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ABSTRACTTemporal di�eren
e methods are theoreti
ally grounded andempiri
ally e�e
tive methods for addressing reinfor
ementlearning problems. In most real-world reinfor
ement learn-ing tasks, TD methods require a fun
tion approximator torepresent the value fun
tion. However, using fun
tion ap-proximators requires manually making 
ru
ial representa-tional de
isions. This thesis investigates evolutionary fun
-tion approximation, a novel approa
h to automati
ally se-le
ting fun
tion approximator representations that enableeÆ
ient individual learning. This method evolves individ-uals that are better able to learn. I present a fully imple-mented instantiation of evolutionary fun
tion approxima-tion whi
h 
ombines NEAT, a neuroevolutionary optimiza-tion te
hnique, with Q-learning, a popular TD method. Theresulting NEAT+Q algorithm automati
ally dis
overs e�e
-tive representations for neural network fun
tion approxima-tors. This thesis also presents on-line evolutionary 
ompu-tation, whi
h improves the on-line performan
e of evolution-ary 
omputation by borrowing sele
tion me
hanisms used inTD methods to 
hoose individual a
tions and using them inevolutionary 
omputation to sele
t poli
ies for evaluation. Ievaluate these 
ontributions with extended empiri
al stud-ies in two domains: 1) the mountain 
ar task, a standardreinfor
ement learning ben
hmark on whi
h neural networkfun
tion approximators have previously performed poorlyand 2) server job s
heduling, a large probabilisti
 domaindrawn from the �eld of autonomi
 
omputing. The resultsdemonstrate that evolutionary fun
tion approximation 
ansigni�
antly improve the performan
e of TD methods andon-line evolutionary 
omputation 
an signi�
antly improveevolutionary methods.
Categories and Subject DescriptorsI.2.6 [Arti�
ial Intelligen
e℄: Learning
General TermsAlgorithms, Performan
e
Keywordsevolutionary 
omputation, reinfor
ement learning, temporaldi�eren
e methods, neural networks, on-line learning
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1. INTRODUCTIONIn many ma
hine learning problems, an agent must learna poli
y for sele
ting a
tions based on its 
urrent state. Re-infor
ement learning problems are the subset of these tasksin whi
h the agent never sees examples of 
orre
t behav-ior. Instead, it re
eives only positive and negative rewardsfor the a
tions it tries. Sin
e many pra
ti
al, real worldproblems (su
h as robot 
ontrol, game playing, and systemoptimization) fall in this 
ategory, developing e�e
tive rein-for
ement learning algorithms is 
riti
al to the progress ofarti�
ial intelligen
e.The most 
ommon approa
h to reinfor
ement learning re-lies on the 
on
ept of value fun
tions, whi
h indi
ate, fora parti
ular poli
y, the long-term value of a given state orstate-a
tion pair. Temporal di�eren
e methods (TD) [23℄,whi
h 
ombine prin
iples of dynami
 programming with sta-tisti
al sampling, use the immediate rewards re
eived by theagent to in
rementally improve both the agent's poli
y andthe estimated value fun
tion for that poli
y. Hen
e, TDmethods enable an agent to learn during its \lifetime" i.e.from its individual experien
e intera
ting with the environ-ment.For small problems, the value fun
tion 
an be representedas a table. However, the large, probabilisti
 domains whi
harise in the real-world usually require 
oupling TD methodswith a fun
tion approximator, whi
h represents the map-ping from state-a
tion pairs to values via a more 
on
ise,parameterized fun
tion and uses supervised learning meth-ods to set its parameters. Many di�erent methods of fun
-tion approximation have been used su

essfully, in
ludingCMACs, radial basis fun
tions, and neural networks [25℄.However, using fun
tion approximators requires making 
ru-
ial representational de
isions (e.g. the number of hiddenunits and initial weights of a neural network). Poor de-sign 
hoi
es 
an result in estimates that diverge from theoptimal value fun
tion [2℄ and agents that perform poorly.Even for reinfor
ement learning algorithms with guaranteed
onvergen
e [3, 15℄, a
hieving high performan
e in pra
-ti
e requires �nding an appropriate representation for thefun
tion approximator. As Lagoudakis and Parr observe,\The 
ru
ial fa
tor for a su

essful approximate algorithmis the 
hoi
e of the parametri
 approximation ar
hite
ture(s)and the 
hoi
e of the proje
tion (parameter adjustment)method." [15, p. 1111℄ Nonetheless, representational 
hoi
esare typi
ally made manually, based only on the designer'sintuition.My goal is to automate the sear
h for e�e
tive represen-tations by employing sophisti
ated optimization te
hniques.



