
In Proceedings of the Genetic and Evolutionary Computation Conference Graduate Student Workshop (GECCO 06),
Seattle, WA, July 2006.

Evolutionary Function Approximation
for Reinforcement Learning

Shimon Whiteson
Department of Computer Sciences

University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233

shimon@cs.utexas.edu

ABSTRACTTemporal di�eren
e methods are theoreti
ally grounded andempiri
ally e�e
tive methods for addressing reinfor
ementlearning problems. In most real-world reinfor
ement learn-ing tasks, TD methods require a fun
tion approximator torepresent the value fun
tion. However, using fun
tion ap-proximators requires manually making
ru
ial representa-tional de
isions. This thesis investigates evolutionary fun
-tion approximation, a novel approa
h to automati
ally se-le
ting fun
tion approximator representations that enableeÆ
ient individual learning. This method evolves individ-uals that are better able to learn. I present a fully imple-mented instantiation of evolutionary fun
tion approxima-tion whi
h
ombines NEAT, a neuroevolutionary optimiza-tion te
hnique, with Q-learning, a popular TD method. Theresulting NEAT+Q algorithm automati
ally dis
overs e�e
-tive representations for neural network fun
tion approxima-tors. This thesis also presents on-line evolutionary
ompu-tation, whi
h improves the on-line performan
e of evolution-ary
omputation by borrowing sele
tion me
hanisms used inTD methods to
hoose individual a
tions and using them inevolutionary
omputation to sele
t poli
ies for evaluation. Ievaluate these
ontributions with extended empiri
al stud-ies in two domains: 1) the mountain
ar task, a standardreinfor
ement learning ben
hmark on whi
h neural networkfun
tion approximators have previously performed poorlyand 2) server job s
heduling, a large probabilisti
 domaindrawn from the �eld of autonomi

omputing. The resultsdemonstrate that evolutionary fun
tion approximation
ansigni�
antly improve the performan
e of TD methods andon-line evolutionary
omputation
an signi�
antly improveevolutionary methods.
Categories and Subject DescriptorsI.2.6 [Arti�
ial Intelligen
e℄: Learning
General TermsAlgorithms, Performan
e
Keywordsevolutionary
omputation, reinfor
ement learning, temporaldi�eren
e methods, neural networks, on-line learning
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTIONIn many ma
hine learning problems, an agent must learna poli
y for sele
ting a
tions based on its
urrent state. Re-infor
ement learning problems are the subset of these tasksin whi
h the agent never sees examples of
orre
t behav-ior. Instead, it re
eives only positive and negative rewardsfor the a
tions it tries. Sin
e many pra
ti
al, real worldproblems (su
h as robot
ontrol, game playing, and systemoptimization) fall in this
ategory, developing e�e
tive rein-for
ement learning algorithms is
riti
al to the progress ofarti�
ial intelligen
e.The most
ommon approa
h to reinfor
ement learning re-lies on the
on
ept of value fun
tions, whi
h indi
ate, fora parti
ular poli
y, the long-term value of a given state orstate-a
tion pair. Temporal di�eren
e methods (TD) [23℄,whi
h
ombine prin
iples of dynami
 programming with sta-tisti
al sampling, use the immediate rewards re
eived by theagent to in
rementally improve both the agent's poli
y andthe estimated value fun
tion for that poli
y. Hen
e, TDmethods enable an agent to learn during its \lifetime" i.e.from its individual experien
e intera
ting with the environ-ment.For small problems, the value fun
tion
an be representedas a table. However, the large, probabilisti
 domains whi
harise in the real-world usually require
oupling TD methodswith a fun
tion approximator, whi
h represents the map-ping from state-a
tion pairs to values via a more
on
ise,parameterized fun
tion and uses supervised learning meth-ods to set its parameters. Many di�erent methods of fun
-tion approximation have been used su

essfully, in
ludingCMACs, radial basis fun
tions, and neural networks [25℄.However, using fun
tion approximators requires making
ru-
ial representational de
isions (e.g. the number of hiddenunits and initial weights of a neural network). Poor de-sign
hoi
es
an result in estimates that diverge from theoptimal value fun
tion [2℄ and agents that perform poorly.Even for reinfor
ement learning algorithms with guaranteed
onvergen
e [3, 15℄, a
hieving high performan
e in pra
-ti
e requires �nding an appropriate representation for thefun
tion approximator. As Lagoudakis and Parr observe,\The
ru
ial fa
tor for a su

essful approximate algorithmis the
hoi
e of the parametri
 approximation ar
hite
ture(s)and the
hoi
e of the proje
tion (parameter adjustment)method." [15, p. 1111℄ Nonetheless, representational
hoi
esare typi
ally made manually, based only on the designer'sintuition.My goal is to automate the sear
h for e�e
tive represen-tations by employing sophisti
ated optimization te
hniques.

