
Autonomous Agents and Multi-Agent Systems manuscript No.

(will be inserted by the editor)

Critical Factors in the Empirical Performance of Temporal Difference

and Evolutionary Methods for Reinforcement Learning

Shimon Whiteson · Matthew E. Taylor · Peter Stone

Received: June 2008 / Accepted: date

Abstract Temporal difference and evolutionary methods are two of the most common approaches to solving

reinforcement learning problems. However, there is little consensus on their relative merits and there have been

few empirical studies that directly compare their performance. This article aims to address this shortcoming by

presenting results of empirical comparisons between Sarsa and NEAT, two representative methods, in mountain

car and keepaway, two benchmark reinforcement learning tasks. In each task, the methods are evaluated in com-

bination with both linear and nonlinear representations to determine their best configurations. In addition, this

article tests two specific hypotheses about the critical factors contributing to these methods’ relative performance:

1) that sensor noise reduces the final performance of Sarsa more than that of NEAT, because Sarsa’s learning

updates are not reliable in the absence of the Markov property and 2) that stochasticity, by introducing noise

in fitness estimates, reduces the learning speed of NEAT more than that of Sarsa. Experiments in variations of

mountain car and keepaway designed to isolate these factors confirm both these hypotheses.

Keywords autonomous agents, reinforcement learning, temporal difference learning, evolutionary computation

Shimon Whiteson
Informatics Institute
University of Amsterdam
Science Park 107, 1098 XG
Amsterdam, The Netherlands
E-mail: s.a.whiteson@uva.nl

Matthew E. Taylor
Computer Sciences Department
The University of Southern California
941 W. 37th Place
Los Angeles, CA 90089-0781
E-mail: taylorm@usc.edu

Peter Stone
Department of Computer Sciences
The University of Texas at Austin
1 University Station C0500
Austin, TX 78712-0233
E-mail: pstone@cs.utexas.edu

1 Introduction

In the development of autonomous agents, reinforcement learning (Sutton & Barto, 1998) has emerged as

an important tool for discovering policies for sequential decision tasks. Unlike supervised learning, reinforcement

learning assumes that examples of correct and incorrect behavior are not available. However, unlike unsupervised

learning, it assumes that a reward signal can be perceived. Since many challenging and realistic tasks fall in this

category, e.g., elevator control (Crites & Barto, 1998), helicopter control (Ng, Coates, Diel, Ganapathi, Schulte,

Tse, Berger, & Liang, 2004), and autonomic computing (Tesauro, Das, & Bennania, 2006; Whiteson & Stone,

2006), developing effective reinforcement learning algorithms is crucial to the progress of autonomous agents.

The most well-known approach to solving reinforcement learning problems is based on value functions (Bell-

man, 1956), which estimate the long-term expected reward of each state the agent may encounter, given a

particular policy. If a complete model of the environment is available, dynamic programming (Bellman, 1957)

can be used to compute an optimal value function, from which an optimal policy can be derived. If a model is not

available, one can be learned from experience (Sutton, 1990; Moore & Atkeson, 1993; Strehl & Littman, 2005;

Jong & Stone, 2007). Alternatively, an optimal value function can be discovered via model-free techniques such as

temporal difference (TD) methods (Sutton, 1988), which combine elements of dynamic programming with Monte

Carlo estimation (Barto & Duff, 1994). Currently, TD methods are among the most commonly used approaches

for reinforcement learning problems.

However, reinforcement learning problems can also be tackled without learning value functions, by directly

searching the space of potential policies. Evolutionary methods (Moriarty, Schultz, & Grefenstette, 1999; Yao,

1999; Stanley & Miikkulainen, 2002), which simulate the process of Darwinian selection to discover highly fit

policies, are one effective way of conducting such a search.

Unfortunately, there is little consensus on the relative merits of these two approaches to reinforcement learning.

Evolutionary methods have fared better empirically on certain benchmark problems, especially those where

the agent’s state is only partially observable (Moriarty et al., 1999; Stanley & Miikkulainen, 2002; Gomez &

Schmidhuber, 2005; Gomez, Schmidhuber, & Miikkulainen, 2006). However, value function methods typically

have stronger theoretical guarantees (Littman, Dean, & Kaelbling, 1995; Kearns & Singh, 2002). Evolutionary

methods have also been criticized because they do not exploit the specific structure of the reinforcement learning

problem. As Sutton and Barto write, “It is our belief that methods able to take advantage of the details of

individual behavioral interactions can be much more efficient than evolutionary methods in many cases” (Sutton

& Barto, 1998, Section 1.3).

Despite this debate, there have been surprisingly few studies that directly compare these methods. Those

that do (e.g., Whitley, Dominic, Das, & Anderson, 1993; Moriarty & Miikkulainen, 1996; Pollack & Blair, 1998;

Runarsson & Lucas, 2005; Gomez et al., 2006) rarely isolate the factors critical to the performance of each

method. As a result, there are currently few general guidelines describing the methods’ relative strengths and

weaknesses. In addition, since the evolutionary and TD research communities are largely disjoint and often focus

on different applications, there are no commonly accepted benchmark problems or evaluation metrics.

This article takes a step towards filling this void by presenting the results of an empirical study comparing

Sarsa (Rummery & Niranjan, 1994; Sutton, 1996) and NEAT (Stanley & Miikkulainen, 2002), two popular and

empirically successful TD and evolutionary methods, respectively. No empirical study can ever be comprehensive

in the methods it evaluates or the testbeds it employs. This study instead focuses on comparing these repre-

sentative methods in two domains: mountain car (Boyan & Moore, 1995), a well-known benchmark problem,

and keepaway (Stone, Kuhlmann, Taylor, & Liu, 2005a), a challenging robot soccer task with noisy sensors and

complex, stochastic dynamics. In each task, the methods are evaluated in combination with both linear and

nonlinear representations of their policies or value functions in order to determine their best configurations.

This article’s experiments contribute to a body of empirical comparisons between TD and evolutionary

methods that is much in need of expansion. These works help address questions about when each method is

preferable. However, they do little to explain why these methods perform as they do. To address this shortcoming,

we formulate specific hypotheses about the factors critical to each method’s performance and devise variations

of the two domains that are designed to test them. In particular, we propose the following two hypotheses:

1. Sensor noise reduces the final performance of Sarsa more than that of NEAT since Sarsa, like other TD

methods, relies on an update rule that assumes access to Markovian state information. By contrast, NEAT

simply searches the space of policies, making no such assumption.

NOTE: This paper significantly extends an earlier conference paper, presented at the 2006 GECCO conference (Taylor,
Whiteson, & Stone, 2006).

2

2. Stochasticity, by introducing noise in fitness estimates, reduces the learning speed of NEAT more than that of

Sarsa. Compensating for this noise requires performing longer fitness evaluations, greatly slowing evolution’s

progress. By contrast, Sarsa requires at worst a lower learning rate and can even be aided by stochasticity,

which provides a natural form of exploration.

We test these hypotheses by conducting empirical comparisons on variations of mountain car and keepaway

where sensor noise and/or stochasticity have been added or removed. The results confirm that these factors are

indeed critical to each method’s performance, since varying the domains in these ways causes dramatic changes

in the relative performance of the two methods.

The remainder of this paper is organized as follows. Section 2 overviews the NEAT and Sarsa methods and

Section 3 describes the mountain car and keepaway tasks. Section 4 presents empirical results on the benchmark

versions of these tasks. Sections 5 and 6 present the results of experiments that isolate the effects of sensor noise

and stochasticity, respectively, in each domain. Section 7 reviews related work, Section 8 outlines ideas for future

work, and Section 9 concludes.

2 Methods

The goal of this article to provide useful empirical comparisons between TD and evolutionary methods for RL.

Therefore, to keep the scope of the article focused, we do not consider other policy search approaches, e.g.,

gradient methods (Baird & Moore, 1999; Sutton, McAllester, Singh, & Mansour, 2000; Baxter & Bartlett, 2001;

Kohl & Stone, 2004) or other value function approaches, e.g., model-based methods (Brafman & Tennenholtz,

2002; Kearns & Singh, 2002; Strehl & Littman, 2005). (See Section 8 for a more complete discussion of additional

comparisons that would be useful to conduct in the future.)

Even given a focus on TD and evolutionary methods, there are a wide variety of methods in use today

from which we can choose. No single empirical study can hope to include them all. In this article, we focus on

two well-known, representative methods: Sarsa and NEAT. We believe these methods are appropriate choices

for two reasons. First, we have substantial experience using these methods. In addition to the obvious practical

advantages, this familiarity enables us to set both algorithms’ parameters with confidence. Second, these methods

are often used in practice. This is important because our goal is to assess the strengths and weaknesses of

methods that are currently in common usage. Hence, our choice of methods does not necessarily imply they

are the best available, but merely that they are popular. Nonetheless, there is considerable evidence that both

Sarsa and NEAT are well-suited to the tasks we consider (Sutton, 1996; Stone, Sutton, & Kuhlmann, 2005b;

Whiteson, Kohl, Miikkulainen, & Stone, 2005; Whiteson & Stone, 2006). Furthermore, we strive to configure these

methods with the best input representation and approximation architecture for each task, either by reference to

previous literature on their application to the given domain or by conducting our own comparisons of different

configurations (see Section 4 for details). In the remainder of this section, we provide some background on the

Sarsa and NEAT algorithms.

2.1 Sarsa

Many reinforcement learning methods rely on the notion of value functions, which estimate the long-term expected

reward of each state the agent may encounter, given a particular policy. If the state space is finite and the agent

has a complete model of its environment, then the optimal value function, and therefore an optimal policy, can

be computed using dynamic programming (Bellman, 1957). Dynamic programming estimates the value of each

state by exploiting its close relationship to the value of those states which might occur next. By repeatedly

iterating over the state space and updating these estimates, dynamic programming can compute the optimal

value function.

However, dynamic programming is not directly applicable when a complete model of the environment is not

available. Fortunately, the optimal value function can be learned without a model using TD methods (Sutton,

1988), which synthesize dynamic programming with Monte Carlo methods. TD methods use the agent’s immediate

reward and state information to update the value function.

One way of performing such updates is via the Sarsa method. Sarsa is an acronym for State Action Reward

State Action, describing the 5-tuple needed to perform the update: (s, a, r, s′, a′), where s and a are the agent’s

current state and action, r is the immediate reward the agent receives from the environment, and s′ and a′ are

the agent’s subsequent state and chosen action. In the simple case, the value function is represented in a table,

with one entry for each state-action pair. After each action, the table is updated according to the following rule:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (1)

3

where α is the learning rate and γ is a discount factor weighting immediate rewards relative to future rewards.

Like dynamic programming, Sarsa estimates the value of a given state-action pair by bootstrapping off

estimates of other such pairs. In particular, the value of a given state-action pair (s, a) can be estimated as

r+γQ(s′, a′), which is the discounted value of the subsequent state-action pair (s′, a′) plus the immediate reward

received during the transition. Sarsa’s update rule takes the old value estimate Q(s, a), and moves it incrementally

closer to this new estimate. The learning rate α controls the size of these adjustments. As these value estimates

become more accurate, the agent’s policy will improve.

Since a model is not available, Sarsa cannot simply iterate over all state-action pairs to perform updates.

Instead, the agent can only perform updates based on transitions and rewards it observes while interacting with

its environment. Thus, it is critical that the agent visits a broad range of states and tries various actions if it is

to discover a good policy. To achieve this, TD methods are typically coupled with exploration mechanisms which

ensure that the agent, rather than always behaving greedily with respect to its current value function, sometimes

tries alternative actions. One simple exploration mechanism is called ǫ-greedy exploration (Watkins & Dayan,

1992), whereby the agent takes a random action at each time step with probability ǫ, and takes the greedy action

otherwise. Often, ǫ is annealed over time by multiplying it by a decay rate d ∈ [0, 1] after each episode.

While the value function can be represented in a table in simple tasks, this approach is infeasible for most

real-world problems because the state space grows exponentially with respect to the number of state features, a

problem Bellman dubbed the “curse of dimensionality” (Bellman, 1957). Hence, the agent may be unable even

to store such a table, much less learn correct values for each entry in reasonable time. Moreover, many problems

have continuous state features, in which case the state space is infinite and a table-based approach is impossible

even in principle.

