Machine learning for event selection in high energy physics
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Abstract

The field of high energy physics aims to discover the underlying structure of matter by searching for and studying exotic particles,
such as the top quark and Higgs boson, produced in collisions at modern accelerators. Since such accelerators are extraordinarily
expensive, extracting maximal information from the resulting data is essential. However, most accelerator events do not produce
particles of interest, so making effective measurements requires event selection, in which events producing particles of interest
(signal) are separated from events producing other particles (background). This article studies the use of machine learning to aid
event selection. First, we apply supervised learning methods, which have succeeded previously in similar tasks. However, they are
suboptimal in this case because they assume the selector with the highest classification accuracy will yield the best final analysis;
this is not true in practice, as such analyses are more sensitive to some backgrounds than others. Second, we present a new approach
that uses stochastic optimization techniques to directly search for selectors that maximize either the precision of top quark mass
measurements or sensitivity to the presence of the Higgs boson. Empirical results confirm that stochastically optimized selectors
result in substantially better analyses. We also describe a case study in which the best selector is applied to real data from the
Fermilab Tevatron accelerator, resulting in the most precise top quark mass measurement of this type to date. Hence, this new
approach to event selection has already contributed to our knowledge of the top quark’s mass and our understanding of the larger
questions upon which it sheds light.
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1. Introduction Two particles of particular interest are the top quark and
the Higgs boson. The top quark, first observed in 1995 (4; 5),
is nearly as massive as a gold nucleus, making it by far

the most massive subatomic particle ever observed. The

The field of high energy physics is devoted to the study
of the elementary constituents of matter. By investigating

the structure of matter and the laws that govern its inter-
actions, this field strives to discover the fundamental prop-
erties of the physical universe. In experimental high energy
physics, the goal is to test predictions made by current the-
ories such as the Standard Model (1; 2; 3), which describes
the behavior of three of the four fundamental forces.

The primary tools of experimental high energy physi-
cists are modern accelerators, which collide protons and/or
anti-protons to create exotic particles that occur only at
extremely high energy densities. Such particles have not ex-
isted naturally since the first moments after the Big Bang,
when the energy density of the universe was much higher.
Observing these particles and measuring their properties
may yield critical insights about the very nature of mass.

* Corresponding author: tel +31.020.525.8701; fax +31.020.525.7490
Email addresses: s.a.whiteson@uva.nl (Shimon Whiteson),
danielQuci.edu (Whiteson).

Preprint submitted to Elsevier

top quark is important because precise measurements of
its mass can stringently test theories about the origins of
particle mass (6; 8; 9; 10). Only the world’s most power-
ful accelerator, the Fermilab Tevatron in Batavia, Illinois,
has sufficient energy to produce top quarks. By contrast,
the Higgs boson (11) has never been observed. In fact, it
is the only remaining particle predicted by the Standard
Model whose existence has not been experimentally veri-
fied (3). Since the Higgs boson is theorized to give mass to
other particles through its interactions (12), it is central to
current theories about particle mass. Hence, observing the
Higgs boson is a paramount goal in high energy physics.
Producing and observing such particles requires extraor-
dinary resources. The Tevatron accelerator and its particle
detectors cost billions of dollars to construct and approx-
imately a million dollars per day to operate. As a result,
extracting maximal information from the resulting data is
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essential. In this article, we study the use of machine learn-
ing methods to aid this process. In particular, we investi-
gate their efficacy for event selection for top quark mass
measurement and Higgs boson search.

In an accelerator event, protons and/or anti-protons are
accelerated and annihilated. The resulting energy causes
new particles to form, which can be observed via detectors
that surround the point of collision. However, the vast ma-
jority of events do not produce particles of interest, such
as the top quark or Higgs boson. For example, though the
Tevatron produces approximately 10'° events per hour, ap-
proximately one results in a top quark, on average. There-
fore, good data analysis depends on effective event selec-
tion, in which events producing particles of interest (signal)
are separated from those producing other particles (back-
ground). Event selection is difficult because several types
of background can mimic the signal’s characteristic signa-
ture. Hence, event selection in high energy physics is an
exciting challenge for machine learning. In this article, we
compare two different approaches to this problem.

The first approach is based on supervised learning meth-
ods, which are used to train classifiers that distinguish sig-
nal from background. Such methods have already proven
successful in similar event selection problems by training
neural networks (13; 14) or support vector machines (15)
to classify events as signal or background. This supervised
approach is most effective in the narrow class of problems
in which the classification accuracy of the event selector
is closely correlated with the quality of the resulting data
analysis and systematic uncertainties are minimal. How-
ever, top quark mass measurement and Higgs boson search
exemplify a broader class of problems where higher clas-
sification accuracy does not necessarily result in superior
analysis performance. Instead, the top quark mass measure-
ment is more sensitive to the presence of some background
events than others, in ways that are difficult to predict a
priori. The Higgs boson search is limited by systematic un-
certainties on the background events. Therefore, selectors
that maximize classification accuracy may perform worse
than those that 1) increase the quantity of signal by toler-
ating harmless background, 2) reduce the quantity of sig-
nal to eliminate disruptive background, or 3) minimize the
impact of systematic uncertainties.

To find such selectors, we introduce a second, novel
approach that uses stochastic optimization techniques.
Rather than maximizing classification accuracy, this ap-
proach directly optimizes selectors for their true purpose:
maximizing either the precision of top quark mass mea-
surements or sensitivity to the presence of the Higgs boson.
Using NEAT (16), an evolutionary method for training
neural networks, we optimize event selectors that operate
either in conjunction with supervised classifiers or in lieu
of them.

This article presents experiments that compare the per-
formance of manually designed heuristic selectors to neu-
ral network selectors trained with backpropagation (17) or
NEAT. In both top quark mass measurement and Higgs bo-

son search, the learning methods perform significantly bet-
ter than the heuristic approach, confirming that machine
learning can greatly benefit event selection in high energy
physics. Furthermore, the NEAT selectors yield by far the
best analyses, demonstrating the advantage of the stochas-
tic optimization approach in an application area previously
assumed the province of supervised methods.

