
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 03),
pp. 356-368, Chicago, IL, July 2003.

Evolving RoboCup Keepaway Players

through Task Decomposition

Abstract. In some complex control tasks, learning a direct mapping
from an agent’s sensors to its actuators is very difficult. For such tasks,
decomposing the problem into more manageable components can make
learning feasible. In this paper, we provide a task decomposition, in the
form of a decision tree, for one such task. We investigate two differ-
ent methods of learning the resulting subtasks. The first approach, lay-
ered learning, trains each component sequentially in its own training
environment, aggressively constraining the search. The second approach,
coevolution, learns all the subtasks simultaneously from the same expe-
riences and puts few restrictions on the learning algorithm. We empir-
ically compare these two training methodologies using neuro-evolution,
a machine learning algorithm that evolves neural networks. Our exper-
iments, conducted in the domain of simulated robotic soccer keepaway,
indicate that neuro-evolution can learn effective behaviors and that the
less constrained coevolutionary approach outperforms the sequential ap-
proach. These results provide new evidence of the power of coevolution
and suggest that solution spaces should not be over-constrained when
supplementing the learning of complex tasks with human knowledge.

Track Category: Coevolution

1 Introduction

One of the goals of machine learning algorithms is to facilitate the discovery
of novel solutions to problems, particularly those that might be unforeseen by
human problem-solvers. As such, there is a certain appeal to “tabula rasa learn-
ing,” in which the algorithms are turned loose on learning tasks with no (or
minimal) guidance from humans. However, the complexity of tasks that can be
successfully addressed with tabula rasa learning given current machine learning
technology is limited.

When using machine learning to address tasks that are beyond this com-
plexity limit, some form of human knowledge must be injected. This knowledge
simplifies the learning task by constraining the space of solutions that must be
considered. Ideally, the constraints simply enable the learning algorithm to find
the best solutions more quickly. However there is also the risk of eliminating the
best solutions from the search space entirely.

In this paper, we consider a multi-agent control task that, given current
methods, seems infeasible to learn via a tabula rasa approach. Thus, we provide
some structure via a task decomposition in the form of a decision tree. Rather
than learning the entire task from sensors to actuators, the agents now learn a
small number of subtasks that are combined in a predetermined way.

Providing the decision tree then raises the question of how training should
proceed. For example, 1) the subtasks could be learned sequentially, each in its



own training environment, thereby adding additional constraints to the solution
space. On the other hand, 2) the subtasks could be learned simultaneously from
the same experiences. The latter methodology, which can be considered coevo-
lution of the subtasks, does not place any further restrictions on the learning
algorithms beyond the decomposition itself.

In this paper, we empirically compare these two training methodologies using
neuro-evolution, a machine learning algorithm that evolves neural networks. We
attempt to learn agent controllers for a particular domain, namely keepaway in
simulated robotic soccer. Our results indicate that neuro-evolution can learn ef-
fective keepaway behavior, though constraining the task beyond the tabula rasa
approach proves necessary. We also find that the less constrained coevolutionary
approach to training the subtasks outperforms the sequential approach. These
results provide new evidence of the power of coevolution and suggest that solu-
tion spaces should not be over-constrained when supplementing the learning of
complex tasks with human knowledge.

The remainder of the paper is organized as follows. Section 2 introduces the
keepaway task as well as the general neuro-evolution methodology. Section 3 fully
specifies the different approaches that we compare in this paper. Detailed empir-
ical results are presented in Section 4 and are evaluated in Section 5. Section 6
concludes and discusses future work.

2 Background

This section describes simulated robotic soccer keepaway, the domain used for all
experiments reported in this paper. We also review the fundamentals of neuro-
evolution, the general machine learning algorithm used throughout.