In this thesis, I fo
us on using evolutionary methods [9℄be
ause of their demonstrated ability to dis
over e�e
tiverepresentations [11, 21℄. Synthesizing evolutionary and TDmethods results in a new approa
h
alled evolutionary fun
-tion approximation, whi
h automati
ally sele
ts fun
tion ap-proximator representations that enable eÆ
ient individuallearning. Thus, this method evolves individuals that arebetter able to learn. This biologi
ally intuitive
ombinationhas been applied to
omputational systems in the past [1,5, 8, 10, 12, 18℄ but never, to my knowledge, to aid thedis
overy of good TD fun
tion approximators.This thesis uses NeuroEvolution of Augmenting Topolo-gies (NEAT) [21℄ to sele
t neural network fun
tion approx-imators for Q-learning [27℄, a popular TD method. Theresulting algorithm,
alled NEAT+Q, uses NEAT to evolvetopologies and initial weights of neural networks that arebetter able to learn, via ba
kpropagation, to represent thevalue estimates provided by Q-learning.Evolutionary
omputation is typi
ally applied to o�-lines
enarios, where the only goal is to dis
over a good poli
yas qui
kly as possible. By
ontrast, TD methods are typi-
ally applied to on-line s
enarios, in whi
h the agent triesto learn a good poli
y qui
kly and to maximize the rewardit obtains while doing so. Hen
e, for evolutionary fun
tionapproximation to a
hieve its full potential, the underlyingevolutionary method needs to work well on-line.TD methods ex
el on-line be
ause they are typi
ally
om-bined with a
tion sele
tion me
hanisms like �-greedy sele
-tion [25℄. These me
hanisms improve on-line performan
eby expli
itly balan
ing two
ompeting obje
tives: 1) sear
h-ing for better poli
ies (exploration) and 2) gathering as mu
hreward as possible (exploitation). This thesis investigates anovel approa
h
alled on-line evolutionary
omputation, inwhi
h sele
tion me
hanisms
ommonly used by TD methodsto
hoose individual a
tions are used in evolutionary
om-putation to
hoose poli
ies for evaluation. I present threeimplementations, based on �-greedy sele
tion, softmax se-le
tion, and interval estimation, that distribute evaluationswithin a generation so as to favor more promising individu-als.I evaluate these
ontributions with extended empiri
alstudies in two domains: 1) mountain
ar and 2) server jobs
heduling. Using these domains, my experiments test Q-learning with a series of manually designed neural networksand
ompare the results to NEAT+Q and regular NEAT(whi
h trains a
tion sele
tors in lieu of value fun
tions).The results demonstrate that evolutionary fun
tion approx-imation
an signi�
antly improve the performan
e of TDmethods. Furthermore, I test NEAT with and without �-greedy, softmax, and interval estimation versions of evolu-tionary
omputation. These experiments
on�rm that thesete
hniques
an signi�
antly improve the on-line performan
eof evolutionary
omputation.
2. BACKGROUNDI begin by reviewing Q-learning and NEAT, the algo-rithms that form the building blo
ks of our implementationof evolutionary fun
tion approximation.
2.1 Q-LearningThe experiments presented in this thesis use Q-learningbe
ause it is a well-established,
anoni
al TD method thathas also enjoyed empiri
al su

ess [27, 6℄. Like many other

TD methods, Q-learning attempts to learn a value fun
tionQ(s; a) that maps state-a
tion pairs to values. In the tabular
ase, the algorithm uses the following update rule, appliedea
h time the agent transitions from state s to state s0:Q(s; a) (1� �)Q(s; a) + �(r +
maxa0Q(s0; a0))where � 2 [0; 1℄ is a learning rate parameter,
 2 [0; 1℄ isa dis
ount fa
tor, and r is the immediate reward the agentre
eives upon taking a
tion a. Q-learning is an o�-poli
ylearning method, i.e. it
an learn the optimal value fun
tionregardless of what poli
y the agent is following, so long asthere is suÆ
ient exploration.In domains with large or
ontinuous state spa
es, thevalue fun
tion
annot be represented in a table. Instead,Q-learning is
oupled with a fun
tion approximator thatmaps state-a
tion pairs to values via a
on
ise, parame-terized fun
tion. Many di�erent methods of fun
tion ap-proximation have been used su

essfully, in
luding CMACs,radial basis fun
tions, and neural networks [25℄. In this the-sis, I use neural network fun
tion approximators be
ausethey have proven su

essful on diÆ
ult reinfor
ement learn-ing tasks [6, 26℄. The inputs to the network des
ribe theagent's
urrent state; the outputs, one for ea
h a
tion, rep-resent the agent's
urrent estimate of the value of the asso-
iated state-a
tion pairs. The initial weights of the networkare drawn from a Gaussian distribution with mean 0.0 andstandard deviation �. After ea
h a
tion, the weights of theneural network are adjusted using ba
kpropagation [19℄ su
hthat its output better mat
hes the
urrent value estimate forthe state-a
tion pair: r +
maxa0Q(s0; a0).
2.2 NEATThe implementation of evolutionary fun
tion approxima-tion presented in this thesis relies on NeuroEvolution of Aug-menting Topologies (NEAT) to automate the sear
h for ap-propriate topologies and initial weights of neural networkfun
tion approximators. NEAT is an appropriate
hoi
e be-
ause of its empiri
al su

esses on diÆ
ult reinfor
ementlearning tasks like pole balan
ing [21℄ and robot
ontrol [22℄.In addition, NEAT is appealing be
ause, unlike many otheroptimization te
hniques, it automati
ally learns an appro-priate representation for the solution.In a typi
al neuroevolutionary system [28℄, the weights ofa neural network are strung together to form an individualgenome. A population of su
h genomes is then evolved byevaluating ea
h one and sele
tively reprodu
ing the �ttestindividuals through
rossover and mutation. Most neuroevo-lutionary systems require the designer to manually deter-mine the network's topology (i.e. how many hidden nodesthere are and how they are
onne
ted). By
ontrast, NEATautomati
ally evolves the topology to �t the
omplexityof the problem. It
ombines the usual sear
h for networkweights with evolution of the network stru
ture.Unlike other systems that evolve network topologies andweights, NEAT begins with a uniform population of sim-ple networks with no hidden nodes and inputs
onne
ted di-re
tly to outputs. Two spe
ial mutation operators introdu
enew stru
ture in
rementally. Figure 1 depi
ts these opera-tors, whi
h add hidden nodes and links to the network. Onlythose stru
tural mutations that improve performan
e tendto survive; in this way, NEAT sear
hes through a minimalnumber of weight dimensions and �nds the appropriate levelof
omplexity for the problem.