Finally, this article describes a detailed case study in
which the best performing selector is applied to real data
gathered by the CDF II detector at the Tevatron. The re-
sult is a substantial reduction in uncertainty in the top
quark mass measurement, yielding by far the most precise
measurement of this type to date. Obtaining a similar re-
duction in uncertainty would otherwise require producing
many more collisions at great expense. Hence, this new ap-
proach to event selection has already contributed substan-
tially to our knowledge of the top quark’s mass and our
understanding of the larger questions upon which it sheds
light.

The approaches we propose also offer potential benefits
beyond the analysis of data gathered at the Tevatron. The
future of high energy physics lies with the Large Hadron
Collider (LHC), a new accelerator currently under con-
struction. Once in operation, the LHC will produce colli-
sions at much higher frequency and energy than the Tevra-
tron. The resulting torrent of data will require highly effec-
tive event selection, which can potentially be aided by the
methods presented in this article.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the process of producing, detecting, se-
lecting, and analyzing events in modern high energy ac-
celerators. Sections 3 and 4 describe methods for perform-
ing event selection with the aid of supervised learning and
stochastic optimization, respectively. Sections 5 and 6 com-
pare the performance of these methods on the problems of
top quark mass measurement and Higgs boson search, re-
spectively. Section 7 describes the use of our optimized se-
lector to produce a new top quark mass measurement with
data from the Tevatron. Section 8 discusses the the impli-
cations of these results, Section 9 outlines our plans for fu-
ture work, and Section 10 concludes.

2. Events in High Energy Physics

This section provides an overview of the process of pro-
ducing, detecting, selecting, and analyzing events at mod-
ern high energy accelerators, with particular focus on mea-
surement of the top quark’s mass and the search for the
Higgs boson.

2.1. Producing Fvents

To provide enough energy to produce massive exotic
particles such as the top quark or the Higgs boson, one
must accelerate and annihilate lighter particles and their
anti-particles. Figure 1 shows the Fermilab Tevatron accel-



erator complex in Batavia, Illinois, which includes a series
of smaller accelerators that seed the final 6.5-kilometer
Tevatron ring. The Tevatron accelerates protons and anti-
protons to a center-of-mass energy of 1.96 tera-electron-
volts (TeV), the highest controlled energy events ever
achieved.

MAIN INJECTOR

Antiproton Proton
Direction  Direction

Fig. 1. Accelerator complex at Fermilab, showing the chain of lower
energy accelerators used to prime the Tevatron, the world’s highest
energy accelerator, which collides protons and anti-protons at two
points (CDF II and DZERO) in the ring.

2.2. Detecting Events

Top quark and Higgs boson events are extremely rare.
Though the Tevatron produces approximately 10! events
per hour, only approximately 1 per hour yields a top quark
and approximately 0.01 per hour produces a Higgs boson.
Even when produced, detecting these particles is a great
challenge. They cannot be directly observed since they are
smaller than the wavelength of visible light. In addition,
they decay into other particles almost immediately, in less
than 107 seconds.

Though the massive top quark and Higgs boson cannot
be directly observed, the lighter stable particles to which
they decay, called decay products, can be observed. Multiple
layers of detectors (18) surround the point of collision for
this purpose. As the decay products pass through these
detectors, they interact with them in a way that allows
their direction and energy to be observed. Figure 2 depicts
CDF 11, one of two detectors at the Tevatron.

2.3. Selecting Events

Since the vast majority of events do not produce parti-
cles of interest, culling signal from background is crucial to
obtaining high quality analyses. This process occurs in two
phases: 1) pre-selection, in which simple rules are applied to
eliminate events that are trivially known to be background
and 2) final selection, in which more subtle properties of
the remaining events are examined to determine whether
they contain particles of interest.

Fig. 2. The CDF II detector, approximately 10 meters high, is de-
signed to study collisions of protons and anti-protons at the Fermi-
lab Tevatron. The protons and anti-protons enter from the left and
right and collide at the center, which is surrounded by concentric
detector layers to measure the decay point (green), the direction and
momentum (yellow) and the energy (red and cyan) of the event’s
decay products.

Final selection can be performed using heuristics devel-
oped by physics experts (19) or, preferably, using machine
learning, as will be detailed in Sections 3 and 4. The re-
mainder of this section describes the pre-selection process
for top quark mass measurement and Higgs search.

2.3.1. Pre-Selection for Top Quark Mass Measurement

In top quark mass measurement, the pre-selection phase
discards all events that do not display the top quark’s char-
acteristic signature. This signature emerges from the direc-
tion and energy of the top quark’s decay products, shown
in Figure 3. The decay products consist of two leptons; two
bottom quarks, which are seen in the detector as “jets” of
lower energy particles; and an energy imbalance caused by
missing neutrinos, which escape undetected. Pre-selection
is safe because it has nearly 100% recall, i.e., signal events
are almost never discarded.

Unfortunately, pre-selection does not have high precision
because the characteristic signature is not specific to top
quark decay (19). In fact, although pre-selection discards
more than 99% of the events, 83% of those that remain
consist of background that mimics the top quark’s signa-
ture. In particular, only five types of events may survive
pre-selection. Their particular nature is not important for
the process of final selection, but their relative frequencies
are. These events are, in order of diminishing importance:

(i) two gluons and a Z boson decaying to a pair of stable

leptons (ee or mumu) (71% of the sample),
(ii) The simultaneous measurement of three gluons and
a W boson (6% of the sample),

(iii) two gluons and a Z boson decaying to a pair of un-
stable (tau or tau-bar) leptons (3% of the sample),

(iv) the simultaneous measurement of two gluons and two
W bosons (2% of the sample), and

(v) the simultaneous measurement of a Z boson and a W
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Fig. 3. Collision of proton and anti-proton resulting in the production
of a pair of top quarks (¢,%), which decay almost immediately to a
pair of W particles (W™, W) and bottom quarks (b, b). W particles
decay to leptons (u*, e™) and their accompanying neutrinos (V,, Ve)
while bottom quarks decay to jets of lower energy particles.

boson (1% of the sample).

While these backgrounds mimic the top quark’s basic
signature, they differ from top quark events in more subtle
ways, e.g. the distribution of energy in the leptons or jets.
Final selections, described in Sections 3 and 4, can further
prune the data by exploiting these differences.

