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ABSTRACTTemporal di�erene methods are theoretially grounded andempirially e�etive methods for addressing reinforementlearning problems. In most real-world reinforement learn-ing tasks, TD methods require a funtion approximator torepresent the value funtion. However, using funtion ap-proximators requires manually making ruial representa-tional deisions. This thesis investigates evolutionary fun-tion approximation, a novel approah to automatially se-leting funtion approximator representations that enableeÆient individual learning. This method evolves individ-uals that are better able to learn. I present a fully imple-mented instantiation of evolutionary funtion approxima-tion whih ombines NEAT, a neuroevolutionary optimiza-tion tehnique, with Q-learning, a popular TD method. Theresulting NEAT+Q algorithm automatially disovers e�e-tive representations for neural network funtion approxima-tors. This thesis also presents on-line evolutionary ompu-tation, whih improves the on-line performane of evolution-ary omputation by borrowing seletion mehanisms used inTD methods to hoose individual ations and using them inevolutionary omputation to selet poliies for evaluation. Ievaluate these ontributions with extended empirial stud-ies in two domains: 1) the mountain ar task, a standardreinforement learning benhmark on whih neural networkfuntion approximators have previously performed poorlyand 2) server job sheduling, a large probabilisti domaindrawn from the �eld of autonomi omputing. The resultsdemonstrate that evolutionary funtion approximation ansigni�antly improve the performane of TD methods andon-line evolutionary omputation an signi�antly improveevolutionary methods.
Categories and Subject DescriptorsI.2.6 [Arti�ial Intelligene℄: Learning
General TermsAlgorithms, Performane
Keywordsevolutionary omputation, reinforement learning, temporaldi�erene methods, neural networks, on-line learning
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1. INTRODUCTIONIn many mahine learning problems, an agent must learna poliy for seleting ations based on its urrent state. Re-inforement learning problems are the subset of these tasksin whih the agent never sees examples of orret behav-ior. Instead, it reeives only positive and negative rewardsfor the ations it tries. Sine many pratial, real worldproblems (suh as robot ontrol, game playing, and systemoptimization) fall in this ategory, developing e�etive rein-forement learning algorithms is ritial to the progress ofarti�ial intelligene.The most ommon approah to reinforement learning re-lies on the onept of value funtions, whih indiate, fora partiular poliy, the long-term value of a given state orstate-ation pair. Temporal di�erene methods (TD) [23℄,whih ombine priniples of dynami programming with sta-tistial sampling, use the immediate rewards reeived by theagent to inrementally improve both the agent's poliy andthe estimated value funtion for that poliy. Hene, TDmethods enable an agent to learn during its \lifetime" i.e.from its individual experiene interating with the environ-ment.For small problems, the value funtion an be representedas a table. However, the large, probabilisti domains whiharise in the real-world usually require oupling TD methodswith a funtion approximator, whih represents the map-ping from state-ation pairs to values via a more onise,parameterized funtion and uses supervised learning meth-ods to set its parameters. Many di�erent methods of fun-tion approximation have been used suessfully, inludingCMACs, radial basis funtions, and neural networks [25℄.However, using funtion approximators requires making ru-ial representational deisions (e.g. the number of hiddenunits and initial weights of a neural network). Poor de-sign hoies an result in estimates that diverge from theoptimal value funtion [2℄ and agents that perform poorly.Even for reinforement learning algorithms with guaranteedonvergene [3, 15℄, ahieving high performane in pra-tie requires �nding an appropriate representation for thefuntion approximator. As Lagoudakis and Parr observe,\The ruial fator for a suessful approximate algorithmis the hoie of the parametri approximation arhiteture(s)and the hoie of the projetion (parameter adjustment)method." [15, p. 1111℄ Nonetheless, representational hoiesare typially made manually, based only on the designer'sintuition.My goal is to automate the searh for e�etive represen-tations by employing sophistiated optimization tehniques.