In such cases, TD methods rely on function approximation. In this approach, the value function is not

represented exactly but instead approximated via a parameterized function. Typically, those parameters are in-

crementally adjusted via supervised learning methods to make the function’s output more closely match estimated

targets generated from the agent’s experience. Many different methods of function approximation have been used

successfully. In this paper we couple Sarsa with tile coding (Albus, 1981), radial basis function approximators

(RBF) (Powell, 1987), and neural networks (Anderson, 1986). In the case of linear function approximation, the

update rule specified in Equation 1, is replaced by the following:

θ ← θ + α[r + γQ(s′, a′)−Q(s, a)]∆θQ(s, a)

where θ is the vector of weight values being learned and ∆θQ(s, a) is the gradient of Q(s, a) with respect to θ.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

Policy search methods do not explicitly reason about value functions but instead use optimization techniques

to directly search the space of policies for one that accrues maximal reward. To assess the performance of each

candidate policy, the agent typically employs the policy for one or more episodes and sums the total reward

received.

Among the most successful approaches to policy search is neuroevolution (Yao, 1999), which uses evolutionary

computation (Goldberg, 1989) to optimize a population of neural networks. In a typical neuroevolutionary system,

the weights of a neural network are concatenated to form an individual genome. A population of such genomes is

then evolved by repeatedly evaluating each genome’s fitness and selectively reproducing the best ones. Fitness is

measured with a domain-specific fitness function; in reinforcement learning tasks, the fitness function is typically

the average reward received during some number of episodes in which the agent employs the policy specified by

the given genome. The fittest individuals are used to breed a new population via crossover and mutation. Most

neuroevolutionary systems require the designer to manually determine the network’s representation (i.e., how

many hidden nodes there are and how they are connected).

However, some neuroevolutionary methods can automatically evolve representations along with network

weights. In particular, NeuroEvolution of Augmenting Topologies (NEAT) (Stanley & Miikkulainen, 2002) com-

bines the usual search for network weights with evolution of the network structure. Unlike other systems that

evolve network topologies and weights (Gruau, Whitley, & Pyeatt, 1996; Yao, 1999), NEAT begins with a uniform

population of simple networks with no hidden nodes and inputs connected directly to outputs. New structure is

introduced incrementally via two special mutation operators. Figure 1 depicts these operators, which add new

hidden nodes and links to the network. Only the structural mutations that yield performance advantages are

likely to survive evolution’s selective pressure. In this way, NEAT tends to search through a minimal number

of weight dimensions and find an appropriate complexity level for the problem. The remainder of this section

provides an overview of NEAT’s reproductive process. Stanley and Miikkulainen (2002) present a full description.

4

Inputs

Nodes
Hidden

Outputs

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

����������������������������

Mutation

Add Link

(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Fig. 1: Examples of NEAT’s mutation operators for adding structure to networks. In (a), a hidden node is added by
splitting a link in two. In (b), a link, shown with a thicker black line, is added to connect two nodes.

Evolving network structure requires a flexible genetic encoding. Each genome in NEAT includes a list of

connection genes, each of which refers to two node genes being connected. Each connection gene specifies the

in-node, the out-node, the weight of the connection, whether or not the connection gene is expressed (an enable

bit), and an innovation number, which allows NEAT to find corresponding genes during crossover.

In order to perform crossover, the system must be able to tell which genes match up between any two

individuals in the population. For this purpose, NEAT keeps track of the historical origin of every gene. Whenever

a new gene appears (through structural mutation), a global innovation number is incremented and assigned to

that gene. The innovation numbers thus represent a chronology of every gene in the system. Whenever these

genomes cross over, innovation numbers on inherited genes are preserved. Thus, the historical origin of every

gene in the system is known throughout evolution.

Through innovation numbers, the system knows exactly which genes match up with which. Genes that do

not match are either disjoint or excess, depending on whether they occur within or outside the range of the other

parent’s innovation numbers. When crossing over, the genes in both genomes with the same innovation numbers

are lined up. Genes that do not match are inherited from the more fit parent, or if they are equally fit, from both

parents randomly. Historical markings allow NEAT to perform crossover without expensive topological analysis.

Genomes of different organizations and sizes stay compatible throughout evolution, and the problem of matching

different topologies (Radcliffe, 1993) is essentially avoided.

In most cases, adding new structure to a network initially reduces its fitness. However, NEAT speciates the

population, so that individuals compete primarily within their own species rather than with the population at

large. Hence, topological innovations are protected and have time to optimize their structure before competing

with other niches in the population.

Historical markings make it possible for the system to divide the population into species based on topological

similarity. Genomes are tested one at a time and if its distance to a randomly chosen member of the species is

less than a compatibility threshold, it is placed into this species. Each genome is placed into the first species

where this condition is satisfied, so that no genome is in more than one species. The reproduction mechanism for

NEAT is explicit fitness sharing (Goldberg, 1989), where organisms in the same species must share the fitness of

their niche, preventing any one species from taking over the population.

In reinforcement learning tasks, NEAT typically evolves action selectors, which have one or more inputs for

each state feature and one output for each action; the agent takes the action whose corresponding output has

the highest activation. However, since the network represents a policy, not a value function, the activations on

the output nodes do not represent value estimates. In fact, the outputs can have arbitrary activations so long

as the most desirable action has the largest activation. If the domain is noisy, the reward accrued in a single

episode may be unreliable, in which case obtaining accurate fitness estimates requires resampling, i.e., averaging

performance over several episodes. NEAT has proven particularly effective in reinforcement learning domains,

amassing empirical successes on several difficult tasks like non-Markovian double pole balancing (Stanley &

Miikkulainen, 2002), robot control (Stanley & Miikkulainen, 2004), and autonomic computing (Whiteson &

Stone, 2006).

Note that while evolutionary methods like NEAT are sometimes parallelized to improve their computational

efficiency, doing so is not feasible in reinforcement learning tasks. Unless the agent learns a model of the world,

estimating a policy’s fitness requires executing it in the environment, which can only be done serially. Thus

evaluating a population of size 100 takes twice as many episodes as evaluating a population size of 50, and 100

times as long as updating a value function with Sarsa for one episode. Of course, for the domains considered in

this article, the environment is itself a computer program so in principle evolutionary fitness evaluations could

be parallelized when conducting experiments, so long as the method is still “charged” for each episode when

reporting results. For reasons of simplicity, fitness evaluations are conducted serially in our experiments.

5

3 Domains

In this article we compare Sarsa and NEAT on two reinforcement learning problems, mountain car and keepaway,

and variations thereof. There are several reasons for selecting these tasks.

Mountain car is a classic benchmark problem, perhaps the most well-known of all reinforcement learning

problems. As a result, effective strategies for applying both TD and evolutionary methods are already known.

Thus, we can conduct experiments with high confidence that the results reflect the full potential of each method.

Furthermore, the simplicity of the task makes it feasible to conduct large numbers of experiments and obtain

truly comprehensive results.

Due to the great interest in RoboCup soccer (e.g., the 2005 World Championships in Osaka, Japan attracted

180,000 spectators), keepaway has also become an important benchmark task. Since the task involves multiple

agents, a large state space, and noisy sensors and effectors, it is more complex and realistic than most reinforce-

ment learning benchmark problems. Hence, it allows us to evaluate the ability of NEAT and Sarsa to scale up to

more challenging tasks.

The remainder of this section introduces the mountain car and keepaway tasks and describes how Sarsa and

NEAT are applied to them in our experiments.

3.1 Mountain Car

In the mountain car task (Boyan & Moore, 1995), depicted in Figure 2, the agent’s goal is to drive a car to the

top of a steep mountain. The car cannot simply accelerate forward because its engine is not powerful enough

to overcome gravity. Instead, the agent must learn to drive backwards up the hill behind it, thus building up

sufficient momentum to ascend to the goal before running out of speed.

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

m
ou

nt
ai

n
he

ig
ht

x

2D Mountain Car

Start

Goal

M
ou

nt
ai

n
H

ei
gh

t

Fig. 2: The mountain car task, in which an underpowered car
strives to reach the top of a mountain.

The agent’s state at time step t consists of its

current position xt and velocity ẋt. It receives a re-

ward of −1 at each time step until reaching the goal

(xt ≥ 0.5), at which point the episode terminates.

The agent’s action at ∈ {1, 0,−1} corresponds to

one of three available throttle settings: forwards,

neutral, and backwards. The following equations

control the car’s movement:

xt+1 = xt + ẋt+1

ẋt+1 = ẋt + 0.001at − 0.0025cos(3xt)

Position and velocity are constrained such that

−1.2 ≤ xt ≤ 0.6 and −0.07 ≤ ẋt ≤ 0.07. In each

episode, the agent begins in a state chosen randomly

from these ranges. If the agent’s position ever be-

comes -1.2, its velocity is reset to zero. To prevent

episodes from running indefinitely, each episode is

terminated after 5,000 steps if the agent still has

not reached the goal.

3.1.1 Applying Sarsa to Mountain Car

Despite the apparent simplicity of mountain car, solving it with TD methods requires function approximation,

since its state features are continuous. Previous research has demonstrated that TD methods can solve mountain

car using several different function approximators, including tile coding (Sutton, 1996; Kretchmar & Anderson,

1997), locally weighted regression (Boyan & Moore, 1995), decision trees (Pyeatt & Howe, 2001), radial basis

functions (Kretchmar & Anderson, 1997), and instance-based methods (Boyan & Moore, 1995). In this work,

we evaluate three ways of approximating the agent’s value function: tile coding, single-layer perceptrons and

multi-layer perceptrons.

In the first approach, tile coding (Albus, 1981), a piecewise-constant approximation of the value function

is represented by a set of exhaustive partitions of the state space called tilings. Typically, the tilings are all

partitioned in the same way but are slightly offset from each other. Each element of a tiling, called a tile, is a

binary feature activated if and only if the given state falls in the region delineated by that tile. Figure 3 illustrates

a tile-coding scheme with two tilings.

6

Dimension #1

D
im

en
si

on
 #

2

Tiling #1

Tiling #2

2D Tile Coding: 2 Tilings

Fig. 3: An example of tile coding with two tilings.
Thicker lines indicate which tiles are activated for the
given state, marked with an ’x’.

Each tile has a weight associated with it and the value

function for a given state is simply the sum of the weights

of all activated tiles. The weights of the tile coding are

learned via TD updates.

Consistent with previous research in this domain (Sut-

ton, 1996), we employ separate tile codings for each of the

three actions: each tile coding independently learns to pre-

dict the action-value function for its corresponding action.

Each tile coding uses 14 tilings, evenly spaced, and a tiling

consists of a 9 × 9 grid of equally sized tiles.1 Tile weights

are learned using Sarsa with ǫ-greedy exploration.

In the second approach, single-layer perceptrons

(SLPs), feed-forward neural networks without any hidden

nodes, are used to represent a linear approximation of the

agent’s value function. We employ a typical formulation,

where the input nodes describe the agent’s current state

and the outputs, one for each action, represent estimates

of the value of the corresponding state-action pair. Since

there are no hidden nodes, one completely connected layer of weights lies between the input and output nodes.

In mountain car, an obvious choice of input representation is to use two real-valued inputs, one for the agent’s

position and one for its velocity. In this article, we also consider an expanded representation that uses 20 binary

inputs. Each state feature is divided into ten equally-sized regions and one input is associated with each region.2

That input is set to 1.0 if the agent’s current state falls in that region and to zero otherwise. Hence, only two in-

puts are activated for any given state. Previous research (Whiteson & Stone, 2006) has shown that this expanded

representation improves the performance of NEAT in mountain car. We consider it also for Sarsa to ensure that

state representation is not a confounding factor in our results.

In the third approach, multi-layer perceptrons (MLPs), which are feed-forward neural networks containing

hidden nodes, are used to represent a nonlinear approximation of the agent’s value function. Such networks have

greater representational power than SLPs, though learning the correct weights can be more difficult. We consider

only networks with a single layer of hidden nodes, such that the inputs are completely connected to the hidden

nodes and the hidden nodes are completely connected to the outputs. As with SLPs, we consider two input

representations for mountain car, one with two real-valued inputs and one with 20 binary inputs.