2.3.2. Pre-Selection for Higgs Boson Search

As in top quark mass measurement, pre-selection in
Higgs boson search discards all events without the appro-
priate signature. In this case, the signature results from the
Higgs boson’s decay products, shown in Figure 4, which
consist of two jets from bottom quarks and two jets from
other quarks. As with the top quark, pre-selection for the
Higgs boson has nearly perfect recall but poor precision,
as this signature is not unique to the Higgs boson. De-
spite discarding more than 99% of the events, pre-selection
leaves a pool of events still overwhelmingly dominated by
background: only 1 in approximately 3500 events involves
a Higgs boson. Though these backgrounds produce a sim-
ilar signature, the energy of their jets will differ slightly,
making it possible to suppress their influence during the
final selection.

2.4. Analyzing Selected FEvents

The events that survive the final selection are used for
data analysis, either to measure the mass of the top quark
or to determine whether the Higgs boson was observed.

Fig. 4. Collision of proton and anti-proton resulting in a W or Z
boson which radiates a Higgs boson h. The W or Z boson decays
to two quarks (g,q), which are seen as jets, and the Higgs decays to
two bottom quarks (b,b), also seen as jets.

In the former case, the top quark’s mass can be measured
by inferring the likely mass of the observed decay products
in each event (21). In particular, probability density func-
tions in top quark mass are obtained for every event. Com-
bining these into a single joint probability density function
and computing its expected value yields the final estimate
of the top quark’s mass (see Figure 5). Additionally, prob-
abilities that the observed decay products are due to one
of the major background processes are calculated and used
to suppress the influence of background events in the mass
measurement. Minimizing the uncertainty of this measure-
ment is the primary goal of event selection for top quark
mass measurement.
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Fig. 5. The top quark’s mass can be inferred from the observed de-
cay products (21). An example measurement using simulated events
shows a strong minimum in the negative log of the probability den-
sity near the simulated mass, 175 GeV/c2. The measured mass for
this example is 173.6 GeV/c?.

In the latter case, the data is used to determine whether
the presence of the Higgs boson can be confirmed. Since
the Higgs boson occurs so rarely at the Tevatron, confirma-
tion can occur only with powerful event selection and large



numbers of events. Confirmation is further hindered by a
significant theoretical uncertainty in the nature of back-
ground events to the Higgs boson. However, even if there
is not enough data to confirm the Higgs boson’s presence,
the sensitivity of the selector can still be quantified. This is
done using the scale factor, which measures how much more
frequently than predicted by theory the Higgs boson must
occur for it to be observed. The theoretical uncertainty in
the background events yields a systematic uncertainty in
the rate of Higgs boson events, and significantly increases
the necessary scale factor. Minimizing the scale factor is
the primary goal of event selection for Higgs boson search.

3. Supervised Learning for Event Selection

This section describes how final event selection can be
performed with the aid of supervised learning methods
which maximize classification accuracy. In a narrow class
of problems, these are equivalent to a likelihood ratio test,
which the Neyman-Pearson Lemma (7) suggests that are
optimal. This approach is standard in the physics commu-
nity and serves as a point of comparison for the optimiza-
tion approach that will be described in Section 4.

Supervised methods can be used to train classifiers that
separate signal from background. However, such classifiers
cannot be trained on real accelerator data because the
true labels for such events are unknown. Instead, they are
trained with data drawn from simulators of the accelera-
tor (22) and detector (23), which generate events and model
the interaction of their decay products with the detector.
These simulators are not “toys” but instead sophisticated
models that capture our best current understanding of the
underlying physical processes and have been extensively
verified using data from previous accelerators (23).

Since the true mass of the top quark is not known, it is
important that selectors for top quark mass measurement
be robust across a range of likely masses. Hence, simulated
events are generated using three likely mass values: 165,
175, and 185 giga-electron-volts per speed of light squared
(GeV/c?). Each event is described using the following six
features: 1) the mass of the system of two leptons, 2) the
number of identified bottom quarks, 3) the imbalance of
transverse momentum, indicating the presence of unde-
tected neutrinos, 4) the total transverse energy of all decay
products, 5) the minimum angle between a jet and the un-
balanced transverse momentum, and 6) the minimum an-
gle between a jet and a lepton. Figure 6 shows the distri-
bution of values in the data set of simulated events, after
pre-selection, for these six features.

The signal for the Higgs boson is more subtle than that
of the top quark, and the backgrounds are both more nu-
merous and less well understood theoretically. As a result,
when searching for the Higgs boson, different features are
used to describe each event. In particular, these features
summarize the information contained in the decay prod-
ucts into three higher-level physics quantities: 1) Cy, which

indicates whether the decay products are consistent with
a Wh event, 2) Cz, which similarly indicates consistency
with a Zh event, and 3) Cg, consistency with a background
event. Figure 7 shows the distribution for simulated events
after pre-selection for these three features.

Using these features to describe each simulated event, we
can construct a training set by labeling each collision as sig-
nal or background. The remainder of this section describes
two supervised learning approaches for training selectors
with such data.

3.1. Training Binary Classifiers

The simplest supervised learning approach to event selec-
tion involves training binary classifiers. This approach has
proven successful on related event selection problems, using
neural networks (13; 14) or support vector machines (15).
In this article, we train feed-forward neural networks with
backpropagation (17).

For top quark mass measurement, we use networks with
six inputs, fourteen hidden nodes, and one output. These
networks are fully connected, i.e., there is a link between
every input and every hidden node and one between every
hidden node and every output. In training, each event is
labeled 1 if it is signal and 0 otherwise. In testing, an event
is classified as signal if the network’s output is greater than
a threshold ¢ € [0, 1]. Since we cannot quantify a priori the
trade-off between precision and recall, we set ¢ to the value
that maximizes classification accuracy on the training set.
To find this value, we sample the range [0,1] at regular
intervals of 0.025, computing the classification accuracy at
each point.

For Higgs boson search, we use fully connected networks
with three inputs, two layers of hidden nodes with four
and three nodes respectively, and one output. In training,
each signal event is labeled 1 and each background event 0.
However, for testing, we do not apply a specific threshold to
the output. Instead, the entire distribution of output values
for all pre-selected events is used in measuring sensitivity to
the presence of the Higgs boson. This process is described
in more detail in Section 4.2.

3.2. Training Multi-Class Classifiers

A potential disadvantage of the binary classification ap-
proach is that it gives all backgrounds the same label.
Learning may be easier if the problem is cast as a multi-
class classification task, where each type of background is
treated as a separate class. To test this approach, we train
a set of one-against-all (24) classifiers, each of which strives
to distinguish a given class from all the others.