In this thesis, I fous on using evolutionary methods [9℄beause of their demonstrated ability to disover e�etiverepresentations [11, 21℄. Synthesizing evolutionary and TDmethods results in a new approah alled evolutionary fun-tion approximation, whih automatially selets funtion ap-proximator representations that enable eÆient individuallearning. Thus, this method evolves individuals that arebetter able to learn. This biologially intuitive ombinationhas been applied to omputational systems in the past [1,5, 8, 10, 12, 18℄ but never, to my knowledge, to aid thedisovery of good TD funtion approximators.This thesis uses NeuroEvolution of Augmenting Topolo-gies (NEAT) [21℄ to selet neural network funtion approx-imators for Q-learning [27℄, a popular TD method. Theresulting algorithm, alled NEAT+Q, uses NEAT to evolvetopologies and initial weights of neural networks that arebetter able to learn, via bakpropagation, to represent thevalue estimates provided by Q-learning.Evolutionary omputation is typially applied to o�-linesenarios, where the only goal is to disover a good poliyas quikly as possible. By ontrast, TD methods are typi-ally applied to on-line senarios, in whih the agent triesto learn a good poliy quikly and to maximize the rewardit obtains while doing so. Hene, for evolutionary funtionapproximation to ahieve its full potential, the underlyingevolutionary method needs to work well on-line.TD methods exel on-line beause they are typially om-bined with ation seletion mehanisms like �-greedy sele-tion [25℄. These mehanisms improve on-line performaneby expliitly balaning two ompeting objetives: 1) searh-ing for better poliies (exploration) and 2) gathering as muhreward as possible (exploitation). This thesis investigates anovel approah alled on-line evolutionary omputation, inwhih seletion mehanisms ommonly used by TD methodsto hoose individual ations are used in evolutionary om-putation to hoose poliies for evaluation. I present threeimplementations, based on �-greedy seletion, softmax se-letion, and interval estimation, that distribute evaluationswithin a generation so as to favor more promising individu-als.I evaluate these ontributions with extended empirialstudies in two domains: 1) mountain ar and 2) server jobsheduling. Using these domains, my experiments test Q-learning with a series of manually designed neural networksand ompare the results to NEAT+Q and regular NEAT(whih trains ation seletors in lieu of value funtions).The results demonstrate that evolutionary funtion approx-imation an signi�antly improve the performane of TDmethods. Furthermore, I test NEAT with and without �-greedy, softmax, and interval estimation versions of evolu-tionary omputation. These experiments on�rm that thesetehniques an signi�antly improve the on-line performaneof evolutionary omputation.
2. BACKGROUNDI begin by reviewing Q-learning and NEAT, the algo-rithms that form the building bloks of our implementationof evolutionary funtion approximation.
2.1 Q-LearningThe experiments presented in this thesis use Q-learningbeause it is a well-established, anonial TD method thathas also enjoyed empirial suess [27, 6℄. Like many other

TD methods, Q-learning attempts to learn a value funtionQ(s; a) that maps state-ation pairs to values. In the tabularase, the algorithm uses the following update rule, appliedeah time the agent transitions from state s to state s0:Q(s; a) (1� �)Q(s; a) + �(r + maxa0Q(s0; a0))where � 2 [0; 1℄ is a learning rate parameter,  2 [0; 1℄ isa disount fator, and r is the immediate reward the agentreeives upon taking ation a. Q-learning is an o�-poliylearning method, i.e. it an learn the optimal value funtionregardless of what poliy the agent is following, so long asthere is suÆient exploration.In domains with large or ontinuous state spaes, thevalue funtion annot be represented in a table. Instead,Q-learning is oupled with a funtion approximator thatmaps state-ation pairs to values via a onise, parame-terized funtion. Many di�erent methods of funtion ap-proximation have been used suessfully, inluding CMACs,radial basis funtions, and neural networks [25℄. In this the-sis, I use neural network funtion approximators beausethey have proven suessful on diÆult reinforement learn-ing tasks [6, 26℄. The inputs to the network desribe theagent's urrent state; the outputs, one for eah ation, rep-resent the agent's urrent estimate of the value of the asso-iated state-ation pairs. The initial weights of the networkare drawn from a Gaussian distribution with mean 0.0 andstandard deviation �. After eah ation, the weights of theneural network are adjusted using bakpropagation [19℄ suhthat its output better mathes the urrent value estimate forthe state-ation pair: r + maxa0Q(s0; a0).
