA, many appes use graph-
based encoding, where each network’s topology and weigletcaptured in a
variable-length genome that enumerates the network’ssnadd describes their
connectivity. However, performing crossover on populaiavith heterogeneous
structure is notoriously problematic. Even if two parerasédisimilar behavior and
performance, they may represent their solutions very miffgy, an issue known
as thecompeting conventions problegih67) and consequently crossover may have
catastrophic consequences.

Due to this difficulty, some representation-learning nemadutionary methods
simply omit crossover altogether and rely solely on mutatiperators to search
the space of possible solutions. For example, GeNeraliogghisition of Recurrent
Links (GNARL) (8) uses a graph-based encoding, with stmattand weight muta-
tions as the only genetic operators. Unlike in NEAT, new rsogaiee added without
connecting then to the rest of the network. Separate matwtoe required to add
new links connecting these additional nodes.
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Other neuroevolutionary methods preserve crossover gitd énsure that it oc-
curs in a constructive way. For example, Pujol and Poli (Jk8sent an approach
based on Parallel Distributed Genetic Programming (PDGR))(which uses a
graph-based encoding to evolve neural network topologie$n genetic program-
ming (74), entire subgraphs are swapped during crossokiermiotivation for this
approach s the intuition that subgraphs represent imptitactional units. Hence,
preserving them reduces the chance that crossover will ¢atastrophic effects on
the offspring’s fitness.

Cellular encoding (57) is a neuroevolutionary method thkes a radically dif-
ferent approach to learning representations. Insteadoofténg each neural network
as a bit string or graph, it uses atirect encodingUnlike direct encodings, which
explicitly list each node and link in the network, indirecto®dings merely specify
rules by which the network can be constructed. In the caseslbflar encoding,
these rules are written in a graph transformational languadled a grammar tree.
The transformations specified in the tree indicate how tavgite network via a
developmental process akin to organic cell division. Anamgant advantage of cel-
lular encoding is that its genomes are very concise, sinceteansformation can be
reused many times during the construction of a network. Gergenomes result in
smaller spaces for evolution to search and therefore gatigrttetter performance.
However, catastrophic crossover remains a problem, elatat by the inscrutabil-
ity of the genomes. Since the networks are not represenfditidly, it is difficult
to analyze their structure to identify subgraphs or othatuees that might facili-
tate smarter crossover. Empirical results have shown tETN\can dramatically
outperform cellular encoding (137).

The NEAT method, overviewed in Section 2.3, is similar in soways to other
neuroevolutionary methods. Like Pujol and Poli's methodses a graph-based en-
coding. Like GNARL, it complexifies, starting with simple ta@®rks and adding
new structure via mutations. It is unique, however in itsrapph to crossover,
which relies on the notion of historical markings to ideptifhich nodes and links
correspond between two parents. It is further distingudheits reliance on speci-
ation to protect innovation by giving evolution a chance ptimize new structure
before subjecting it to full selective pressure. Most intpotly, NEAT stands out
because of its impressive empirical record tackling cinglileg optimization tasks
such as non-Markovian double pole balancing (137), gamemgg139), robot con-
trol (138; 150), and data filtering in high energy physicsl@6).

All the methods described in this section are general perppsimization tech-
niques. So long as a fitness function is supplied which caluatethe quality of
a given neural network, these methods can evolve netwosksttive to maximize
that fitness function. Hence, they are applicable to readorent learning tasks via
the policy search approach outlined in Section 2.3. Moyiattal. (101) provide a
detailed survey of applications of evolutionary methodssiaforcement learning.
Evolutionary function approximation differs from thesgapaches in that it strives
to evolve value functions instead of policies and hence temyistically combine
evolution and learning. Evolution and learning have beenlined before (as the
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next section details) but never, to our knowledge, to aiddiseovery of good tem-
poral difference function approximators.

8.2 Combining Evolution and Learning

This section reviews the substantial body of research tatdes on combinations
of evolution and learning and discusses its relationshgvtdutionary function ap-
proximation (Chapters 4 and 5). Perhaps the earliest oétisethe work of Hinton
and Nowlan (61), who demonstrate empirically that the Batdiffect can speed
evolution. To do so, they devise an artificial scenario inchimeural networks with
a fixed number of binary connections receive positive fitoedgif all their connec-
tion weights match an arbitrary pattern. For each connegti® genome can either
specify the corresponding weight or leave it open to leaynirearning occurs by
randomly altering unspecified weights to search for the doatlon that yields pos-
itive fitness. Though their approach is very simple and do¢tatkle reinforcement
learning problems or evolve representations, it is sufficie demonstrate the po-
tential benefits of combining evolution and learning.

Since Hinton and Nowlan’s work, many other researchers mwestigated such
combinations, in an effort to better understand the undeglgopulation dynamics.
For example, French and Messinger (50) present experinteatgurther verify
the Baldwin Effect’s ability to speed evolution. Their watkfers from Hinton and
Nowlan in that they study an artificial life domain whereinlividuals control their
own reproduction. In addition, in their experiments, nbtralits are equally difficult
to learn but rather vary over a range. Furthermore, theingio not actually learn;
instead the effects of learning are merely simulated in ot@estudy the Baldwin
Effect. Similarly, Arita and Suzuki (9) extend results demawating the benefits of
the Baldwin Effect to non-stationary multi-agent domaifkeir work focuses on
the iterated prisoner’s dilemma, where each agent not ordjves but can learn
in response to the behavior of other agents in the populaéigainst which it is
competing.

8.2.1 Applicationsto Supervised Learning

Most combinations of evolution and learning aim not to révaelution’s inner

workings but rather to improve its performance on challaggiroblems. Much of
this work focuses on supervised learning tasks, for whictugion can be combined
with any supervised learning technique in a straightfodvaanner. For example,
Boers et al. (25) introduce a method that evolves neural arésy each of which
is trained with a learning method based on backpropagdtika.NEAT+Q, their

method can automatically discover network topologiesjgfithey are not evolved.
On the contrary, only the learning component can alter netwapologies. It does
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so by adding new nodes to those modules in the network deernst“compu-
tationally deficient”. The computational deficiency of a mtalis defined as the
magnitude of the weight changes that still occur (due to pamsagation) even af-
ter substantial training. Weight changes in each netwarkat written back to their
genomes. Hence, their system is Darwinian and exploits #i@vsn Effect. While
the Boers et al. method can automate the design of neurabreyit is applicable
only to supervised learning problems.