3.1.2 Applying NEAT to Mountain Car

For the mountain car task, NEAT is used to evolve a population of neural networks, each of which represents

a policy (i.e., it maps states to actions). As with Sarsa, we consider both the 2-input representation and the

expanded 20-input representation. In both cases, the neural networks have three output nodes, one per action,

and the output node with the highest activation dictations the action chosen for the current input state. We

also evaluate the performance of NEAT when structural mutations are completely disabled and when they are

allowed. In the former case, NEAT evolves only the weights of a population of SLPs. Hence, the space of policies

it searches is restricted to linear functions. In the latter case, structural mutations can result in the addition of

hidden nodes, allowing the representation of nonlinear policies.

3.2 Keepaway

Keepaway is a simulated robot soccer task built on the RoboCup Soccer Server (Noda, Matsubara, Hiraki, &

Frank, 1998), an open source software platform that has served as the basis of multiple international competitions

and research challenges. The server simulates a complete 11 vs. 11 soccer game in which each player employs

unreliable sensors and actuators. In particular, the perceived distance to objects is quantized and uniformly

distributed noise is added to all objects’ movements. Stone (2000, Chapter 2) provides a complete description of

the simulator’s dynamics, including sensor and actuator noise.

1 Our implementation uses Richard Sutton’s Tile Coding Software version 2.0, available at http://www.cs.ualberta.
ca/~sutton/tiles2.html.

2 For example, the velocity state variable ranges from -0.07 to 0.07, and thus the ten regions are
[−0.07,−0.056), [−0.056,−0.042), . . . [0.056, 0.07].

7

Fig. 4: 13 state variables are used for learn-
ing with 3 keepers and 2 takers. The state is
egocentric and rotationally invariant for the
keeper with the ball; there are 11 distances,
indicated with straight lines, between players
and the center of the field as well as 2 angles
along passing lanes.

Keepaway is a subproblem of the full simulated soccer game

in which a team of three keepers attempts to maintain possession

of the ball on a 20m × 20m field while two takers attempt to

gain possession of the ball or force it out of bounds, ending the

episode.3

Three keepers are initially placed in three corners of the field

and a ball is placed near one of them. Two takers are placed in

the fourth corner. When an episode starts, the keepers attempt

to maintain control of the ball by passing among themselves and

moving to open positions. The agent’s state is defined by 13 vari-

ables, as shown in Figure 4. The episode finishes when a taker

gains control of the ball or the ball is kicked out of bounds. The

episode is then reset with a random keeper placed near the ball.

The initial state is different in each episode because the same

keeper does not always start in the same corner and because the

keepers are only placed near the corners rather than in exact lo-

cations.

The agents choose not from the simulator’s primitive actions

but from a set of higher-level macro-actions implemented as part

of the player. These macro-actions can last more than one time

step and the keepers make decisions only when a macro-action terminates. The macro-actions are holdBall, pass,

getOpen, and receive (Stone et al., 2005b). The first two action are available only when the keeper is in possession

of the ball; the latter two are available only when it is not. The pass action can be directed towards either of the

keeper’s teammates.

The agents make decisions at discrete time steps, at which point macro-actions are initiated and terminated.

The reward for a macro-action is the number of time steps until the agent can select a new macro-action, or until

the episode terminates.4 Takers do not learn and always follow a static hand-coded strategy; both takers directly

charge the ball as two takers are needed to capture the ball from a single keeper.

The keepers learn in a constrained policy space: they have the freedom to decide which action to take only

when in possession of the ball. A keeper in possession of the ball may either hold it or pass it to one of its

teammates, i.e., its action space is {hold, passToTeammate1, passToTeammate2}). Keepers not in possession

of the ball execute a fixed strategy in which the keeper that can reach the ball fastest executes the receive

macro-action and the remaining players execute the getOpen macro-action.

3.2.1 Applying Sarsa to Keepaway

i i+1

f(x)

i−1c cc

Fig. 5: An RBF approximator computes Q(s,a) via a
weighted sum of Gaussian functions. The contribution from
the ith Gaussian is weighted by the distance from its center,
ci, to the relevant state variable. σ can be tuned to control
the width of Gaussians and thus how much the function
approximator generalizes.

We use Sarsa to train teams of heterogeneous agents,

with each keeper independently updating its own value

function. Since Sarsa’s learning rule is applied after

each action, this approach is simpler than learning

teams of homogeneous agents, which would require

each agent to update the same value function. Doing

so would be infeasible because communication band-

width between the agents is limited and degrades with

their relative distance. Since learners must select from

macro-level actions that may take multiple time-steps,

we use a SMDP (Bradtke & Duff, 1995) version of

Sarsa, as in previous keepaway research (Stone et al.,

2005b), combined with ǫ-greedy exploration.

Due to the computational expense of conducting

experiments in the keepaway domain (see details of

training times in Section 4.2), we do not compare Sarsa

using multiple input representations and function ap-

proximators as we do in mountain car. Instead, we employ only the best performing configuration previously

3 Experiments in this article use soccer server version 9.4.5 and version 0.5 of the benchmark keepaway implementa-
tion (Stone et al., 2005a), available at http://www.cs.utexas.edu/~AustinVilla/sim/Keepaway/.

4 This is equivalent to providing the keepers with a reward of +1 for every time step that the ball remains in play.

8

reported in the literature. Specifically, to approximate the value function, we use a radial basis function approx-

imator (RBF) (Powell, 1987), as a previous study showed that it was superior to tile coding in keepaway (Stone

et al., 2005a). The same study also showed that RBFs perform better than neural network approximators even

though the latter are capable of representing more complex, nonlinear functions.

Like tile coding, RBFs estimate the value function as the weighted sum of a set of features. Unlike tile coding,

those features are not binary but lie in the interval [0, 1]. The ith feature fi has a center ci corresponding to a

point in the state space. The value of the feature for a given state is some function, typically Gaussian, of the

distance between the center and that state. As with tile coding in mountain car, the agent learns separate value

functions for each action in keepaway. Following the model of previous research (Stone et al., 2005a, 2005b), we

also treat each state feature separately, summing values for 13 independent RBFs. As shown in Figure 5, we set

the features to be evenly spaced Gaussian functions, where

f(x) = exp(−
|x− ci|

2

2σ2
) (2)

The σ parameter controls the width of the Gaussian function and therefore the amount of generalization over

the state space. In keepaway, we use the previously established value of σ = 0.25. For each feature, there are 32

tilings of two tiles each, and the cis are evenly spaced across each state variable range.

3.2.2 Applying NEAT to Keepaway

As in mountain car, we use NEAT to evolve a population of networks that represent policies, using a setup

previously reported to perform well in this domain (Taylor et al., 2006). NEAT uses the default parameter

settings with structural mutations turned on (see the Appendix for details) and each network has 13 inputs,

corresponding to the 13 keepaway state variables, and 3 outputs, corresponding to every available macro-action.

We use NEAT to evolve teams of homogeneous agents: in any given episode, the same neural network controls all

three keepers on the field. The reward accrued during that episode then contributes to NEAT’s estimate of that

network’s fitness. While heterogeneous agents could be evolved using cooperative coevolution (Potter & Jong,

2000), doing so is beyond the scope of this article.5

Since the keepaway task is highly stochastic, resampling is essential. One difficult question is how to distribute

evaluation episodes among the organisms in a particular generation, given a noisy fitness function. While previous

researchers have developed statistical schemes for performing such allocations (Beielstein & Markon, 2002; Stagge,

1998), in this paper we adopt a simple heuristic strategy to increase the performance of NEAT: we concentrate

evaluations on the more promising organisms in the population because their offspring will populate the majority

of the next generation. In each generation, we conduct 6,000 evaluations.6 Every organism is initially evaluated

for ten episodes. After that, the highest ranked organism that has not already received 100 episodes is always

chosen for evaluation. This process repeats until all 6,000 evaluations have been completed. Hence, every organism

receives at least 10 evaluations and no more than 100, with the more promising organisms receiving the most.

4 Benchmark Results

We begin our empirical analysis by comparing Sarsa and NEAT in the benchmark versions of both the mountain

car and keepaway tasks. The differences observed in these experiments are used to formulate specific hypotheses

about the critical factors of each method’s performance. Those hypotheses are presented and tested in Sections 5

and 6.

We evaluate the algorithms in an on-line setting, i.e., assuming each learning agent is situated in the en-

vironment and receives state and reward feedback after each action it takes. Thus, the agent cannot request

samples from arbitrary states, but can learn only from samples gathered during its on-line experience, a scenario

sometimes called an on-line simulation model (Kakade, 2003).

In order to compare Sarsa and NEAT, we need a way to measure the quality and speed of learning for each

method. In other words, we need to measure the quality of the best policy each method has discovered so far

5 The fact that Sarsa trains heterogeneous agents while NEAT trains homogeneous ones might appear to give NEAT an
unfair advantage, since learning three policies is presumably harder than learning one. However, in informal experiments
we found that Sarsa’s performance does not improve when inter-agent communication is artificially allowed and Sarsa is
used to train homogeneous teams. To be consistent with previous literature (Stone et al., 2005a, 2005b), we present results
only on the communication-free version of the task.

6 Preliminary tests found that 6,000 evaluations per generation results in superior performance than either 1,000 or
10,000 evaluations per generation.

9

at various points in the learning process. For Sarsa, this is just the greedy policy (ǫ = 0.0) that corresponds to

the agent’s current estimate of the value function. For NEAT, it is the champion of the most recently completed

generation.7

Since fitness evaluations can be noisy and Sarsa uses exploration (ǫ 6= 0.0) while learning, the quality of the

best policy at a given point cannot be definitely established from each method’s performance during learning.

Instead, we assess the policies in retrospect by conducting additional evaluations after the learning runs have

completed. After NEAT agents finish learning, we select the champion from each generation and evaluate it for

1,000 episodes. For Sarsa, we utilize the estimated value function at 1,000 episode intervals and evaluate the

corresponding greedy policy, without learning, for 1,000 episodes.

Note that these measurements consider only the performance of the best policies discovered by each method

at various points in the learning process; we do not measure other factors such as the computational or space

requirements of each method. We focus on this performance metric for two reasons. First, the other factors are

less critical in many real-world problems, wherein computational resources are often plentiful but interacting with

the environment to gain experience for learning is expensive and dangerous. Second, the computational and space

requirements of the algorithms we consider are relatively modest. For example, the computational requirements

of Sarsa and NEAT are much lower than in many model-based approaches to RL (Brafman & Tennenholtz, 2002;

Kearns & Singh, 2002; Strehl & Littman, 2005).

4.1 Mountain Car

Before comparing Sarsa and NEAT in mountain car, we first determine the best configuration for each method.

For Sarsa, we compare the different function approximators described in Section 3.1.1. For the neural network

function approximators, we consider input representations using either two or 20 inputs. For NEAT, we compare

performance with or without structural mutations and using either the 2-input or 20-input representations.

The results of the Sarsa comparisons are shown in Figure 6 (see the Appendix for details regarding learning

parameters used in this comparison). In this and subsequent graphs, error bars represent the standard deviation

over all evaluations of learning trials: each of the 50 learning trials is evaluated off-line for 1,000 episodes (after

various amounts of learning), and we then graph the average and standard deviation of these 50 data. These

results clearly demonstrate that tile coding is a better choice of function approximator for this task than neural

networks, as it greatly outperforms all of the neural network alternatives. While tile coding quickly discovers

excellent policies, none of the neural network configurations are able to achieve good performance. This result may

seem surprising, but it is consistent with previous literature on the mountain car problem, as several researchers

have noted that value estimates generated with neural networks using the 2-input representation can easily

diverge (Boyan & Moore, 1995; Pyeatt & Howe, 2001). To our knowledge, Sarsa has never been previously

tested with neural networks using the 20-input representation. However, Q-learning (Watkins & Dayan, 1992),

a TD method similar to Sarsa, has been tested with such networks and achieved similarly poor performance,

except when combined with an evolutionary method that discovers a suitable network topology and initial

weights (Whiteson & Stone, 2006). Since we test only two network topologies, we cannot rule out the possibility

that there exists a topology which performs better than tile coding. However, identifying such a scenario would

require substantial engineering of the network structure. Previous research has shown that, in the case of Q-

learning, even an extensive search for the right topology does not yield high-performing neural network function

approximators for this task (Whiteson & Stone, 2006).