2.2 NEATThe implementation of evolutionary funtion approxima-tion presented in this thesis relies on NeuroEvolution of Aug-menting Topologies (NEAT) to automate the searh for ap-propriate topologies and initial weights of neural networkfuntion approximators. NEAT is an appropriate hoie be-ause of its empirial suesses on diÆult reinforementlearning tasks like pole balaning [21℄ and robot ontrol [22℄.In addition, NEAT is appealing beause, unlike many otheroptimization tehniques, it automatially learns an appro-priate representation for the solution.In a typial neuroevolutionary system [28℄, the weights ofa neural network are strung together to form an individualgenome. A population of suh genomes is then evolved byevaluating eah one and seletively reproduing the �ttestindividuals through rossover and mutation. Most neuroevo-lutionary systems require the designer to manually deter-mine the network's topology (i.e. how many hidden nodesthere are and how they are onneted). By ontrast, NEATautomatially evolves the topology to �t the omplexityof the problem. It ombines the usual searh for networkweights with evolution of the network struture.Unlike other systems that evolve network topologies andweights, NEAT begins with a uniform population of sim-ple networks with no hidden nodes and inputs onneted di-retly to outputs. Two speial mutation operators introduenew struture inrementally. Figure 1 depits these opera-tors, whih add hidden nodes and links to the network. Onlythose strutural mutations that improve performane tendto survive; in this way, NEAT searhes through a minimalnumber of weight dimensions and �nds the appropriate levelof omplexity for the problem.
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Figure 1: Examples of NEAT's strutural mutation oper-ators. At top, a new hidden node, shown on the right, isadded to the network by splitting an existing link in two. Atbottom, a new link, shown with a thiker blak line, is addedto onnet two existing nodes.These strutural mutations result in populations of net-works with varying size and shape. Mating these heteroge-neous topologies requires a mehanism for deiding whihgenes orrespond to eah other. To this end, NEAT usesinnovation numbers to trak the historial origin of eahstrutural mutation. When new genomes are reated, thegenes in both parents with the same innovation number arelined up; genes that do not math are inherited from the�tter parent.Sine NEAT is a general purpose optimization tehnique,it an be applied to a wide variety of problems. When ap-plied to reinforement learning problems, NEAT typiallyevolves ation seletors, whih diretly map states to theation the agent should take in that state. Sine it does notestimate value funtions, it is an example of poliy searhreinforement learning. Like other poliy searh methods,e.g. [14, 24℄, it uses global optimization tehniques to di-retly searh the spae of potential poliies. In the follow-ing setion I desribe how NEAT an be used to evolve Q-learning funtion approximators instead of ation seletors.
3. EVOLUTIONARY FUNCTION

APPROXIMATIONAs desribed above, when evolutionary methods are ap-plied to reinforement learning problems, they typially evolvea population of ation seletors, eah of whih remains �xedduring its �tness evaluation. The entral insight behind evo-lutionary funtion approximation is that, if evolution is di-reted to evolve value funtions instead, then those valuefuntions an be updated, using TD methods, during eah�tness evaluation. In this way, the system an evolve fun-tion approximators that are better able to learn via TD. Inaddition to automating the searh for e�etive representa-tions, evolutionary funtion approximation an enable syn-ergisti e�ets between evolution and learning via a biolog-ial phenomenon alled the Baldwin E�et [4℄, whih anspeed up evolutionary omputation [1, 12℄. When eah in-dividual an learn during its lifetime, it need not be perfetat birth. Hene, the Baldwin E�et predits that evolutionwill �nd good solutions more easily. In the remainder of thissetion, I desribe NEAT+Q, a partiular implementation ofevolutionary funtion approximation.