Giraud-Carrier (51) also combines evolution and learnorgstipervised tasks.
His system, called GA-RBF, evolvemdial basis functiongRBFs) (30). Like
NEAT+Q and the Boers et al. method, GA-RBF strives to autaraby find good
representations. In this case, however, the role of deténguithe right represen-
tation is shared by evolution and learning. Each genomeifgethe number and
initial position of each RBF’s centroids. In the learningagh, the position of each
centroid is adjusted using an unsupervised clustering odedind then the weights
of the resulting representation are learned in a super¥astdon. GA-RBF can be
implemented in either a Darwinian or Lamarckian way. Howgsace the RBF
weights are not encoded in the genome, only the clusteriagebf the learning
process can be preserved across generations. The weigbtseuessarily be re-
learned each generation, in a Darwinian fashion. Becaubedvolution and learn-
ing are involved in determining the representation, GA-RBRn intriguing ap-
proach. However, like the Boers et al. method, its use igicéstl to supervised
learning problems.

Evolino (124) is a method that combines evolution of reaurreeural networks
(in which previously experienced outputs are fed back ineortetwork) with learn-
ing on a linear output layer. Evolution occurs using Enfdr&ub-Populations
(ESP) (54), which co-evolves populations of neurons thatcambined to formed
complete networks. The weights of the linear output layer@arned via linear re-
gression or quadratic programming. ESP is used to evolvg{Sirort Term Mem-
ory networks which are heavily recurrent and designed tkl¢atasks that require
significant memory. As a result, Evolino excels at time sepeediction and other
sequential learning tasks. However, unlike NEAT+Q, it doesevolve representa-
tions.

Gruau and Whitley (56) present a combination of evolutiod Earning that
tackles supervised learning problems but does not use\sgpdiearning methods.
Instead, it extends cellular encoding to incorporate uastiped Hebbian learning
methods (60) that adjust network weights. Though this iegrmethod does not
directly minimize network error in the supervised task,sfildty in the weights
nonetheless enables evolutionary speedup via the Bald¥gateThe addition of
learning to cellular encoding also creates a platform fongaring the performance
of Darwinian and Lamarckian evolution, as Gruau and Whitleyacross multiple
supervised tasks. They find that the Lamarckian approadbrpes consistently bet-
ter. These results are consistent with those presentedttio8d.2.4 for the moun-
tain car domain, though they clash with those for the senlesgheduling domain.
However, as demonstrated in Section 4.2.5, the poor pedioce of Lamarckian
evolution in the scheduling task stems from the instabiityhe networks under
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continual learning. This instability is much less likelydocur in supervised tasks
with fixed targets, like those studied by Gruau and Whitley.

8.2.2 Applicationsto Reinforcement Learning

Combining evolution and learning is less straightforwardeinforcement learn-
ing, since such tasks do not provide the target values redjby supervised learn-
ing. Stanley et al. (134) circumvent this problem by usingupervised learning.
Like Gruau and Whitley, they combine neuroevolution (aa@on of NEAT, in this
case) with Hebbian update rules. The approach is testedimmesrobot control
task where the agent must remember early stimuli in ordexdeleSince Hebbian
updates depend on previous stimuli, they serve as a type wfonye Hence, this
approach is an alternative to recurrent neural networks.

Other research focuses on ways to combine supervisedrgasith evolution in
away that is applicable to reinforcement learning taske. mhin difficulty is deter-
mining what to use as target values for learning. One apprtmathis problem is to
train each member of the population to behave like its parémtQuesten and Mi-
ikkulainen (93) present a neuroevolutionary techniquedas this idea. Before its
fitness evaluation, each member of the population is traim&gdg backpropagation,
such that its outputs more closely match those of its pa@nteindomly selected
inputs. While McQuesten and Miikkulainen’s method doeseatlve representa-
tions, it does provide a way to induce the Baldwin Effect imfercement learning
tasks. Like NEAT+Q, this approach is prone to overtrainifgugh for different
reasons. In NEAT+Q, TD updates can cause instability if nete are trained too
long, as discussed in Section 4.2.5. In cultural evolutioomuch training will turn
offspring into copies of their parents, thus hindering etiohary progress.

Another approach is to define a secondary supervised taskehas some re-
lationship to the primary reinforcement learning task.c8ithe secondary task is
supervised, target values are available for learning. Duled relationship between
the two tasks, such learning can improve performance onrihepy task. Nolfi et
al. (106) present a neuroevolutionary system that useagipioach. Their method
adds extra outputs to the network that are designed to pgretit inputs will be
presented next. When those inputs actually arrive, theyesas targets for back-
propagation, which adjusts the network’s weights startingh the added outputs.
This technique allows a network to be adjusted during idiliie using supervised
methods but relies on the assumption that forcing it to learpredict future in-
puts will help it select appropriate values for the remaynnitputs, which actually
control the agent’s behavior. Another significant resticis that the weights con-
necting hidden nodes to the action outputs cannot be adjadtall during each
fitness evaluation.

Yet another strategy is to evolve self-teaching agentschivban generate their
own target values for supervised learning. For examplefiMold Parisi (107)
evolve neural networks with two sets of outputs. The firstdsegctly controls the
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agent’s actions. The second set produces target valueb ateaised to adjust, via
backpropagation, the weights that connect the inputs tatkien outputs. Though
their approach does not evolve representations, it cancenthe Baldwin Effect

and also create agents that cope better with non-stati@maigonments. Nolfi and

Parisi's approach differs from evolutionary function apgmation in that the for-

mer requires the agent to devise its own learning scenahibe the latter provides
one based on temporal difference methods.

Ackley and Littman (2) investigate a similar approach. dsam artificial life
foraging scenario, they evolve a population of “action rets” that control agents
inhabiting the environment. The weights of the network gréated during each in-
dividual’s lifetime using a reinforcement learning algbm called complementary
reinforcement backpropagation (CRBP) (3), an alternativeemporal difference
methods. The reward signal used by CRBP is derived from texin networks”
that are simultaneously evolved. Like Nolfi and Parisi’s ky@volution controls the
learning process, though in this case learning is not sigetvBecause it combines
evolution with reinforcement learning, Ackley and Littni®approach is similar to
evolutionary function approximation. However, the newaetion technique they
employ does not optimize network topologies and CRBP do¢deaon a value
function.

Like Ackley and Littman, Sasaki and Tokoro (123) combinemeuolution with
reinforcementlearning. In the scenario they investigegents must choose whether
to eat the material they encounter, which may be food or poi$be agent’s ac-
tions affect the reward they receive but not their futuréestae., what materials
they encounter next). Hence, temporal difference methoelsat necessary and a
simplified reinforcement learning rule is used in its pla8asaki and Tokoro also
compare the performance of Darwinian and Lamarckian imptgations of their
system and find that Darwinian systems perform better. Thesdts differ from
those of Gruau and Whitley (56) but the difference is not 88y, since Sasaki
and Tokoro’s experiments focus on non-stationary envirams When the envi-
ronment is in flux, the learning done by older generations lmegome obsolete.
Hence, Darwinian systems, which start learning anew eankrgéon, can adapt
more rapidly to such changes. Sasaki and Tokoro’s systeimilasto evolutionary
function approximation because it combines evolutionaeghads with reinforce-
ment learning. However, it does not evolve representatéonts since it does not
learn value functions, cannot master domains with delagedid.