In this thesis, I fo
us on using evolutionary methods [9℄be
ause of their demonstrated ability to dis
over e�e
tiverepresentations [11, 21℄. Synthesizing evolutionary and TDmethods results in a new approa
h 
alled evolutionary fun
-tion approximation, whi
h automati
ally sele
ts fun
tion ap-proximator representations that enable eÆ
ient individuallearning. Thus, this method evolves individuals that arebetter able to learn. This biologi
ally intuitive 
ombinationhas been applied to 
omputational systems in the past [1,5, 8, 10, 12, 18℄ but never, to my knowledge, to aid thedis
overy of good TD fun
tion approximators.This thesis uses NeuroEvolution of Augmenting Topolo-gies (NEAT) [21℄ to sele
t neural network fun
tion approx-imators for Q-learning [27℄, a popular TD method. Theresulting algorithm, 
alled NEAT+Q, uses NEAT to evolvetopologies and initial weights of neural networks that arebetter able to learn, via ba
kpropagation, to represent thevalue estimates provided by Q-learning.Evolutionary 
omputation is typi
ally applied to o�-lines
enarios, where the only goal is to dis
over a good poli
yas qui
kly as possible. By 
ontrast, TD methods are typi-
ally applied to on-line s
enarios, in whi
h the agent triesto learn a good poli
y qui
kly and to maximize the rewardit obtains while doing so. Hen
e, for evolutionary fun
tionapproximation to a
hieve its full potential, the underlyingevolutionary method needs to work well on-line.TD methods ex
el on-line be
ause they are typi
ally 
om-bined with a
tion sele
tion me
hanisms like �-greedy sele
-tion [25℄. These me
hanisms improve on-line performan
eby expli
itly balan
ing two 
ompeting obje
tives: 1) sear
h-ing for better poli
ies (exploration) and 2) gathering as mu
hreward as possible (exploitation). This thesis investigates anovel approa
h 
alled on-line evolutionary 
omputation, inwhi
h sele
tion me
hanisms 
ommonly used by TD methodsto 
hoose individual a
tions are used in evolutionary 
om-putation to 
hoose poli
ies for evaluation. I present threeimplementations, based on �-greedy sele
tion, softmax se-le
tion, and interval estimation, that distribute evaluationswithin a generation so as to favor more promising individu-als.I evaluate these 
ontributions with extended empiri
alstudies in two domains: 1) mountain 
ar and 2) server jobs
heduling. Using these domains, my experiments test Q-learning with a series of manually designed neural networksand 
ompare the results to NEAT+Q and regular NEAT(whi
h trains a
tion sele
tors in lieu of value fun
tions).The results demonstrate that evolutionary fun
tion approx-imation 
an signi�
antly improve the performan
e of TDmethods. Furthermore, I test NEAT with and without �-greedy, softmax, and interval estimation versions of evolu-tionary 
omputation. These experiments 
on�rm that thesete
hniques 
an signi�
antly improve the on-line performan
eof evolutionary 
omputation.
2. BACKGROUNDI begin by reviewing Q-learning and NEAT, the algo-rithms that form the building blo
ks of our implementationof evolutionary fun
tion approximation.
2.1 Q-LearningThe experiments presented in this thesis use Q-learningbe
ause it is a well-established, 
anoni
al TD method thathas also enjoyed empiri
al su

ess [27, 6℄. Like many other

TD methods, Q-learning attempts to learn a value fun
tionQ(s; a) that maps state-a
tion pairs to values. In the tabular
ase, the algorithm uses the following update rule, appliedea
h time the agent transitions from state s to state s0:Q(s; a) (1� �)Q(s; a) + �(r + 
maxa0Q(s0; a0))where � 2 [0; 1℄ is a learning rate parameter, 
 2 [0; 1℄ isa dis
ount fa
tor, and r is the immediate reward the agentre
eives upon taking a
tion a. Q-learning is an o�-poli
ylearning method, i.e. it 
an learn the optimal value fun
tionregardless of what poli
y the agent is following, so long asthere is suÆ
ient exploration.In domains with large or 
ontinuous state spa
es, thevalue fun
tion 
annot be represented in a table. Instead,Q-learning is 
oupled with a fun
tion approximator thatmaps state-a
tion pairs to values via a 
on
ise, parame-terized fun
tion. Many di�erent methods of fun
tion ap-proximation have been used su

essfully, in
luding CMACs,radial basis fun
tions, and neural networks [25℄. In this the-sis, I use neural network fun
tion approximators be
ausethey have proven su