3.1 NEAT+QAll that is required to make NEAT optimize value fun-tions instead of ation seletors is a reinterpretation of itsoutput values. The struture of neural network ation sele-tors (one input for eah state feature and one output for eahation) is already idential to that of Q-learning funtionapproximators. Therefore, if the weights of the networksNEAT evolves are updated during their �tness evaluationsusing Q-learning and bakpropagation, they will e�etivelyevolve value funtions instead of ation seletors. Hene, theoutputs are no longer arbitrary values; they represent thelong-term disounted values of the assoiated state-ationpairs and are used, not just to selet the most desirable a-tion, but to update the estimates of other state-ation pairs.Algorithm 1 neat+q(S;A; p;mn;ml; g; e; �; ; �; �)1: // S: set of all states, A: set of all ations, p: population size2: // mn: node mutation rate, ml: link mutation rate, g: numberof generations3: // e: number of episodes per generation, �: learning rate, :disount fator4: // �: eligibility deay rate, �: exploration rate5:6: P [℄ init-population(S;A; p)7: for i 1 to g do8: for j  1 to e do9: N;s; s0  P [j % p℄, null, init-state(S)10: repeat11: Q[℄  eval-net(N;s0)12: with-prob(�) a0  random(A)13: else a0  argmaxkQ[k℄14: if s 6= null then15: bakprop(N;s; a; r + maxkQ[k℄; �; ; �)16: s; a s0; a017: r; s0  take-ation(a0)18: N:fitness N:fitness + r19: until terminal-state?(s)20: N:episodes N:episodes + 121: P 0[℄ new array of size p22: for j  1 to p do23: P 0[j℄  breed-net(P [℄)24: with-prob mn: add-node-mutation(P 0[j℄)25: with-prob ml: add-link-mutation(P 0[j℄)26: P [℄ P 0[℄Algorithm 1 summarizes the resulting NEAT+Q method.Eah time the agent takes an ation, the network being eval-uated is bakpropagated one towards Q-learning targets(line 15) and the agent uses �-greedy seletion [25℄ to ensureit oasionally tests alternatives to its urrent poliy (lines12{13). If � and � are set to zero, this method degenerates toregular NEAT. NEAT+Q maintains a running total of thereward arued by the network during its evaluation (line18). Eah generation ends after e episodes, at whih pointeah network's average �tness isN:fitness=N:episodes. NEATreates a new population by repeatedly alling the breed-net funtion (line 23), whih performs rossover on twohighly �t parents. The new resulting network an then un-dergo mutations that add nodes or links to its struture(lines 24{25).NEAT+Q ombines the power of TD methods with theability of NEAT to learn e�etive representations. Tradi-tional neural network funtion approximators put all theireggs in one basket by relying on a single manually designednetwork to represent the value funtion. NEAT+Q, by on-trast, explores the spae of suh networks to inrease thehane of �nding a representation that will perform well.



3.2 ResultsAs an initial baseline, I onduted 25 runs in eah do-main in whih NEAT attempts to disover good ation se-letors. Next, I performed 25 runs in eah domain usingNEAT+Q. To test Q-learning without NEAT, I tried 24 dif-ferent on�gurations in eah domain. For simpliity, thegraphs that follow show results from only the highest per-forming Q-learning on�guration.Figure 2 shows the results of these experiments. Foreah method, the orresponding line in the graph repre-sents a uniform moving average over the aggregate utilityreeived in the past 1,000 episodes, averaged over all 25 runs.Even though NEAT and NEAT+Q have populations insteadof single networks, they used exatly the same number ofepisodes in training as Q-learning and hene the ompari-son is fair. These graphs show the average reward reeivedduring those episodes and therefore reet performane ofthe entire population, not just the generation hampions.Error bars indiate 95% on�dene intervals. In addition,Student's t-tests on�rmed, with 95% on�dene, the sta-tistial signi�ane of the performane di�erene betweeneah pair of methods.Note that the progress of NEAT+Q onsists of a series of10,000-episode intervals. Eah of these intervals orrespondsto one generation and the hanges within them are due tolearning via Q-learning and bakpropagation. Though eahindividual learns for 100 episodes, those episodes do not o-ur onseutively but are spread aross the entire generation.Hene, eah individual hanges gradually during the gener-ation as it is repeatedly evaluated. The result is a series ofintra-generational learning urves within the larger learningurve.For the partiular problems tested and network on�g-urations tried, evolutionary funtion approximation signif-iantly improves performane over manually designed