More closely related to evolutionary function approxiroatis reinforced ge-
netic programming44), which combines genetic programming with reinforcame
learning. Unlike the work of Ackley and Littman or Sasaki afakoro, this system
uses temporal difference methods to implement individeedriing. Like evolution-
ary function approximation, reinforced genetic programgnéan be implemented
in a Darwinian or Lamarckian fashion. The primary differemgthe representation.
Like other genetic programming methods, reinforced gempetigramming relies on
a tree-based representation. Each leaf of the tree comdspo a region of the state
space and has associated with it an estimate of the valuéidarfor that region.
The advantage of this approach is that it harnesses exigéngtic programming



92 8 Related Work

techniques. The disadvantage is that each weight corrdspgonanother param-
eter that must be optimized, forcing evolution to search rg ¥sggh-dimensional
space. Since the state space is divided into regions, tlies@ptation bears some
similarity to adaptive tile coding, though the reliance oolation to optimize that
representation makes it more similar to evolutionary fiomcapproximation. How-
ever, Downing’s approach does not employ exploratory maishas when selecting
individuals for evaluation, and hence does not optimizdim@performance.

A different approach to combining evolution and learningei@rning classifier
systemgLCS) (81). LCS methods evolve a population of rules for agpnating
some function. In “Pittsburgh-style” classifiers (131)cleanember of the popula-
tion represents a candidate solution for the entire problem an approximation
of the entire function. This approach is most analogousdouked throughout this
book, where each network in the population represents drequlicy (NEAT)
or an entire value function (NEAT+Q). More common, howewg “Michigan-
style” classifiers, for which the entire population représeone approximation of
the function. In this case, each member of the populationlé,rspecifies the sub-
set of inputs for which it is applicable and approximatesftirection only for that
subset. LCS methods are often used to tackle supervisedrigaroblems or con-
trol problems without delayed reward. However, it can beliadgo reinforcement
learning tasks as well, particularly using XCS (32), a varsdf LCS which uses
updates based on temporal difference methods. More closlaled to the work in
this book is NCS (31), a type of LCS which, like NEAT+Q uses naénetworks.
However, these methods do not evolve representations adiewary function ap-
proximation does.

Also related is the work of Lanzi et al. (80), which combineEXwith tile-
coding: evolution optimizes the parameters of a populatidiie-codings function
approximators, each of which covers a different region efdtate space. The use
of evolution to optimize representations is similar to exnary function approxi-
mation. However, representing the function with an entpydation and restricting
each member of the population to a portion of the state spasesthe method of
Lanzi et al., like other Michigan-style classifiers, fundartally distinct. The aim
of automatically designing each tile coding makes this apph similar to adaptive
tile coding, though it relies on evolution to do so. By costradaptive tile coding
demonstrates that tile coding representations can be @ptihwithout expensive
search.

Another important related method is VAPS (14). While it does$ use evolu-
tionary computation, it does combine TD methods with poBearch methods. It
provides a unified approach to reinforcement learning teas@radient descent to
try to simultaneously maximize reward and minimize erroBatiman residuals. A
single parameter determines the relative weight of theaésgBecause it integrates
policy search and TD methods, VAPS is in much the same s@irévalutionary
function approximation. However, the resulting methodsquite different. While
VAPS provides several impressive convergence guararitelses not address the
question of how to represent the value function.
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Other researchers have also sought to combine TD and p@argls methods.
For example, Sutton et al. (145) use policy gradient mettmdsarch policy space
but rely on TD methods to obtain an unbiased estimate of théignt. Similarly, in
actor-critic methods (73), the actor optimizes a paranesdrpolicy by following
a gradient informed by the critic’s estimate of the valuection. Like VAPS, these
methods do not learn a representation for the value function

8.3 Balancing Exploration and Exploitation

The difficulty of balancing exploration and exploitationdse of the most thor-
oughly studied problems in artificial intelligence. Thicgen overviews methods
for tackling this problem irk-armed bandit problems, associative search, and rein-
forcement learning. It also discusses their relationshigri-line evolutionary func-
tion approximation (Chapter 3).

8.3.1 k-Armed Bandit Problem

The simplest formulation of the exploration/exploitatiproblem is thek-armed
banditproblem (153; 19; 12), in which an agent must repeatedly sdedich ofk
arms of a slot machine, or “bandit”, to pull. After each ptiie agent receives some
reward, drawn from a probability distribution specific tatharm. Its goal is to
maximize the total reward it receives. To do so, it must badagxploration (pulling
differentarms to learn more about their expected rewardk)axploitation (pulling
thegreedyarm, i.e., the one with the highest estimate of expectednBwa

Thek-armed bandit problem is closely related to the reinforagrearning prob-
lem. In fact, it can be described as a reinforcement learpioglem in which the
MDP contains only one state and each arm corresponds toianaeach of which
returns the agent to that state with probability one. Hetiesk-armed bandit prob-
lem is of great interest to the reinforcement learning comityuand many of the
approaches used to tackle it form the basis for explorat@ghranisms in reinforce-
ment learning.

Most of these approaches aetion-valuemethods (152), in which the agent
maintains a running estimate of the expected reward for @anhThis estimate can
be computed by simply averaging the rewards the agent haweelcon each pre-
vious pull of the given arm. Rather than recomputing thisage after each pull,
a more computationally efficient approach is to update tlezame incrementally.
In non-stationary domains, the true expected reward cangghaver time, render-
ing older data stale. In such cases, incremental updatessm fixed step-size
parameter, causing the weight of older data to decay expiatigi22).

The simplest action-value methoddsggreedy selection (158), described in Sec-
tion 3.1, in which the agent pulls a random arm with probab#iand the greedy
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arm with probability 1—- €. One shortcoming of this approach is that all non-greedy
arms are equally likely to be pulled, though some may havehrhigher estimated
reward. Softmax selection, described in Section 3.2, aséiethis problem by mak-
ing each arm’s probability of selection a function of thereat estimate of its ex-
pected reward. Neithea-greedy nor softmax selection consider the uncertainty of
the agent’s estimate of each arm’s expected reward. Iritestenation (66), de-
scribed in Section 3.3, addresses this problem by compgtinfidence intervals
for each estimate and always selecting the arm whose ihtesgahe highest upper
bound.

Other approaches tearmed bandit problems beyond action-value methods in-
clude reinforcement compariso(l46). In this approach, each time the agent re-
ceives a reward, it is compared taeference rewardwhich is the average of all
previously received rewards. This difference is used tatgpthe agent’preference
for that arm. Preferences are used to determine each araialpitity of selection,
using a Boltzmann distribution. Another approacipissuitmethods (152), which
maintain both preferences and action-value estimates.

All of the approaches mentioned above are heuristic in patdowever, it is pos-
sible, atleast in principle, for an agent to optimally balaexploration and exploita-
tion in thek-armed bandit problem. Using Bayes'’ rule (17), the agentocampute
the total reward and probability of occurrence for each idesghain of events for
sequences of pulls of arbitrary length (20). However, thigraach assumes that the
agent knows priori the distribution of problem instances. In addition, it isrquu-
tationally intractable, as it requires traversing a tres tirows exponentially with
respect to the length of the sequence of pulls.

