
In Proceedings of the Genetic and Evolutionary Computation Conference Workshop on Self-Organization (GECCO 04),
Seattle, WA, June 2004.

Automatic Feature Selection in Neuroevolution

Shimon Whiteson, Kenneth O. Stanley, Risto Miikkulainen

Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, Texas 78712-0233

{shimon,kstanley,risto}@cs.utexas.edu

http://www.cs.utexas.edu/~{shimon,kstanley,risto}

Abstract. Feature selection is the process of finding the set of inputs
to a machine learning algorithm that will yield the best performance.
Developing a way to solve this problem automatically would make cur-
rent machine learning methods much more useful. Previous efforts to
automate feature selection rely on expensive meta-learning or are appli-
cable only when labeled training data is available. This paper presents
a novel method called FS-NEAT which extends the NEAT neuroevo-
lution method to automatically determine the right set of inputs for
the networks it evolves. By learning the network’s inputs, topology, and
weights simultaneously, FS-NEAT addresses the feature selection prob-
lem without relying on meta-learning or labeled data. Initial experiments
in a line orientation task demonstrate that FS-NEAT can learn networks
with fewer inputs and better performance than traditional NEAT. Fur-
thermore, it outperforms traditional NEAT even when the feature set
does not contain extraneous features because it searches for networks in
a lower-dimensional space.

1 Introduction

To implement a successful machine learning (ML) system, human designers must
make several preliminary decisions. For example, setup usually requires choosing
a representation for the solution, selecting relevant inputs, and setting all the
parameters associated with the given learning method. Performing these tasks
manually is time-consuming and may yield sub-optimal results if not done cor-
rectly. Hence, one important goal of ML research is to develop techniques that
shift some of the burden off the human designer and place it onto the learning
algorithm itself. Doing so will reduce the time and expertise required to use ML
techniques and greatly broaden the set of tasks to which they can be practically
applied.

One of the decisions that is usually addressed manually is the feature selection

problem. In many real world tasks, the set of potential inputs, or features, that
can be fed to the learning algorithm is quite large. Feature selection is the process
of determining which subset of these inputs should be included to generate the
best performance. Doing so correctly can be critical to the success of an ML

system. If any important features are excluded, it may be impossible to find
an optimal policy. On the other hand, including superfluous inputs can also
impede learning. Since the size of the search space increases exponentially with
the input size, even a few extraneous features can be detrimental. However, the
consequences of sub-optimal feature selection are not limited just to the learner’s
performance. If adding inputs costs money (e.g. putting more sensors on a robot),
then pruning out unnecessary features can be vital.

Feature selection can often be performed by a human with the appropriate
domain expertise. However, in some domains, no one has the requisite knowledge
and even when experts do exist, employing them can be expensive and time-
consuming. In such domains, automatic feature selection is necessary. Langley [6]
divides feature selection techniques into two categories: filters and wrappers.
Filters [1, 5] analyze the value of a feature set without regard to the learning
algorithm that will use those features. Instead, they rely on labeled data. The
data is analyzed to determine which features are most useful in distinguishing
between the category labels. This approach has been successful but works only in
supervised learning tasks. In reinforcement learning scenarios, when no labeled
data is available, filtering techniques are not applicable.

By contrast, wrappers [7, 8] test a feature set by applying it to the given
learning algorithm and observing its performance. Labeled examples are not
necessary so this approach can be used in reinforcement tasks as well. However,
it requires a meta-learner to search through the space of feature sets; evaluating
any point in that space requires an entire ML run of its own. For most real-world
problems, this approach is computationally infeasible.

Feature Selective NeuroEvolution of Augmenting Topologies (FS-NEAT) is
a new learning method that avoids such limitations by incorporating the feature
selection problem into the learning task. FS-NEAT searches for good feature sets
at the same time it trains networks that receive those features as input. Hence,
it does not depend on human expertise, labeled data sets, or meta-learning.

FS-NEAT is based on the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [12], which evolves both the topology and weights of a neural network.
NEAT already goes a long way towards reducing the burden on human designers.
While most neuroevolution methods evolve only the weights of a network with
fixed topology, NEAT learns an appropriate topology automatically. FS-NEAT
goes one step further by learning the network’s inputs too. Using evolution,
it automatically and simultaneously determines the network’s inputs, topology,
and weights. Harvey et al. [4] also used neuroevolution to find useful subsets of
available features though, unlike FS-NEAT, their system still requires a human
to specify the size of that subset in advance.