The results of the NEAT comparisons are shown in Figure 7 (see the Appendix for details about all learning

parameters used in the comparison). In this and subsequent graphs, error bars represent the standard deviation

over all evaluations of learning trials: the champion of each of the 50 learning trials (after various amounts of

training) is evaluated off-line for 1,000 episodes, and we then graph the average and standard deviation of these

50 data. These results confirm the result of previous research (Whiteson & Stone, 2006) by demonstrating that

NEAT can evolve excellent policies in the mountain car task if the 20-input representation is used. In this case,

structural mutations appear to have little effect on performance. This is surprising for two reasons. First, it

suggests that one of NEAT’s most powerful features, the ability to automatically optimize network topologies, is

not helpful in the mountain car task. However, this result says less about the method than about the task, which

is apparently simple enough to solve without complex topologies. Second, it demonstrates that NEAT can solve

the mountain car task using exactly the same representation (SLPs with 20 inputs) on which Sarsa performs

quite poorly. However, the two methods use these representations in different ways. Sarsa uses it to estimate

7 In theory, it is possible that these are not the best policies discovered so far. Since Sarsa is an on-policy TD method,
the greedy policy could perform worse than the exploratory one. It is also possible that the current generation champion
in NEAT is inferior to a previous generation champion. However, we find that such differences are negligible in practice.

10

-6000

-5000

-4000

-3000

-2000

-1000

 0

 1000

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Episodes

Benchmark Mountain Car: Sarsa

Tile Coding
SLP: 2 inputs
MLP: 2 inputs
SLP: 20 inputs
MLP: 20 inputs

Fig. 6: A comparison of the average reward of the policies discovered by Sarsa using different function approximators and
input representations in the benchmark mountain car task.

-1000

-800

-600

-400

-200

 0

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Episodes

Benchmark Mountain Car: NEAT

No Structural Mutation, 20 inputs
With Structural Mutation, 20 inputs

No Structural Mutation, 2 inputs
With Structural Mutation, 2 inputs

Fig. 7: A comparison of the average reward of the policies discovered by NEAT using various network representations in
the benchmark mountain car task.

a value function while NEAT uses it to estimate a policy in the form of an action selector. The latter may be

simpler to represent since the outputs can have arbitrary value so long as the output corresponding to the best

action has the highest value.

Given these results, we select the best performing configuration of each method (tile coding for Sarsa and the

20-input representation without structural mutations for NEAT) to conduct a careful comparison of their perfor-

mance in the mountain car task. Specifically, we test each method for 50 independent runs, where each run lasts

100,000 episodes. Sarsa learners are tested with learning rates α = {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5},

exploration parameter settings of ǫ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, and exploration decay settings of d =

{0.99, 0.999, 1.0}, where the best performing parameters were found to be α = 0.1, ǫ = 0.3, and d = 0.999. NEAT

was tested by setting the number of evaluations per organism to {1, 10, 50, 100}, and 50 was found superior.

11

-250

-200

-150

-100

-50

 0

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Episodes

Mountain Car: Sensor Noise = 0.0, Effector Noise = 0.0

NEAT

Sarsa

Fig. 8: A comparison of the average reward of the policies discovered by NEAT and Sarsa in the benchmark mountain car
task.

In these experiments, as well as those reported later in this article, Sarsa and NEAT are not necessarily tested

at the same number of parameter settings. Controlling for this factor is difficult, as different algorithms can have

different numbers of parameters and those parameters can have different levels of sensitivity to performance. For

example, while NEAT has many more parameters than Sarsa (see Table 2 in the Appendix), in our experience most

of them have a negligible effect on performance. By contrast, setting Sarsa’s few parameters well seems critical

to successful learning. In each case, we use our intuition about each algorithm to select a range of parameters

for testing that ensures it performs reasonably well. It is always possible that a more elaborate parameter search

would further improve performance, though we think it is unlikely such improvements would cause qualitative

changes in the results we present.

For each parameter setting, we estimate the performance at regular intervals of the best policy found so far by

each method. For each run, these performance estimates are computed by averaging reward accrued over 1,000 test

episodes. These results are then averaged across all 50 runs of each of the two methods for each given parameter

setting. Figure 8 plots the results of these experiments, showing only the best performing parameter setting for

each method. The final performance of both methods is quite similar and we believe it to be approximately

optimal, as it matches the best results published by other researchers (e.g., Smart & Kaelbling, 2000; Whiteson

& Stone, 2006). At this scale, Sarsa appears to learn almost instantly; in fact, it requires on average about 3,000

episodes to find an approximately optimal policy. Additionally, for this task, the variance in the performance

in NEAT is much higher than that of Sarsa. Although additional parameter tuning of NEAT may reduce this

variance, the majority of results in this article show the same result; an experimenter who has reason to believe

that the two methods will perform equally on a task on average may wish to select the method with the lower

variance if there is only time for a single learning trial.

The most striking feature of these results is the great difference in speed between the two methods. While

both methods eventually discover approximately optimal policies, NEAT requires orders of magnitude more

episodes to do so. Student’s t-tests confirm that the difference in performance between NEAT and Sarsa is

statistically significant for the first 26,000 episodes (p < 0.05). The difference in learning speed is particularly

striking considering that the tile coding representation is so much larger than the SLPs evolved by NEAT: the

former has over 1,000 weights while the latter has only 60. Since mountain car is a fully observable task, the

assumptions made by the Sarsa method (i.e., that the Markov property holds) are valid and thus these results

lend empirical support to Sutton and Barto’s claim that TD methods, by exploiting the structure of the task,

can be more efficient than policy search methods (Sutton & Barto, 1998).

12

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 200 400 600 800 1000

M
ea

n
E

pi
so

de
 T

im
e

(s
ec

on
ds

)

Training Time (hours)

Keepaway: Benchmark

Sarsa, final performance = 12.5
NEAT, final performance = 14.1

NEAT

Sarsa

Fig. 9: A comparison of the average hold times of the policies discovered by NEAT and Sarsa in the benchmark keepaway
task.

4.2 Keepaway

Since keepaway games are more computationally expensive, we conduct each run not for a fixed number of

episodes, but until it plateaus, i.e., its performance does not improve for several simulator hours. Doing so

enables us to generate more data with fixed computational resources. Since Sarsa runs plateau much sooner than

NEAT runs (89 hours versus 840 hours8 of simulator time, on average), we were able to conduct a total of 20

Sarsa runs and 5 NEAT runs. Sarsa players use previously established settings (Stone et al., 2005a) of α = 0.05,

ǫ = 0.1, and d = 1.0. NEAT uses the default parameter settings with structural mutations turned on (Taylor

et al., 2006) (see the Appendix for more details).

As in mountain car, we estimate at regular intervals the performance of the best policy found so far by each

method. For each run, these performance estimates are computed by averaging reward accrued over 1,000 test

episodes. These results are then averaged across all runs of each of the two methods to obtain the plot shown in

Figure 9. Note that because the Sarsa learning curves plateau before the NEAT learning curves, the performance

of the Sarsa learners is extended on the graph even after learning has finished, denoted by a horizontal performance

line without plotted data points. For presentation purposes we plot the average performance every 10 hours for

the first 200 hours and then every 50 hours after that. Increasing the sampling resolution would not reveal any

interesting detail in the learning curves.

As with mountain car, these results show a clear speed advantage for Sarsa: in the early part of learning its

average policy is much better than NEAT’s. However, unlike mountain car, these results also show that NEAT

can learn substantially better policies in the long run. Student’s t-tests confirm that the difference in performance

between NEAT and Sarsa is statistically significant for times greater than or equal to 650 hours (p < 0.014).

Since mountain car is a much smaller and simpler task than keepaway, the results obtained in it may suffer from a

ceiling effect, i.e., NEAT cannot outperform Sarsa in the long run since both methods find near-optimal policies.

By contrast, NEAT’s slowness in keepaway is balanced by the quality of the best policies it ultimately discovers.

Therefore, in more challenging domains there may be important trade-offs between speed and final performance.9

8 For reference, 840 hours of simulator time in the benchmark keepaway task corresponded to roughly 57 generations,
342,000 episodes, or 420 hours of wall-clock time.

9 This trade-off can occur only when Sarsa is combined with function approximation. In table-based systems, Sarsa is
guaranteed to converge to the ǫ-optimal policy, so no policy search method could have substantially better asymptotic
performance. The tasks we consider here require function approximation, whose performance can depend on the chosen
representation. Therefore, we evaluate the methods using the best-performing representation for each method.

13

5 Testing The Effect of Sensor Noise

In this section and the next, we use the results of the experiments conducted in the benchmark tasks to formulate

hypotheses about the factors critical to the relative performance of Sarsa and NEAT. We then present variations

of the benchmark tasks designed to test these hypotheses. This section explores why NEAT discovers better final

policies in the benchmark keepaway task. We propose that this performance difference is due to the presence of

noisy sensors in this task.

Specifically, we hypothesize that sensor noise reduces the final performance of Sarsa more than that of

NEAT because sensor noise introduces a form of partial observability. Sarsa, like other TD methods, relies on

an update rule that assumes a Markovian state representation, i.e., the state is defined such that the probability

distribution over next states is independent of the agents’ state and action histories. When the true state is

only partially observable, Sarsa’s convergence guarantees in the tabular cases no longer hold and learning may

result in arbitrarily suboptimal policies or even catastrophic divergence of value function estimates. Sutton and

Barto argue that TD methods can still be useful in many tasks that are not strictly Markov and conclude that

“the inability to have access to a perfect Markov state representation is probably not a severe problem for a

reinforcement learning agent” (Sutton & Barto, 1998, Section 3.5). While this claim is intuitive, it has not been

rigorously tested in domains like mountain car or keepaway.

By contrast, NEAT and other policy search methods do not rely on the presence of the Markov property.

Instead, they simply search for the best mapping from the given state representation to the available actions. If

the sensors are noisy and that state representation is not Markov, even the best such mapping may be poor, since

uncertainty about the state limits the agent’s ability to determine what action to take. While this uncertainty

imposes a ceiling on the performance of the resulting policy, NEAT can still search effectively up to that ceiling,

as the divergence problems faced by TD methods do not occur.

We test our hypothesis that NEAT copes better with noisy sensors by devising variations of the benchmark

tasks with various levels of sensor noise. The benchmark mountain car task is fully observable so we add different

amounts of noise to the agent’s sensors and then observe whether Sarsa or NEAT fares better as the Markov

property fades away. In keepaway, the agents’ sensors are already noisy. However, by eliminating this noise we

can make the task effectively Markovian10 and observe whether the relative performance of the two methods

changes. The remainder of this section describes the results of experiments on these domain variations.

5.1 Partially Observable Mountain Car

To make mountain car partially observable, we add Gaussian noise (with mean 0.0 and standard deviation σ)

to the state features. For each experiment, Sarsa was optimized over settings of α = {0.001, 0.005, 0.01, 0.02,

0.025, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5}, ǫ = {0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6}, and exploration decay d

= {0.98, 0.99, 0.995, 0.999, 1.0}. All Sarsa results shown in this section use only the best performing parameter

setting for the given value of σ. NEAT was tested with {10, 50, 100} evaluations per organism, and 50 was again

found superior for all experiments in this section.

The left side of Figure 10 shows the relative performance of Sarsa and NEAT when σ = 0.05. As before, these

results are averaged over 50 independent runs for each method. Not surprisingly, both methods perform worse

than in the benchmark task since the agent is no longer certain about its state. Sarsa still learns much more rapidly

than NEAT but now has substantially worse final performance. Student’s t-tests confirm that the difference in

performance between NEAT and Sarsa is statistically significant after 35,000 episodes (p < 4.2×10−5). Note that

Sarsa’s performance degrades slightly over time, which is not surprising since additional function approximation

updates do not always lead to policy improvements. The learning parameters for Sarsa were tuned to maximize

the final reward. They could also be tuned to minimize this ‘unlearning’ though the results are unlikely to be

qualitatively different. The right side of Figure 10 shows the relative performance of Sarsa and NEAT when

σ = 0.5. Again Sarsa learns more quickly but NEAT has better final performance, though now the performance

gap is even larger.