Inputs

Nodes
Hidden

Outputs

��������������������������

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

��������������������������

Mutation

Add Link

Figure 1: Examples of NEAT's stru
tural mutation oper-ators. At top, a new hidden node, shown on the right, isadded to the network by splitting an existing link in two. Atbottom, a new link, shown with a thi
ker bla
k line, is addedto
onne
t two existing nodes.These stru
tural mutations result in populations of net-works with varying size and shape. Mating these heteroge-neous topologies requires a me
hanism for de
iding whi
hgenes
orrespond to ea
h other. To this end, NEAT usesinnovation numbers to tra
k the histori
al origin of ea
hstru
tural mutation. When new genomes are
reated, thegenes in both parents with the same innovation number arelined up; genes that do not mat
h are inherited from the�tter parent.Sin
e NEAT is a general purpose optimization te
hnique,it
an be applied to a wide variety of problems. When ap-plied to reinfor
ement learning problems, NEAT typi
allyevolves a
tion sele
tors, whi
h dire
tly map states to thea
tion the agent should take in that state. Sin
e it does notestimate value fun
tions, it is an example of poli
y sear
hreinfor
ement learning. Like other poli
y sear
h methods,e.g. [14, 24℄, it uses global optimization te
hniques to di-re
tly sear
h the spa
e of potential poli
ies. In the follow-ing se
tion I des
ribe how NEAT
an be used to evolve Q-learning fun
tion approximators instead of a
tion sele
tors.
3. EVOLUTIONARY FUNCTION

APPROXIMATIONAs des
ribed above, when evolutionary methods are ap-plied to reinfor
ement learning problems, they typi
ally evolvea population of a
tion sele
tors, ea
h of whi
h remains �xedduring its �tness evaluation. The
entral insight behind evo-lutionary fun
tion approximation is that, if evolution is di-re
ted to evolve value fun
tions instead, then those valuefun
tions
an be updated, using TD methods, during ea
h�tness evaluation. In this way, the system
an evolve fun
-tion approximators that are better able to learn via TD. Inaddition to automating the sear
h for e�e
tive representa-tions, evolutionary fun
tion approximation
an enable syn-ergisti
 e�e
ts between evolution and learning via a biolog-i
al phenomenon
alled the Baldwin E�e
t [4℄, whi
h
anspeed up evolutionary
omputation [1, 12℄. When ea
h in-dividual
an learn during its lifetime, it need not be perfe
tat birth. Hen
e, the Baldwin E�e
t predi
ts that evolutionwill �nd good solutions more easily. In the remainder of thisse
tion, I des
ribe NEAT+Q, a parti
ular implementation ofevolutionary fun
tion approximation.

3.1 NEAT+QAll that is required to make NEAT optimize value fun
-tions instead of a
tion sele
tors is a reinterpretation of itsoutput values. The stru
ture of neural network a
tion sele
-tors (one input for ea
h state feature and one output for ea
ha
tion) is already identi
al to that of Q-learning fun
tionapproximators. Therefore, if the weights of the networksNEAT evolves are updated during their �tness evaluationsusing Q-learning and ba
kpropagation, they will e�e
tivelyevolve value fun
tions instead of a
tion sele
tors. Hen
e, theoutputs are no longer arbitrary values; they represent thelong-term dis
ounted values of the asso
iated state-a
tionpairs and are used, not just to sele
t the most desirable a
-tion, but to update the estimates of other state-a
tion pairs.Algorithm 1 neat+q(S;A; p;mn;ml; g; e; �;
; �; �)1: // S: set of all states, A: set of all a
tions, p: population size2: // mn: node mutation rate, ml: link mutation rate, g: numberof generations3: // e: number of episodes per generation, �: learning rate,
:dis
ount fa
tor4: // �: eligibility de
ay rate, �: exploration rate5:6: P [℄ init-population(S;A; p)7: for i 1 to g do8: for j 1 to e do9: N;s; s0 P [j % p℄, null, init-state(S)10: repeat11: Q[℄ eval-net(N;s0)12: with-prob(�) a0 random(A)13: else a0 argmaxkQ[k℄14: if s 6= null then15: ba
kprop(N;s; a; r +
maxkQ[k℄; �;
; �)16: s; a s0; a017: r; s0 take-a
tion(a0)18: N:fitness N:fitness + r19: until terminal-state?(s)20: N:episodes N:episodes + 121: P 0[℄ new array of size p22: for j 1 to p do23: P 0[j℄ breed-net(P [℄)24: with-prob mn: add-node-mutation(P 0[j℄)25: with-prob ml: add-link-mutation(P 0[j℄)26: P [℄ P 0[℄Algorithm 1 summarizes the resulting NEAT+Q method.Ea
h time the agent takes an a
tion, the network being eval-uated is ba
kpropagated on
e towards Q-learning targets(line 15) and the agent uses �-greedy sele
tion [25℄ to ensureit o

asionally tests alternatives to its
urrent poli
y (lines12{13). If � and � are set to zero, this method degenerates toregular NEAT. NEAT+Q maintains a running total of thereward a

rued by the network during its evaluation (line18). Ea
h generation ends after e episodes, at whi
h pointea
h network's average �tness isN:fitness=N:episodes. NEAT
reates a new population by repeatedly
alling the breed-net fun
tion (line 23), whi
h performs
rossover on twohighly �t parents. The new resulting network
an then un-dergo mutations that add nodes or links to its stru
ture(lines 24{25).NEAT+Q
ombines the power of TD methods with theability of NEAT to learn e�e
tive representations. Tradi-tional neural network fun
tion approximators put all theireggs in one basket by relying on a single manually designednetwork to represent the value fun
tion. NEAT+Q, by
on-trast, explores the spa
e of su
h networks to in
rease the
han
e of �nding a representation that will perform well.