net-works. Nonetheless, additional engineering of the networkstruture and initial weights ould in priniple signi�antlyimprove Q-learning's performane. I veri�ed this fat bystarting Q-learning with the best networks disovered byNEAT+Q and annealing the learning rate aggressively. Inthis senario, Q-learning mathed NEAT+Q's performanewithout diretly using evolutionary omputation. However,it is unlikely in pratie that a manual searh, no matter howextensive, would disover these suessful topologies, whihontain irregular and partially onneted hidden layers.NEAT+Q also signi�antly outperforms regular NEATin both domains. In the mountain ar domain, NEAT+Qlearns faster, ahieving better performane in earlier gen-erations, though they plateau at nearly the same level. Inthe server job sheduling domain, NEAT+Q learns morerapidly and also onverges to substantially higher perfor-mane. This result highlights the value of TD methods onhallenging reinforement learning problems. Even whenNEAT is employed to �nd e�etive representations, the bestperformane is ahieved only when TD methods are used toestimate a value funtion. Hene, the relatively poor per-formane of Q-learning is not due to some weakness in theTD methodology but merely to the failure to �nd a goodrepresentation.Furthermore, in the sheduling domain, the advantage ofNEAT+Q over NEAT is not diretly explained just by thelearning that ours via bakpropagation within eah gen-eration. After 300,000 episodes, NEAT+Q learly performs

better even at the beginning of eah generation, before suhlearning has ourred. Just as predited by the Baldwin Ef-fet, evolution proeeds more quikly in NEAT+Q beausethe weight hanges made by bakpropagation, in additionto improving that individual's performane, alter seletivepressures and more rapidly guide evolution to useful regionsof the searh spae.
4. ON-LINE EVOLUTIONARY

COMPUTATIONIf e is the total number of episodes onduted in eahgeneration and jP j is the size of the population, evolution-ary methods typially evaluate eah member of the popula-tion for e=jP j episodes. In on-line senarios, this strategy isgrossly suboptimal beause it makes no attempt to properlybalane exploration and exploitation within a generation. Infat, this strategy is purely exploratory, as every individualis evaluated for exatly the same number of episodes.In this setion, I present three methods that attempt toboost evolution's on-line performane by balaning explo-ration with exploitation. Instead of giving eah individualthe same number of episodes, these methods exploit theinformation gained from early episodes to favor the mostpromising andidate poliies and thereby boost the rewardarued during learning. All three methods work by borrow-ing ation seletion mehanisms traditionally used in TDmethods and applying them in evolutionary omputation.In TD methods, these mehanisms diretly balane explo-ration and exploitation by determining how often the agentbehaves greedily with respet to urrent value estimates andhow often it tries alternative ations.In a sense, the problem faed by evolutionary methodsis the opposite of that faed by TD methods. Within eahgeneration, evolutionary methods naturally explore, by eval-uating eah member of the population equally, and so needa way to fore more exploitation. By ontrast, TD meth-ods naturally exploit, by following the greedy poliy, andso need a way to fore more exploration. Nonetheless, theultimate goal is the same: a proper balane between the twoextremes.To apply TD seletion mehanisms in evolutionary om-putation, we must modify the level at whih seletion is per-formed. Evolutionary algorithms annot perform seletionat the level of individual ations beause, laking value fun-tions, they have no notion of the value of individual ations.However, they an perform seletion at the level of episodes,in whih entire poliies are assessed holistially. The sameseletion mehanisms used to hoose individual ations inTD methods an be used to selet poliies for evaluation, al-lowing evolutionary algorithms to exel on-line by balaningexploration and exploitation within and aross generations.The rest of this setion details three ways to perform on-lineevolution.
4.1 �-Greedy EvolutionWhen �-greedy seletion is used in TD methods, a singleparameter � ontrols what fration of the time the agentdeviates from greedy behavior. Eah time the agent seletsan ation, it hooses probabilistially between explorationand exploitation. With probability �, it explores by seletingrandomly from the available ations. With probability 1��,it exploits by seleting the greedy ation.