2.1 Keepaway

The experiments reported in this paper are all in a keepaway subtask of robotic
soccer [14]. In keepaway, one team of agents, the keepers, attempts to maintain
possession of the ball while the other team, the takers, tries to get it, all within
a fixed region. Keepaway has been used as a testbed domain for several previous
machine learning studies. In an implementation based on the RoboCup soccer
simulator, low-level behaviors were hand-coded and only the high-level decision
of when and where to pass was learned [13]. Machine learning was applied more
comprehensively in a study that used genetic programming, though in a simpler
grid-based environment [6].

We implement the keepaway task within the SoccerBots environment [1].
SoccerBots is a simulation of the dynamics and dimensions of a regulation game
in the RoboCup small-size robot league [12], in which two teams of robots ma-
neuver a golf ball on a field built on a standard ping-pong table. SoccerBots is
smaller in scale and less complex than the RoboCup simulator [7], but it runs ap-
proximately an order of magnitude faster, making it a more convenient platform
for machine learning research.

To set up keepaway in SoccerBots, we increase the size of the field to give
the agents enough room to maneuver. To mark the perimeter of the game, we



add a large bounding circle around the center of the field. Figure 1 shows how a
game of keepaway is initialized. Three keepers are placed just inside this circle
at points equidistant from each other. We place a single taker in the center of
the field and place the ball in front of a randomly selected keeper.

Keepers

Taker

Ball

K

K

K

K

T T

Fig. 1: A game of keepaway after
initialization. The keepers try to
complete as many passes as possi-
ble while preventing the ball from
going out of bounds and the taker
from touching it.

After initialization, an episode of keep-
away proceeds as follows. The keepers re-
ceive one point for every pass completed.
The episode ends when the taker touches
the ball or the ball exits the bounding circle.
The keepers and the taker are permitted to
go outside the bounding circle.

In this paper, we evolve a controller for
the keepers, while the taker is controlled by
a fixed intercepting behavior. The keepaway
task requires complex behavior that inte-
grates sensory input about teammates, the
opponent, and the ball. The agents must
make high-level decisions about the best
course of action and develop the precise con-
trol necessary to implement those decisions.
Hence, it forms a challenging testbed for ma-
chine learning research.

2.2 Neuro-Evolution

We train a team of keepaway players using neuro-evolution, a machine learning
technique that uses genetic algorithms to train neural networks [10]. In its sim-
plest form, neuro-evolution strings the weights of a neural network together to
form an individual genome. Next, it evolves a population of such genomes by
evaluating each one in the task and selectively reproducing the fittest individuals
through crossover and mutation.

The Enforced Sub-Populations Method (ESP) [4] is a more advanced neuro-
evolution technique. Instead of evolving complete networks, it evolves sub-pop-
ulations of neurons. ESP creates one sub-population for each hidden node of
the fully connected two-layer feed-forward networks it evolves. Each neuron is
itself a genome which records the weights going into and coming out of the
given hidden node. As Figure 2 illustrates, ESP forms networks by selecting one
neuron from each sub-population to form the hidden layer of a neural network,
which it evaluates in the task. The fitness is then passed back equally to all the
neurons that participated in the network. Each sub-population tends to converge
to a role that maximizes the fitness of the networks in which it appears. ESP
is more efficient than simple neuro-evolution because it decomposes a difficult
problem (finding a highly fit network) into smaller subproblems (finding highly
fit neurons).

In several benchmark sequential decision tasks, ESP outperformed other
neuro-evolution algorithms as well as several reinforcement learning methods [2–



Sub−Populations A Complete NetworkNeurons

Fig. 2: The Enforced Sub-Populations Method (ESP). The population of neurons is
segregated into sub-populations, shown here as clusters of grey circles. One neuron,
shown in black, is selected from each sub-population. Each neuron consists of all the
weights connecting a given hidden node to the input and output nodes, shown as white
circles. The selected neurons together form a complete network which is then evaluated
in the task.

4]. ESP is a promising choice for the keepaway task because the basic skills
required in keepaway are similar to those at which ESP has excelled before.

3 Method

The goals of this study are 1) to verify that neuro-evolution can learn effective
keepaway behavior, 2) to show that decomposing the task is more effective than
tabula rasa learning, and 3) to determine whether coevolving the component
tasks can be more effective than learning them sequentially.