In the case of top quark mass measurement, there are
six classes: one signal class and five background classes, as
described in Section 2.3.1. We train six binary classifiers,
each of which uses the same network topology described
above. When training the kth classifier, each event is la-
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beled 1 if it is in class k and 0 otherwise. Note that one
of these classifiers, that which distinguishes signal from all
five background classes, is identical to the binary classifier
described in Section 3.1. In testing, an event’s classification
corresponds to the network with the highest output. Note
that the multi-class approach is not applicable to Higgs bo-
son search, which has a single dominant background.

4. Optimization Methods for Event Selection

The supervised approach described above is most effec-
tive in the narrow class of problems in which the classifi-
cation accuracy of the event selector is closely correlated

with the quality of the resulting data analysis. In this case,
the Neyman-Pearson Lemma argues that such techniques
are optimal.

However, top quark mass measurement and Higgs boson
search exemplify a broader class of problems where higher
classification accuracy does not necessarily result in bet-
ter analysis. Instead, the analysis is more sensitive to the
presence of some background events than others, in ways
that are difficult to predict a priori. Therefore, selectors
that maximize classification accuracy may perform worse
than those that 1) increase the quantity of signal by toler-
ating harmless background, 2) reduce the quantity of sig-
nal to eliminate disruptive background, or 3) minimize the



impact of systematic uncertainties.

Since the costs of misclassification are not always the
same, one way to address this challenge would to be treat
event selection as a cost-sensitive supervised learning prob-
lem (25). In such problems, the cost of misclassification can
vary depending on either the true class, the incorrectly pre-
dicted class, or both. As a result, the goal is not to min-
imize classification error but instead to minimize the to-
tal cost of misclassification. Specialized learning methods
exist to tackle such problems. For example, the MetaCost
algorithm (26) relabels training data such that a classi-
fier trained to minimize classification error on the relabeled
data will minimize the costs of misprediction. However,
MetaCost and other methods like it are not applicable to
the event selection problem because they require as input a
cost matrix C, where C(i, j) is the cost of predicting class i
when the true class is j. In event selection, this cost matrix
is not known a priori. Furthermore, even if it were known, it
is unlikely that cost-sensitive methods would substantially
improve performance, since the disruption caused by any
particular background event can depend on subtle features
that are poorly correlated with that event’s true type.

While cost-sensitive methods are not applicable to event
selection, more general-purpose optimization methods are.
Such methods search the space of possible selectors for
one that maximizes a given fitness function. Previous stud-
ies (27) have shown that optimization techniques can com-
pete with supervised methods in similar event selection
problems by optimizing criteria related to classification ac-
curacy. However, those studies used manually defined crite-
ria that the designers hoped would yield effective selectors.
In this article, we present a new approach that directly op-
timizes selectors for their true purpose: maximizing either
the precision of the top quark mass measurement or sensi-
tivity to the presence of the Higgs boson.

In the remainder of this section, we first define fitness
functions for each event selection problem and then de-
scribe several optimization approaches that make use of
these functions.

4.1. Fitness Function for Top Quark Mass Measurement

The goal of event selection for top quark mass measure-
ment is to obtain a measurement with maximal precision.
Hence, the fitness of any given event selector is the preci-
sion of the mass measurement obtained using the subset of
simulated events it selects. This choice of fitness function
naturally accounts for the disruptive effects of the back-
ground events that a selector allows, and therefore gives
optimization methods the possibility to realize significant
performance gains.

All background events that survive pre-selection are
roughly consistent with top quark events. Disruptive back-
ground events are those that are very consistent with top
quark events of a specific top quark mass, and inconsistent
with events at other masses. Though they contain no in-

formation about the true top quark mass, they sway the
measured mass due to their apparent precision.

The most precise measurements are those with the small-
est statistical uncertainty, which we measure by calculating
the standard deviation of the mass estimates the selector
produces on a series of 1000 independent trials at each of the
three likely top quark masses. In each trial, we randomly se-
lect events, with replacement, from the pre-selected train-
ing set and feed them to the selector. The number of events
in each trial was chosen to approximately equal the number
of events accumulated by the CDF II detector. The events
that survive selection are used to estimate the top quark’s
mass, as described in Section 2.4. The standard deviation of
these estimates reflects the statistical uncertainty of mass
measurements produced by that selector.
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Fig. 8. At top, a histogram of top quark masses measured in 1000 in-
dependent trials where the true mass is 175 GeV/c?, both before and
after bias correction. The fitness function for top quark mass mea-
surement is negatively proportional to the width of the histogram
after bias correction. At bottom, bias correction for top mass mea-
surement using simulated events at three top quark masses (squares).
A linear correction function (solid line) is fit to the measured masses.

Note that it is not necessary to optimize event selectors
for accuracy because the mass measurement is calibrated
for accuracy using simulated events, a process known as bias



correction (21). As shown in Figure 8, we can correct for
any discrepancy between the measured mass M, and the
true mass M; using simple linear regression, with the actual
mass of the simulated events used as labels for training.
Hence, background events that do not lower precision are
harmless even if they introduce bias. The best selector is
that which produces the most precise mass measurements,
regardless of the resulting bias. The fitness function for
the top quark mass measurement Fy, is then the standard
deviation of bias-corrected mass estimates:

N
1 . _
o =\ 7 204 - 0 O

where Mg is the ¢th mass measurement after bias correc-
tion and M, is the average of the IV bias-corrected mass
measurements.

4.2. Fitness Function for Higgs Boson Search

The goal of event selection for Higgs boson search is to
find a selector with maximal sensitivity to the presence of
the Higgs boson. As mentioned in Section 2.4, this can be
quantified by computing the selector’s scale factor, which
measures how much the Higgs boson’s rate of production
would need to increase for it to be observed or statistically
excluded.

More specifically, the scale factor is the median 95% ex-
pected confidence level upper limit on the Higgs boson pro-
duction rate, relative to the theoretically predicted rate.
To compute confidence level limits, we conduct 4000 inde-
pendent trials; each trial uses randomly selected simulated
events, as with the fitness function for top quark mass mea-
surement.