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Figure 2: A omparison of the performane of manual and evolutionary funtion approximators in the mountain arand server job sheduling domains.In evolutionary omputation, this same mehanism anbe used at the beginning of eah episode to selet a poliyfor evaluation. With probability �, the algorithm selets apoliy randomly. With probability 1 � �, the algorithm ex-ploits by seleting the best poliy disovered so far in theurrent generation. The sore of eah poliy is just the av-erage reward per episode it has reeived so far. Eah time apoliy is seleted for evaluation, the total reward it reeivesis inorporated into that average, whih an ause it to gainor lose the rank of best poliy.To apply �-greedy seletion to NEAT, we need only alterthe way networks are seleted for evaluation. Instead ofiterating through the population repeatedly until e episodesare omplete, NEAT selets for evaluation, at the beginningof eah episode, the poliy returned by the �-greedy seletionfuntion desribed in Algorithm 2. This funtion returns apoliy p whih is either seleted randomly or whih so farhas the highest average �tness, f(p).Algorithm 2 �-greedy seletion(P; �)1: // P : population2: // �: NEAT's exploration rate3:4: with-prob(�) return random(P )5: else return argmaxp2P f(p)Using �-greedy seletion in evolutionary omputation al-lows it to thrive in on-line senarios by balaning explo-ration and exploitation. For the most part, this methoddoes not alter evolution's searh but simply interleaves itwith exploitative episodes that inrease average reward dur-ing learning. The next setion desribes how softmax sele-tion an be applied to evolution to reate a more nuanedbalane between exploration and exploitation.
4.2 Softmax EvolutionWhen softmax seletion is used in TD methods, an a-tion's probability of seletion is a funtion of its estimatedvalue. In addition to ensuring that the greedy ation is ho-sen most often, this tehnique fouses exploration on themost promising alternatives. There are many ways to im-plement softmax seletion but one popular method relies ona Boltzmann distribution [25℄, in whih ase an agent in

state s hooses an ation a with probabilityeQ(s;a)=�Pa02A eQ(s;a0)=� (1)where A is the set of available ations, Q(s; a) is the agent'svalue estimate for the given state-ation pair and � is apositive parameter ontrolling the degree to whih ationswith higher values are favored in seletion. The higher thevalue of � , the more equiprobable the ations are.As with �-greedy seletion, we use softmax seletion inevolution to selet poliies for evaluation. At the begin-ning of eah generation, eah individual is evaluated for oneepisode, to initialize its �tness. Then, the remaining e�jP jepisodes are alloated aording to a Boltzmann distribu-tion. Before eah episode, a poliy p in a population P isseleted with probability ef(p)=�Pp02P ef(p0)=� (2)where f(p) is the �tness of poliy p, averaged over all theepisodes for whih it has been previously evaluated. InNEAT, softmax seletion is applied in the same way as �-greedy seletion, exept that the poliy seleted for eval-uation is that returned by the softmax seletion funtiondesribed in Algorithm 3, where e(p) is the total number ofepisodes for whih a poliy p has been evaluated so far.Algorithm 3 softmax seletion(P; �)1: // P : population2: // � : softmax temperature3:4: if 9 p 2 P j e(p) = 0 then5: return p6: else7: total Pp2P ef(p)=�8: for all p 2 P do9: with-prob( ef(p)=�total ) return p10: else total total� ef(p)=�Softmax seletion provides a more nuaned balane be-tween exploration and exploitation than �-greedy beauseit fouses its exploration on the most promising alternativeto the urrent best poliy. Softmax seletion an quikly



abandon poorly performing poliies and prevent them fromreduing the reward arued during learning.