essful on diÆ
ult reinfor
ement learn-ing tasks [6, 26℄. The inputs to the network des
ribe theagent's 
urrent state; the outputs, one for ea
h a
tion, rep-resent the agent's 
urrent estimate of the value of the asso-
iated state-a
tion pairs. The initial weights of the networkare drawn from a Gaussian distribution with mean 0.0 andstandard deviation �. After ea
h a
tion, the weights of theneural network are adjusted using ba
kpropagation [19℄ su
hthat its output better mat
hes the 
urrent value estimate forthe state-a
tion pair: r + 
maxa0Q(s0; a0).
2.2 NEATThe implementation of evolutionary fun
tion approxima-tion presented in this thesis relies on NeuroEvolution of Aug-menting Topologies (NEAT) to automate the sear
h for ap-propriate topologies and initial weights of neural networkfun
tion approximators. NEAT is an appropriate 
hoi
e be-
ause of its empiri
al su

esses on diÆ
ult reinfor
ementlearning tasks like pole balan
ing [21℄ and robot 
ontrol [22℄.In addition, NEAT is appealing be
ause, unlike many otheroptimization te
hniques, it automati
ally learns an appro-priate representation for the solution.In a typi
al neuroevolutionary system [28℄, the weights ofa neural network are strung together to form an individualgenome. A population of su
h genomes is then evolved byevaluating ea
h one and sele
tively reprodu
ing the �ttestindividuals through 
rossover and mutation. Most neuroevo-lutionary systems require the designer to manually deter-mine the network's topology (i.e. how many hidden nodesthere are and how they are 
onne
ted). By 
ontrast, NEATautomati
ally evolves the topology to �t the 
omplexityof the problem. It 
ombines the usual sear
h for networkweights with evolution of the network stru
ture.Unlike other systems that evolve network topologies andweights, NEAT begins with a uniform population of sim-ple networks with no hidden nodes and inputs 
onne
ted di-re
tly to outputs. Two spe
ial mutation operators introdu
enew stru
ture in
rementally. Figure 1 depi
ts these opera-tors, whi
h add hidden nodes and links to the network. Onlythose stru
tural mutations that improve performan
e tendto survive; in this way, NEAT sear
hes through a minimalnumber of weight dimensions and �nds the appropriate levelof 
omplexity for the problem.
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Figure 1: Examples of NEAT's stru
tural mutation oper-ators. At top, a new hidden node, shown on the right, isadded to the network by splitting an existing link in two. Atbottom, a new link, shown with a thi
ker bla
k line, is addedto 
onne
t two existing nodes.These stru
tural mutations result in populations of net-works with varying size and shape. Mating these heteroge-neous topologies requires a me
hanism for de
iding whi
hgenes 
orrespond to ea
h other. To this end, NEAT usesinnovation numbers to tra
k the histori
al origin of ea
hstru
tural mutation. When new genomes are 
reated, thegenes in both parents with the same innovation number arelined up; genes that do not mat
h are inherited from the�tter parent.Sin
e NEAT is a general purpose optimization te
hnique,it 
an be applied to a wide variety of problems. When ap-plied to reinfor
ement learning problems, NEAT typi
allyevolves a
tion sele
tors, whi
h dire
tly map states to thea
tion the agent should take in that state. Sin
e it does notestimate value fun
tions, it is an example of poli
y sear
hreinfor
ement learning. Like other poli
y sear
h methods,e.g. [14, 24℄, it uses global optimization te
hniques to di-re
tly sear
h the spa
e of potential poli
ies. In the follow-ing se
tion I des
ribe how NEAT 
an be used to evolve Q-learning fun
tion approximators instead of a
tion sele
tors.
3. EVOLUTIONARY FUNCTION

APPROXIMATIONAs des
ribed above, when evolutionary methods are ap-plied to reinfor
ement learning problems, they typi
ally evolvea population of a
tion sele
tors, ea
h of whi
h remains �xedduring its �tness evaluation. The 
entral insight behind evo-lutionary fun
tion approximation is that, if evolution is di-re
ted to evolve value fun
tions instead, then those valuefun
tions 
an be updated, using TD methods, during ea
h�tness evaluation. In this way, the system 
an evolve fun
-tion approximators that are better able to learn via TD. Inaddition to automating the sear
h for e�e
tive representa-tions, evolutionary fun
tion approximation 
an enable syn-ergisti
 e�e
ts between evolution and learning via a biolog-i
al phenomenon 
alled the Baldwin E�e
t [4℄, whi
h 
anspeed up evolutionary 
omputation [1, 12℄. When ea
h in-dividual 
an learn during its lifetime, it need not be perfe
tat birth. Hen
e, the Baldwin E�e
t predi
ts that evolutionwill �nd good solutions more easily. In the remainder of thisse
tion, I des
ribe NEAT+Q, a parti
ular implementation ofevolutionary fun
tion approximation.