A critical feature of NEAT is that it begins with networks of minimal topology
and adds new nodes and links solely through mutation. Since only those additions
that improve performance will be retained, it tends to learn small networks
without superfluous structure. Starting minimally also helps NEAT learn more
quickly. When networks in its population are small, it is optimizing over a lower-
dimensional search space; it jumps to a larger space only when performance in

the smaller one stagnates. FS-NEAT further exploits this same premise. It begins
with a population of networks with a minimal number of inputs. New inputs are
added through mutation and only the useful ones are likely to persist in the
population.

Hence, we hypothesize that FS-NEAT, by automatically selecting appropri-
ate inputs, can outperform traditional NEAT in tasks where no domain expert
is available to prune a large input set with irrelevant and/or redundant features.
Furthermore, because it searches in lower-dimensional spaces, FS-NEAT should
outperform traditional NEAT even when the feature set does not contain ex-
traneous features. The preliminary experiments presented in this paper confirm
both these hypotheses.

The remainder of this paper is organized as follows. Section 2 explains the
NEAT algorithm and the modifications made to it to yield FS-NEAT. Section 3
introduces the line orientation domain and presents the results of our preliminary
experiments comparing NEAT and FS-NEAT. Section 4 discusses the implica-
tions of these results. Section 5 outlines some opportunities for future work.

2 Method

This section provides background on the NEAT algorithm. It also introduces
FS-NEAT, our novel modification to the original NEAT method.

2.1 NeuroEvolution of Augmenting Topologies

In most domains, the optimal topology and complexity for a neural network is
unknown. With most neuroevolution techniques, a human designer must try to
guess it. Since the topology determines the size of the search space, the con-
sequences of guessing wrong can be severe. Searching in too large a space is
intractable while searching in too small a space limits solution quality. Neu-
roEvolution of Augmenting Topologies (NEAT) [12] is a neuroevolution tech-
nique that does not require a designer to choose a topology in advance. Instead,
it automatically evolves the topology to fit the complexity of the problem. NEAT
combines the usual search for appropriate network weights with complexification
of the network structure.

This approach is highly effective: NEAT outperforms other neuroevolution
(NE) methods, e.g. on the benchmark double pole balancing task [11, 12]. In
addition, because NEAT starts with simple networks and expands the search
space only when beneficial, it is able to find significantly more sophisticated
controllers than fixed-topology evolution, as demonstrated in a robotic strategy-
learning domain [10, 13]. These properties make NEAT an attractive method for
evolving neural networks.

In this section, the NEAT method is briefly reviewed; a more comprehensive
description of the NEAT method is given in [12].

Genetic Encoding with Historical Markings Evolving network structure
requires a flexible genetic encoding. Each genome in NEAT includes a list of
connection genes, each of which refers to two node genes being connected. Each
connection gene specifies the in-node, the out-node, the weight of the connection,
whether or not the connection gene is expressed (an enable bit), and an innova-

tion number, which allows NEAT to find corresponding genes during crossover.
Mutations in NEAT can change both connection weights and network struc-

tures. Connection weights mutate as in any neuroevolution system; structural
mutations, which allow complexity to increase, add either a new connection or
node to the network. Through mutation, genomes of varying sizes are created,
sometimes with completely different connections specified at the same positions.

In order to perform crossover, the system must be able to tell which genes
match up between any individuals in the population. For this purpose, NEAT
keeps track of the historical origin of every gene. Whenever a new gene appears
(through structural mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus represent a chronology of
every gene in the system. Whenever these genomes crossover, innovation numbers
on inherited genes are preserved. Thus, the historical origin of every gene in the
system is known throughout evolution.

Through innovation numbers, the system knows exactly which genes match
up with which. Genes that do not match are either disjoint or excess, depending
on whether they occur within or outside the range of the other parent’s inno-
vation numbers. When crossing over, the genes in both genomes with the same
innovation numbers are lined up. Genes that do not match are inherited from
the more fit parent, or if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover without expensive
topological analysis. Genomes of different organizations and sizes stay compat-
ible throughout evolution, and the problem of matching different topologies [9]
is essentially avoided.

Speciation In most cases, adding new structure to a network initially reduces
its fitness. However, NEAT speciates the population, so that individuals com-
pete primarily within their own niches instead of with the population at large.
This way, topological innovations are protected and have time to optimize their
structure before they have to compete with other niches in the population.