8.3.2 Associative Search

Associative searcfil6; 11), also called theontextual bandit problerfv8; 77) is an
extension of thé&-armed bandit problem in which there are multiglarmed bandit
problems. At each step, the agent faces one of these prohblantomly selected.
The agent also receives some additional information (edgit to state features)
that allow it to identify which bandit problem it currentlades. Simple versions of
associative search are no more challenging than the okigiaemed bandit prob-
lem, since the agent can simply solve each problem sepaeatéindex the solution
with the corresponding state information. However, if thare many states or the
state features are continuous, the agent may need to eéfigctieneralize across
related states in order to perform well.

The associative search problem represents a partial stepkifarmed bandit
problems to the full reinforcement learning task. The agemst reason about mul-
tiple states, but its goal is still to maximize immediate aegk It need not reason
about delayed reward because its actions have no effectlaroither words, which
arm the agent pulls has no bearing on which bandit problemcied at the next
step. The opposite is true in the full reinforcement problednere the agent’s ac-
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tion affects the state to which it transitions. Since sona¢estcan offer the agent
more reward than others, its action affects, not only its ediate reward, but its
opportunities for future reward.

8.3.3 Reinforcement Learning

The simplest approach to balancing exploration and exiloit in the full rein-
forcement learning problem is to borrow action-value mdghtrom thek-armed
bandit problem. For example;greedy selection, softmax selection, and interval es-
timation can all be applied to reinforcement learning peats by simply replacing
estimates of expected immediate reward with estimatesgfterm value, usin®
orV. This approach ensures that, for each state the agent erpesi, it will prop-
erly explore the actions available to it. However, it doeser@ble the agent tweek
states where greater exploration is needed, a complicttadrmoes not arise in the
k-armed bandit problem.

Recent approaches do address this issue, however. For kexaipsek and
Barto (127) present an approach wherein the agent behasedilyrwith respect to
its current policy for alerived MDR a solution to which describes the optimal way
to explore the original MDP. In addition, some model-bagguraaches such as pri-
oritized sweeping (97) and model-based interval estimdtid2) employoptimistic
initialization (149) to encourage the agent to travel to states that havewisieed
only infrequently. Some model-based methods sudb’a$8) andR-max(29) find
probably approximately optimal policies given only a palymal number of sam-
ples. Recently, similar results have been obtained with dehfsee method called
delayed Q-learning141). As ink-armed bandit problems, Bayes-optimal strate-
gies for exploration can be computed (143; 45; 112). Howetiersame problems
of computational intractability persist, rendering thigpeoach impractical even for
very small problems.

All of these methods differ from on-line evolutionary contation, introduced
in Chapter 3, in that they balance exploration and expioitabnly at the level of
individual actions. This approach makes sense for starmdatidods where the agent
learns a single value function: each time the agent actegitlonly decide whether
to act greedily with respect to that value function or whetbeexplore. However, in
evolutionary methods, the agent has a population of psliara must reason about
balancing exploration and exploitation at that level.

In his classic work on evolutionary methods, Holland (62)uees that such meth-
ods already perform such a balance. The reproduction merhamncourages ex-
ploration, since crossover and mutation result in novebgess, but also encourages
exploitation, since each new generation is based on thetfittembers of the last
one. However, reproduction allows evolutionary methodsailance exploration and
exploitation onlyacrossgenerations, nowithin them. Once the members of each
generation have been determined, they all typically recéie same evaluation
time. On-line evolutionary computation addresses thigtsbming by borrowing
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standard action-value methods and using them to selectgsdior evaluation, thus
boosting the reward accrued during learning.

Because it allows members of the same population to recéfeseht numbers
of evaluations, on-line evolutionary computation is alguilar to previous work
about optimizing noisy fitness functions. For example, §ag(132) introduces
mechanisms for deciding which individuals need more evelna, assuming the
noise is Gaussian. Beielstein and Markon (18) use a similprcach to develop
tests for determining which individuals should survive wéwer, this area of re-
search has a significantly different focus, since the got find the best individ-
uals using the fewest evaluations, not to maximize the rdwaacrued during those
evaluations.

Action-value methods like-greedy have also been combined with evolutionary
methods in the context of learning classifier systems (7919R). However, such
mechanisms are used to select among individual action$p dibcate evaluations
among an entire population.

8.4 Feature Selection

This section reviews previous work on feature selection@ndpares it to Feature
Selective NEAT (Chapter 6). Feature selection (24; 58)egttocess of determining
which subset of available inputs should be used by a mackaraihg algorithm.
In supervised learning, these inputs typically descrilagxes used for training or
testing. In reinforcement learning, they typically consibstate features, describ-
ing the agent’s current state in the world. Feature seleditypically distinguished
from feature constructior{48; 156). In the former, we assume a set of adequate
features is available but that, due to the presence of maalgwiant or redundant
features, finding a minimal subset is necessary for effedéarning. In the latter,
adequate features are not availadlgriori but must be constructed from a descrip-
tion of the task or from low-level primitives.

8.4.1 Filters

One class of feature selection methods is cdileats (63). These methods perform
feature selection as a preprocessing step to some sugkigsmaing algorithm,
“filtering” out irrelevant features. This filtering is acc@iished by performing some
type of statistical analysis on the training data to detaemihich features will be
most useful to the machine learning algorithm.

One of the simplest approaches is to rank the features baseat@lation crite-
ria (159) or mutual information between them and the tangettion (83; 41; 155).
This ranking is then used to select the kdjpatures. However, determining the right
value fork can be difficult and it is often necessary to try multiple es@nd com-
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pare the resulting performance. Another limitation of #yigproach is that does not
consider dependencies between the features.

The FOCUS algorithm (5) addresses this shortcoming by derisig increas-
ingly large combinations of features. It starts by consitgindividual features,
then looks at pairs, triples, and so on until the class of é@thing example is dis-
ambiguated. Koller and Sahami (72) also consider depefekehetween features
by employingMarkov blanketsThe Markov blanket of some featuxeis a set of
features not including; that rendex; unnecessary. If the Markov blanketxgfcan
be found, ther; can be removed by the feature selection algorithm. Sirgjl&thgh
and Provan (128) filter features for a Bayesian network usifigmation-theoretic
metrics. Principal components analysis (64), a statistez@hnique that constructs
orthogonal vectors from linear combinations of featurethm original space, can
also be used for feature selection in machine learning (23).

8.4.2 Wrappers

While filter methods have proven effective in supervisedrigay problems, they
are not applicable to reinforcement learning because dadliisence of labeled train-
ing data. However, another class of methods, caleappers(63), can, at least
in principle, be used to select features in reinforcemeatnlieg. Wrappers work
by searching the space of feature subsets for one that pexfoeell in the machine
learning task. They are called “wrappers” because eaclidatedsubset is evaluated
by running the given machine learning algorithm with thdiset and measuring the
resulting performance. Hence, the learning algorithm iska@utine around which
the feature selector is wrapped.