4.3 Interval Estimation EvolutionAn important disadvantage of both �-greedy and softmaxseletion is that they do not onsider the unertainty of theestimates on whih they base their seletions. One approahthat addresses this shortoming is interval estimation [13℄.When used in TD methods, interval estimation omputes a(100��)% on�dene interval for the value of eah availableation. The agent always takes the ation with the highestupper bound on this interval. Hene, this strategy favorsations with high estimated value and also fouses explo-ration on the most promising but unertain ations. The� parameter ontrols the balane between exploration andexploitation, with smaller values generating greater explo-ration.The same strategy an be employed within evolution toselet poliies for evaluation. At the beginning of eah gen-eration, eah individual is evaluated for one episode, to ini-tialize its �tness. Then, the remaining e� jP j episodes arealloated to the poliy that urrently has the highest up-per bound on its on�dene interval. In NEAT, intervalestimation is applied just as in �-greedy and softmax sele-tion, exept that the poliy seleted for evaluation is thatreturned by the interval estimation funtion desribed in Al-gorithm 4, where [0; z(x)℄ is an interval within whih the areaunder the standard normal urve is x. f(p), �(p) and e(p)are the �tness, standard deviation, and number of episodes,respetively, for poliy p.Algorithm 4 interval estimation(P;�)1: // P : population, �: unertainty in on�dene interval2:3: if 9 p 2 P j e(p) = 0 then4: return p5: else6: return argmaxp2P [f(p) + z( 100��200 ) �(p)pe(p) ℄
4.4 ResultsAs a baseline of omparison, I applied the original, o�-lineversion of NEAT to both the mountain ar and server jobsheduling domains and averaged its performane over 25runs. Next, I applied the �-greedy, softmax, and interval es-timation versions of NEAT to both domains using the sameparameter settings.Figure 3 summarizes the results of these experiments byplotting a uniform moving average over the last 1,000 episodesof the total reward arued per episode for eah method.I plot average reward beause it is an on-line metri: itmeasures the amount of reward the agent arues whileit is learning. The best poliies disovered by evolution,i.e. the generation hampions, perform substantially higherthan this average. However, using their performane as anevaluation metri would ignore the on-line ost that was in-urred by evaluating the rest of population and reeivingless reward per episode. Error bars on the graph indiate95% on�dene intervals. In addition, Student's t-tests on-�rm, with 95% on�dene, the statistial signi�ane of theperformane di�erene between eah pair of methods exeptsoftmax and interval estimation.The results learly demonstrate that seletion mehanismsborrowed from TD methods an dramatially improve the

on-line performane of evolutionary omputation. All threeon-line methods substantially outperform the o�-line versionof NEAT. In addition, the more nuaned strategies of soft-max and interval estimation fare better than �-greedy. Thisresult is not surprising sine the �-greedy approah simplyinterleaves the searh for better poliies with exploitativeepisodes that employ the best known poliy. Softmax se-letion and interval estimation, by ontrast, onentrate ex-ploration on the most promising alternatives. Hene, theyspend fewer episodes on the weakest individuals and ahievebetter performane as a result.The on-line methods, espeially interval estimation, showa series of 10,000-episode intervals. Eah of these inter-vals orresponds to one generation. The performane im-provements within eah generation reet the on-line meth-ods' ability to exploit the information gleaned from earlierepisodes. As the generation progresses, these methods be-ome better informed about whih individuals to favor whenexploiting and average reward inreases as a result.While these intervals reveal an important feature of theon-line methods' behavior, they an make it diÆult to om-pare performane. For example, in the mountain ar do-main, interval estimation begins eah generation with a lotof exploration and, onsequently, relatively poor performane.However, that exploration quikly pays o� and its averageperformane rises slightly above that of softmax. Whih ofthese two methods is reeiving more reward overall? It isdiÆult to tell from plots of average reward. Hene, Figure 4plots, for the same experiments, the total umulative rewardarued by eah method over the entire run. As with theprevious graph, error bars indiate 95% on�dene intervalsand Student's t-tests on�rmed, with 95% on�dene, thestatistial signi�ane of the performane di�erene betweeneah pair of methods exept softmax and interval estimation.Not surprisingly, the o�-line version of NEAT aumulatesmuh less reward than the on-line methods and �-greedyaumulates less reward than the other on-line approahes.These graphs also show that, in mountain ar, interval esti-mation's exploration early in eah generation pays o�, as itearns at least as muh reward overall as softmax.Overall, these results verify the eÆay of these methodsof on-line evolution. It is less lear, however, whih strategyis most useful. Softmax learly outperforms �-greedy butmay be more diÆult to use in pratie beause the � pa-rameter is harder to tune, as evidened by the need to assignit di�erent values in the two domains. As Sutton and Bartowrite, \Most people �nd it easier to set the � parameterwith on�dene; setting � requires knowledge of the likelyation values and of powers of e." [25, pages 27-30℄. In thislight, interval estimation may be the best hoie. Our exper-iments show that it performs as well or better than softmaxand anedotal evidene suggests that the � parameter is notoverly troublesome to tune.