Unlike soccer, in which a strong team will have forwards and defenders spe-
cialized for different roles, keepaway is symmetric and can be played effectively
with homogeneous teams. Therefore, in all these approaches, we develop one
controller to be used by all three keeper agents. Consequently, all the agents
have the same set of behaviors and the same rules governing when to use them,
though they are often using different behaviors at any time. Having identical
agents makes learning easier, since each agent learns from the experiences of its
teammates as well as its own. In the remainder of this section, we describe the
three different methods that we consider for training these agents.

3.1 Tabula Rasa Learning

In the tabula rasa approach, we want our learning method to master the task
with minimal human guidance. In keepaway, we can do this by training a sin-
gle “monolithic” network. Such a network attempts to learn a direct mapping
from the agent’s sensors to its actuators. As designers, we need only specify the
network’s architecture (i.e. the inputs, hidden units, outputs, and their connec-
tivity) and neuro-evolution does the rest. The simplicity of such an approach
is appealing though, in difficult tasks like keepaway, learning a direct mapping
may be beyond the power of our training methods, if not simply beyond the
representational scope of the network.

To implement this monolithic approach with ESP, we train a fully connected
two-layer feed-forward network with nine inputs, four hidden nodes, and two out-
puts, as illustrated in Figure 3. This network structure was determined, through



experimentation, to be the most effective. Eight of the inputs specify the posi-
tions of four crucial objects on the field: the agent’s two teammates, the taker,
and the ball. The ninth input represents the distance of the ball from the field’s
bounding circle. The inputs to this network and all those considered in this pa-
per are represented in polar coordinates relative to the agent. The four hidden
nodes allow the network to learn a compacted representation of its inputs. The
network’s two outputs control the agent’s movement on the field: one alters its
heading, the other its speed. All runs use sub-populations of size 100.

rTaker

Ball

Taker

rTeammate2

Teammate1

rTeammate1

rBall

Speed

Heading

edge

Teammate2

Distance

Fig. 3: The monolithic net-
work for controlling keepers.
White circles indicate inputs
and outputs while black cir-
cles indicate hidden nodes.

Since learning a robust keepaway controller di-
rectly is so challenging, we facilitate the process
through incremental evolution. In incremental evo-
lution, complex behaviors are learned gradually,
beginning with easy tasks and advancing through
successively more challenging ones. Gomez and Mi-
ikkulainen showed that this method can learn more
effective and more general behavior than direct
evolution in several dynamic control tasks, includ-
ing prey capture [2] and non-Markovian double
pole-balancing [3].

We apply incremental evolution to keepaway by
changing the taker’s speed. When evolution begins,
the taker can move only 10% as quickly as the keep-
ers. We evaluate each network in 20 games of keep-
away and sum its scores (numbers of completed
passes) to obtain its fitness. When the population’s
average fitness exceeds 50 (2.5 completed passes per episode), the taker’s speed
is incremented by 5%. This process continues until the taker is moving at full
speed or the population’s fitness has plateaued.

3.2 Learning with Task Decomposition

If learning a monolithic network proves infeasible, we can make the problem
easier by decomposing it into pieces. Such task decomposition is a powerful,
general principle in artificial intelligence that has been used successfully with
machine learning in the full robotic soccer task [11]. In the keepaway task, we
can replace the monolithic network with several smaller networks: one to pass
the ball, another to receive passes, etc.

To implement this decomposition, we developed a decision tree, shown in
Figure 4, for controlling each keeper. If the agent is near the ball, it kicks to
the teammate that is more likely to successfully receive a pass. If it is not near
the ball, the agent tries to get open for a pass unless a teammate announces its
intention to pass to it, in which case it tries to receive the pass by intercepting
the ball. The decision tree effectively provides some structure (based on human
knowledge of the task) to the space of policies that can be explored by the
learners.