Historical markings make it possible for the system to divide the population
into species based on topological similarity. The distance δ between two network
encodings is a simple linear combination of the number of excess (E) and disjoint
(D) genes, as well as the average weight differences of matching genes (W):

δ =
c1E

N
+

c2D

N
+ c3 · W. (1)

The coefficients c1, c2, and c3 adjust the importance of the three factors, and
the factor N , the number of genes in the larger genome, normalizes for genome
size. Genomes are tested one at a time; if a genome’s distance to a randomly

chosen member of the species is less than δt, a compatibility threshold, it is
placed into this species. Each genome is placed into the first species where this
condition is satisfied, so that no genome is in more than one species.

The reproduction mechanism for NEAT is explicit fitness sharing [2], where
organisms in the same species must share the fitness of their niche, preventing
any one species from taking over the population.

Minimizing Dimensionality Unlike other systems that evolve network topolo-
gies and weights [3, 14] NEAT begins with a uniform population of simple net-
works with no hidden nodes and inputs connected directly to outputs. New
structure is introduced incrementally as mutations occur, and only those struc-
tures survive that are found to be useful through fitness evaluations. This way,
NEAT searches through a minimal number of weight dimensions and finds the
appropriate complexity level for the problem. However, NEAT does not start
minimally with respect to inputs: they are all assumed to be critical and im-
mediately connected to all outputs. Hence, in domains with many irrelevant
or redundant features, it is possible to begin even more minimally. FS-NEAT,
explained next, is an effort to capitalize on that possibility.

2.2 Feature Selective NeuroEvolution of Augmenting Topologies

NEAT starts with networks of minimal structure and adds the nodes and links
that are necessary to solve the task. Similarly, Feature Selective NeuroEvolution
of Augmenting Topologies (FS-NEAT) starts with networks with very few inputs
and adds more as necessary to solve the task. To implement FS-NEAT, two
changes to NEAT are necessary. First, networks in the first generation must be
initialized with minimal inputs. Second, a new mutation operator is needed to
add new inputs to the network.

In FS-NEAT, the networks in the initial population are created via the fol-
lowing procedure. First, a bias input is connected to each output node. Second,
given a set I of all possible inputs, each i ∈ I is given a 1

|I| probability of being

added to the network. Any input node that is added is connected to all the out-
puts. Since a network whose only input is a bias cannot be useful, a randomly
selected input is added to any such network. This approach yields a diverse
initial population from which evolution can select the strongest individuals.

In order for FS-NEAT to learn which inputs are important, it needs a way
to add new inputs during evolution. A new mutation operator, illustrated in
Figure 1, is added to NEAT’s reproductive mechanism. When a new network is
generated through crossover, there is a small probability that a new input will be
added to the network; if so, it is connected to all the output nodes in the network,
as during initial construction. The network may have evolved hidden nodes but
the new input will not initially be connected to them. Such connections can be
made later via NEAT’s existing mutation operators.

These modifications to NEAT yield a new technique, FS-NEAT, which learns
the network’s inputs, structure, and weights simultaneously. By starting with a

����������������������������

Mutation

Add Input

Fig. 1: An example of FS-NEAT’s new mutation operator, which adds inputs to a
network. Black circles indicate inputs, grey circles indicate hidden nodes, and white
circles indicate outputs. New links, shown with thicker black lines, are added between
the new input and all outputs, as in the initial construction of the network.

population of networks with very few inputs, adding new inputs through muta-
tion, and retaining only the most useful inputs, FS-NEAT has the capacity to
tackle the feature selection problem as part of the learning process.

These modifications to NEAT constitute the implementation of FS-NEAT
used in the preliminary experiments reported here. However, they are by no
means the only possible way to implement feature selection in NEAT. One alter-
native would be to initialize all networks without any connections. The networks
would begin as pools of inputs and outputs. Instead of using a special mutation
operator to add inputs, NEAT’s existing operators could add hidden nodes and
create connections between inputs, hidden nodes, and outputs. Feature selection
would occur implicitly, as only connections emerging from useful inputs would
tend to survive the selective pressure. How such an alternative approach com-
pares to the implementation tested here is an important empirical question that
we hope to address in future work.

3 Experiments

The experiments reported in this paper are conducted on the line orientation
task. The network is given a grid of monochromatic pixels and must determine
whether a line that appears in that grid has a horizontal or vertical orientation.
The possible inputs for this task are simply the set of pixels, each of which has a
value of one when the line crosses that part of the grid and zero otherwise. The
single output is interpreted as “vertical” if its activation is greater than 0.5 and
“horizontal” otherwise.