To verify that this trend is consistent, we also test other noise values where 0.05 < σ < 0.5. Figure 11

summarizes the results of these experiments (Appendix B details the learning parameters used). The left side

shows performance early in learning (after 10,000 episodes) for each noise level and demonstrates that at low

10 The state is still not truly Markovian because ball and player velocities are not included. If the agent stored past states
it could calculate these velocities and therefore better predict future states. However, the keepaway benchmark task does
not include velocities because past research did not find them useful for learning; players have low inertia and the field
has a high coefficient of friction which means that velocities do not help agents learn in practice. In this paper we use the
same state variables as previous work (Stone et al., 2005a, 2005b) and note that when sensor noise is removed the state is
“effectively Markovian.”

14

-250

-200

-150

-100

-50

 0

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Episodes

Mountain Car: Sensor Noise = 0.05, Effector Noise = 0.0

Sarsa, final performance = -98.7
NEAT, final performance = -81.0

Sarsa

NEAT

-2000

-1500

-1000

-500

 0

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Episodes

Mountain Car: Sensor Noise = 0.5, Effector Noise = 0.0

Sarsa, final performance = -555
NEAT, final performance = -398

Sarsa

NEAT

Sarsa

NEATNEAT

Sarsa

Fig. 10: A comparison of the average reward of the policies discovered by NEAT and Sarsa in the partially-observable
variation of mountain car where σ = 0.05 (left) or σ = 0.5 (right).

noise levels Sarsa retains its speed advantage over NEAT, though at higher noise levels NEAT outperforms it

even early in learning.

The right side shows final performance (after 100,000 episodes) for each noise level. Because of the slight

unlearning mentioned above, the final performance of Sarsa is not always its peak performance. However, using

peak performance in this comparison instead would require violating the separation between training and testing.

Recall that the points plotted in the graph come from multiple trials with a frozen policy. They are done purely

for evaluation, and would not actually be performed by the learner in practice. Thus the learner would not

know which policy used during learning was the best. In addition, since the amount of unlearning is small, the

effect on the presented results is not substantial. These results demonstrate that NEAT consistently discovers

better policies when the Markov property is removed from mountain car. Furthermore, the performance difference

between them grows in direct proportion to the level of sensor noise. Hence, these experiments provide an initial

confirmation of the hypothesis that sensor noise is more problematic for Sarsa than for NEAT.

5.2 Fully Observable Keepaway

Since the benchmark mountain car task is fully observable, we test whether the addition of sensor noise helps

NEAT’s relative performance. By contrast, the benchmark keepaway task is already partially observable, so we

test whether the removal of sensor noise hurts NEAT’s relative performance.

The computational expense of running keepaway episodes makes it prohibitive to test many intermediate noise

values as we did with mountain car. However, in the case of no sensor noise, we conducted 5 runs of NEAT and

20 runs of Sarsa. (Initial results showed that the same learning settings as in the benchmark task were superior

to other learning settings for both of the methods.) Figure 12 shows the results of these experiments. As in the

benchmark version of the task (Figure 9), Sarsa learns much more rapidly than NEAT. However, in the fully

observable version, Sarsa also learns substantially better policies. Student’s t-tests confirm that the difference

in performance between NEAT and Sarsa is statistically significant for all points graphed (p < 1.0 × 10−4).

These results provide additional confirmation of our hypothesis that full observability is a critical factor in

Sarsa’s performance. While Sarsa can learn well in the partially observable benchmark version of keepaway, its

performance relative to NEAT improves dramatically when sensor noise is removed.

This outcome is surprising, since NEAT can evolve networks with as much or greater representational power

than the RBFs used by Sarsa. Thus, the superior policies learned by Sarsa should, in principle, be discoverable

by NEAT also. However, in practice, NEAT finds only local maxima in the space of network topologies and the

space of weight settings for those topologies. In this case, those local maxima perform significantly worse than

Sarsa.

Overall, these experiments about the effect of sensor noise in both mountain car and keepaway indicate that

it can be a critical factor in the relative performance of evolutionary and TD methods. On one hand, the results

confirm Sutton and Barto’s claim that lack of a perfectly Markov state representation need not be a fatal problem

for TD methods, since Sarsa continues to learn decent policies even at the highest noise levels tested. On the

other hand, the loss of performance can be great enough to make Sarsa a less attractive choice than NEAT, as

15

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Sensor Noise

Mountain Car Final Performance after 10,000 episodes: Effector Noise = 0.0

Sarsa

NEAT

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Sensor Noise

Mountain Car Final Performance after 100,000 episodes: Effector Noise = 0.0

Sarsa

NEAT

Fig. 11: A comparison of the average reward of the policies discovered by NEAT and Sarsa after 10,000 episodes (left) or
100,000 episodes (right) in mountain car variations with different levels of sensor noise.

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000

M
ea

n
E

pi
so

de
 T

im
e

(s
ec

on
ds

)

Training Time (hours)

Keepaway: Fully Observable

Sarsa, final performance = 17.7
NEAT, final performance = 15.7

Sarsa

NEAT

Fig. 12: A comparison of the average hold times of the policies discovered by NEAT and Sarsa in the fully-observable
version of the keepaway task.

seen in the difference between the benchmark and fully-observable versions of keepaway. The results in mountain

car show that Sarsa’s performance degrades more rapidly as sensor noise increases, giving NEAT substantially

better final performance. For lower levels of sensor noise, Sarsa can still be preferable if learning speed is more

important than final performance. But the importance of the Markov property is underscored by the fact that

NEAT, which was dramatically slower in the benchmark task, actually learns faster than Sarsa at the higher

noise levels.

6 Testing The Effect of Stochasticity

In this section, we look more closely at the differences in learning speed that occur in the benchmark tasks. We

seek to identify the critical properties of these domains that explain why Sarsa initially learns a significantly

better policy than NEAT.

We begin with the hypothesis that stochasticity of any kind, whether in the sensors, effectors, or initial state,

reduces NEAT’s learning speed more than Sarsa’s. Recall that the fitness function used to evaluate each network

16

consists of summing the reward obtained when using that network. Consequently, noise in the domain can render

the fitness function unreliable, in which case resampling is crucial. If the required episodes per evaluation (EPE)

increases as the domain becomes noisier, this could slow evolution down substantially, as the length of each

generation grows in direct proportion to the EPE.11

By contrast, such stochasticity is unlikely to dramatically slow Sarsa’s learning speed. The results presented

in Section 5 demonstrate that sensor noise is problematic for Sarsa since it results in violations of the Markov

property. However, the consequence is reduced final performance, not slower learning. Effector noise could poten-

tially slow Sarsa by requiring a lower learning rate α. However, domains like mountain car and keepaway already

require low learning rates for function approximation to be feasible, so this effect is likely to be negligible. Fur-

thermore, effector noise could actually speed up learning by providing a natural form of exploration. Stochasticity

in the initial state is perhaps the least likely to slow learning, as it also provides natural exploration but does

not require a lower α.

We test our hypothesis that stochasticity is more detrimental to NEAT’s learning speed by devising variations

of the benchmark tasks that are completely deterministic and then measuring whether NEAT’s learning speed

relative to Sarsa improves. Mountain car already lacks sensor and effector noise so rendering it deterministic

requires only fixing the initial state. Making keepaway deterministic requires eliminating stochasticity in the

sensors, effectors, and initial state. The remainder of this section describes the results of experiments on these

deterministic variations.

6.1 Deterministic Mountain Car

In the benchmark version of mountain car, the transition function is deterministic, but the agent’s initial state is

random. Therefore, by fixing the agent’s initial position at the bottom of the hill and the agent’s initial velocity

at zero (xt = π

6
, ẋt = 0), we obtain a completely deterministic variation of mountain car. Figure 13 shows the

relative performance of Sarsa and NEAT in this task. As before, results are averaged over 50 independent runs

for each method. Since no noise remains in the fitness function, NEAT uses an EPE of 1 rather than 50. Sarsa

was tested on: α = {0.001, 0.005, 0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5}, ǫ = {0.01, 0.05, 0.1, 0.2,

0.25, 0.3, 0.4, 0.5, 0.6}, and exploration rate decay d = {0.98, 0.99, 0.995, 0.999, 1.0}. α = 0.3, ǫ = 0.1, d = 0.995

were found superior to other values. Note that both methods plateau at substantially lower values than in the

benchmark task since the fixed state has lower than average value (the agent starts at the bottom of the hill with

no momentum).

As in the benchmark task, both methods achieve approximately the same final performance but Sarsa achieves

it more quickly. However, the difference in learning speed is greatly reduced. NEAT requires about 2,000 episodes

to match Sarsa’s performance, as opposed to 40,000 in the benchmark task. Therefore, these results provide initial

confirmation of our hypothesis that stochasticity reduces the learning speed of NEAT more than that of Sarsa.

To verify that this trend is consistent, we also tested several intermediate cases, where the start state is

neither deterministic nor completely random. Specifically, we studied cases where the agent’s initial position and

velocity are drawn from a Gaussian distribution with mean 0.0 and standard deviation σ = {0.01, 0.5, 10.0}.

At each noise level, we tested Sarsa with learning rates α = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, exploration parameter

settings of ǫ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4} and exploration decay settings of d = {0.885, 0.99, 0.995, 0.999, 1.0}.

For the three settings of σ, we found α = {0.2, 0.4, 0.2}, ǫ = {0.1, 0.01, 0.01}, and d = {0.995, 0.995, 0.995} to have

superior performance, respectively. NEAT was tested with EPE = {1, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 50, 55, 60, 65}

and was found to produce the highest performing policies when the EPE was set to {5, 25, 40}, respectively.

Figure 14 compares the number of episodes each method requires, at the best parameter setting, to reach a

near-optimal threshold for different values of σ. We select thresholds that both methods are able to consistently

reach before plateauing. For clarity, we show learning speed at only this near-optimal threshold, though the

results are qualitatively similar for other thresholds too. Though the number of episodes Sarsa requires to meet

the threshold appears relatively flat, it actually increases substantially, from 40 episodes when σ = 0.01 to 170

episodes when σ = 10.0. However, the magnitude of this change is dwarfed by that of NEAT, such that the

difference in learning speed between the two methods increases dramatically. Thus, the results make clear that

NEAT’s disadvantage in terms of learning speed is highly correlated with the amount of noise in the fitness

function. This is not surprising, since the best performing EPE increases in direct proportion to the noise.

11 Increasing the EPE is an effective but not necessarily efficient way of increasing the accuracy of fitness estimates (Beyer
& Sendhoff, 2007). More sophisticated strategies that measure uncertainty when deciding which individuals to resam-
ple (e.g., Stagge, 1998; Beielstein & Markon, 2002) may perform better. Studying such methods empirically is beyond the
scope of this paper. However, even if they prove highly effective, they are likely to reduce but not eliminate the detrimental
effect of resampling on the speed of evolutionary methods in noisy domains.

17

-300

-250

-200

-150

-100

 0 500 1000 1500 2000

A
ve

ra
ge

 O
ff-

Li
ne

 R
ew

ar
d

Episodes

Mountain Car: Sensor Noise = 0.0, Effector Noise = 0.0, Fixed Start

Sarsa, final performance = -105.2
NEAT, final performance = -109.4

Sarsa

NEAT

��
��
��

��
��
��

��
��
��

��
��
��

Fig. 13: A comparison of the average reward of the policies discovered by NEAT and Sarsa in the completely deterministic,
i.e., fixed start state, version of mountain car. The error bars show the standard deviation.

 0

 5000

 10000

 15000

 20000

 0.01 0.1 1 10

A
ve

ra
ge

 N
um

 E
pi

so
de

s
to

 R
ea

ch
 T

hr
es

ho
ld

Start State Noise

Episodes Needed to Achieve Threshold Performance

Sarsa
NEAT

Sarsa

NEAT

Mountain Car: Episodes to Threshold, Variable Start State Noise

Fig. 14: A comparison of the average number of episodes required by NEAT and Sarsa to reach a near-optimal threshold
in mountain car with different levels of noise in the start state.

However, the Sarsa experiments do not have a similar trend. Overall, these results confirm our hypothesis that

stochasticity in the fitness function is more detrimental to NEAT’s learning speed.