For each trial, we compare the distribution of the selec-
tor’s outputs for the simulated events to distributions we
would expect for this selector given two hypotheses: 1) that
the data contains only background events and 2) that the
data contains both background and Higgs boson events.
The greater the difference between the distributions for the
two hypotheses, the more confident the resulting statistical
limit will be (3). Increasing the scale factor, and therefore
the rate of Higgs boson events, results in a larger difference
between the two hypotheses and a more confident limit on
the Higgs boson rate. We increase the scale factor of the
Higgs boson production rate until the two distributions are
different enough to allow us to set a 95% confidence level
upper limit on the Higgs boson production rate, averaged
over the 4000 trials. Figure 9 illustrates this process.

This scale factor is the final physics result of a Higgs
search, and includes such effects as theoretical uncertainty
in the simulation of the background events that can weaken
the search. Choice of the scale factor as the fitness func-
tion allows optimization methods the opportunity to select
events whose uncertainty will have minimal impact.
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Fig. 9. At top, the confidence level of the statistical upper limit
improves as the Higgs rate is increased; at the theoretically predicted
rate (dotted line) the confidence is low, so the scale factor (dashed
line) measures the relative increase in the Higgs rate necessary to
achieve a 95% level. At bottom, example output of an event selector
for Higgs boson search with simulated Higgs events (solid histogram)
stacked on top of simulated background events (empty histogram).
The Higgs production rate has been increased by the scale factor
such that it is large enough to be excluded at 95% confidence level.

4.3. Optimizing Binary Classifiers

The simplest way to use these fitness functions to improve
event selection is in optimizing the threshold ¢ of the binary
classifier. As before, we sample the range [0, 1] at regular
intervals of 0.025. However, at each point we compute the
value of the fitness function, instead of the classification
accuracy. Note that this approach is applicable only to top
quark mass measurement, since the binary classifiers for
Higgs boson search do not use a threshold.

4.4. Optimizing Multi-Class Classifiers

Optimizing ¢ could improve performance by effectively
balancing the trade-off between precision and recall. How-
ever, it is still suboptimal because it treats all background



types equally. A selector that optimizes the output of the
multi-class classifier (made up of multiple binary classifiers)
could perform much better: by distinguishing between dif-
ferent background types, it could favor harmless events and
discard disruptive ones. This approach is also applicable
only to top quark mass measurement, since Higgs boson
search has a single dominant background.

The one-against-all approach to multi-class classification
does not have thresholds to tune. Nonetheless, its perfor-
mance can be improved using stochastic optimization tech-
niques. Instead of directly using the classifiers for selection,
we use their classifications as input to a selector trained to
maximize one of our fitness functions. This selector is also
a neural network but its internal structure and weights are
determined not by backpropagation but by a stochastic op-
timization method called NeuroEvolution of Augmenting
Topologies (NEAT) (16). While many other optimization
methods could be used in its place, we chose NEAT for
event selection because of its previous empirical success on
difficult optimization tasks (16; 28). Here we provide a brief
overview of the NEAT method; a complete description is
provided by Stanley and Miikkulainen (16).

Like other neuroevolutionary methods, NEAT uses evo-
lutionary computation to train neural networks. In a typi-
cal neuroevolutionary system (29), the weights of a neural
network are strung together to form an individual genome.
A population of such genomes is then evolved by evaluating
each one and selectively reproducing the fittest individu-
als through crossover and mutation. Most neuroevolution-
ary systems require the designer to manually determine the
network’s topology (i.e. how many hidden nodes there are
and how they are connected). By contrast, NEAT automat-
ically evolves the topology to fit the given problem.

NEAT begins with a uniform population of simple net-
works with no hidden nodes and inputs connected directly
to outputs. In addition to standard weight mutations, two
special mutation operators incrementally introduce new
structure to the population. Figure 10 depicts these oper-
ators, which add hidden nodes and links to the network.
Only those structural mutations that improve performance
tend to survive; in this way, NEAT searches through a min-
imal number of weight dimensions and finds the appropri-
ate level of complexity for the problem.

4.5. Optimizing Selectors Without Supervised Learning

A more radical departure from the traditional approach
to training event selectors is to entirely eliminate the use
of supervised methods. In this approach, the inputs to the
NEAT selector are not the outputs of the one-against-all
classifiers but instead the original features that served as
inputs to those classifiers. As a result, training classifiers is
no longer necessary. Instead, we treat event selection purely
as an optimization problem and rely on NEAT to find a se-
lector that maximizes the appropriate fitness function. Un-
like the optimization approaches described above, this ap-
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Fig. 10. Examples of NEAT’s structural mutation operators. At top,
a new hidden node is added to the network by splitting an existing
link in two. At bottom, a new link, shown with a thicker black line,
is added to connect two existing nodes.

proach is applicable to both top quark mass measurement
and Higgs boson search.

The networks have one input for each event feature (six
for top quark mass measurement and three for Higgs boson
search) and one output. These networks use the threshold
t = 0.51in both training and testing. It is no longer necessary
to tune t since NEAT evolves networks that are optimized
for a fixed value of t.

Finding a good selection in this manner is challenging
in part because of the size of the search space. The set of
possible selections is the power set of the events. Hence,
given n events, there are 2™ possible selections. Nonethe-
less, directly searching for selectors that minimize mass
measurement uncertainty yields much better performance
than maximizing classification accuracy, as the results in
the following sections confirm.

5. Comparative Results for Top Quark Mass
Measurement

To assess the efficacy of the methods presented in Sec-
tions 3 and 4, we evaluated each one on the top quark mass
measurement problem, averaging performance over ten in-
dependent runs, using 10,000 simulated events. These runs
were conducted using ten-fold cross validation: in each run,
75% of the events are selected at random for training and
the remaining 25% reserved for testing.

5.1. Supervised Learning Results

Figure 11 shows the classification accuracy on training
data for networks trained with backpropagation on sim-
ulated pre-selected events, averaged over ten independent
runs. As described in Section 3.2, each network is trained
to identify one class of events. Binary classification uses
only the network trained to identify top quark events, while
multi-class classification uses all six networks. The fully-



connected, feed-forward networks have six inputs, fourteen
hidden nodes, one output, and are trained with a learning
rate of 0.001 and a momentum rate of 0.5. Accuracy during
training is measured using a threshold ¢ = 0.5.
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Fig. 11. Classification accuracy on training data for the six net-
works, each trained to recognize the signal (top quark) or one of the
five backgrounds. Accuracy is averaged over all classes, weighted by
the expected contributions. Networks trained to recognize rare back-
grounds therefore have high accuracy. The signal network is used in
the binary classification case; all six networks are used in the one-a-
gainst-all multi-class approach.