To implement this decision tree, four different networks must be trained.
The networks, illustrated in Figure 5, are described in detail below. As in the



Near Ball?

Teammate #1 Safer?

Pass To
Teammate #1

Pass To
Teammate #2

Passed To?

Intercept Get Open

Yes No Yes No

NoYes

Fig. 4: A decision tree for controlling keepers in the keepaway task. The behavior at
each of the leaves is learned through neuro-evolution. A network is also evolved to
decide which teammate the agent should pass to.

monolithic approach, these network structures were determined, through exper-
imentation, to be the most effective.

Distanceedge

Taker

rTaker

Ball

rBall

Get Open

Heading

Speed
Target
Angle

rBall

Ball
Speed

Heading
rTaker

Ball

rBall

Taker

Intercept Pass

r

Pass Evalulate

Confidence

Teammate

Teammate

Heading

Speed

r

Ball

Ball

rVelocity

Velocity

Ball

Ball

Fig. 5: The four networks used to implement the decision tree shown in Figure 4. White
circles indicate inputs and outputs while black circles indicate hidden nodes.

Intercept: The goal of this network is to get the agent to the ball as quickly as
possible. The obvious strategy, running directly towards the ball, is optimal
only if the ball is not moving. When the ball has velocity, an ideal interceptor
must anticipate where the ball is going. The network has four inputs: two
for the ball’s current position and two for the ball’s current velocity. It has
two hidden nodes and two outputs, which control the agent’s heading and
speed.

Pass: The pass network is designed to kick the ball away from the agent at a
specified angle. Passing is difficult because an agent cannot directly specify
what direction it wants the ball to go. Instead, the angle of the kick depends
on the agent’s position relative to the ball. Hence, kicking well requires a
precise “wind-up” to approach the ball at the correct speed from the correct
angle. The pass network has three inputs: two for the ball’s current position
and one for the target angle. It has two hidden nodes and two outputs, which
control the agent’s heading and speed.

Pass Evaluate: Unlike the other networks, which correspond to behaviors at
the leaves of the decision tree, the pass evaluator implements a branch of
the tree: the point when the agent must decide which teammate to pass to.
It analyzes the current state of the game and assesses the likelihood that



an agent could successfully pass to a specific teammate. The pass evaluate
network has six inputs: two each for the position of the ball, the taker, and
the teammate whose potential as a receiver it is evaluating. It has two hidden
nodes and one output, which indicates, on scale of 0 to 1, its confidence that
a pass to the given teammate would succeed.

Get Open: The get open network is activated when a keeper does not have
a ball and is not receiving a pass. Clearly, such an agent should get to a
position where it can receive a pass. However, an optimal get open behavior
would not just position the agent where a pass is most likely to succeed.
Instead, it would position the agent where a pass would be most strategically
advantageous (e.g. by considering future pass opportunities as well). The get
open network has five inputs: two for the ball’s current position, two for the
taker’s current position, and one indicating how close the agent is to the
field’s bounding circle. It has two hidden nodes and two outputs, which
control the agent’s heading and speed.

After decomposing the task as described above, we need to evolve networks
for each of the four subtasks. These networks can be trained in sequence, through
layered learning, or simultaneously, through coevolution. The remainder of this
section details these two alternatives.

Layered Learning. One approach to training the components of a task de-
composition is layered learning, a bottom-up paradigm in which low-level be-
haviors are learned prior to high-level ones [15]. Since each component is trained
separately, the learning algorithm optimizes over several small solution spaces,
instead of one large one.

Pass Evaluate

Get Open

Pass

Intercept

Fig. 6: A layered learning hierar-
chy for the keepaway task. Each box
represents a layer and arrows indi-
cate dependencies between layers.
A layer cannot be learned until all
the layers it depends on have been
learned.