3.2 ResultsAs an initial baseline, I
ondu
ted 25 runs in ea
h do-main in whi
h NEAT attempts to dis
over good a
tion se-le
tors. Next, I performed 25 runs in ea
h domain usingNEAT+Q. To test Q-learning without NEAT, I tried 24 dif-ferent
on�gurations in ea
h domain. For simpli
ity, thegraphs that follow show results from only the highest per-forming Q-learning
on�guration.Figure 2 shows the results of these experiments. Forea
h method, the
orresponding line in the graph repre-sents a uniform moving average over the aggregate utilityre
eived in the past 1,000 episodes, averaged over all 25 runs.Even though NEAT and NEAT+Q have populations insteadof single networks, they used exa
tly the same number ofepisodes in training as Q-learning and hen
e the
ompari-son is fair. These graphs show the average reward re
eivedduring those episodes and therefore re
e
t performan
e ofthe entire population, not just the generation
hampions.Error bars indi
ate 95%
on�den
e intervals. In addition,Student's t-tests
on�rmed, with 95%
on�den
e, the sta-tisti
al signi�
an
e of the performan
e di�eren
e betweenea
h pair of methods.Note that the progress of NEAT+Q
onsists of a series of10,000-episode intervals. Ea
h of these intervals
orrespondsto one generation and the
hanges within them are due tolearning via Q-learning and ba
kpropagation. Though ea
hindividual learns for 100 episodes, those episodes do not o
-
ur
onse
utively but are spread a
ross the entire generation.Hen
e, ea
h individual
hanges gradually during the gener-ation as it is repeatedly evaluated. The result is a series ofintra-generational learning
urves within the larger learning
urve.For the parti
ular problems tested and network
on�g-urations tried, evolutionary fun
tion approximation signif-i
antly improves performan
e over manually designed net-works. Nonetheless, additional engineering of the networkstru
ture and initial weights
ould in prin
iple signi�
antlyimprove Q-learning's performan
e. I veri�ed this fa
t bystarting Q-learning with the best networks dis
overed byNEAT+Q and annealing the learning rate aggressively. Inthis s
enario, Q-learning mat
hed NEAT+Q's performan
ewithout dire
tly using evolutionary
omputation. However,it is unlikely in pra
ti
e that a manual sear
h, no matter howextensive, would dis
over these su

essful topologies, whi
h
ontain irregular and partially
onne
ted hidden layers.NEAT+Q also signi�
antly outperforms regular NEATin both domains. In the mountain
ar domain, NEAT+Qlearns faster, a
hieving better performan
e in earlier gen-erations, though they plateau at nearly the same level. Inthe server job s
heduling domain, NEAT+Q learns morerapidly and also
onverges to substantially higher perfor-man
e. This result highlights the value of TD methods on
hallenging reinfor
ement learning problems. Even whenNEAT is employed to �nd e�e
tive representations, the bestperforman
e is a
hieved only when TD methods are used toestimate a value fun
tion. Hen
e, the relatively poor per-forman
e of Q-learning is not due to some weakness in theTD methodology but merely to the failure to �nd a goodrepresentation.Furthermore, in the s
heduling domain, the advantage ofNEAT+Q over NEAT is not dire
tly explained just by thelearning that o

urs via ba
kpropagation within ea
h gen-eration. After 300,000 episodes, NEAT+Q
learly performs

better even at the beginning of ea
h generation, before su
hlearning has o

urred. Just as predi
ted by the Baldwin Ef-fe
t, evolution pro
eeds more qui
kly in NEAT+Q be
ausethe weight
hanges made by ba
kpropagation, in additionto improving that individual's performan
e, alter sele
tivepressures and more rapidly guide evolution to useful regionsof the sear
h spa
e.
4. ON-LINE EVOLUTIONARY

COMPUTATIONIf e is the total number of episodes
ondu
ted in ea
hgeneration and jP j is the size of the population, evolution-ary methods typi
ally evaluate ea
h member of the popula-tion for e=jP j episodes. In on-line s
enarios, this strategy isgrossly suboptimal be
ause it makes no attempt to properlybalan
e exploration and exploitation within a generation. Infa
t, this strategy is purely exploratory, as every individualis evaluated for exa
tly the same number of episodes.In this se
tion, I present three methods that attempt toboost evolution's on-line performan
e by balan
ing explo-ration with exploitation. Instead of giving ea
h individualthe same number of episodes, these methods exploit theinformation gained from early episodes to favor the mostpromising
andidate poli
ies and thereby boost the rewarda