5. FUTURE WORKThere are many ways that the work presented in this the-sis ould be extended, re�ned, or further evaluated. Thissetion enumerates a few of the possibilities.
5.1 Using Different Policy Search MethodsThis thesis fouses on using evolutionary methods to au-tomate the searh for good funtion approximator represen-tations. However, many other forms of poliy searh suh as
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Figure 3: The uniform moving average reward arued by o�-line NEAT, ompared to three versions of on-line NEATin the mountain ar and server job sheduling domains. In both domains, all rewards are negative so the agents striveto get average reward as lose to zero as possible.PEGASUS [17℄ and poliy gradient methods [24, 14℄ havealso sueeded on diÆult reinforement learning tasks. TDmethods ould be ombined with these methods in the sameway they are ombined with evolutionary omputation inthis thesis. In the future, I plan to test some of these alter-native ombinations.
5.2 Reducing Sample ComplexityOne disadvantage of evolutionary funtion approximationis its high sample omplexity, sine eah �tness evaluationlasts for many episodes. However, in domains where the �t-ness funtion is not too noisy, eah �tness evaluation ouldbe onduted in a single episode if the andidate funtion ap-proximator was pre-trained using methods based on experi-ene replay [16℄. By saving sample transitions from the pre-vious generation, eah new generation ould be be trainedo�-line. This method would use muh more omputationtime but many fewer sample episodes. Sine sample experi-ene is typially a muh sarer resoure than omputationtime, this enhanement ould greatly improve the pratialappliability of evolutionary funtion approximation.
5.3 Addressing Non-StationarityIn non-stationary domains, the environment an hangein ways that alter the optimal poliy. Sine this phenomenonours in many real-world senarios, it is important to de-velop methods that an handle it robustly. Evolutionary andTD methods are both well suited to non-stationary tasksand I expet them to retain that apability when ombined.In fat, I hypothesize that evolutionary funtion approxima-tion will adapt to non-stationary environments better thanmanual alternatives. If the environment hanges in waysthat alter the optimal representation, evolutionary funtionapproximation an adapt, sine it is ontinually testing dif-ferent representations and retaining the best ones. By on-trast, even if they are e�etive at the original task, manuallydesigned representations annot adapt in the fae of hang-ing environments.On-line evolutionary omputation should also exel in non-stationary environments, though some re�nement will be

neessary. The methods presented in this thesis impliitlyassume a stationary environment beause they ompute the�tness of eah individual by averaging over all episodes ofevaluation. In non-stationary environments, older evalua-tions an beome stale and misleading. Hene, �tness es-timates should plae less trust in older evaluations. Thise�et ould easily be ahieved using reeny-weighting up-date rules like those employed by table-based TD methods.
5.4 Using Steady-State Evolutionary

ComputationThe NEAT algorithm used in this thesis is an example ofgenerational evolutionary omputation, in whih an entirepopulation is is evaluated before any new individuals arebred. Evolutionary funtion approximation might be im-proved by using a steady-state implementation instead [7℄.Steady-state systems never replae an entire population atone. Instead, the population hanges inrementally aftereah �tness evaluation, when one of the worst individuals isremoved and replaed by a new o�spring whose parents areamong the best. Hene, an individual that reeives a highsore an more rapidly e�et the searh, sine it immedi-ately beomes a potential parent. In a generational system,that individual annot breed until the beginning of the fol-lowing generation, whih might be thousands of episodeslater. Hene, steady-state systems ould help evolutionaryfuntion approximation perform better in on-line and non-stationary environments by speeding the adoption of newimprovements. Fortunately, a steady-state version of NEATalready exists [20℄ so this extension is quite feasible.
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