However, since some sub-behaviors must
be learned before others, it is not usually
possible to train each component in the ac-
tual domain. Instead, we must construct a
special training environment for each com-
ponent. The hierarchical nature of layered
learning makes this construction easier: since
the components are learned from the bottom-
up, we can use the already completed sub-
behaviors to help construct the next train-
ing environment. In the original implemen-
tation of layered learning, each sub-task was
learned and frozen before moving to the next
layer [15]. However, in some cases it is ben-
eficial to allow some of the lower layers to
continue learning while the higher layers are
trained [16]. For simplicity, here we freeze
each layer before proceeding.

Figure 6 shows one way in which the components of the task decomposi-
tion can be trained using layered learning. An arrow from one layer to another



indicates that the latter layer depends on the former. A given task cannot be
learned until all the layers that point to it have been learned. Hence, learning
begins at the bottom, with intercept, and moves up the hierarchy step by step.
The training environment for each layer is described below.

Intercept: To train the interceptor, we propel the ball towards the agent at
various angles and speeds. The agent is rewarded for minimizing the time
it takes to touch the ball. As the interceptor improves, the initial angle and
speed of the ball increase incrementally.

Pass: To train the passer we propel the ball towards the agent and randomly
select at which angle we want it to kick the ball. The agent employs the
intercept behavior learned in the previous layer until it arrives near the ball,
at which point it switches to the pass behavior being evolved. The agent’s
reward is inversely proportional to the difference between the target angle
and the ball’s actual direction of travel. As the passer improves, the range
of angles at which it is required to pass increases incrementally.

Pass Evaluate: To train the pass evaluator, we place it near the ball along with
a randomly positioned teammate and taker. The pass evaluator estimates the
likelihood that a pass to its teammate will succeed. Next, the agent attempts
to pass to its teammate using the behavior learned in the previous layer. Both
the teammate and the taker use the previously learned intercept behavior.
The agent is rewarded if its output is greater than 0.5 and the pass succeeds
or if its output is less than 0.5 and the pass fails.

Get Open: When training the get open behavior, the other layers have already
been learned. Hence, the get open network can be trained in a complete game
of keepaway. Its training environment is identical to that of the monolithic
approach with one exception: during a fitness evaluation the agents are con-
trolled by our decision tree. The tree determines when to use each of the
four networks (the three previously trained components and the evolving
get open behavior).

At each layer, the results of previous layers are used to assist in training. In
this manner, all the components of the task decomposition can be trained and
assembled into an effective keepaway controller. However, the behaviors learned
with this method are optimized for their training environment, not the keepaway
task as a whole. It may sometimes be possible to learn more effective behaviors
through coevolution, which we discuss next.

Coevolution. A much less constrained method of learning the keepaway agents’
sub-behaviors is to evolve them all simultaneously, a process called coevolution.
In general, coevolution can be competitive [5, 9], in which case the components
are adversaries and one component’s gain is another’s loss. Coevolution can also
be cooperative [8], as when the various components share fitness scores.

In our case, we use an extension of ESP designed to coevolve several cooper-
ating components. This method, called Multi-Agent ESP, has been successfully
used to master multi-agent predator-prey tasks [17]. In Multi-Agent ESP, each



component is evolved with a separate, concurrent run of ESP. During a fitness
evaluation, networks are formed in each ESP and evaluated together in the task.
All the networks that participate in the evaluation receive the same score. There-
fore, the component ESPs coevolve compatible behaviors that together solve the
task.

The training environment for this coevolutionary approach is very similar to
that of the get open layer described above. The decision tree still governs each
keeper’s behavior though the four networks are now all learning simultaneously,
whereas three of them were fixed in the layered approach.

4 Empirical Results

To compare monolithic learning, layered learning, and coevolution, we ran seven
trials of each method, each of which evolved for 150 generations.1 Figure 7 shows
what task difficulty (i.e. taker speed) each method reached during the course of
evolution, averaged over all seven runs. This graph shows that decomposing
the task vastly improves neuro-evolution’s ability to learn effective controllers
for keepaway players. The results also demonstrate the power of coevolution.
Though its implementation requires much less work than the layered approach,
it achieves substantially better performance in this task.