On the data reserved for testing, the binary classifier had
an average classification accuracy of 93 + 1%. The multi-
class classifier identified the correct class with an accuracy
of 83 4 1%. If the multi-class classifier is not penalized for
labeling backgrounds with the wrong background class, its
accuracy improves to 91 £ 1%. Table 1 shows the precision
and recall in training and testing for both the binary and
multi-class classifiers. The similarity in performance be-
tween training and testing indicates that the classifiers are
not overfit to the training data. Binary and multi-classifiers
give mass measurements with an average uncertainty rela-
tive to the heuristic of 0.91 +0.04 and 0.90 + 0.05, respec-
tively.

Precision Recall
Binary 0.84 (0.87) 0.82 (0.79)
Multi-Class  0.71 (0.73) 0.89 (0.88)
NEAT 0.15 (0.16) 0.97 (0.96)

Table 1

Precision and recall for the binary classification, multi-class classifi-
cation, and NEAT (with features) top-quark selectors. Performance
in training is shown first, following by performance in testing in
parentheses.
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Fig. 12. Uncertainty in top quark mass relative to the heuristic in
training data for the best network in each NEAT generation.

5.2. Optimization Results

If the threshold of the binary classifier is selected to min-
imize mass measurement uncertainty instead of maximiz-
ing classification accuracy, as described in Section 4.3, the
resulting selectors allow for mass measurements with sub-
stantially lower average uncertainty, 0.82 4 0.04 relative to
the heuristic.

Using NEAT to perform stochastic optimization yields
even more precise measurements. Figure 12 shows mass un-
certainty on the training set for the best network in each
generation trained with NEAT. It compares the perfor-
mance of NEAT optimizing multi-class classifiers to its per-
formance optimizing directly on the features, without the
help of supervised methods. The results are averaged over
ten runs for each method. In testing, the average mass un-
certainty of the final generation champions relative to the
heuristic was 0.66 &+ 0.02 and 0.64 + 0.02 for the two ap-
proaches, respectively.

Table 1 also shows precision and recall in training and
testing for the NEAT with features approach. The high re-
call and low precision suggests that the optimization ap-
proach improves the precision of the mass measurement by
keeping more top quark events (yielding higher recall) but
allowing more harmless background events (yielding lower
precision).

Figure 13 shows the expected top quark mass uncer-
tainty for each network evaluated during a typical NEAT
run, as well as the fraction of selected events that are sig-
nal. Though NEAT finds networks with a signal fraction
higher than 0.8, the networks with the lowest top quark
mass uncertainty have a starkly lower signal fraction, less
than 0.4. This result confirms our hypothesis that signal
fraction is not well correlated with uncertainty in the re-
sulting measurement, as the best performing selectors tol-
erate substantial harmless background.

Figure 14 summarizes the performance on testing data
of all the machine learning methods we employed and com-
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Fig. 13. Uncertainty in top quark mass relative to the heuristic, and
signal fraction for each network evaluated during a typical NEAT
run (red squares), and for the heuristic selection (black star).

pares it to the performance of a heuristic selector designed
manually by physicists. Student’s t-tests confirm with
greater than 98% confidence the statistical significance of
the differences between 1) the heuristic selector and each
learning method, 2) each supervised method and each op-
timization method, and 3) the optimized binary classifier
and each NEAT method.
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Fig. 14. Average mass measurement uncertainty on testing data for
the heuristic selector, binary classifiers with ¢ optimized for classi-
fication accuracy (Binary-C), or mass uncertainty (Binary-M), mul-
ti-class classifiers (Multiclass), NEAT with multi-class classifiers as
inputs (NEAT-classes), and NEAT with the original features as in-
puts (NEAT-features).
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6. Comparative Results for Higgs Boson Search

We also evaluated the relative performance of the super-
vised learning and optimization strategies on the problem
of Higgs boson search. As before, each run was conducted
using ten-fold cross validation with a 75%/25% split be-
tween training and testing.

6.1. Supervised Learning Results

Recall that the multi-class classification approach is not
applicable to Higgs boson search since there is only a sin-
gle dominant background. Thus, we tested only the bi-
nary classification approach. Figure 15 shows the classifi-
cation accuracy on training data for networks trained with
backpropagation on simulated pre-selected events, aver-
aged over ten independent runs. We use a fully-connected,
feed-forward neural network with three inputs, two layers
of hidden nodes with four and three nodes respectively, and
one output node. The network is trained using a learning
rate of 0.001 and a momentum rate of 0.5.
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Fig. 15. Classification accuracy on training data averaged over ten
runs for a network trained to distinguish the signal for a Higgs boson
from the background process.

The classification accuracy does not improve dramati-
cally during training due to the nature of the features,
which themselves encapsulate a significant fraction of the
classification information through their description of the
consistency of each event with one of the two signal or the
one background hypotheses. Table 2 shows precision and re-
call in training and testing. Before classification, the back-
ground dominates the pre-selected events; signal to back-
ground ratio is approximately 1:3500. Therefore, even rel-
atively high classification accuracy and corresponding im-
pressive reduction in background rate gives a fairly low
precision, yielding a signal to background ratio of approx-
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Fig. 16. Average scale factor on training data relative to the heuristic

selector (dashed line) for the best network found so far by NEAT.

imately 1:5. The average resulting scale factor was 0.92 +
0.04, relative to the heuristic.

Recall
0.75 (0.76)

Precision

0.21 (0.22)

Binary

Table 2

Precision and recall for the binary Higgs boson classifier. Performance
in training is shown first, following by performance in testing in
parentheses.

6.2. Optimization Results

Since optimizing classifiers is not applicable in Higgs bo-
son search, we tested only the pure optimization approach,
where NEAT trains a selector that receives each event’s
features directly. Figure 16 shows the scale factor on the
training set for the best networks discovered by NEAT. For
reasons of convenience, these experiments use a slightly dif-
ferent version of NEAT called rtNEAT (20). rtNEAT is a
steady-state evolutionary method, which means it does not
have explicit generations but instead one population that
changes gradually over time. Thus, the results in this fig-
ure are plotted against total fitness evaluations rather than
generations. As before, the results are averaged over ten
runs for each method. In testing, the average scale factor of
the final champions relative to the heuristic was 0.6740.03.