The primary advantage of wrappers compared to filters isfeéatire subsets
are directly evaluated according to the actual goal of feaselection: improving
the learner’s ultimate performance. Even when filters aately identify critical
features, they do not consider the particular idiosynessind inductive bias of
the learning method that will use those features (43). Tlmary disadvantage
of wrappers is their computational cost. Finding the righbset is NP-hard (6)
and each feature subset considered requires a completglyumeof the learning
algorithm, though heuristic methods have been developéd ttm minimize this
cost (33; 99).

In principle, wrappers could be used to select featuresiriaeement learning.
Just as in supervised learning, each feature subset wowdgdbeated by running
the learning algorithm with that subset, though perforneawould be measured
by total reward accrued, rather than classification or gio@ error. However, this
approach is highly impractical. In supervised learningleating a feature subset
requires only computational time. Since labeled data ikglly a much scarcer re-
source, wrappers can be useful even if the computationaisbggh. However, in
reinforcement learning, evaluating a feature subset reguiot only computation
time but also new samples (i.e., interactions with the realdy. Since samples are
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usually the scarcest resource, any benefit obtained by iagplyrappers in rein-
forcement learning is unlikely to justify its cost.

8.4.3 FS-NEAT

The FS-NEAT method, introduced in Chapter 6 does not falirdiginto either the
filter or wrapper categories. It is similar to wrapper methaodthat it searches for
the right feature subset and evaluates candidates baséeiopérformance in the
ultimate task. However, it is practical for reinforcemez#iining precisely because it
doesnotwrap a feature selector around the base learning methodhednontrary, it
incorporates the search for a good feature subset into #relséor a good network
topology and good weights, without any meta-learning.

By integrating these different aspects of the task, FS-NB&drs some resem-
blance toembeddedeature selection methods (24; 58). Embedded methods, such
as decision trees (116; 117), incorporate feature sefeatito the base learning
method. However, such methods are typically similar torflie that they rely on
statistical analysis of labeled data, though not as a poggsing step. FS-NEAT, by
contrast, does not require labeled data at all. Hence, FAFNEpresents a unique
approach to the problem of feature selection, one whosenéalyes are particularly
well suited to reinforcement learning tasks.

Recently, other feature selection methods customizednéoreement learning
have been developed (42; 75). Like FS-NEAT, these methaseither filters nor
wrappers. Instead, they are model-based methods thatbe#nrthe structure and
weights ofdynamic Bayesian networkBBNs) that describe the transition function
of the MDP. These DBNs can then be analyzed to infer what featare most useful
for representing the value function. While these approselreid the shortcomings
of both filters and wrappers, they have not so far proven sstakon large tasks
such as RARS, on which FS-NEAT excels. One reason is that¢beiputational
costs scale poorly with respect to the number of featuresad@. Furthermore,
since they require a large amount of data to reliably seleatufes, their useful-
ness is likely restricted to cases when features sets argféraed between related
tasks (75).



Chapter 9
Conclusion

This book presents a range of new methods for automating eékigml of effec-
tive representations for reinforcement learning. It alssspnts a body of empirical
evidence verifying the efficacy of these new methods. Thaptdr begins by sum-
marizing the conclusions that can be drawn from this evideNext, it discusses
some negative results obtained while developing theseadstlinally, it touches
on some broader implications, comparing results acrosgtefgmfrom a “big pic-
ture” perspective.

9.1 Primary Conclusions

First and foremost, this book demonstrates that reinfoecgriearning agents can
automatically discover effective representations. Bethigionary function approx-
imation (Chapters 4 and 5) and adaptive tile coding (Chaptenable such agents
to autonomously revise their own representations whilg dre learning, without
the aid of human expertise. Empirical results in multiplendins confirm the ben-
efit of these methods. Adaptive tile coding automaticalcdivers representations
that match the ultimate performance of the best manualligded representations
and learn nearly as quickly. Evolutionary function appnoation discovers repre-
sentations that perforivetterthan the best manually designed representations. This
enables the agent to learn an approximately optimal paticgduntain car, a noto-
riously difficult task for neural network function approxattors. These performance
improvements carry over to server job scheduling, a mugfelaand more challeng-
ing reinforcement learning task.

Second, this book demonstrates that policy search and tafrgifierence meth-
ods can be combined synergistically. Rather than havindntmse between alter-
natives with starkly different advantages and disadvagagvolutionary function
approximation makes it possible to get the best of both vgoilthis approach reaps
the representation-learning benefits of evolutionary wathike NEAT while si-
multaneously harnessing the power of temporal differenethods, which exploit
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the specific structure of the reinforcement learning pnobléurthermore, thanks to
the Baldwin Effect, powerful synergies result from combipevolution in learning,
yielding a system that is more than the sum of its parts.

Third, this book demonstrates that evolutionary methodsssa@el at on-line re-
inforcement learning tasks. Though such methods are tjpreserved for off-line
tasks, on-line evolutionary computation (Chapter 3) destrates that their perfor-
mance can be modified to maximize the reward accrued durangitey. These mod-
ifications result from another synergy between the tempdifedrence and policy
search communities: exploratory mechanisms, traditipnigled in temporal differ-
ence methods to select individual actions, can be appliedatutionary methods
to select policies for evaluation.

Fourth, this book demonstrates that feature selection esaubomated in rein-
forcement learning. Traditional approaches to featurecsieln are largely inappli-
cable to reinforcement learning. Filters rely on labelaihtng data that is available
only in supervised learning. Wrappers are impractical esiecaluating candidate
feature subsets requires new samples, not just additi@mapatation time. How-
ever, FS-NEAT (Chapter 6) represents a new approach toréesg¢lection, one that
is particularly suited to reinforcement learning probleBg starting with a popula-
tion of highly minimal networks, FS-NEAT incrementally dves a suitable feature
set at the same time that it optimizes network topology aniglws. The result is
a method that performs well even in the presence of large ewsdf irrelevant or
redundant features.

9.2 Negative Results

The preceding chapters present methods that achievedieahpirccess in improv-
ing the performance of reinforcement learning agents. Wewen the process of
developing these methods, other approaches were inviestiggaat ultimately did
not succeed. This section briefly mentions the most sigmifiod these negative
results.