How do the networks trained in these experiments fair in the hardest version
of the task? To determine this, we tested the evolving networks from each method
against a taker moving at 100% speed. At every fifth generation, we selected the
strongest network from the best run of each method and subjected it to 50 fitness
evaluations, for a total of 1000 games of keepaway for each network (recall that
one fitness evaluation consists of 20 games of keepaway). Figure 8, which shows
the results of these tests, further verifies the effectiveness of coevolution. The
learning curve of the layered approach appears flat, indicating that it was unable
to significantly improve the keepers’ performance through training the get open
network. However, the layered approach outperformed the monolithic method,
suggesting that it made substantial progress when training the lower layers. It is
essential to note that neither the layered nor monolithic approaches trained at
this highest task difficulty, whereas the best run of coevolution did. Nonetheless,
these tests provide additional confirmation that neuro-evolution can truly master
complex control tasks once they have been decomposed, particularly when using
a coevolutionary approach.

5 Discussion

The results described above verify that given a suitable task decomposition
neuro-evolution can learn a complex, multi-agent control task that is too difficult
to learn monolithically. Given such a decomposition, layered learning developed

1 In the layered approach, the get open behavior, trained in a full game of keepaway,
ran for 150 generations. Additional generations were used to train the lower layers.



0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 T
as

k 
D

iff
ic

ul
ty

 (
%

 F
ul

l S
pe

ed
)

Generations

Average Task Difficulty Over Time

Coevolution
Layered Learning

Monolithic Learning

Fig. 7: Task difficulty (i.e. taker speed) of each method over generations, averaged over
seven runs. Task decomposition proves essential for reaching the higher difficulties. Only
coevolution reaches the hardest task.

a successful controller, though the less-constrained coevolutionary approach per-
formed significantly better.

By placing fewer restrictions on the solution space, coevolution benefits from
greater flexibility, which may contribute to its strong performance. Since co-
evolution trains every sub-behavior in the target environment, the components
have the opportunity to react to each other’s behavior and adjust accordingly.
In layered learning, by contrast, we usually need to construct a special training
environment for most layers. If any of those environments fail to capture a key
aspect of the target domain, the resulting components may be sub-optimal. For
example, the interceptor trained by layered learning is evaluated only by how
quickly it can reach the ball. In keepaway, however, a good interceptor will ap-
proach the ball from the side to make the agent’s next pass easier. Since the
coevolving interceptor learned along with the passer, it was able to learn this
superior behavior, while the layered interceptor just approached the ball directly.
Though it is possible to adjust the layered interceptor’s fitness function to en-
courage this indirect approach, it is unlikely that a designer would know a priori

that such behavior is desirable.

The success of coevolution in this domain suggests that we can learn complex
tasks simply by providing neuro-evolution with a high-level strategy. However,
we suspect that in extremely difficult tasks, the solution space will be too large
for coevolution to search effectively given current neuro-evolution techniques. In
these cases, the hierarchical features of layered learning, by greatly reducing the
solution space, may prove essential to a successful learning system.

Layered learning and coevolution are just two points on a spectrum of possi-
ble methods which differ with respect to how aggressively they constrain learn-
ing. At one extreme, the monolithic approach tested in this paper places very



0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 S
co

re
 p

er
 F

itn
es

s 
E

va
lu

at
io

n

Generations

Average Score Over Time

Coevolution
Layered Learning

Monolithic Learning

Fig. 8: Average score per fitness evaluation for the best run of each method over gener-
ations when the taker moves at 100% speed. These results demonstrate the importance
of task decomposition in this domain and reveal the power of coevolution to learn the
resulting subtasks.

few restrictions on learning. At the other extreme, layered learning confines the
search by directing each component to a specific sub-goal. The layered and co-
evolutionary approaches can be made arbitrarily more constraining by replacing
some of the components with hand-coded behaviors. Similarly, both methods
can be made less restrictive by requiring them to learn a decision tree, rather
than giving them a hand-coded one.