However, it still possible for NEAT to perform better than Sarsa in early learning in a stochastic version of

mountain car, despite its reduced learning speed. One example occurs in the results shown in Figure 10. When

sensor noise is increased, the time it takes for NEAT’s performance to surpass Sarsa’s actually decreases, even

though the domain becomes more stochastic. The reason is that, in this case, all the additional stochasticity comes

from sensor noise which, by introducing partial observability, greatly reduces the performance of Sarsa. Thus, its

performance in early learning relative to Sarsa actually improves in the noisier task. In this case, the additional

sensor noise is not enough to change the necessary EPE (50 for both levels of sensor noise). Nonetheless, the

18

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140

M
ea

n
E

pi
so

de
 T

im
e

(s
ec

on
ds

)

Training Time (hours)

Keepaway: Deterministic

Sarsa, final performance = 35.0
NEAT, final performance = 205.0

Sarsa

NEAT

Fig. 15: A comparison of the average hold times of the policies discovered by NEAT and Sarsa in the deterministic version
of the keepaway task.

results shown in Figure 14 demonstrate that when stochasticity is increased enough to change the necessary EPE,

NEAT’s learning speed relative to Sarsa decreases quickly.

6.2 Deterministic Keepaway

To further evaluate our hypothesis, we removed stochasticity in the sensors, effectors, and initial state of the

keepaway task. We conducted 5 trials of NEAT and 20 trials of Sarsa in the resulting deterministic task. As with

deterministic mountain car, NEAT spent only one episode evaluating each network. We hypothesized that Sarsa

would benefit from an increased learning rate and tested several higher values, but found no improvement over

the original value of 0.05. Figure 15 shows the results of these experiments, with mean hold times computed as

before and averaged across all trials of each method. The difference in performance between NEAT and Sarsa is

statistically significant for all points graphed (p < 2.6× 10−6).

As in mountain car, removing stochasticity greatly improves NEAT’s learning speed. In deterministic keep-

away, the effect is even more striking, as NEAT actually learns faster than Sarsa, in addition to discovering

dramatically superior policies. This outcome is unexpected since the deterministic version of the task is also fully

observable and should be well suited to TD methods. The experiments suggest that, in the deterministic version

of the task, the advantage Sarsa gains from full observability is far outweighed by the advantage NEAT gains

from having rapid and accurate fitness evaluations.

The detrimental effects of noise on NEAT’s learning speed are a direct result of the need for repeated resam-

pling. Unlike TD methods, which can exploit the relationship between subsequent states to perform “bootstrap-

ping” updates based on the Bellman equation, evolutionary methods treat the problem like a black box with an

arbitrary fitness function to be maximized. Sutton and Barto argue that this is a serious weakness of evolutionary

methods, which “ignore much of the useful structure of the reinforcement learning problem: they do not use the

fact that the policy they are searching for is a function from states to actions; they do not notice which states an

individual passes through during its lifetime, or which actions it selects.” (Sutton & Barto, 1998, Section 1.3).

It is no surprise then that evolutionary methods are so much slower when the fitness function is noisy enough

to require substantial resampling. What is surprising is that they can perform so well when the fitness function

is deterministic. In a small fully-observable task like mountain car, NEAT is still slower than Sarsa even in the

deterministic version, though its speed improves by an order of magnitude. In keepaway, however, determinism

allows NEAT to discover dramatically better policies and to do so faster than Sarsa.

Table 1 summarizes the results presented in Sections 4, 5, and 6. It shows, for each domain tested, which

method has the best learning speed and final performance. From this high-level perspective, it is clear that Sarsa’s

strength is its learning speed, as it proves faster than NEAT in all but one domain. By contrast, NEAT’s strength

19

Domain Learning Speed Final Performance

Benchmark Mountain Car Sarsa (tie)

Benchmark Keepaway Sarsa NEAT

Partially Observable Mountain Car Sarsa NEAT

Fully Observable Keepaway Sarsa Sarsa

Deterministic Mountain Car Sarsa (tie)

Deterministic Keepaway NEAT NEAT

Table 1: A summary of the results presented in Sections 4, 5, and 6, showing, for each domain tested, which method has
the best learning speed and final performance.

is in final performance, as it ultimately discovers policies as good or better than Sarsa in all but one domain. The

exceptions to these trends are remarkable because they further confirm our hypotheses about the critical factors

involved. Sarsa is clearly inhibited by sensor noise, as the only task where it achieves a better final performance

is a fully observable one. Similarly, NEAT is hindered by stochasticity, as the only task where it learns faster

than Sarsa is a deterministic one.

Overall, these comparative results can help construct a broad outline of the strengths and weaknesses of the

two methods tested, and possibly other evolutionary and TD methods too. Sarsa seems best suited to tasks that

are fully observable, since it is designed to exploit the Markov property, or stochastic, since it is not particularly

affected by noise in the transition function. NEAT seems best suited to tasks with noisy sensors, since it does

not rely on the Markov property, or that are deterministic, since evolution is much more rapid when resampling

is not required. In between these extremes, the picture is less clear and may depend on the task’s particular

eccentricities as well as the relative importance of learning speed and final performance.

7 Related Work

The research presented in this article contributes to a small but growing body of empirical comparisons between

TD and evolutionary methods. In this section, we survey previous research in this area.

By far the most popular benchmark domain for such comparisons is the pole balancing problem, also known

as the inverted pendulum task. In this problem, the agent controls a wheeled cart by applying forces to either side.

The goal is to keep a pole attached to the cart upright, by constantly moving the cart in a way that maintains

the pole’s balance.

Whitley et al. (1993) use the pole balancing task as a benchmark for testing GENITOR (Whitley & Kauth,

1988), a simple neuroevolutionary method that evolves the weights of a neural network with a manually designed

topology. They compare its performance to Adaptive Heuristic Critic (AHC) (Barto, Sutton, & Anderson, 1983),

a TD method that uses neural networks to represent a value function and a control policy. They find that

GENITOR is competitive with AHC’s learning speed but more robust, in that a higher fraction of trials solve

the task.

The version of the pole balancing task they consider has random start states but is otherwise deterministic,

similar to the benchmark version of mountain car. Despite the noise in the fitness function, they find that

increasing the EPE does not improve performance. They speculate this is because “the noise largely had a

conservative effect: some good networks are lost because of poor start states, but it is more difficult for a poor net

to obtain a good ranking.” (Whitley et al., 1993, p. 281). In other words, a bad policy is not able to balance the

pole for long, regardless of how favorable its initial state. This contrasts with mountain car, where certain initial

states (e.g., those very near the goal and/or with high velocity) yield high scores even for policies that perform

poorly in general. This qualitative difference may explain why increasing EPE helps in mountain car but not in

pole balancing.

Moriarty and Miikkulainen (1996) consider the same pole-balancing task and test the performance of Q-

learning (Watkins & Dayan, 1992), the classic TD method, and Symbiotic, Adaptive Neuro-Evolution (SANE),

which evolves population of neurons rather than entire networks. They find that SANE substantially outperforms

Q-learning and an improved implementation of GENITOR on the pole balancing task with either random or fixed

start states. AHC uses fewer episodes than SANE but substantially more computation time, which they attribute

to the expense of performing backpropagation after each time step.

Several other researchers consider more challenging versions of the task, such as those with multiple poles or

without velocity information, always using fixed start states (Weiland, 1991; Saravanan & Fogel, 1995; Gruau

et al., 1996; Gomez & Miikkulainen, 1999; Stanley & Miikkulainen, 2002). These studies compare the performance

20

only of various evolutionary methods. However, Gomez et al. (2006) recently conducted a comprehensive empirical

study comparing the performance of several TD methods, including AHC, Sarsa, and Q-learning, to several

evolutionary methods, including SANE, ESP, NEAT and Cooperative Synapse Neuroevolution (CoSyNE) (Gomez

et al., 2006). They consider the original pole balancing task, as well as the double-pole variation with or without

velocity information. Though certain TD methods occasionally outperform certain evolutionary methods, the

latter fare much better overall, frequently solving the task one or more orders of magnitude more quickly.

Taken as a whole, these pole-balancing experiments make a strong case for the evolutionary approach to

reinforcement learning. They show that such methods can find solutions even for the hardest versions of the

task, sometimes much more quickly than TD methods. However, a critical caveat is the fact that most of the

pole-balancing variations considered are completely deterministic. Even in those with random start states, the

noise causes only the “conservative effect” noted by Whitley et al., such that one EPE remains sufficient for

effective evolution. By contrast, the results presented in this article show that in truly noisy tasks, for which a

higher EPE is essential, evolutionary methods can be much slower than the TD alternatives.

Of course, those same results also show that lack of speed can be balanced by better ultimate performance,

as seen in keepaway. Unfortunately, none of the extensive pole-balancing results can confirm or disconfirm this

effect, since they examine only CPU time and number of evaluations to reach a fixed performance threshold.

They do not consider, as we do, the performance of each method once it plateaus.

Evolutionary and TD methods have been compared in other domains as well, mostly in competitive games.

For example, Pollack and Blair (1998) use a very simple self-play training paradigm (essentially an evolutionary

method with a population size of two) to find neural network controllers to play backgammon. They compare their

results to the performance of TD-Gammon (Tesauro, 1994), a neural network value function approximator that

learned to play master-level backgammon using self-play. While Pollack and Blair’s näıve method does not match

TD-Gammon’s performance, it does surprisingly well. They conclude that it is not TD methods that are central

to Tesauro’s success but rather the peculiar dynamics of backgammon that make self-play unusually effective.

Tesauro (1998) notes however that the performance gap between Pollack and Blair’s approach and TD-Gammon

is actually quite dramatic and that the former is probably unable to discover any nonlinear solutions.

Darwen (2001) also applies neuroevolution to backgammon, using a full coevolutionary setup in which the

members of each generation play a round-robin tournament against each other to obtain fitness estimates. In

the linear setting, evolution ultimately outperforms TD, though it takes literally millions of games to do so. In

the nonlinear setting, evolution never matches TD’s performance. Darwen argues that finding good nonlinear

solutions requires training on rare board positions and estimates that coevolution would require 50 million games

to do so. By contrast, TD finds good nonlinear solutions in only 1.5 million games.

Similarly, Runarsson and Lucas (2005) compare evolution and TD in small-board Go and find that TD learns

much faster and in most cases achieves higher performance also. However, they find at least one setup, using

coevolution, wherein evolution outperforms TD. They also present results for Othello (Lucas & Runarsson, 2006),

finding that TD methods are much faster but that a properly tuned evolutionary method ultimately performs

best. Lucas and Togelius (2007) present similar comparative results in a simple car-racing domain. They find that

evolution achieves better fitness and is more reliable than TD but that, when successful, the latter learns faster.

In a set of three papers, Heidrich-Meisner & Igel compare a natural policy gradient method (a policy gra-

dient method) with the covariance matrix adaptation evolution strategy (an evolutionary method) and find the

evolutionary method to be generally superior. Each of these three papers compare performance on only a single

simple task with a few settings: mountain car with and without observation noise for fixed and random start

states (2008c), pole balancing with no noise and a random start state (2008b), and double pole balancing with no

noise and a fixed start state (2008a). This article differs not only in terms of methods compared, but also because

we consider more settings (such as evaluating multiple levels of effector noise), perform tests on the significantly

more complex task of keepaway, and form domain-independent conclusions about the two classes of methods

considered.

All of these results contrast with those obtained in the pole-balancing domains in that they consistently find

evolution to be much slower than TD methods. This discrepancy is not surprising given the qualitative differences

between the domains. As noted above, most of the pole-balancing experiments use fixed start states and hence

completely deterministic fitness functions. Even in those cases with random start states, the “conservative effect”

of noise in pole balancing means 1 EPE remains sufficient. Consequently, evolution is able to progress as fast

or faster than TD methods. By contrast, the results showing evolution to be slower than TD use domains with

very noisy fitness functions. Competitive games have this property naturally, since fitness depends greatly on

the particular opponent. In the car-racing domain, the racetrack is selected randomly at the beginning of each

episode.

Hence, these results are broadly consistent with a main finding of this article: stochasticity is more detrimental

to evolution than to TD methods. However, none of these previous results directly examine this factor in a

21

controlled way. They do not, as we do in Section 6, compare the effect of varying levels of stochasticity in the

same domain. Therefore, we believe our results provide more rigorous evidence in support of this conclusion.

Some previous work has also considered the effect of partial observability on the relative performance of evo-

lutionary and TD methods. Moriarty et al. (1999) survey evolutionary methods for reinforcement learning and

note that they should be less vulnerable to the consequences of incomplete state information since they do not

directly rely on the Markov property. They verify this claim using a simple 4-state POMDP, wherein an evolu-

tionary method substantially outperforms Q-learning. This article presents additional evidence in support of this

conclusion, with results from more realistic problems with larger, continuous state spaces. As with stochasticity,

we also study the effect of varying levels of partial observability.