9.2.1 Combining FS-NEAT with NEAT+Q

Perhaps most surprising was the poor performance thattedsitbm combining
FS-NEAT with NEAT+Q. Such a combination, called FS-NEAT+® appealing
because it could allow a reinforcement learning agent toraatically and simul-
taneously optimize both the input and internal represemtsiof a neural network
function approximator. Yet experiments in both RARS and/aejob scheduling
confirm that this approach performs poorly in practice. Eyashy FS-NEAT+Q

fails when both FS-NEAT and NEAT+Q succeed is difficult to deel
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However, the answer may have something to do with the fitreeedstapes of
degenerate networks. In early generations of FS-NEAT yenetwork in the pop-
ulation is degenerate, lacking even the basic connectidtessary to represent a
good policy. Since all these networks will perform poorlg-NEAT can succeed
only if those networks which perforieast poorlyguide evolution towards ones that
perform well. In other words, the fithess landscape aroughlyifit networks must
include a basin of attraction that contains such degeneedteorks.

FS-NEAT'’s empirical performance suggests that such batinexist for net-
works that represent policies. Yet, in FS-NEAT+Q, netwarysresent value func-
tions instead. FS-NEAT+Q’s poor performance implies tregaherate value func-
tion approximators do not guide evolution toward more fit regpmators. Intu-
itively, this result makes sense since value functionspdated with inadequately
approximated targets, can easily become unstable andgdiverlf this problem
arises in all networks in early generations, then evolulias no guide with which
to find better representations.

9.2.2 Feature Selection in Adaptive Tile Coding

A second negative result is the performance of adaptivedititng as a feature se-
lector. Just as NEAT becomes feature selective if the edailaputs are not initially
connected to the network, adaptive tile coding should bedeature selective if ini-
tial splits are not made in each dimension. In practicehiltequires is setting the
number of initial tilesn to a very low value (see Section 72)n principle, adap-
tive tile-coding should perform only splits that enable noyements to the value
function or policy. Hence, it should never split along dirsiems corresponding to
irrelevant features, effectively selecting only the mas#ful features.

Yet in practice the data the learner uses to determine splisite noisy and
hence spurious splits are inevitable. Overall, most of iessare helpful, which
allows it to automatically find effective representaticas described in Section 7.4.
However, when even a few irrelevant features are added taldhsain, its per-
formance worsens dramatically. Examination of the leanepdesentations reveals
that, though splits along the relevant dimensions are faertikely, enough splits
occur along irrelevant dimensions to incur the curse of disienality. Hence, un-
like FS-NEAT, its performance does not scale well when thalehges of feature
selection are increased.

1 In the experiments reported in Section Th4yas already set quite low, to 4, though it could be
setas low as 1.
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9.2.3 Fitness Functions Based on Bellman Error

A third negative result is the performance of NEAT+Q with éiss functions based
on Bellman error. In all the experiments reported in thisihdbe fithess function

used by NEAT+Q is the average reward per episode the agezivesovhen con-

trolled by the given network. As a result, NEAT selects thaemoeks that perform

best in the task, regardless of the accuracy of their valoetions. That accuracy
could be directly rewarded, however, if the fitness functia@re the inverse of the
average magnitude of the Bellman error for each update.

If successful, such an approach would dramatically reduesample complex-
ity of NEAT+Q. Even in sample-efficient NEAT+Q (Chapter 5ach network in
the population must be tested in the actual domain to medéseireward it accrues.
Saved experience can be usedrtin the networks, but not teestthem, since that
experience gives no information about what rewards thetageuld have received
if a different policy was used. By contrast, a fitness functtased on Bellman error
can be computed solely from saved experience. In principteracting with the
actual domain would be necessary only initially, to buildepasitory of saved ex-
perience. In practice, occasionally gathering new expegdés important, to ensure
that the distribution of visited states in the repositorygbly matches that of the
agent’s current policy. Nonetheless, the number of samiptpsired is likely to be a
small fraction of that needed by a fitness function based wanck

However, experiments in both the mountain car and servesghieduling do-
mains showed dismal performance for NEAT+Q with a fitnessfion based on
Bellman error. To better understand why, we compared plas&rage Bellman er-
ror during evolution for the two fitness functions. In botlses, Bellman error went
down over time, but always remained substantial. This coispa reveals an im-
portant shortcoming of Bellman error. If the learner’s Bedh error is consistently
zero, it must have an optimal policy. However, having lowlBeln error does not
guarantee an approximately optimal policy. Rather, it seémat only a one-way
implication holds in practice: higher reward implies lovigallman error but lower
Bellman error does not imply higher reward. Similar reshtise been obtained in
the past, e.g., the VAPS method (14) performs better usings#t functions that
consider reward instead of just Bellman error.

Hence, Bellman error alone is not a reliable basis for a fitriesction and the
tantalizing reductions in sample complexity such a fitnesetion promises do not
appear achievable in practice. Moreover, this negativdtrbmts at the difficulty of
relying solely on value functions to solve reinforcemeratrténg problems, one of
the broader implications of this book discussed in detddwe
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9.3 Broader Implications

This section discusses some of the broader implicationiseofdsults presented in
this book. By comparing results across chapters, it takee mba “big picture”
perspective.

9.3.1 Stochastic vs. Deterministic Domains

Some of the methods presented in this book can be combinectieély. For ex-
ample, Section 4.2.2 shows performance gains when onalimlatén is combined
with evolutionary function approximation. Other combioat do not work well,
as with the case of FS-NEAT+Q mentioned above. Perhaps thst imeresting
infeasible combination is that between on-line evolutiod aample-efficient evo-
lutionary function approximation.

The reason these approaches cannot be combined is thatréhapicable to
different scenarios. On-line evolution is likely to be udednly in stochastic do-
mains because it assumes teathe number of episodes per generation, is larger
thanp, the population size. In deterministic domains, individuzan be accurately
evaluated in a single episode=£ p) so it is not possible to use previous evaluations
to better balance exploration and exploitation. In priteithe value ok could be
artificially inflated to allow for more exploitative episoglehough doing so would
slow evolution’s progress by lengthening each generation.

By contrast, sample-efficient evolutionary function apgmation is designed for
deterministic or nearly deterministic domains. Pre-tiragron saved experience is
possible in stochastic domains too but is unlikely to helge €valuations necessary
for estimating the noisy fitness function will already syppufficient experience
for learning. In such cases, pre-training may even be hdisifae overtraining can
reduce performance, as shown in Section 5.2.

This contrast suggests that the stochasticity of a domaandstical factor in
determining with which methods to tackle it. Evolutionargtimods are sometimes
criticized as being slow, especially in stochastic domdifeny of its successes in
reinforcement learning have been in deterministic domadrgs (137), and recent
work demonstrates that the level of stochasticity can bétiaalrfactor in its learn-
ing speed relative to temporal difference methods (165}i@nevolution gives
new hope that the performance of such methods in highly agithdomains can
be improved. On the other hand, a deterministic domain neethe tackled with
evolution alone, as the sample-efficient version of evohary function approxi-
mation enables temporal difference learning to play an ntamb role even when
evaluations are short.