rued during learning. All three methods work by borrow-ing a
tion sele
tion me
hanisms traditionally used in TDmethods and applying them in evolutionary
omputation.In TD methods, these me
hanisms dire
tly balan
e explo-ration and exploitation by determining how often the agentbehaves greedily with respe
t to
urrent value estimates andhow often it tries alternative a
tions.In a sense, the problem fa
ed by evolutionary methodsis the opposite of that fa
ed by TD methods. Within ea
hgeneration, evolutionary methods naturally explore, by eval-uating ea
h member of the population equally, and so needa way to for
e more exploitation. By
ontrast, TD meth-ods naturally exploit, by following the greedy poli
y, andso need a way to for
e more exploration. Nonetheless, theultimate goal is the same: a proper balan
e between the twoextremes.To apply TD sele
tion me
hanisms in evolutionary
om-putation, we must modify the level at whi
h sele
tion is per-formed. Evolutionary algorithms
annot perform sele
tionat the level of individual a
tions be
ause, la
king value fun
-tions, they have no notion of the value of individual a
tions.However, they
an perform sele
tion at the level of episodes,in whi
h entire poli
ies are assessed holisti
ally. The samesele
tion me
hanisms used to
hoose individual a
tions inTD methods
an be used to sele
t poli
ies for evaluation, al-lowing evolutionary algorithms to ex
el on-line by balan
ingexploration and exploitation within and a
ross generations.The rest of this se
tion details three ways to perform on-lineevolution.
4.1 �-Greedy EvolutionWhen �-greedy sele
tion is used in TD methods, a singleparameter �
ontrols what fra
tion of the time the agentdeviates from greedy behavior. Ea
h time the agent sele
tsan a
tion, it
hooses probabilisti
ally between explorationand exploitation. With probability �, it explores by sele
tingrandomly from the available a
tions. With probability 1��,it exploits by sele
ting the greedy a
tion.

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

NEAT+Q

NEAT

Q−Learning

Q−Learning

NEAT

NEAT+Q

Figure 2: A
omparison of the performan
e of manual and evolutionary fun
tion approximators in the mountain
arand server job s
heduling domains.In evolutionary
omputation, this same me
hanism
anbe used at the beginning of ea
h episode to sele
t a poli
yfor evaluation. With probability �, the algorithm sele
ts apoli
y randomly. With probability 1 � �, the algorithm ex-ploits by sele
ting the best poli
y dis
overed so far in the
urrent generation. The s
ore of ea
h poli
y is just the av-erage reward per episode it has re
eived so far. Ea
h time apoli
y is sele
ted for evaluation, the total reward it re
eivesis in
orporated into that average, whi
h
an
ause it to gainor lose the rank of best poli
y.To apply �-greedy sele
tion to NEAT, we need only alterthe way networks are sele
ted for evaluation. Instead ofiterating through the population repeatedly until e episodesare
omplete, NEAT sele
ts for evaluation, at the beginningof ea
h episode, the poli
y returned by the �-greedy sele
tionfun
tion des
ribed in Algorithm 2. This fun
tion returns apoli
y p whi
h is either sele
ted randomly or whi
h so farhas the highest average �tness, f(p).Algorithm 2 �-greedy sele
tion(P; �)1: // P : population2: // �: NEAT's exploration rate3:4: with-prob(�) return random(P)5: else return argmaxp2P f(p)Using �-greedy sele
tion in evolutionary
omputation al-lows it to thrive in on-line s
enarios by balan
ing explo-ration and exploitation. For the most part, this methoddoes not alter evolution's sear
h but simply interleaves itwith exploitative episodes that in
rease average reward dur-ing learning. The next se
tion des
ribes how softmax sele
-tion
an be applied to evolution to
reate a more nuan
edbalan
e between exploration and exploitation.
4.2 Softmax EvolutionWhen softmax sele
tion is used in TD methods, an a
-tion's probability of sele
tion is a fun
tion of its estimatedvalue. In addition to ensuring that the greedy a
tion is
ho-sen most often, this te
hnique fo
uses exploration on themost promising alternatives. There are many ways to im-plement softmax sele
tion but one popular method relies ona Boltzmann distribution [25℄, in whi
h
ase an agent in

state s
hooses an a
tion a with probabilityeQ(s;a)=�Pa02A eQ(s;a0)=� (1)where A is the set of available a
tions, Q(s; a) is the agent'svalue estimate for the given state-a
tion pair and � is apositive parameter
ontrolling the degree to whi
h a
tionswith higher values are favored in sele
tion. The higher thevalue of � , the more equiprobable the a
tions are.As with �-greedy sele
tion, we use softmax sele
tion inevolution to sele
t poli
ies for evaluation. At the begin-ning of ea
h generation, ea
h individual is evaluated for oneepisode, to initialize its �tness. Then, the remaining e�jP jepisodes are allo
ated a

ording to a Boltzmann distribu-tion. Before ea
h episode, a poli
y p in a population P issele
ted with probability ef(p)=�Pp02P ef(p0)=� (2)where f(p) is the �tness of poli
y p, averaged over all theepisodes for whi
h it has been previously evaluated. InNEAT, softmax sele
tion is applied in the same way as �-greedy sele
tion, ex
ept that the poli
y sele
ted for eval-uation is that returned by the softmax sele
tion fun
tiondes
ribed in Algorithm 3, where e(p) is the total number ofepisodes for whi
h a poli
y p has been evaluated so far.Algorithm 3 softmax sele
tion(P; �)1: // P : population2: // � : softmax temperature3:4: if 9 p 2 P j e(p) = 0 then5: return p6: else7: total Pp2P ef(p)=�8: for all p 2 P do9: with-prob(ef(p)=�total) return p10: else total total� ef(p)=�Softmax sele
tion provides a more nuan
ed balan
e be-tween exploration and exploitation than �-greedy be
auseit fo
uses its exploration on the most promising alternativeto the
urrent best poli
y. Softmax sele
tion
an qui
kly