6 Conclusion and Future Work

In this paper we verify that neuro-evolution can master keepaway, a complex,
multi-agent control task. We also show that decomposing the task is more effec-
tive than training a monolithic controller for it. Our experiments demonstrate
that the more flexible coevolutionary approach learns better agents than the
layered approach in this domain.

In ongoing research we plan to further explore the space between uncon-
strained and highly constrained learning methods. In doing so, we hope to shed
light on how to determine the optimal method for a given task. Also, we plan to
test both the layered and coevolutionary approaches in more complex domains
to better assess the potential of these promising methods.

References

1. T. Balch. Teambots domain: Soccerbots, 2000. http://www-2.cs.cmu.edu/~trb/
TeamBots/Domains/SoccerBots.

2. F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5:317–342, 1997.



3. F. Gomez and R. Miikkulainen. Solving non-Markovian control tasks with neu-
roevolution. Denver, CO, 1999.

4. F. Gomez and R. Miikkulainen. Learning robust nonlinear control with neuroevo-
lution. Technical Report AI01-292, The University of Texas at Austin Department
of Computer Sciences, 2001.

5. T. Haynes and S. Sen. Evolving behavioral strategies in predators and prey. In
G. Weiß and S. Sen, editors, Adaptation and Learning in Multiagent Systems, pages
113–126. Springer Verlag, Berlin, 1996.

6. W. H. Hsu and S. M. Gustafson. Genetic programming and multi-agent layered
learning by reinforcements. In Genetic and Evolutionary Computation Conference,
New York,NY, July 2002.

7. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12:233–250, 1998.

8. M. A. Potter and K. A. D. Jong. Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation, 8:1–29, 2000.

9. C. D. Rosin and R. K. Belew. Methods for competitive co-evolution: Finding
opponents worth beating. In S. Forrest, editor, Proceedings of the Sixth Inter-
national Conference on Genetic Algorithms, pages 373–380, San Mateo,CA, July
1995. Morgan Kaufman.

10. J. D. Schaffer, D. Whitley, and L. J. Eshelman. Combinations of genetic algorithms
and neural networks: A survey of the state of the art. In D. Whitley and J. Schaf-
fer, editors, International Workshop on Combinations of Genetic Algorithms and
Neural Networks (COGANN-92), pages 1–37. IEEE Computer Society Press, 1992.

11. P. Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer. MIT Press, 2000.

12. P. Stone, (ed.), M. Asada, T. Balch, M. Fujita, G. Kraetzschmar, H. Lund, P. Scerri,
S. Tadokoro, and G. Wyeth. Overview of RoboCup-2000. In P. Stone, T. Balch, and
G. Kraetszchmar, editors, RoboCup-2000: Robot Soccer World Cup IV. Springer
Verlag, Berlin, 2001.

13. P. Stone and R. S. Sutton. Scaling reinforcement learning toward RoboCup soccer.
In Proceedings of the Eighteenth International Conference on Machine Learning,
pages 537–544. Morgan Kaufmann, San Francisco, CA, 2001.

14. P. Stone and R. S. Sutton. Keepaway soccer: a machine learning testbed. In
A. Birk, S. Coradeschi, and S. Tadokoro, editors, RoboCup-2001: Robot Soccer
World Cup V. Springer Verlag, Berlin, 2002.

15. P. Stone and M. Veloso. Layered learning. In R. L. de Mántaras and
E. Plaza, editors, Machine Learning: ECML 2000, pages 369–381. Springer Verlag,
Barcelona,Catalonia,Spain, May/June 2000. Proceedings of the Eleventh European
Conference on Machine Learning (ECML-2000).

16. S. Whiteson and P. Stone. Concurrent layered learning. In Second International
Joint Conference on Autonomous Agents and Multiagent Systems, July 2003. To
appear.

17. C. H. Yong and R. Miikkulainen. Cooperative coevolution of multi-agent systems.
Technical Report AI01-287, The University of Texas at Austin Department of
Computer Sciences, 2001.