2 Only e-greedy evolution would be practical in this scenario. ®aft evolution would waste

time re-evaluating individuals known with certainty to Iéerior to the current champion. Interval
estimation evolution would degeneratestgreedy evolution witte = 0.0, since each individual's

variance would be zero.
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9.3.2 The Value Function Gamble

Both dynamic programming and temporal difference methadpley a strategy
centered on the notion of value functions: finding the opkivatue function and de-
riving the optimal policy from it. In small, discrete domairthis strategy is highly
effective since such methods are guaranteed to converpe tptimal value func-
tion and the corresponding greedy policy is by definitionimpt. When a model
is known, the advantage of learning value functions is cldamamic programming
can find the optimal policy in polynomial time (85), whereadiqy search methods
take exponential time in the worst case.

However, in domains that require function approximatibe, lbenefits of a value
function are much more uncertain. Some methods, like Legqistu®s Policy lter-
ation (76), guarantee convergence but assume the fungijmoxd@mator is linear.
Furthermore, the quality of the resulting approximatiopeteds critically on select-
ing appropriate basis functions. For nonlinear functiopragimators like neural
networks, convergence guarantees do not exist. Even if d galoe function ap-
proximation is found, the corresponding greedy policy mayatbitrarily subopti-
mal. In such cases, using temporal difference methods niiaialéy gambling that
the policy derived from the function approximator will penfn well.

If it were necessary to choose between temporal differendepalicy search
methods, this difficulty could be a strong argument in faviopaicy search meth-
ods, which may be less prone to catastrophic failure in macThough they can
get trapped in local maxima, they at least directly strivenximize reward. How-
ever, this book demonstrates that there does not have taoheeadff between these
two approaches, since it is possible to exploit the poweiabier function methods
while still enjoying the safety of policy search. In this senevolutionary function
approximation is a hedge against the blind gamble of tenhpliffarence methods:
the weights of individuals are adjusted using temporakdéhce methods but evo-
lution is the final arbiter and it favors good policies redassd of how well they
approximate the value function.

The price of such a hedge is increased sample complexitye giach candidate
solution must be evaluated in the actual domain. Elimigasinch evaluations re-
quires resorting to a fitness function that examines only#tee function and thus
abandoning the safety of a policy search method based omdeWae negative re-
sults mentioned in the previous section highlight the pcattonsequences of such
an approach.

This problem is exacerbated when trying to learn a reprasient Nearly all
of the representation-learning methods described in @e8til.2 examine only the
value function when making representational choices. Egethey “double down”
on the gamble of temporal difference methods. They gamtilemiy that improving
theweightsof the function approximator will improve the policy, butathmprov-
ing therepresentatiorof it will do so too. This approach contrasts with evolutiona
function approximation, where the search for good reprtasiens is guided by per-
formance in the domain.
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Adaptive tile coding with the policy criterion shares thisilpsophy. Though it
does not use policy search, representational choices ate based on the expected
improvement to the policy, independent of how accurate #lee/function is. The
inferior performance of the value criterion mirrors the atdge results described
above for NEAT+Q with a fitness function based on Bellmanrefirbough the value
criterion’s performance is not catastrophically pooss gignificantly worse than that
of the policy criterion, which does not blindly focus on th&we function. Hence,
the results presented in this book, both for evolutionangfion approximation and
for adaptive tile coding, suggest that, unless strongesirapsons (i.e., a small,
discrete state space or a linear function approximatorpeamade, relying on the
value function alone to guide an agent’s policy is a dangepsaposition indeed.

9.3.3 The Role of Search in Adaptive Representations

Evolutionary function approximation and adaptive tile tmgemploy starkly differ-
ent strategies for discovering representations. Whilddahmer relies on optimiza-
tion methods to search the space of representations, tee $atalyzes properties
of the current representation to infer the best refinema@aihiis. contrast arises from
the inherent differences in the types of representationsvfoch the methods are
designed.

Neural networks, even when they perform well, tend to opelie “black
boxes.” Since they are so concise, with the entire valuetfomor policy deter-
mined by a small number of nodes and links, generalizatiamtiscontrolled in
any way. Altering a single weight in the network can signifita change value
estimates across the entire state space. Consequerglgifticult even for human
experts to examine a neural network and deduce why it wortsraeaningfully de-
scribe the role each node or link plays in the agent’s valuetfan. Similarly, when
a network does not perform well, it is hard to deduce what gkarto the represen-
tation might improve its performance. Hence, the most fdastrategy for finding
good representations is to search for one, testing eachdzdad performance in
the actual domain, as NEAT+Q does.

By contrast, tile codings tend to be much more interpretaitece generalization
is strictly controlled by tile boundaries, a weight chanfjecs value estimates only
within a well-defined local region and, conversely, eaclugadstimate is affected
by only a few weights. As a result, the effects of splittiniggiare predictable and
good representations can be found without search, as addj¢i coding demon-
strates. Unsurprisingly, avoiding search can greatly ¢jpesrning. For example, in
the mountain car domain, adaptive tile coding requires twdes of magnitude less
time than NEAT+Q to learn a good poliéy.

3 The results presented in Section 7.4 show that adaptivedileag with the policy criterion learns
a good policy after about $ 10° updates. By contrast, results in Section 4.2.2 show thansof
NEAT+Q learns a good policy in about2lx 10° episodes, using on the order of ipdates. This
comparison is not completely fair since adaptive tile cgdiises a model while NEAT+Q does
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This comparison demonstrates that search is not the rightf@éo optimizing
representations for every reinforcement problem. Howeveés far from a death
knell. Adaptive tile coding performs well in mountain cadgsuddle world but these
are simple domains with low dimensionality (only two stagatfires). Scaling the
method to larger problems is not trivial, as its memory regmients grow rapidly.
Higher dimensional problems may strain computationalusses too. The need to
maintain sub-tile weights means that the cost of each upgtates linearly with
respect to the number of state features. By contrast, NEA&x¢gIs not only at
mountain car but at server job scheduling, a task with a ywédatfer state space.
To date, adaptive tile coding has not been tested in the ispivescheduling task.
However, manually designed tile coding and radial basistion have been applied
to this task without success (Matthew Taylor, personal comination).

Hence, while adaptive tile coding may be useful for an imgatirsubset of rein-
forcement learning problems, there are likely to be markstagose vast complex-
ity can be feasibly tackled only with more concise repressuns. As long as such
representations remain as inscrutable as neural netwswas;h methods will be a
powerful tool for optimizing them.

9.4 Future Work

The work presented in this book opens many avenues for addltresearch. This
section outlines a few possibilities.

9.4.1 Non-Stationarity

In non-stationarydomains, the environment can change in ways that alter the op
timal policy. Since this phenomenon occurs in many realldvecenarios, it is im-
portant to develop methods that can handle it robustly. Teaiglifference methods
can automatically adapt to non-stationary environmentsisg as they constantly
retain sufficient exploration. If the agent behaves conafejreedily once learning
plateaus, it will not be able to adapt to environmental cleanBy contrast, if it con-
tinues to explore, it will discover changes in the value sfavailable actions and
adjust its value function and policy accordingly.