3.1 NEAT+QAll that is required to make NEAT optimize value fun
-tions instead of a
tion sele
tors is a reinterpretation of itsoutput values. The stru
ture of neural network a
tion sele
-tors (one input for ea
h state feature and one output for ea
ha
tion) is already identi
al to that of Q-learning fun
tionapproximators. Therefore, if the weights of the networksNEAT evolves are updated during their �tness evaluationsusing Q-learning and ba
kpropagation, they will e�e
tivelyevolve value fun
tions instead of a
tion sele
tors. Hen
e, theoutputs are no longer arbitrary values; they represent thelong-term dis
ounted values of the asso
iated state-a
tionpairs and are used, not just to sele
t the most desirable a
-tion, but to update the estimates of other state-a
tion pairs.Algorithm 1 neat+q(S;A; p;mn;ml; g; e; �; 
; �; �)1: // S: set of all states, A: set of all a
tions, p: population size2: // mn: node mutation rate, ml: link mutation rate, g: numberof generations3: // e: number of episodes per generation, �: learning rate, 
:dis
ount fa
tor4: // �: eligibility de
ay rate, �: exploration rate5:6: P [℄ init-population(S;A; p)7: for i 1 to g do8: for j  1 to e do9: N;s; s0  P [j % p℄, null, init-state(S)10: repeat11: Q[℄  eval-net(N;s0)12: with-prob(�) a0  random(A)13: else a0  argmaxkQ[k℄14: if s 6= null then15: ba
kprop(N;s; a; r + 
maxkQ[k℄; �; 
; �)16: s; a s0; a017: r; s0  take-a
tion(a0)18: N:fitness N:fitness + r19: until terminal-state?(s)20: N:episodes N:episodes + 121: P 0[℄ new array of size p22: for j  1 to p do23: P 0[j℄  breed-net(P [℄)24: with-prob mn: add-node-mutation(P 0[j℄)25: with-prob ml: add-link-mutation(P 0[j℄)26: P [℄ P 0[℄Algorithm 1 summarizes the resulting NEAT+Q method.Ea
h time the agent takes an a
tion, the network being eval-uated is ba
kpropagated on
e towards Q-learning targets(line 15) and the agent uses �-greedy sele
tion [25℄ to ensureit o

asionally tests alternatives to its 
urrent poli
y (lines12{13). If � and � are set to zero, this method degenerates toregular NEAT. NEAT+Q maintains a running total of thereward a

rued by the network during its evaluation (line18). Ea
h generation ends after e episodes, at whi
h pointea
h network's average �tness isN:fitness=N:episodes. NEAT
reates a new population by repeatedly 
alling the breed-net fun
tion (line 23), whi
h performs 
rossover on twohighly �t parents. The new resulting network 
an then un-dergo mutations that add nodes or links to its stru
ture(lines 24{25).NEAT+Q 
ombines the power of TD methods with theability of NEAT to learn e�e
tive representations. Tradi-tional neural network fun
tion approximators put all theireggs in one basket by relying on a single manually designednetwork to represent the value fun
tion. NEAT+Q, by 
on-trast, explores the spa
e of su
h networks to in
rease the
han
e of �nding a representation that will perform well.



3.2 ResultsAs an initial baseline, I 
ondu
ted 25 runs in ea
h do-main in whi
h NEAT attempts to dis
over good a
tion se-le
tors. Next, I performed 25 runs in ea
h domain usingNEAT+Q. To test Q-learning without NEAT, I tried 24 dif-ferent 
on�gurations in ea
h domain. For simpli
ity, thegraphs that follow show results from only the highest per-forming Q-learning 
on�guration.Figure 2 shows the results of these experiments. Forea
h method, the 
orresponding line in the graph repre-sents a uniform moving average over the aggregate utilityre
eived in the past 1,000 episodes, averaged over all 25 runs.Even though NEAT and NEAT+Q have populations insteadof single networks, they used exa
tly the same number ofepisodes in training as Q-learning and hen
e the 
ompari-son is fair. These graphs show the average reward re
eivedduring those episodes and therefore re
e
t performan
e ofthe entire population, not just the generation 
hampions.Error bars indi
ate 95% 
on�den
e intervals. In addition,Student's t-tests 
on�rmed, with 95% 
on�den
e, the sta-tisti
al signi�
an
e of the performan
e di�eren
e betweenea
h pair of methods.Note that the progress of NEAT+Q 
onsists of a series of10,000-episode intervals. Ea
h of these intervals 
orrespondsto one generation and the 
hanges within them are due tolearning via Q-learning and ba
kpropagation. Though ea
hindividual learns for 100 episodes, those episodes do not o
-
ur 
onse
utively but are spread a
ross the entire generation.Hen
e, ea
h individual 
hanges gradually during the gener-ation as it is repeatedly evaluated. The result is a series ofintra-generational learning 
urves within the larger learning
urve.For the parti
ular problems tested and network 
on�g-urations tried, evolutionary fun
tion approximation signif-i
antly improves performan
e over manually designed net-works. Nonetheless, additional engineering of the networkstru
ture and initial weights 
ould in prin
iple signi�
antlyimprove Q-learning's performan
e. I veri�ed this fa
t bystarting Q-learning with the best networks dis
overed byNEAT+Q and annealing the learning rate aggressively. Inthis s
enario, Q-learning mat
hed NEAT+Q's performan
ewithout dire
tly using evolutionary 
omputation. However,it is unlikely in pra
ti
e that a manual sear
h, no matter howextensive, would dis
over these su