Several researchers (e.g., Gomez & Miikkulainen, 1999; Stanley & Miikkulainen, 2002), have noted that

neuroevolution is particularly well-suited to partially observable tasks, not only because it does not rely on

the Markov property, but because it can evolve networks with recurrent connections. These connections serve

as a form of memory that can help reduce ambiguity in the agent’s observations. Several results in the pole-

balancing domain confirm this hypothesis, as the variations without velocity information cannot be solved without

recurrency.12 Gomez and Schmidhuber (2005) present a neuroevolutionary method specifically designed to tackle

“deep-memory POMDPs” in which the agent must remember observations from many time steps ago. They show

that it outperforms a TD approach using Long Short-Term Memory (LSTM) (Bakker, 2002) to cope with partial

observability.

Metzen et al. (2008) also investigate learning in the keepaway domain. They use Evolutionary Acquisition of

Neural Topologies (EANT) (Kassahun & Sommer, 2005), a neuroevolutionary method similar to NEAT. They

show that EANT’s performance improves when trained in fully observable keepaway, relative to the benchmark

task. However, they do not study a deterministic version or directly compare their results with other learning

methods but focus instead on better understanding EANT through ablation studies.

Finally, Kalyanakrishnan and Stone (2009) compare Sarsa and the cross-entropy method (Mannor, Ruben-

stein, & Gat, 2003; Szita & Lörincz, 2006), another approach to policy search, in a simple navigation task. They

study how the relative performance of these methods changes with respect to several domain characteristics, in-

cluding sensor and effector noise. As in this article, they conclude that sensor noise reduces the final performance

of Sarsa more than that of the policy search alternative. They do not observe, as we do, that stochasticity reduces

the learning speed of policy search more than Sarsa. However, in their experiments, the cross entropy method

uses a large, fixed EPE. Hence, they do not examine whether policy search can be sped up in less stochastic

domains by reducing resampling. They also compare the two methods in the benchmark keepaway task and find

that the cross-entropy method, like NEAT, is slower than Sarsa. However, its final performance is only as good

as Sarsa, i.e., not as good as NEAT. The fact that the cross-entropy method was used to evolve the weights of

a fixed-topology neural network may account its lower final performance compared to NEAT, which can evolve

topologies customized to the task.

8 Future Work

Much empirical work remains to be done to obtain a thorough understanding of the relative merits of TD

and evolutionary methods for reinforcement learning. The work presented here could be extended along two

dimensions: methods and domains.

NEAT and Sarsa are important representative methods, but their performance by no means tells the whole

story. Other evolutionary methods such as CoSyNE (Gomez et al., 2006), EANT (Kassahun & Sommer, 2005),

and HyperNEAT (Gauci & Stanley, 2007), an extension to NEAT based on indirect encodings, also deserve

closer empirical study. Beyond evolutionary methods, other policy search approaches such as the cross-entropy

method (Mannor et al., 2003; Szita & Lörincz, 2006) or policy gradient approaches (Baird & Moore, 1999; Sut-

ton et al., 2000; Baxter & Bartlett, 2001; Kohl & Stone, 2004) could be usefully compared with TD methods.

Similarly, recent developments in making value function approximation more robust, e.g., least-squares policy

iteration (Lagoudakis & Parr, 2003), fitted Q-iteration (Reidmiller, 2005) and evolutionary function approxi-

mation (Whiteson & Stone, 2006), need to be thoroughly compared to the traditional function approximation

approach used in this paper. In addition, TD methods for automatically constructing basis functions (Mahade-

van, 2005; Menache, Mannor, & Shimkin, 2005; Keller, Mannor, & Precup, 2006) are excellent candidates for

comparison with NEAT’s capacity for finding good representations. Other value function approaches, such as

12 Informal experiments in the benchmark version of keepaway and the stochastic version of mountain car suggest that
enabling recurrent links does not increase final performance but does slow learning. Thus, in all of our experiments NEAT
evolves only networks without recurrent links.

22

model-based methods (Brafman & Tennenholtz, 2002; Kearns & Singh, 2002; Strehl & Littman, 2005), could also

be compared to evolutionary and other policy search methods.

A broader range of benchmark domains is also necessary to improve our understanding of when each approach

excels. In the last few years, reinforcement learning methods have been successfully applied to several challenging,

realistic tasks, such as elevator control (Crites & Barto, 1998), helicopter control (Ng et al., 2004), the game

of Tetris (Szita & Lörincz, 2006), autonomic resource allocation (Tesauro et al., 2006), and server job schedul-

ing (Whiteson & Stone, 2006). Such tasks could serve as excellent testbeds for comparisons between disparate

methods.

Finally, the results using NEAT without structural mutations in the benchmark mountain car task (see Sec-

tion 4.1) suggests that further study about the role of topology evolution in NEAT’s success would be useful.

While some ablation experiments in the double pole-balancing task have shown that structural mutations can

be essential to NEAT’s success (Stanley & Miikkulainen, 2002), our results confirm the intuition that, in some

tasks, evolving structure is either unnecessary or too difficult to be helpful. Additional experiments in the moun-

tain car domain using multiple structural mutation rates would help establish conclusively if it is possible to

outperform simple weight evolution in SLPs. Furthermore, ablation experiments in keepaway could help deter-

mine the importance of topology evolution in that more complex task, since in this article we evaluate NEAT

only with default parameter settings. Such experiments are unlikely to qualitatively alter the results presented

here, but they could contribute to ongoing research about what domain characteristics affect the feasibility of

topology-evolving neuroevolution (Kohl & Miikkulainen, 2008, 2009).

9 Conclusion

This article presents results of empirical comparisons between Sarsa and NEAT in mountain car and keepaway

and tests two specific hypotheses about the critical factors contributing to these methods’ relative performance:

1) that sensor noise reduces the final performance of Sarsa more than that of NEAT, because Sarsa’s learning

updates are not reliable in the absence of the Markov property, and 2) that stochasticity, by introducing noise

in fitness estimates, reduces the learning speed of NEAT more than that of Sarsa. Experiments in variations of

mountain car and keepaway designed to isolate these factors confirm both these hypotheses.

This article’s experiments contribute to a body of empirical comparisons between TD and evolutionary

methods that is much in need of expansion. In addition to formulating and testing specific hypotheses with these

methods in concrete domains, we hope that this article will encourage further empirical comparisons of a similar

nature that are needed to achieve a complete picture of the relative strengths of TD and evolutionary methods

for reinforcement learning.

10 Acknowledgments

We would like to thank Ken Stanley for help setting up NEAT in keepaway, as well as Shivaram Kalyanakrishnan,

Nate Kohl, Frans Oliehoek, David Pardoe, Jefferson Provost, Joseph Reisinger, Ken Stanley, and the anonymous

reviewers for helpful comments and suggestions. This research was supported in part by NSF CAREER award

IIS-0237699 and NSF award EIA-0303609.

A – NEAT Parameters

Tables 2 and 3 detail the NEAT parameters used in our experiments. These settings were not varied but were taken from
the default settings included with the NEAT package. Note that the default settings in the two experiments differ slightly
because they rely on two separate versions of NEAT (the C++ version is used for mountain car and the C version is used
for keepaway). Stanley and Miikkulainen (2002) describe the semantics of these parameters in detail.

B – Supplemental Experiment Parameters

Figure 6 compares learning in the benchmark mountain car task with five different function approximators. The

tile coding formulation performs significantly better than the others, thus its parameter settings are detailed

in Section 4.1. The settings of the other four function approximators are detailed here. Output and hidden

nodes were sigmoidal (1.0

1.0+e−x
). In all cases, parameters in the tests were tuned from the following sets: α =

{0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, ǫ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, and d = {0.990, 0.999, 1.0}.

23

Parameter Value Parameter Value Parameter Value
weight-mut-power 0.005 recur-prop 0.0 disjoint-coeff (c1) 1.0
excess-coeff (c2) 1.0 mutdiff-coeff (c3) 0.4 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 mutate-add-node-prob (mn) 0.0 mutate-add-link-prob (ml) 0.0
interspecies-mate-rate 0.001 mate-multipoint-prob 0.6 mate-multipoint-avg-prob 0.4
mate-singlepoint-prob 0.0 mate-only-prob 0.2 recur-only-prob 0.0

pop-size (p) 100 dropoff-age 10 × 106 newlink-tries 20
babies-stolen 0 num-compat-mod 0.3 num-species-target 4

Table 2: The NEAT parameters in this table are used in all mountain car experiments.

Parameter Value Parameter Value Parameter Value
weight-mut-power 2.5 recur-prop 0.0 disjoint-coeff (c1) 1.0
excess-coeff (c2) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 mutate-add-node-prob (mn) 0.02 mutate-add-link-prob (ml) 0.1
interspecies-mate-rate 0.05 mate-multipoint-prob 0.6 mate-multipoint-avg-prob 0.4
mate-singlepoint-prob 0.0 mate-only-prob 0.2 recur-only-prob 0.0

pop-size (p) 100 dropoff-age 1000 newlink-tries 20
babies-stolen 0 num-compat-mod 0.3 num-species-target 20

Table 3: The NEAT parameters in this table are used in all keepaway experiments.

– SLP: 2 inputs: The single layer perceptron has two real valued inputs, one for the car’s velocity and one

for the car’s position. We found α = 0.001, ǫ = 0.1, and d = 0.999 superior.

– SLP: 20 inputs: This single layer perceptron has 20 binary valued inputs, 10 for the car’s velocity and 10

for the car’s position. We found α = 0.001, ǫ = 0.1, and d = 0.990 superior.

– MLP: 2 inputs: The multi-layer perceptron has two real valued inputs, one for the car’s velocity and one

for the car’s position, and two hidden nodes. We found α = 0.3, ǫ = 0.1, and d = 0.999 superior.

– MLP: 20 inputs: This multi-layer perceptron has 20 binary valued inputs, 10 for the car’s velocity and 10

for the car’s position, and two hidden nodes. We found α = 0.001, ǫ = 0.01, and d = 0.990 superior.

Note that both MLP configurations use two hidden nodes. This choice, which was not tuned, was based on our

intuition. However, when NEAT is run on the benchmark mountain car problem, after training with structural

mutations enabled (as done in Figure 7), it learns topologies that have two hidden nodes, on average. Specifically,

over 50 independent trials, we found the final champion topologies to have an average of 2.3 hidden nodes, with a

standard deviation of 0.51. The remainder of mountain car NEAT experiments have structural mutation disabled,

analogous to the SLP topologies.

Figure 7 investigates the effect of using different numbers of inputs and structural mutation on mountain

car policy performance. The two No Structural Mutation experiments set the mutate-add-node-prob (mn)

parameter and the mutate-add-link-prob (ml) parameter to zero. The two With Structural Mutation experi-

ments set these two parameters to their default values (mn = 0.02, ml = 0.1). As above, the 20 input experiments

used twenty binary inputs and the 2 input experiments used 2 real-valued inputs. All experiments used an EPE

of 50.

Figure 10 summarizes a set of experiments detailing how policy performance changes with sensor noise (effector

noise is zero throughout). All NEAT experiments used 50 EPE. Sarsa settings are as follows:

– σ = 0.0: α = 0.1, ǫ = 0.1, d = 0.990

– σ = 0.0005: α = 0.1, ǫ = 0.3, d = 0.990

– σ = 0.001: α = 0.1, ǫ = 0.2, d = 0.990

– σ = 0.005: α = 0.1, ǫ = 0.3, d = 0.999

– σ = 0.01: α = 0.1, ǫ = 0.3, d = 0.999

– σ = 0.05: α = 0.1, ǫ = 0.2, d = 0.990

– σ = 0.1: α = 0.001, ǫ = 0.1, d = 0.999

– σ = 0.2: α = 0.001, ǫ = 0.1, d = 0.999

– σ = 0.5: α = 0.01, ǫ = 0.1, d = 0.990

24

References

Albus, J. S. (1981). Brains, Behavior, and Robotics. Byte Books, Peterborough, NH.