abandon poorly performing poli
ies and prevent them fromredu
ing the reward a

rued during learning.
4.3 Interval Estimation EvolutionAn important disadvantage of both �-greedy and softmaxsele
tion is that they do not
onsider the un
ertainty of theestimates on whi
h they base their sele
tions. One approa
hthat addresses this short
oming is interval estimation [13℄.When used in TD methods, interval estimation
omputes a(100��)%
on�den
e interval for the value of ea
h availablea
tion. The agent always takes the a
tion with the highestupper bound on this interval. Hen
e, this strategy favorsa
tions with high estimated value and also fo
uses explo-ration on the most promising but un
ertain a
tions. The� parameter
ontrols the balan
e between exploration andexploitation, with smaller values generating greater explo-ration.The same strategy
an be employed within evolution tosele
t poli
ies for evaluation. At the beginning of ea
h gen-eration, ea
h individual is evaluated for one episode, to ini-tialize its �tness. Then, the remaining e� jP j episodes areallo
ated to the poli
y that
urrently has the highest up-per bound on its
on�den
e interval. In NEAT, intervalestimation is applied just as in �-greedy and softmax sele
-tion, ex
ept that the poli
y sele
ted for evaluation is thatreturned by the interval estimation fun
tion des
ribed in Al-gorithm 4, where [0; z(x)℄ is an interval within whi
h the areaunder the standard normal
urve is x. f(p), �(p) and e(p)are the �tness, standard deviation, and number of episodes,respe
tively, for poli
y p.Algorithm 4 interval estimation(P;�)1: // P : population, �: un
ertainty in
on�den
e interval2:3: if 9 p 2 P j e(p) = 0 then4: return p5: else6: return argmaxp2P [f(p) + z(100��200) �(p)pe(p) ℄
4.4 ResultsAs a baseline of
omparison, I applied the original, o�-lineversion of NEAT to both the mountain
ar and server jobs
heduling domains and averaged its performan
e over 25runs. Next, I applied the �-greedy, softmax, and interval es-timation versions of NEAT to both domains using the sameparameter settings.Figure 3 summarizes the results of these experiments byplotting a uniform moving average over the last 1,000 episodesof the total reward a

rued per episode for ea
h method.I plot average reward be
ause it is an on-line metri
: itmeasures the amount of reward the agent a

rues whileit is learning. The best poli
ies dis
overed by evolution,i.e. the generation
hampions, perform substantially higherthan this average. However, using their performan
e as anevaluation metri
 would ignore the on-line
ost that was in-
urred by evaluating the rest of population and re
eivingless reward per episode. Error bars on the graph indi
ate95%
on�den
e intervals. In addition, Student's t-tests
on-�rm, with 95%
on�den
e, the statisti
al signi�
an
e of theperforman
e di�eren
e between ea
h pair of methods ex
eptsoftmax and interval estimation.The results
learly demonstrate that sele
tion me
hanismsborrowed from TD methods
an dramati
ally improve the

on-line performan
e of evolutionary
omputation. All threeon-line methods substantially outperform the o�-line versionof NEAT. In addition, the more nuan
ed strategies of soft-max and interval estimation fare better than �-greedy. Thisresult is not surprising sin
e the �-greedy approa
h simplyinterleaves the sear
h for better poli
ies with exploitativeepisodes that employ the best known poli
y. Softmax se-le
tion and interval estimation, by
ontrast,
on
entrate ex-ploration on the most promising alternatives. Hen
e, theyspend fewer episodes on the weakest individuals and a
hievebetter performan
e as a result.The on-line methods, espe
ially interval estimation, showa series of 10,000-episode intervals. Ea
h of these inter-vals
orresponds to one generation. The performan
e im-provements within ea
h generation re
e
t the on-line meth-ods' ability to exploit the information gleaned from earlierepisodes. As the generation progresses, these methods be-
ome better informed about whi
h individuals to favor whenexploiting and average reward in
reases as a result.While these intervals reveal an important feature of theon-line methods' behavior, they
an make it diÆ
ult to
om-pare performan
e. For example, in the mountain
ar do-main, interval estimation begins ea
h generation with a lotof exploration and,
onsequently, relatively poor performan
e.However, that exploration qui
kly pays o� and its averageperforman
e rises slightly above that of softmax. Whi
h ofthese two methods is re
eiving more reward overall? It isdiÆ
ult to tell from plots of average reward. Hen
e, Figure 4plots, for the same experiments, the total
umulative rewarda

rued by ea
h method over the entire run. As with theprevious graph, error bars indi
ate 95%
on�den
e intervalsand Student's t-tests
on�rmed, with 95%
on�den
e, thestatisti
al signi�
an
e of the performan
e di�eren
e betweenea
h pair of methods ex
ept softmax and interval estimation.Not surprisingly, the o�-line version of NEAT a

umulatesmu
h less reward than the on-line methods and �-greedya

umulates less reward than the other on-line approa
hes.These graphs also show that, in mountain
ar, interval esti-mation's exploration early in ea
h generation pays o�, as itearns at least as mu
h reward overall as softmax.Overall, these results verify the eÆ
a
y of these methodsof on-line evolution. It is less
lear, however, whi
h strategyis most useful. Softmax
learly outperforms �-greedy butmay be more diÆ
ult to use in pra
ti
e be
ause the � pa-rameter is harder to tune, as eviden
ed by the need to assignit di�erent values in the two domains. As Sutton and Bartowrite, \Most people �nd it easier to set the � parameterwith
on�den
e; setting � requires knowledge of the likelya
tion values and of powers of e." [25, pages 27-30℄. In thislight, interval estimation may be the best
hoi
e. Our exper-iments show that it performs as well or better than softmaxand ane
dotal eviden
e suggests that the � parameter is notoverly troublesome to tune.
5. FUTURE WORKThere are many ways that the work presented in this the-sis
ould be extended, re�ned, or further evaluated. Thisse
tion enumerates a few of the possibilities.
5.1 Using Different Policy Search MethodsThis thesis fo
uses on using evolutionary methods to au-tomate the sear
h for good fun
tion approximator represen-tations. However, many other forms of poli
y sear
h su
h as