essful topologies, whi
h
ontain irregular and partially 
onne
ted hidden layers.NEAT+Q also signi�
antly outperforms regular NEATin both domains. In the mountain 
ar domain, NEAT+Qlearns faster, a
hieving better performan
e in earlier gen-erations, though they plateau at nearly the same level. Inthe server job s
heduling domain, NEAT+Q learns morerapidly and also 
onverges to substantially higher perfor-man
e. This result highlights the value of TD methods on
hallenging reinfor
ement learning problems. Even whenNEAT is employed to �nd e�e
tive representations, the bestperforman
e is a
hieved only when TD methods are used toestimate a value fun
tion. Hen
e, the relatively poor per-forman
e of Q-learning is not due to some weakness in theTD methodology but merely to the failure to �nd a goodrepresentation.Furthermore, in the s
heduling domain, the advantage ofNEAT+Q over NEAT is not dire
tly explained just by thelearning that o

urs via ba
kpropagation within ea
h gen-eration. After 300,000 episodes, NEAT+Q 
learly performs

better even at the beginning of ea
h generation, before su
hlearning has o

urred. Just as predi
ted by the Baldwin Ef-fe
t, evolution pro
eeds more qui
kly in NEAT+Q be
ausethe weight 
hanges made by ba
kpropagation, in additionto improving that individual's performan
e, alter sele
tivepressures and more rapidly guide evolution to useful regionsof the sear
h spa
e.
4. ON-LINE EVOLUTIONARY

COMPUTATIONIf e is the total number of episodes 
ondu
ted in ea
hgeneration and jP j is the size of the population, evolution-ary methods typi
ally evaluate ea
h member of the popula-tion for e=jP j episodes. In on-line s
enarios, this strategy isgrossly suboptimal be
ause it makes no attempt to properlybalan
e exploration and exploitation within a generation. Infa
t, this strategy is purely exploratory, as every individualis evaluated for exa
tly the same number of episodes.In this se
tion, I present three methods that attempt toboost evolution's on-line performan
e by balan
ing explo-ration with exploitation. Instead of giving ea
h individualthe same number of episodes, these methods exploit theinformation gained from early episodes to favor the mostpromising 
andidate poli
ies and thereby boost the rewarda