Anderson, C. W. (1986). Learning and Problem Solving with Multilayer Connectionist Systems. Ph.D. thesis,

University of Massachusetts, Amherst, MA.

Baird, L., & Moore, A. (1999). Gradient descent for general reinforcement learning. In Advances in Neural

Information Processing Systems 11. MIT Press.

Bakker, B. (2002). Reinforcement learning with long short-term memory. In Advances in Neural Information

Processing Systems 14, pp. 1475–1482.

Barto, A., & Duff, M. (1994). Monte carlo matrix inversion and reinforcement learning. In Advances in Neural

Information Processing Systems 6, pp. 687–694.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult

learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5), 834–846.

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence

Research, 15, 319–350.

Beielstein, T., & Markon, S. (2002). Threshold selection, hypothesis tests and DOE methods. In 2002 Congresss

on Evolutionary Computation, pp. 777–782.

Bellman, R. E. (1956). A problem in the sequential design of experiments. Sankhya, 16, 221–229.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

Beyer, H.-G., & Sendhoff, B. (2007). Evolutionary algorithms in the presence of noise: To sample or not to

sample. In Proceedings of the First IEEE Symposium on Foundations of Computational Intelligence, pp.

17–24.

Boyan, J. A., & Moore, A. W. (1995). Generalization in reinforcement learning: Safely approximating the value

function. In Advances in Neural Information Processing Systems 7.

Bradtke, S. J., & Duff, M. O. (1995). Reinforcement learning methods for continuous-time Markov decision

problems. In Advances in Neural Information Processing Systems 7, pp. 393–400.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX - a general polynomial time algorithm for near-optimal

reinforcement learning. Journal of Machine Learning Research, 3, 213–231.

Crites, R. H., & Barto, A. G. (1998). Elevator group control using multiple reinforcement learning agents.

Machine Learning, 33 (2-3), 235–262.

Darwen, P. J. (2001). Why co-evolution beats temporal difference learning at backgammon for a linear architec-

ture, but not a non-linear architecture. In Proceedings of the 2001 Congress on Evolutionary Computation,

pp. 1003–1010.

Gauci, J. J., & Stanley, K. O. (2007). Generating large-scale neural networks through discovering geometric

regularities. In Proceedings of the Genetic and Evolutionary Computation Conference.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.

Gomez, F., & Miikkulainen, R. (1999). Solving non-Markovian control tasks with neuroevolution. In Proceedings

of the International Joint Conference on Artificial Intelligence, pp. 1356–1361.

Gomez, F., & Schmidhuber, J. (2005). Co-evolving recurrent neurons learn deep memory POMDPs. In GECCO-

05: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 491–498.

Gomez, F., Schmidhuber, J., & Miikkulainen, R. (2006). Efficient non-linear control through neuroevolution. In

Proceedings of the European Conference on Machine Learning.

Gruau, F., Whitley, D., & Pyeatt, L. (1996). A comparison between cellular encoding and direct encoding for

genetic neural networks. In Genetic Programming 1996: Proceedings of the First Annual Conference, pp.

81–89.

Heidrich-Meisner, V., & Igel, C. (2008a). Evolution strategies for direct policy search. In Proceedings of the

10th International Conference on Parallel Problem Solving from Nature, pp. 428–437 Berlin, Heidelberg.

Springer-Verlag.

Heidrich-Meisner, V., & Igel, C. (2008b). Similarities and differences between policy gradient methods and evo-

lution strategies. In Proceedings of the 16th European Symposium on Artificial Neural Networks (ESANN).

Heidrich-Meisner, V., & Igel, C. (2008c). Variable metric reinforcement learning methods applied to the noisy

mountain car problem. In Recent Advances in Reinforcement Learning: 8th European Workshop, pp. 136–150

Berlin, Heidelberg. Springer-Verlag.

Jong, N. K., & Stone, P. (2007). Model-based exploration in continuous state spaces. In The Seventh Symposium

on Abstraction, Reformulation, and Approximation.

Kakade, S. (2003). On the Sample Complexity of Reinforcement Learning. Ph.D. thesis, University College

London, London, United Kindom.

25

Kalyanakrishnan, S., & Stone, P. (2009). An empirical analysis of value function-based and policy search re-

inforcement learning. In Proceedings of the Eighth International Joint Conference on Autonomous Agents

and Multi–Agent Systems (AAMAS 2009).

Kassahun, Y., & Sommer, G. (2005). Automatic neural robot controller design using evolutionary acquisition

of neural topologies. In 19. Fachgesprch Autonome Mobile Systeme (AMS 2005), Stuttgart, Germany,

8.-9.12.05, Informatik aktuell, pp. 315–321. Springer-Verlag.

Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning,

49 (2), 209–232.

Keller, P., Mannor, S., & Precup, D. (2006). Automatic basis function construction for approximate dynamic

programming and reinforcement learning. In Proceedings of the 23rd International Conference on Machine

Learning, pp. 449–456.

Kohl, N., & Miikkulainen, R. (2008). Evolving neural networks for fractured domains. In Proceedings of the

Genetic and Evolutionary Computation Conference, pp. 1405–1412.

Kohl, N., & Miikkulainen, R. (2009). Evolving neural networks for strategic decision-making problems. Neural

Networks, 22, 326–337. Special issue on Goal-Directed Neural Systems.

Kohl, N., & Stone, P. (2004). Policy gradient reinforcement learning for fast quadrupedal locomotion. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation, pp. 2619–2624.

Kretchmar, R. M., & Anderson, C. W. (1997). Comparison of CMACs and radial basis functions for local function

approximators in reinforcement learning. In International Conference on Neural Networks.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning Research,

4(2003), 1107–1149.

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity of solving Markov decision processes. In

Proceedings of the Eleventh International Conference on Uncertainty in Artificial Intelligence, pp. 394–402.

Lucas, S. M., & Runarsson, T. P. (2006). Temporal difference learning versus co-evolution for acquiring Othello

position evaluation. In IEEE Symposium on Computational Intelligence and Games.

Lucas, S. M., & Togelius, J. (2007). Point-to-point car racing: an initial study of evolution versus temporal

difference learning. In IEEE Symposium on Computational Intelligence and Games, pp. 260–267.

Mahadevan, S. (2005). Samuel meets Amarel: Automating value function approximation using global state space

analysis. In Proceedings of the Twentieth National Conference on Artificial Intelligence.

Mannor, S., Rubenstein, R., & Gat, Y. (2003). The cross-entropy method for fast policy search. In Proceedings

of the Twentieth International Conference on Machine Learning, pp. 512–519.

Menache, I., Mannor, S., & Shimkin, N. (2005). Basis function adaptation in temporal difference reinforcement

learning. Annals of Operations Research, 134, 215–238.

Metzen, J. H., Edgington, M., Kassahun, Y., & Kirchner, F. (2008). Analysis of an evolutionary reinforcement

learning method in a multiagent domain. In Proceedings of the Seventh International Joint Conference on

Autonomous Agents and Multi–Agent Systems (AAMAS 2008), pp. 291–298 Estoril, Portugal.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time.

Machine Learning, 13, 103–130.

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient reinforcement learning through symbiotic evolution. Machine

Learning, 22 (11), 11–33.

Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (1999). Evolutionary algorithms for reinforcement learning.

Journal of Artificial Intelligence Research, 11, 199–229.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., & Liang, E. (2004). Inverted

autonomous helicopter flight via reinforcement learning. In Proceedings of the International Symposium on

Experimental Robotics.

Noda, I., Matsubara, H., Hiraki, K., & Frank, I. (1998). Soccer server: a tool for research on multiagent systems.

Applied Artificial Intelligence, 12, 233–250.

Pollack, J., & Blair, A. (1998). Co-evolution in the successful learning of backgammon strategy. Machine Learning,

32, 225–240.

Potter, M. A., & Jong, K. A. D. (2000). Cooperative coevolution: An architecture for evolving coadapted

subcomponents. Evolutionary Computation, 8, 1–29.

Powell, M. (1987). Radial basis functions for multivariate interpolation: A review. In Algorithms for Approxima-

tion. Clarendon Press, Oxford.

Pyeatt, L. D., & Howe, A. E. (2001). Decision tree function approximation in reinforcement learning. In

Proceedings of the Third International Symposium on Adaptive Systems: Evolutionary Computation and

Probabilistic Graphical Models, pp. 70–77.

Radcliffe, N. J. (1993). Genetic set recombination and its application to neural network topology optimization.

Neural Computing and Applications, 1 (1), 67–90.

26

Reidmiller, M. (2005). Neural fitted Q iteration - first experiences with a data efficient neural reinforcement

learning method. In Proceedings of the Sixteenth European Conference on Machine Learning, pp. 317–328.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning using connectionist systems. Tech. rep. CUED/F-

INFENG/TR 166, Cambridge University.

Runarsson, T. P., & Lucas, S. M. (2005). Co-evolution versus self-play temporal difference learning for acquiring

position evaluation in small-board Go. IEEE Transactions on Evolutionary Computation, 9, 628–640.

Saravanan, N., & Fogel, D. B. (1995). Evolving neural control systems. IEEE Expert: Intelligent Systems and

Their Applications, 10 (3), 23–27.

Smart, W. D., & Kaelbling, L. P. (2000). Practical reinforcement learning in continuous spaces. In Proceedings

of the Seventeeth International Conference on Machine Learning, pp. 903–910.

Stagge, P. (1998). Averaging efficiently in the presence of noise. In Parallel Problem Solving from Nature, Vol. 5,

pp. 188–197.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary

Computation, 10 (2), 99–127.

Stanley, K. O., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification.

Journal of Artificial Intelligence Research, 21, 63–100.

Stone, P. (2000). Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer. MIT Press.

Stone, P., Kuhlmann, G., Taylor, M. E., & Liu, Y. (2005a). Keepaway soccer: From machine learning testbed to

benchmark. In RoboCup-2005: Robot Soccer World Cup IX, Vol. 4020, pp. 93–105. Springer Verlag, Berlin.

Stone, P., Sutton, R. S., & Kuhlmann, G. (2005b). Reinforcement learning in RoboCup-soccer keepaway. Adaptive

Behavior, 13(3), 165–188.

Strehl, A., & Littman, M. (2005). A theoretical analysis of model-based interval estimation. In Proceedings of

the Twenty-Second International Conference on Machine Learning, pp. 856–863.

Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. In

Advances in Neural Information Processing Systems 8, pp. 1038–1044.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning, pp.

216–224.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge, Mas-

sachussets.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning

with function approximation. In Advances in Neural Information Processing Systems, pp. 1057–1063.

Szita, I., & Lörincz, A. (2006). Learning Tetris using the noisy cross-entropy method. Neural Computation,

18 (12), 2936–2941.

Taylor, M. E., Whiteson, S., & Stone, P. (2006). Comparing evolutionary and temporal difference methods in a

reinforcement learning domain. In GECCO 2006: Proceedings of the Genetic and Evolutionary Computation

Conference, pp. 1321–1328.

Tesauro, G. (1994). TD-gammon, a self-teaching backgammon program achieves master-level play. Neural

Computation, 6, 215–219.

Tesauro, G. (1998). Comments on “co-evolution in the successful learning of backgammon strategy”. Machine

Learning, 32(3), 241–243.

Tesauro, G., Das, N. K. J. R., & Bennania, M. N. (2006). A hybrid reinforcement learning approach to autonomic

resource allocation. In Proceedings of the Third International Conference on Autonomic Computing.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 9–44.

Weiland, A. (1991). Evolving neural network controllers for unstable systems. In International Joint Conference

on Neural Networks, pp. 667–673.

Whiteson, S., Kohl, N., Miikkulainen, R., & Stone, P. (2005). Evolving keepaway soccer players through task

decomposition. Machine Learning, 59(1), 5–30.

Whiteson, S., & Stone, P. (2006). Evolutionary function approximation for reinforcement learning. Journal of

Machine Learning Research, 7(May), 877–917.

Whitley, D., & Kauth, K. (1988). GENITOR: A different genetic algorithm. In Proceedings of the 1988 Rocky

Mountain Conference on Artificial Intelligence, pp. 118–130.

Whitley, D., Dominic, S., Das, R., & Anderson, C. W. (1993). Genetic reinforcement learning for neurocontrol

problems. Machine Learning, 13, 259–284.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87 (9), 1423–1447.

27