Figure 2a shows an example of the 16×16 grids used in our first experiment.
The 4 × 8 lines can appear anywhere in the grid but must lie wholly inside two
of the 4×4 regions indicated by the thicker lines. A line cannot occupy only part
of a region. In this setup, there are 12 different places to put a horizontal line
and 12 different places to put a vertical one. Hence, a fitness evaluation consists
of asking a network to classify each of the 24 possible lines and counting how
many it gets correct. In order to give the fitness function a more useful gradient,

a network is assigned credit for how close it came to the perfect output. Hence,
if A is the activation on the network’s output, then the network is given a score
of A for vertical examples and 1 − A for horizontal examples.

(a) The orientation task used in (b) The orientation task used in
the first experiment. the second experiment.

Fig. 2: The line orientation task used in both experiments. In (a), the grid is divided
into 16 regions, denoted by thicker black lines. Lines always occupy two adjacent re-
gions, each of which contains a 4× 4 array of pixels, denoted with thin black lines, at
most one of which is necessary to correctly classify the examples. In (b), a line consists
of two adjacent pixels. Almost all of the available pixels are necessary to solve this
version of the task.

Since the lines always line up with the regions, the 256 pixels in the grid offer
more resolution than is necessary to solve the task. Pixels within a region always
have the same value so at most one input is needed for each region. Solutions
using even fewer than 16 inputs are possible, though they may be more difficult
to learn since the status of some regions must be inferred from surrounding
inputs. This setup simulates a situation in which no human experts are available
to prune the input set in advance. With traditional NEAT, the only option is
to train networks containing all the possible inputs. With FS-NEAT, evolution
starts with minimal networks and places the entire burden of feature selection
on the learning algorithm.

Figure 2b shows an example of the grids used in the second experiment. The
grid remains 16 × 16 in size but now the lines are only 1 × 2. There are no
restrictions on where the lines can be placed, yielding 480 training examples.
Because the lines are so small and can appear anywhere, none of the pixels are
redundant. While solutions that ignore a few features are possible, almost all
of the available inputs are necessary. There is no feature selection challenge in
this version of the task but FS-NEAT can still gain an advantage by starting
minimally and searching in lower-dimensional spaces.

Clearly, the line orientation task has little to no practical application. It was
selected as a preliminary testbed for FS-NEAT because it represents the simplest
imaginable scenario in which FS-NEAT’s enhancements could pay dividends.
Hence, the experiments presented here are intended to demonstrate proof of
concept and nothing more.

Figure 3a shows the results of the first experiment. Each line indicates the
score received by the best network from each generation, averaged over 30 runs.
Each run used a population of 200 networks. The appendix contains more details
on the parameters used in both experiments. Early in the experiments, when the
networks trained with FS-NEAT do not have sufficient inputs to correctly clas-
sify each example, traditional NEAT learns more quickly. By generation 100,
however, FS-NEAT matches traditional NEAT’s performance and continues to
improve, finishing with a higher average score. A t-test confirms that this differ-
ence is statistically significant with 95% confidence after generation 149. Seven
of the 30 FS-NEAT runs reached a perfect score of 24, whereas only one of the
traditional NEAT runs did.

12

13

14

15

16

17

18

19

20

21

22

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 S
co

re

Generation

Average Score of Best Network from Each Generation

Traditional NEAT
Feature Selective NEAT

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 N
um

be
r

of
 In

pu
ts

Generations

Average Number of Inputs Used in Best Network from Each Generation

Traditional NEAT
Feature Selective NEAT

(a) Average score obtained in
the first experiment.

(b) Average number of inputs
used in the first experiment.

Fig. 3: Results of the first experiment. In (a), the performance of FS-NEAT, shown
with a dashed line, is significantly higher than that of traditional NEAT, shown with
a solid line. Seven of the 30 FS-NEAT runs reached a perfect score of 24 whereas only
one of the traditional NEAT runs did. In (b), FS-NEAT, shown with a dashed line,
achieves better performance with only 32.7% as many inputs as traditional NEAT,
shown with a solid line.

Figure 3b shows the number of inputs used by the best network from each
generation, averaged over all 30 runs. The networks learned with traditional
NEAT always have 256 inputs. By contrast, the networks learned with FS-NEAT
start with very few inputs and gradually increase in size over the course of
evolution. At the end of the experiment, the best network had on average 83.6

inputs. Hence, FS-NEAT learned networks with better performance that require
only 32.7% as many inputs.