rued during learning. All three methods work by borrow-ing a
tion sele
tion me
hanisms traditionally used in TDmethods and applying them in evolutionary 
omputation.In TD methods, these me
hanisms dire
tly balan
e explo-ration and exploitation by determining how often the agentbehaves greedily with respe
t to 
urrent value estimates andhow often it tries alternative a
tions.In a sense, the problem fa
ed by evolutionary methodsis the opposite of that fa
ed by TD methods. Within ea
hgeneration, evolutionary methods naturally explore, by eval-uating ea
h member of the population equally, and so needa way to for
e more exploitation. By 
ontrast, TD meth-ods naturally exploit, by following the greedy poli
y, andso need a way to for
e more exploration. Nonetheless, theultimate goal is the same: a proper balan
e between the twoextremes.To apply TD sele
tion me
hanisms in evolutionary 
om-putation, we must modify the level at whi
h sele
tion is per-formed. Evolutionary algorithms 
annot perform sele
tionat the level of individual a
tions be
ause, la
king value fun
-tions, they have no notion of the value of individual a
tions.However, they 
an perform sele
tion at the level of episodes,in whi
h entire poli
ies are assessed holisti
ally. The samesele
tion me
hanisms used to 
hoose individual a
tions inTD methods 
an be used to sele
t poli
ies for evaluation, al-lowing evolutionary algorithms to ex
el on-line by balan
ingexploration and exploitation within and a
ross generations.The rest of this se
tion details three ways to perform on-lineevolution.
4.1 �-Greedy EvolutionWhen �-greedy sele
tion is used in TD methods, a singleparameter � 
ontrols what fra
tion of the time the agentdeviates from greedy behavior. Ea
h time the agent sele
tsan a
tion, it 
hooses probabilisti
ally between explorationand exploitation. With probability �, it explores by sele
tingrandomly from the available a
tions. With probability 1��,it exploits by sele
ting the greedy a
tion.
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Figure 2: A 
omparison of the performan
e of manual and evolutionary fun
tion approximators in the mountain 
arand server job s
heduling domains.In evolutionary 
omputation, this same me
hanism 
anbe used at the beginning of ea
h episode to sele
t a poli
yfor evaluation. With probability �, the algorithm sele
ts apoli
y randomly. With probability 1 � �, the algorithm ex-ploits by sele
ting the best poli
y dis
overed so far in the
urrent generation. The s
ore of ea
h poli
y is just the av-erage reward per episode it has re
eived so far. Ea
h time apoli
y is sele
ted for evaluation, the total reward it re
eivesis in
orporated into that average, whi
h 
an 
ause it to gainor lose the rank of best poli
y.To apply �-greedy sele
tion to NEAT, we need only alterthe way networks are sele
ted for evaluation. Instead ofiterating through the population repeatedly until e episodesare 
omplete, NEAT sele
ts for evaluation, at the beginningof ea
h episode, the poli
y returned by the �-greedy sele
tionfun
tion des
ribed in Algorithm 2. This fun
tion returns apoli
y p whi
h is either sele
ted randomly or whi
h so farhas the highest average �tness, f(p).Algorithm 2 �-greedy sele
tion(P; �)1: // P : population2: // �: NEAT's exploration rate3:4: with-prob(�) return random(P )5: else return argmaxp2P f(p)Using �-greedy sele
tion in evolutionary 
omputation al-lows it to thrive in on-line s
enarios by balan
ing explo-ration and exploitation. For the most part, this methoddoes not alter evolution's sear
h but simply interleaves itwith exploitative episodes that in
rease average reward dur-ing learning. The next se
tion des
ribes how softmax sele
-tion 
an be applied to evolution to 
reate a more nuan
edbalan
e between exploration and exploitation.
4.2 Softmax EvolutionWhen softmax sele
tion is used in TD methods, an a
-tion's probability of sele
tion is a fun
tion of its estimatedvalue. In addition to ensuring that the greedy a
tion is 
ho-sen most often, this te
hnique fo
uses exploration on themost promising alternatives. There are many ways to im-plement softmax sele
tion but one popular method relies ona Boltzmann distribution [25℄, in whi
h 
ase an agent in

state s 
hooses an a
tion a with probabilityeQ(s;a)=�Pa02A eQ(s;a0)=� (1)where A is the set of available a
tions, Q(s; a) is the agent'svalue estimate for the given state-a
tion pair and � is apositive parameter 
ontrolling the degree to whi
h a
tionswith higher values are favored in sele
tion. The higher thevalue of � , the more equiprobable the a
tions are.As with �-greedy sele
tion, we use softmax sele
tion inevolution to sele
t poli
ies for evaluation. At the begin-ning of ea
h generation, ea
h individual is evaluated for oneepisode, to initialize its �tness. Then, the remaining e�jP jepisodes are allo
ated a

ording to a Boltzmann distribu-tion. Before ea
h episode, a poli
y p in a population P issele
ted with probability ef(p)=�Pp02P ef(p0)=� (2)where f(p) is the �tness of poli
y p, averaged over all theepisodes for whi
h it has been previously evaluated. InNEAT, softmax sele
tion is applied in the same way as �-greedy sele
tion, ex
ept that the poli
y sele
ted for eval-uation is that returned by the softmax sele
tion fun
tiondes
ribed in Algorithm 3, where e(p) is the total number ofepisodes for whi
h a poli
y p has been evaluated so far.Algorithm 3 softmax sele
tion(P; �)1: // P : population2: // � : softmax temperature3:4: if 9 p 2 P j e(p) = 0 then5: return p6: else7: total Pp2P ef(p)=�8: for all p 2 P do9: with-prob( ef(p)=�total ) return p10: else total total� ef(p)=�Softmax sele
tion provides a more nuan
ed balan
e be-tween exploration and exploitation than �-greedy be
auseit fo
uses its exploration on the most promising alternativeto the 
urrent best poli
y. Softmax sele
tion 
an qui
kly