However, traditional temporal difference approachesmattoe agent to dynam-
ically adjust its value function but not threpresentatiorof that value function. If
the environment changes in ways that alter the optimal sgmtation, then meth-
ods that automatically learn representations may perfatieb By contrast, even
if they are effective at the original task, manually desdjnepresentations cannot

not. However, the model may not speed learning since adafidxcoding randomly selects states
to update instead of focusing updates on states experiesi@etle current policy, as model-free
methods naturally do.



9.4 Future Work 107

adapt to such changes. Hence, an important direction fordwtork is to test evolu-

tionary function approximation and adaptive tile codingom-stationary domains
to assess their ability, not only to discover effective esgntations, but to adjust
them in the face of environmental changes.

9.4.2 Steady-State Evolutionary Computation

The NEAT algorithm is an example @enerationalevolutionary computation, in
which an entire population is is evaluated before any newviddals are bred. Evo-
lutionary function approximation might be improved by gpia steady-statem-
plementation instead (49). Steady-state systems neviaceegn entire population
at once. Instead, the population changes incrementakly afich fitness evalua-
tion, when one of the worst individuals is removed and regdidzy a new offspring
whose parents are among the best. Hence, an individualgbeives a high score
can more rapidly affect the search, since itimmediatelybh®ss a potential parent.
In a generational system, that individual cannot breed th@ibeginning of the fol-
lowing generation, which might be thousands of episodes.|efence, steady-state
systems could help evolutionary function approximatiorfqren better in on-line
and non-stationary environments by speeding the adopfioew improvements.
Fortunately, a steady-state version of NEAT already exis3§) so this extension is
quite feasible.

9.4.3 Model-Based Reinforcement Learning

In model-basedeinforcementlearning (148; 97; 142; 42; 75; 68; 29), theragoes
not directly learn a value function from experience. Indtéuses its experience to
learn an approximate model of its environment, i.e., thesiteon and reward func-
tions which define the underlying MDP. Given that model, it cempute a value
function, typically via dynamic programming. A critical @ahtage of the model-
based approach is its sample efficiency. Rather than usaigssenple for only one
update, samples are used to improve a model. Given that ntbdedgent can im-
prove its value function using only computational resosyoet additional samples.
The ability to trade sample complexity for computationaimgexity makes
model-based reinforcement learning similar to the expegeaeplay methods de-
scribed in Chapter 5 and used to make evolutionary functppraimation more
sample-efficient. However, model-based methods have it@pbadvantages over
methods that merely store and reuse experience. They camieeaoncise, since
experience is typically integrated into a model with a fixegintber of parameters.
By contrast, the space required by experience replay metamvs linearly with
respect to the number of samples gathered. Furthermoreslfbaded methods can
generalize. Rather than simply replaying old experierfeentodel can be used to
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generate wholly new samples, e.g., as in the Dyna method,(d4®erform the
Bellman updates required by dynamic programming.

However, current methods for learning models typicallyuass either a small,
discrete state space and use table-based representatiali@ocontinuous state
spaces but assume deterministic transitions (10). Thare Ibeen preliminary ef-
forts to learn models for domains that are both continuoussdochastic (65), but
this remains an open research area. The methods preseritasl liook could in-
teract in two ways with efforts to extend model-based meshimdmore realistic
domains.

First, learning a model requires solving a similar représion problem to that
addressed in this book. Just as model-free methods requegresentation for the
policy r: S— Aor the value functio® : Sx A— [0, model-based methods require
a representation for the transition functidn Sx Ax S +— [0,1] and the reward
functionR: Sx Ax S— [I. Learning a model is in some ways harder than learning
a value function because learniigs not a supervised learning problem but rather
one of multivariatelensity estimatiof125). Nonetheless, the methods presented in
this book may, with modification, be used to learn good regmegtions for models.

Second, models can be used find adaptive representatiores quarkly and
safely. Just like experience replay, models could be usddhto candidate repre-
sentations without gathering additional samples. Unligmegience replay, however,
models could also be used ¢valuatecandidate representations. Saved experience
gives no information about what would have happened if &dffit action had been
chosen. By contrast, models can be used to simulate enisedss with a given
policy, allowing candidate representations to be botmgdiand evaluated with
minimal sample complexity.

9.5 Final Remarks

This book addresses a chief limitation of current reinfareat learning methods:
their reliance on human expertise to design a representtiiothe agent’s solu-
tion. It introduces new methods that enable such agentsttoretically discover
effective internal representations. Such methods aretagrid component in the
development of reinforcement learning techniques thapeaform well even in the
absence of human expertise. Hence, this book takes oneostapds the dream of
fully autonomous learning agents and truly intelligenteyss.



Appendix A
Statistical Significance

To assess the statistical significance of the results piedém Chapter 4, we per-
formed a series of Student’s t-tests on each pair of methoésaéh domain. For
each pair, we performed a t-test after every 100,000 epssddbles A.1 and A.2
summarize the results of these tests for the mountain casemver job scheduling
domains, respectively. In each table, the values in eadhntktate the range of
episodes for which performance differences were signifiaéth 95% confidence.

Episodes |Q-Learning Off-Line|e-Greedy Softmax Off-Line | Softmax|Lamarckial

(x1000) NEAT | NEAT | NEAT |NEAT+Q|NEAT+Q| NEAT+Q
Q-Learning

Off-Line 300 to

NEAT 1000

e-Greedy| 200to | 200 to

NEAT 1000 1000

Softmax 200to | 200to | 200 to

NEAT 1000 1000 | 1000

Off-Line 200 to 200to | 200to | 200 to
NEAT+Q 1000 500 1000 1000
Softmax 100 to 200to | 200to | 900to| 200 to
NEAT+Q 1000 1000 1000 1000 1000
Lamarckian 200 to 200to| 200to | 200to| 200to | 100 to
NEAT+Q 1000 1000 1000 1000 1000 1000

Table A.1 A summary of the statistical significance of differencesvierage performance between
each pair of methods in mountain car. Values in each celtatdithe range of episodes for which
differences were significant with 95% confidence.
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Episodes [Q-LearningOff-Line| ¢&-Greedy |Softmay Off-Line | Softmax|Lamarckia
(x1000) NEAT NEAT NEAT |NEAT+Q|NEAT+Q| NEAT+Q
Q-Learning
Off-Line 300 to
NEAT 1000
e-Greedy| 200to | 200to
NEAT 1000 1000
Softmax 200to | 200 to |not significanf
NEAT 1000 1000 | throughout
Off-Line 300to | 300 to 100 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 200to | 200to 400 to 200to| 200to
NEAT+Q 1000 1000 1000 1000 | 1000
Lamarckian 300to | 300 to 100 to 100to| 700to | 200 to
NEAT+Q 1000 1000 1000 1000 | 1000 1000

Table A.2 A summary of the statistical significance of differencesvierage performance between
each pair of methods in server job scheduling. Values in eatihindicate the range of episodes
for which differences were significant with 95% confidence.
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