In the second experiment, the lines that appear in the grid are only 1× 2 in
size. Hence, none of the inputs are redundant. This experiment corresponds to
a situation in which feature selection is not necessary but the number of inputs
is large enough to make the task challenging. In this case, FS-NEAT starts at
a disadvantage: traditional NEAT begins with a sufficient input set whereas
FS-NEAT must learn it.

The results of the second experiment are shown in Figure 4a. These results
are averaged over 10 runs, each of which uses a population of 200 networks. As in
the first experiment, FS-NEAT begins with weaker performance. By generation
400, however, FS-NEAT exceeds traditional NEAT’s performance and continues
to improve, finishing with a higher average score. A t-test confirms that this
difference is statistically significant with 95% confidence after generation 460.
The networks evolved by FS-NEAT use on average only 235.7 inputs. Hence,
the possibility remains that FS-NEAT’s superior performance is due, not to
searching in lower-dimensional spaces, but to discovering an advantageous subset
of the 256 available inputs. To test this possibility, 10 more runs of NEAT were
conducted in which the networks were given only the 238 inputs used by the best
network FS-NEAT learned. When given only these preselected inputs, traditional
NEAT does not perform any better than it did with all 256 inputs. Hence,
the advantage of FS-NEAT in this scenario is due solely to searching in lower-
dimensional spaces.

Figure 4b shows the number of inputs used by the best networks from each
generation. Traditional NEAT uses whatever inputs it is offered: all 256 in one
case and 238 in the other. As expected, FS-NEAT begins with minimal inputs
climbs slowly upwards.

4 Discussion

The results reported here demonstrate that FS-NEAT can perform automatic
feature selection in a simple domain. The first experiment shows that, given a
large feature set but no expert to prune it, FS-NEAT can achieve high scores by
using only a fraction of the possible inputs. By avoiding costly search in unneces-
sarily high-dimensional search spaces, FS-NEAT was also able to obtain better
performance than traditional NEAT. While FS-NEAT obtains this advantage
using only 32.7% as many inputs as traditional NEAT, it still uses many more
than required for a truly minimal solution. However, upon reflection, this result
is not surprising. FS-NEAT does not apply any explicit pressure to keep the num-
ber of inputs low. Instead, it simply breeds the networks in each species that
receive the highest fitness evaluations. While having many superfluous inputs
should be a disadvantage, a few may not be significant. After all, by learning
to set to zero the weights emerging from useless inputs, even regular NEAT can
perform a kind of implicit feature selection. It is only when the difficulty of doing

240

260

280

300

320

340

360

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 S
co

re

Generation

Average Score of Best Network from Each Generation

Traditional NEAT
Tradtional NEAT with Preselected Inputs

Feature Selective NEAT
0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 N
um

be
r

of
 In

pu
ts

Generations

Average Number of Inputs Used in Best Network from Each Generation

Traditional NEAT
Traditional NEAT with Preselected Inputs

Feature Selective NEAT

(a) Average score obtained in (b) Average number of inputs
used in the second experiment.the second experiment.

Fig. 4: Results of the second experiment. In (a), FS-NEAT, shown with a dotted line,
performs significantly better than traditional NEAT, shown with a solid line. Tradi-
tional NEAT with preselected inputs, shown with a dashed line, does not perform better
than traditional NEAT with all 256 inputs. In (b), traditional NEAT, shown with a
solid line, always uses all 256 inputs. Traditional NEAT with preselected inputs, shown
with a dashed line, uses the 238 inputs chosen by the best run of FS-NEAT. FS-NEAT,
shown with a dotted line, starts minimally and gradually adds inputs.

so becomes significant that one should expect FS-NEAT to favor networks with
smaller inputs.

The second experiment demonstrates that the value of FS-NEAT is not re-
stricted to solving the feature selection problem. Even when none of the available
inputs are redundant, FS-NEAT can still gain an advantage by starting with a
minimal feature set. This advantage is not due to discovering a fortuitous sub-
set of the 256 features because traditional NEAT does not match FS-NEAT’s
performance even when given the subset FS-NEAT uses in advance. In fact,
this advantage does not improve its performance at all, probably because the
difference between 238 and 256 features is not significant. Hence, the second
experiment verifies that FS-NEAT can find higher quality solutions than tra-
ditional NEAT by conducting the early part of the search in lower-dimensional
spaces.