abandon poorly performing poli
ies and prevent them fromredu
ing the reward a

rued during learning.
4.3 Interval Estimation EvolutionAn important disadvantage of both �-greedy and softmaxsele
tion is that they do not 
onsider the un
ertainty of theestimates on whi
h they base their sele
tions. One approa
hthat addresses this short
oming is interval estimation [13℄.When used in TD methods, interval estimation 
omputes a(100��)% 
on�den
e interval for the value of ea
h availablea
tion. The agent always takes the a
tion with the highestupper bound on this interval. Hen
e, this strategy favorsa
tions with high estimated value and also fo
uses explo-ration on the most promising but un
ertain a
tions. The� parameter 
ontrols the balan
e between exploration andexploitation, with smaller values generating greater explo-ration.The same strategy 
an be employed within evolution tosele
t poli
ies for evaluation. At the beginning of ea
h gen-eration, ea
h individual is evaluated for one episode, to ini-tialize its �tness. Then, the remaining e� jP j episodes areallo
ated to the poli
y that 
urrently has the highest up-per bound on its 
on�den
e interval. In NEAT, intervalestimation is applied just as in �-greedy and softmax sele
-tion, ex
ept that the poli
y sele
ted for evaluation is thatreturned by the interval estimation fun
tion des
ribed in Al-gorithm 4, where [0; z(x)℄ is an interval within whi
h the areaunder the standard normal 
urve is x. f(p), �(p) and e(p)are the �tness, standard deviation, and number of episodes,respe
tively, for poli
y p.Algorithm 4 interval estimation(P;�)1: // P : population, �: un
ertainty in 
on�den
e interval2:3: if 9 p 2 P j e(p) = 0 then4: return p5: else6: return argmaxp2P [f(p) + z( 100��200 ) �(p)pe(p) ℄
4.4 ResultsAs a baseline of 
omparison, I applied the original, o�-lineversion of NEAT to both the mountain 
ar and server jobs
heduling domains and averaged its performan
e over 25runs. Next, I applied the �-greedy, softmax, and interval es-timation versions of NEAT to both domains using the sameparameter settings.Figure 3 summarizes the results of these experiments byplotting a uniform moving average over the last 1,000 episodesof the total reward a

rued per episode for ea
h method.I plot average reward be
ause it is an on-line metri
: itmeasures the amount of reward the agent a

rues whileit is learning. The best poli
ies dis
overed by evolution,i.e. the generation 
hampions, perform substantially higherthan this average. However, using their performan
e as anevaluation metri
 would ignore the on-line 
ost that was in-
urred by evaluating the rest of population and re
eivingless reward per episode. Error bars on the graph indi
ate95% 
on�den
e intervals. In addition, Student's t-tests 
on-�rm, with 95% 
on�den
e, the statisti
al signi�
an
e of theperforman
e di�eren
e between ea
h pair of methods ex
eptsoftmax and interval estimation.The results 
learly demonstrate that sele
tion me
hanismsborrowed from TD methods 
an dramati
ally improve the

on-line performan
e of evolutionary 
omputation. All threeon-line methods substantially outperform the o�-line versionof NEAT. In addition, the more nuan
ed strategies of soft-max and interval estimation fare better than �-greedy. Thisresult is not surprising sin
e the �-greedy approa
h simplyinterleaves the sear
h for better poli
ies with exploitativeepisodes that employ the best known poli
y. Softmax se-le
tion and interval estimation, by 
ontrast, 
on
entrate ex-ploration on the most promising alternatives. Hen
e, theyspend fewer episodes on the weakest individuals and a
hievebetter performan
e as a result.The on-line methods, espe
ially interval estimation, showa series of 10,000-episode intervals. Ea
h of these inter-vals 
orresponds to one generation. The performan
e im-provements within ea
h generation re
e
t the on-line meth-ods' ability to exploit the information gleaned from earlierepisodes. As the generation progresses, these methods be-
ome better informed about whi
h individuals to favor whenexploiting and average reward in
reases as a result.While these intervals reveal an important feature of theon-line methods' behavior, they 
an make it diÆ
ult to 
om-pare performan
e. For example, in the mountain 
ar do-main, interval estimation begins ea
h generation with a lotof exploration and, 
onsequently, relatively poor performan
e.However, that exploration qui
kly pays o� and its averageperforman
e rises slightly above that of softmax. Whi
h ofthese two methods is re
eiving more reward overall? It isdiÆ
ult to tell from plots of average reward. Hen
e, Figure 4plots, for the same experiments, the total 
umulative rewarda

rued by ea
h method over the entire run. As with theprevious graph, error bars indi
ate 95% 
on�den
e intervalsand Student's t-tests 
on�rmed, with 95% 
on�den
e, thestatisti
al signi�
an
e of the performan
e di�eren
e betweenea
h pair of methods ex
ept softmax and interval estimation.Not surprisingly, the o�-line version of NEAT a

umulatesmu
h less reward than the on-line methods and �-greedya

umulates less reward than the other on-line approa
hes.These graphs also show that, in mountain 
ar, interval esti-mation's exploration early in ea
h generation pays o�, as itearns at least as mu
h reward overall as softmax.Overall, these results verify the eÆ
a
y of these methodsof on-line evolution. It is less 
lear, however, whi
h strategyis most useful. Softmax 
learly outperforms �-greedy butmay be more diÆ
ult to use in pra
ti
e be
ause the � pa-rameter is harder to tune, as eviden
ed by the need to assignit di�erent values in the two domains. As Sutton and Bartowrite, \Most people �nd it easier to set the � parameterwith 
on�den
e; setting � requires knowledge of the likelya
tion values and of powers of e." [25, pages 27-30℄. In thislight, interval estimation may be the best 
hoi
e. Our exper-iments show that it performs as well or better than softmaxand ane
dotal eviden
e suggests that the � parameter is notoverly troublesome to tune.
5. FUTURE WORKThere are many ways that the work presented in this the-sis 
ould be extended, re�ned, or further evaluated. Thisse
tion enumerates a few of the possibilities.
5.1 Using Different Policy Search MethodsThis thesis fo
uses on using evolutionary methods to au-tomate the sear
h for good fun
tion approximator represen-tations. However, many other forms of poli
y sear
h su
h as