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

-15500

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

-10000

 0 100 200 300 400 500 600 700 800 900 1000

S
co

re

Episode (x1000)

Uniform Moving Average Score Per Episode

(a) Mountain Car (b) Server Job Scheduling

Off−Line

Epsilon−Greedy

Interval Estimation Softmax Softmax

Interval Estimation

Off−Line

Epsilon−Greedy

Figure 3: The uniform moving average reward a

rued by o�-line NEAT,
ompared to three versions of on-line NEATin the mountain
ar and server job s
heduling domains. In both domains, all rewards are negative so the agents striveto get average reward as
lose to zero as possible.PEGASUS [17℄ and poli
y gradient methods [24, 14℄ havealso su

eeded on diÆ
ult reinfor
ement learning tasks. TDmethods
ould be
ombined with these methods in the sameway they are
ombined with evolutionary
omputation inthis thesis. In the future, I plan to test some of these alter-native
ombinations.
5.2 Reducing Sample ComplexityOne disadvantage of evolutionary fun
tion approximationis its high sample
omplexity, sin
e ea
h �tness evaluationlasts for many episodes. However, in domains where the �t-ness fun
tion is not too noisy, ea
h �tness evaluation
ouldbe
ondu
ted in a single episode if the
andidate fun
tion ap-proximator was pre-trained using methods based on experi-en
e replay [16℄. By saving sample transitions from the pre-vious generation, ea
h new generation
ould be be trainedo�-line. This method would use mu
h more
omputationtime but many fewer sample episodes. Sin
e sample experi-en
e is typi
ally a mu
h s
ar
er resour
e than
omputationtime, this enhan
ement
ould greatly improve the pra
ti
alappli
ability of evolutionary fun
tion approximation.
5.3 Addressing Non-StationarityIn non-stationary domains, the environment
an
hangein ways that alter the optimal poli
y. Sin
e this phenomenono

urs in many real-world s
enarios, it is important to de-velop methods that
an handle it robustly. Evolutionary andTD methods are both well suited to non-stationary tasksand I expe
t them to retain that
apability when
ombined.In fa
t, I hypothesize that evolutionary fun
tion approxima-tion will adapt to non-stationary environments better thanmanual alternatives. If the environment
hanges in waysthat alter the optimal representation, evolutionary fun
tionapproximation
an adapt, sin
e it is
ontinually testing dif-ferent representations and retaining the best ones. By
on-trast, even if they are e�e
tive at the original task, manuallydesigned representations
annot adapt in the fa
e of
hang-ing environments.On-line evolutionary
omputation should also ex
el in non-stationary environments, though some re�nement will be

ne
essary. The methods presented in this thesis impli
itlyassume a stationary environment be
ause they
ompute the�tness of ea
h individual by averaging over all episodes ofevaluation. In non-stationary environments, older evalua-tions
an be
ome stale and misleading. Hen
e, �tness es-timates should pla
e less trust in older evaluations. Thise�e
t
ould easily be a
hieved using re
en
y-weighting up-date rules like those employed by table-based TD methods.
5.4 Using Steady-State Evolutionary

ComputationThe NEAT algorithm used in this thesis is an example ofgenerational evolutionary
omputation, in whi
h an entirepopulation is is evaluated before any new individuals arebred. Evolutionary fun
tion approximation might be im-proved by using a steady-state implementation instead [7℄.Steady-state systems never repla
e an entire population aton
e. Instead, the population
hanges in
rementally afterea
h �tness evaluation, when one of the worst individuals isremoved and repla
ed by a new o�spring whose parents areamong the best. Hen
e, an individual that re
eives a highs
ore
an more rapidly e�e
t the sear
h, sin
e it immedi-ately be
omes a potential parent. In a generational system,that individual
annot breed until the beginning of the fol-lowing generation, whi
h might be thousands of episodeslater. Hen
e, steady-state systems
ould help evolutionaryfun
tion approximation perform better in on-line and non-stationary environments by speeding the adoption of newimprovements. Fortunately, a steady-state version of NEATalready exists [20℄ so this extension is quite feasible.
6. REFERENCES[1℄ D. A
kley and M. Littman. Intera
tions between learningand evolution. Arti�
ial Life II, SFI Studies in theS
ien
es of Complexity, 10:487{509, 1991.[2℄ L. Baird. Residual algorithms: Reinfor
ement learning withfun
tion approximation. In Pro
eedings of the TwelfthInternational Conferen
e on Ma
hine Learning, pages30{37. Morgan Kaufmann, 1995.[3℄ L. Baird and A. Moore. Gradient des
ent for general

-1.4e+10

-1.2e+10

-1e+10

-8e+09

-6e+09

-4e+09

-2e+09

 0

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
at

iv
e

R
ew

ar
d

Episode (x1000)