We do not present precision and recall results for this
case because, when optimization methods are applied to
Higgs boson search, such metrics are not meaningful and
do not have a clear interpretation. The reason, as explained
in Section 3.1, is that the output of the network is never
interpreted as a class label and thus no threshold is applied
to it; instead we merely seek the network that maps events
to [0,1] in a way that minimizes the scale factor.

Figure 17 summarizes the performance on testing data
of both learning methods that were applied to event selec-
tion for Higgs boson search and compares it to the perfor-
mance of a heuristic selector. Students t-tests confirm with
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greater than 99% confidence the statistical significance of
the differences between the NEAT method and both the
heuristic and backpropagation methods.
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Fig. 17. Average scale factor on testing data for the heuristic selector,
backpropagation and NEAT. All results are shown relative to the
heuristic selector.

7. Application to Tevatron Events

The top quark was first observed in 1995 at the Fermilab
Tevatron, which remains the sole accelerator with enough
energy to produce it for direct study. The top quark’s mass
is extraordinary on the scale of fundamental particles,
nearly 40 times larger than the second most massive quark
and comparable to the mass of a gold atom. Its enormous
mass remains a puzzle from a theoretical standpoint, so
physicists have focused great effort on probing the precious
few top quarks collected in the five years since the CDF 11
detector became operational.

Consequently, precise measurements of the top quark’s
mass are a chief scientific priority for the Fermilab program.
Stringent efforts are made by the accelerator and detector
teams to maximize the size of the accumulated data sample
in order to reduce statistical errors, and improvement in
techniques for extracting maximal precision from the col-
lected data are the subject of much active research (31).
Typically, the measurements are made and updated yearly,
as the dataset grows. In this section we describe how our
work has contributed to this effort. In particular, we de-
tail the successful application of a NEAT selector to a re-
analysis of the data collected by the CDF II detector.

Prior to this work, event selection for top quark mass
measurement was done using the heuristic selector (19)
described in this article. In analyzing the selected events,
the measurement was dominated by statistical uncertain-
ties due to the sparsity of observed top quarks. Our re-
sults demonstrating the potential of stochastic optimiza-



tion methods for event selection (33) convinced physicists
that this approach could significantly increase the quantity
of signal in the final selection and thus improve the preci-
sion of the resulting measurement.

The data sample used consists of events collected be-
tween March 2002 and March 2007. From more than five
years of accumulated collisions, 642 events satisfy the pre-
selection, of which we expect 131.6 on average to be signal.
A neural network trained with NEAT in the manner de-
scribed in Section 4.5 was used to produce a final selection
containing 344 events, of which we expect 121.8 on average
to be signal. Since the selector was trained on simulated
data, it is critical that the real data is well described by
the simulated data. Figure 18, which shows neural network
output for the pre-selected data as well as for the simulated
events, confirms that this is the case.
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Fig. 18. The output of the final NEAT network evaluated on the

collected data from the CDF II detector at the Tevatron (black
triangles), compared to the output on simulated data (stacked solid
histograms) (30).

Using this final selection, a new mass measurement was
obtained (30):

Myop = 171.2 £ 2.7(statistical) + 2.9(systematic)

This is the world’s most precise top quark mass measure-
ment using this characteristic signature, by nearly a factor
of two (32) (see Figure 19). It is the first measurement of
this type not dominated by statistical uncertainties. Ob-
taining a similar reduction in uncertainty would otherwise
require producing many more collisions at great expense.

Following this measurement, competing measurements
of the top quark mass revisited the design of the heuristic
selection to more closely follow the selection derived with
our optimization. Thus, this new methodology has changed
the way physicists devise heuristic selectors.
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Fig. 19. Negative log of the probability density in top quark mass for
the data collected from the CDF II detector at the Tevatron (30),
showing a minimum around Mo, = 171.2 GeV/c2 and a width
which corresponds to a statistical error of 2.7 GeV/c2.

8. Discussion

The results presented in Sections 5 and 6 confirm the con-
clusion of earlier work (13; 14; 15) that machine learning
methods can substantially outperform heuristic event se-
lectors. However, previous results demonstrated only that
learned selectors had higher classification accuracy, while
these results directly verify that they can improve the qual-
ity of the resulting analysis. More importantly, these results
confirm the advantage of treating event selection as an op-
timization rather than a supervised learning problem.

In top quark mass measurement, the chief difficulty lies
in determining which backgrounds will be harmful to the
precision of the resulting measurement. The heuristic selec-
tor (19) strives to eliminate as much background as possi-
ble, without regard to how disruptive any particular event
may be. It explicitly removes events which have decay prod-
ucts consistent with the largest background, Z boson with
gluons. The heuristic performs well in this regard, as the
final selection has a signal fraction of approximately 2/3.
However, it also removes a lot of signal. By contrast, the
selector evolved by NEAT allows approximately 25% more
signal into the final sample than the heuristic. It is able
to do so by tolerating background that is minimally dis-
ruptive to the measurement. As Figure 13 makes clear, the
best performing selectors are those that tolerate substan-
tial quantities of harmless background.

The lack of correlation between the signal fraction and
the quality of the resulting analysis also explains why
optimization methods outperform supervised methods.
By simply maximizing classification accuracy, neither the
binary nor multi-class classification approaches consider
which background is worth tolerating. Even the most naive
optimization approach, which merely tunes the thresh-



old ¢ of a binary classifier, outperforms the best purely
supervised approach. Furthermore, the performance of
NEAT when trained directly on the features suggests that
supervised methods are not necessary for this task.

In Higgs boson search, event selection is made difficult by
event-by-event differences in the theoretical uncertainties
in the description of the physical process that causes back-
ground events. In this case, the heuristic selector makes the
reasonable approximation that the three input features can
be treated as probabilities that the event is Higgs boson
signal (Wh or Zh) or a background event. The heuristic
forms a simple likelihood ratio of the signal and background
features, which tends to give large values to signal events
and smaller values to background events. This heuristic is
suboptimal because it does not suppress events whose un-
certainties weaken the final limit.