5 Future Work

The experiments reported in this paper demonstrate that automatic feature se-
lection is possible with FS-NEAT. Additional research is necessary to better
determine the algorithm’s robustness and range of applicability. The line orien-
tation task has little practical application and is useful only for demonstrating
proof of concept. A real test of FS-NEAT would involve a reinforcement learning

task, where filtering methods of feature selection are not applicable. For exam-
ple, robot control tasks with sparse reinforcement, such as predator-prey, are the
type of domain NEAT was designed for and often pose difficult feature selection
problems. Hence, they should reveal how well FS-NEAT can tackle real-world
problems with large feature sets.

Furthermore, as mentioned in Section 2, there are many ways that feature
selection could be implemented in NEAT and this paper offers a preliminary test
of only one such implementation. Providing an empirical comparison of alternate
implementations of this idea could lead to stronger results and more systematic
methods.

6 Conclusion

FS-NEAT is a new neuroevolution technique that extends the NEAT method to
perform feature selection, a task that human designers usually must complete
manually. Unlike other neuroevolution methods, FS-NEAT learns a network’s
inputs, topology, and weights simultaneously. Initial experiments in a line ori-
entation task demonstrate that FS-NEAT can learn networks with fewer inputs
and better performance than the traditional version of NEAT. The results also
show that, by exploiting the opportunity to search in lower-dimensional spaces,
FS-NEAT can outperform traditional NEAT even when the feature set does not
contain extraneous features. Hence, FS-NEAT is a promising new method for
shifting some of the burden of optimizing machine learning methods off of human
designers and onto the learning methods themselves.

Appendix: NEAT and FS-NEAT System Parameters

The population size was 200. The coefficients for measuring compatibility were
c1 = 1.0, c2 = 1.0, and c3 = 2.0. The initial compatibility distance was δt = 3.0.
However, because population dynamics can be unpredictable over hundreds of
generations, a target of 13 species was assigned. If the number of species grew
above 13, δt was increased by 0.3 to reduce the number of species. Conversely,
if the number of species fell below 13, δt was decreased by 0.3 to increase the
number of species. The champion of each species with more than five networks
was copied into the next generation unchanged. The interspecies mating rate
was 0.01. The probability of adding a new node was 0.02 and the probability of
a new link mutation was 0.08. In FS-NEAT runs, the probability of adding a new
input was set to 0.05 in the first experiment and 0.2 in the second experiment.
These parameter values were verified experimentally.

References

1. B. V. Bonnlander and A. S. Weigend. Selecting input variables using mutual
information and nonparametric density estimation. In Proceedings of the 1994

International Symposium on Artificial Neural Networks (ISANN”94), pages 42–
50, Tainan, Taiwan, 1994.

2. D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal
function optimization. In Proceedings of the Second International Conference on
Genetic Algorithms, pages 148–154, 1987.

3. F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding
and direct encoding for genetic neural networks. In J. R. Koza, D. E. Goldberg,
D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 81–89. MIT Press, 1996.

4. P. R. Harvey, D. M. Booth, and J. F. Boyce. Evolving the mapping between
input neurons and multi-source imagery. In Proceedings of the 2002 Congress on
Evolutionary Computation, pages 1878–1883, 2002.

5. K. Kira and L. Rendell. A practical approach to feature selection. In Proceedings of
the Tenth International Conference on Machine Learning, Amherst, Massachusetts,
1992. Morgan Kaufmann.

6. P. Langley. Selection of relevant features in machine learning. In Proceedings of
AAAI Fall Symposium on Relevance, 1994.

7. P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature
subset selection. IEEE Transactions on Computers, 26:917–922, 1977.

8. J. Novovivova, P. Pudil, and J. Kittler. Floating search methods in feature selec-
tion. Pattern Recognition Letters, 15:1119–1125, 1994.

9. N. J. Radcliffe. Genetic set recombination and its application to neural network
topology optimization. Neural computing and applications, 1(1):67–90, 1993.

10. K. O. Stanley and R. Miikkulainen. Continual coevolution through complexifi-
cation. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2002), 2002.

11. K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning through evolv-
ing neural network topologies. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), 2002.

12. K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127, 2002.

13. K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary
complexification. Journal of Artificial Intelligence Research, 21, 2004. In press.

14. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, 1999.