Cumulative Reward

-2e+08

-1.8e+08

-1.6e+08

-1.4e+08

-1.2e+08

-1e+08

-8e+07

-6e+07

-4e+07

-2e+07

 0

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
at

iv
e

R
ew

ar
d

Episode (x1000)

Cumulative Reward

(a) Mountain Car (b) Server Job Scheduling

Off−Line

Epsilon−Greedy

Softmax
Interval Estimation

Off−Line

Epsilon−Greedy

Softmax
Interval Estimation

Figure 4: The
umulative reward a

rued by o�-line NEAT,
ompared to three versions of on-line NEAT in themountain
ar and server job s
heduling domains. In both domains, all rewards are negative so the agents strive tokeep
umulative reward as
lose to zero as possible.reinfor
ement learning. In Advan
es in Neural InformationPro
essing Systems 11. MIT Press, 1999.[4℄ J. M. Baldwin. A new fa
tor in evolution. The Ameri
anNaturalist, 30:441{451, 1896.[5℄ E. Boers, M. Borst, and I. Sprinkhuizen-Kuyper. EvolvingArti�
ial Neural Networks using the \Baldwin E�e
t".Te
hni
al Report TR 95-14, May 1995.[6℄ R. H. Crites and A. G. Barto. Elevator group
ontrol usingmultiple reinfor
ement learning agents. Ma
hine Learning,33(2-3):235{262, 1998.[7℄ T. C. Fogarty. An in
remental geneti
 algorithm forreal-time learning. In Pro
eedings of the Sixth InternationalWorkshop on Ma
hine Learning, pages 416{419, 1989.[8℄ R. Fren
h and A. Messinger. Genes, phenes and theBaldwin e�e
t: Learning and evolution in a simulatedpopulation. Arti�
ial Life, 4:277{282, 1994.[9℄ D. E. Goldberg. Geneti
 Algorithms in Sear
h,Optimization and Ma
hine Learning. 1989.[10℄ F. Gruau and D. Whitley. Adding learning to the
ellulardevelopment of neural networks: Evolution and theBaldwin e�e
t. Evolutionary Computation, 1:213{233, 1993.[11℄ F. Gruau, D. Whitley, and L. Pyeatt. A
omparisonbetween
ellular en
oding and dire
t en
oding for geneti
neural networks. In J. R. Koza, D. E. Goldberg, D. B.Fogel, and R. L. Riolo, editors, Geneti
 Programming 1996:Pro
eedings of the First Annual Conferen
e, pages 81{89.MIT Press, 1996.[12℄ G. E. Hinton and S. J. Nowlan. How learning
an guideevolution. Complex Systems, 1:495{502, 1987.[13℄ L. P. Kaelbling. Learning in Embedded System. MIT Press,1993.[14℄ N. Kohl and P. Stone. Ma
hine learning for fastquadrupedal lo
omotion. In The Nineteenth NationalConferen
e on Arti�
ial Intelligen
e, pages 611{616, July2004.[15℄ M. G. Lagoudakis and R. Parr. Least-squares poli
yiteration. Journal of Ma
hine Learning Resear
h,4(2003):1107{1149, 2003.[16℄ L.-J. Lin. Self-improving rea
tive agents based onreinfor
ement learning, planning, and tea
hing. Ma
hineLearning, 8(3-4):293{321, 1992.[17℄ A. Y. Ng and M. I. Jordan. PEGASUS: A poli
y sear
hmethod for large MDPs and POMDPs. In Pro
eedings ofthe 16th Conferen
e on Un
ertainty in Arti�
ial

Intelligen
e, pages 406{415. Morgan Kaufmann PublishersIn
., 2000.[18℄ S. Nol�, J. L. Elman, and D. Parisi. Learning and evolutionin neural networks. Adaptive Behavior, 2:5{28, 1994.[19℄ D. E. Rumelhart, G. E. Hinton, and R. J. Williams.Learning internal representations by error propagation. InParallel Distributed Pro
essing, pages 318{362. 1986.[20℄ K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolvingneural network agents in the NERO video game. InPro
eedings of the IEEE 2005 Symposium onComputational Intelligen
e and Games, 2005.[21℄ K. O. Stanley and R. Miikkulainen. Evolving neuralnetworks through augmenting topologies. EvolutionaryComputation, 10(2):99{127, 2002.[22℄ K. O. Stanley and R. Miikkulainen. Competitive
oevolution through evolutionary
omplexi�
ation. Journalof Arti�
ial Intelligen
e Resear
h, 21:63{100, 2004.[23℄ R. Sutton. Learning to predi
t by the methods of temporaldi�eren
es. Ma
hine Learning, 3:9{44, 1988.[24℄ R. Sutton, D. M
Allester, S. Singh, and Y. Mansour. Poli
ygradient methods for reinfor
ement learning with fun
tionapproximation. In S. A. Solla, T. K. Leen, and K.-R.Muller, editors, Advan
es in Neural Information Pro
essingSystems, volume 12, pages 1057{1063. The MIT Press,2000.[25℄ R. S. Sutton and A. G. Barto. Reinfor
ement Learning: AnIntrodu
tion. MIT Press, Cambridge, MA, 1998.[26℄ G. Tesauro. TD-Gammon, a self-tea
hing ba
kgammonprogram, a
hieves master-level play. Neural Computation,6(2):215{219, 1994.[27℄ C. Watkins. Learning from Delayed Rewards. PhD thesis,King's College, Cambridge, 1989.[28℄ X. Yao. Evolving arti�
ial neural networks. Pro
eedings ofthe IEEE, 87(9):1423{1447, 1999.