Supervised methods can marginally improve classifica-
tion accuracy over these raw features, which results in a
small but significant reduction in the resulting scale factor.
However, as with top quark mass measurement, directly op-
timizing the selector yields by far the greatest performance.

In both tasks, the performance improvement is not only
significant but also substantial. In top quark mass measure-
ment, NEAT produces 29% lower uncertainty than the su-
pervised approach. In Higgs boson search, NEAT produces
a 37% lower scale factor than the supervised approach. Ob-
taining these improvements would otherwise require accu-
mulating 66% or 88% more events, respectively, costing lit-
erally tens of millions of dollars and hundreds of person-
years.

These saving are not hypothetical, since this new
methodology for training event selectors has been applied,
not only to simulated data, but to real data collected on
the Fermilab Tevatron accelerator. As described in Sec-
tion 7, using the best selector trained by NEAT results in
the most precise top quark mass measurement of this type
to date, by nearly a factor of two. Consequently, this novel
approach to event selection has directly aided the progress
of high energy physics, by contributing substantially to our
knowledge of the top quark’s mass and our understanding
of the larger questions upon which it sheds light.

9. Future Work

We believe that the intersection of machine learning
and high energy physics is a highly promising but under-
explored research area. Thus, we hope that the results
presented in this article will mark only the beginning of
a long and fruitful effort to bridge the gap between these
two disciplines. Such research can be a boon to both fields,
by providing machine learning researchers with a challeng-
ing, realistic proving ground for their methods and arming
high energy physicists with the tools to make the most of
their data. In this section, we outline some of our plans for
future work.
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9.1. Methods

Many other machine learning techniques besides those
tested here could potentially aid event selection for top
quark mass measurement and Higgs boson search. In the fu-
ture, we aim to further broaden our search for the methods
most suitable to these tasks. While many other traditional
supervised methods, such as decision trees (34), Bayesian
classifiers (35), nearest neighbor methods (36), or support
vector machines (37), could be used in place of backpropa-
gation, there is not much reason to believe they would sig-
nificantly improve performance, as previous studies have
shown little performance difference between such methods
on related event selection problems (15).

However, it is entirely plausible that other optimiza-
tion methods could fare better than NEAT. The full
representation-learning power of NEAT may not be nec-
essary on these tasks, in which case simpler methods
such as hill climbing or simulated annealing (38) could
do just as well. Other neuroevolutionary methods such as
CoSyNE (39) or recently developed estimation of distribu-
tion algorithms (40) are also potential contenders.

Another possibility for improving performance lies in the
area of feature selection, wherein a learning algorithm seeks
the most useful subset of features describing each example.
Since too few features doom the learner to sub-optimal per-
formance and too many features can lead to intractable di-
mensionality, feature selection can be a critical issue. Since
event selection methods in high energy physics have so far
relied on a manually selected set of features, the poten-
tial exists for performance improvement via automatic fea-
ture selection. However, successfully applying it in this do-
main is not a trivial task. In fact, our preliminary exper-
iments have shown that making additional features avail-
able to the learner does not improve performance, suggest-
ing the current features selected by expert physicists are
already quite good. Nonetheless, a careful study of feature
selection in this application area is an important subject
for future work. There are many feature selection methods
for supervised learning (41), but only a few exist for op-
timization techniques. However, FS-NEAT (42), an exten-
sion to NEAT that automates the process of feature selec-
tion, could be particularly applicable.

Whereas feature selection aims to pick the right features
from a given set, feature extraction or feature construc-
tion (43; 44) aims to build new, more useful features from
those provided. This strategy could also yield significant
performance dividends. However, it may prove just as chal-
lenging as feature selection. In fact, the optimization results
presented in Section 5.2 (see Figure 12) show that NEAT
does not perform better using features extracted by super-
vised learning rather than using the original features.

Finally, we plan to explore the use of structured prediction
methods (45; 46) for event selection. These methods, which
in recent years have proven effective in a wide range of
tasks from natural language processing to computational



biology (47), represent a new hope for supervised methods
in event selection. Unlike traditional supervised techniques,
structured prediction methods can minimize arbitrary cost
functions that consider dependencies between examples.
Hence, such methods could directly maximize the precision
of top quark mass measurements or sensitivity to the Higgs
boson, while still fully exploiting the availability of labeled
training data.

9.2. Applications

As described in Section 7, the methodology introduced in
this article has already been applied to real data from the
Tevatron to obtain a new top quark mass measurement. In
the future, we hope to similarly employ the best selectors
trained for Higgs boson search to aid final determinations
of whether the Higgs boson was observed at the Tevatron.

However, the future of high energy physics lies not with
the Tevatron but with the Large Hadron Collider (LHC),
shown in Figure 20, which is currently under construction
near Geneva, Switzerland (48). First collisions at the LHC
will be in 2009 at a center-of-mass energy of 14 TeV, nearly
an order of magnitude greater than the Tevatron. In addi-
tion, the rate of collisions will be two orders of magnitude
higher. The resulting torrent of data will pose a plethora of
new machine learning challenges. For example, event selec-
tion for top quark mass measurement at the LHC will be
very different than at the Tevatron, since the LHC’s higher
energy levels are expected to produce top quark collisions
much more frequently. In addition, collisions at the LHC
will have enough energy to directly observe the Higgs bo-
son, though doing so will require highly effective event se-
lection.

More generally, the scale of high energy physics demands
fast, intelligent, and automatic processing of enormous
quantities of data. The potential for connections between
machine learning and high energy physics stretch beyond
the problem of event selection, to reconstruction and clas-
sification of the decay products inside each event. In the
future, we hope to explore such topics as well.

10. Conclusion

This article describes the use of machine learning meth-
ods to aid the process of selecting events at high energy
accelerators for the purpose of studying the fundamental
nature of matter and its interactions. First, we apply super-
vised learning methods, which have succeeded previously
in similar tasks. Second, we present a new approach that
uses stochastic optimization techniques to directly search
for selectors that maximize either the precision of top quark
mass measurements or sensitivity to the presence of the
Higgs boson. Empirical results confirm that stochastically
optimized selectors result in substantially better analyses
and therefore more powerful physical insight. This article
also describes a case study in which the best selector is ap-
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plied to real accelerator events from the Fermilab Tevatron,
resulting in the most precise top quark mass measurement
of this type to date and hence contributing significantly to
the progress of high energy physics.
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