-300

-250

-200

-150

-100

-50

 0

 0  200  400  600  800  1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15500

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0  100  200  300  400  500  600  700  800  900  1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Off−Line

Epsilon−Greedy

Interval Estimation Softmax Softmax

Interval Estimation

Off−Line

Epsilon−Greedy

Figure 3: The uniform moving average reward a

rued by o�-line NEAT, 
ompared to three versions of on-line NEATin the mountain 
ar and server job s
heduling domains. In both domains, all rewards are negative so the agents striveto get average reward as 
lose to zero as possible.PEGASUS [17℄ and poli
y gradient methods [24, 14℄ havealso su

eeded on diÆ
ult reinfor
ement learning tasks. TDmethods 
ould be 
ombined with these methods in the sameway they are 
ombined with evolutionary 
omputation inthis thesis. In the future, I plan to test some of these alter-native 
ombinations.
5.2 Reducing Sample ComplexityOne disadvantage of evolutionary fun
tion approximationis its high sample 
omplexity, sin
e ea
h �tness evaluationlasts for many episodes. However, in domains where the �t-ness fun
tion is not too noisy, ea
h �tness evaluation 
ouldbe 
ondu
ted in a single episode if the 
andidate fun
tion ap-proximator was pre-trained using methods based on experi-en
e replay [16℄. By saving sample transitions from the pre-vious generation, ea
h new generation 
ould be be trainedo�-line. This method would use mu
h more 
omputationtime but many fewer sample episodes. Sin
e sample experi-en
e is typi
ally a mu
h s
ar
er resour
e than 
omputationtime, this enhan
ement 
ould greatly improve the pra
ti
alappli
ability of evolutionary fun
tion approximation.
5.3 Addressing Non-StationarityIn non-stationary domains, the environment 
an 
hangein ways that alter the optimal poli
y. Sin
e this phenomenono

urs in many real-world s
enarios, it is important to de-velop methods that 
an handle it robustly. Evolutionary andTD methods are both well suited to non-stationary tasksand I expe
t them to retain that 
apability when 
ombined.In fa
t, I hypothesize that evolutionary fun
tion approxima-tion will adapt to non-stationary environments better thanmanual alternatives. If the environment 
hanges in waysthat alter the optimal representation, evolutionary fun
tionapproximation 
an adapt, sin
e it is 
ontinually testing dif-ferent representations and retaining the best ones. By 
on-trast, even if they are e�e
tive at the original task, manuallydesigned representations 
annot adapt in the fa
e of 
hang-ing environments.On-line evolutionary 
omputation should also ex
el in non-stationary environments, though some re�nement will be

ne
essary. The methods presented in this thesis impli
itlyassume a stationary environment be
ause they 
ompute the�tness of ea
h individual by averaging over all episodes ofevaluation. In non-stationary environments, older evalua-tions 
an be
ome stale and misleading. Hen
e, �tness es-timates should pla
e less trust in older evaluations. Thise�e
t 
ould easily be a
hieved using re
en
y-weighting up-date rules like those employed by table-based TD methods.
5.4 Using Steady-State Evolutionary

ComputationThe NEAT algorithm used in this thesis is an example ofgenerational evolutionary 
omputation, in whi
h an entirepopulation is is evaluated before any new individuals arebred. Evolutionary fun
tion approximation might be im-proved by using a steady-state implementation instead [7℄.Steady-state systems never repla
e an entire population aton
e. Instead, the population 
hanges in
rementally afterea
h �tness evaluation, when one of the worst individuals isremoved and repla
ed by a new o�spring whose parents areamong the best. Hen
e, an individual that re
eives a highs
ore 
an more rapidly e�e
t the sear
h, sin
e it immedi-ately be
omes a potential parent. In a generational system,that individual 
annot breed until the beginning of the fol-lowing generation, whi
h might be thousands of episodeslater. Hen
e, steady-state systems 
ould help evolutionaryfun
tion approximation perform better in on-line and non-stationary environments by speeding the adoption of newimprovements. Fortunately, a steady-state version of NEATalready exists [20℄ so this extension is quite feasible.
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