
Evolutionary Computation for
Reinforcement Learning

Shimon Whiteson

Abstract Algorithms for evolutionary computation, which simulate the process of
natural selection to solve optimization problems, are an effective tool for discov-
ering high-performing reinforcement-learning policies. Because they can automat-
ically find good representations, handle continuous action spaces, and cope with
partial observability, evolutionary reinforcement-learning approaches have a strong
empirical track record, sometimes significantly outperforming temporal-difference
methods. This chapter surveys research on the application of evolutionary compu-
tation to reinforcement learning, overviewing methods for evolving neural-network
topologies and weights, hybrid methods that also use temporal-difference methods,
coevolutionary methods for multi-agent settings, generative and developmental sys-
tems, and methods for on-line evolutionary reinforcement learning.

1 Introduction

Algorithms for evolutionary computation, sometimes known as genetic algorithms
(Holland, 1975; Goldberg, 1989), are optimization methods that simulate the pro-
cess of natural selection to find highly fit solutions to a given problem. Typically the
problem assumes as input a fitness function f : C→ ℜ that maps C, the set of all
candidate solutions, to a real-valued measure of fitness. The goal of an optimization
method is to find c∗ = argmaxc f (c), the fittest solution. In some cases, the fitness
function may be stochastic, in which case f (c) can be thought of as a random vari-
able and c∗ = argmaxc E[f (c)].

Evolutionary methods search for c∗ by repeatedly selecting and reproducing a
population of candidate solutions. The initial population is typically chosen ran-
domly, after which each member of the population is evaluated using f and the

Shimon Whiteson
Informatics Institute, University of Amsterdam e-mail: s.a.whiteson@uva.nl

1

2 Shimon Whiteson

best performing ones are selected as the basis for a new population. This new pop-
ulation is formed via reproduction, in which the selected policies are mated (i.e.,
components of two different solutions are combined) and mutated (i.e., the parame-
ter values of one solution are stochastically altered). This process repeats over many
iterations, until a sufficiently fit solution has been found or the available computa-
tional resources have been exhausted.

There is an enormous number of variations on this approach, such as multi-
objective methods (Deb, 2001; Coello et al, 2007) diversifying algorithms (Holland,
1975; Goldberg and Richardson, 1987; Mahfoud, 1995; Potter and De Jong, 1995;
Darwen and Yao, 1996) and distribution-based methods (Larranaga and Lozano,
2002; Hansen et al, 2003; Rubinstein and Kroese, 2004). However, the basic ap-
proach is extremely general and can in principle be applied to all optimization prob-
lems for which f can be specified.

Included among these optimization problems are reinforcement-learning tasks
(Moriarty et al, 1999). In this case, C corresponds to the set of possible policies, e.g.,
mappings from S to A, and f (c) is the average cumulative reward obtained while
using such a policy in a series of Monte Carlo trials in the task. In other words, in
an evolutionary approach to reinforcement learning, the algorithm directly searches
the space of policies for one that maximizes the expected cumulative reward.

Like many other policy-search methods, this approach reasons only about the
value of entire policies, without constructing value estimates for particular state-
action pairs, as temporal-difference methods do. The holistic nature of this approach
is sometimes criticized. For example, Sutton and Barto write:

Evolutionary methods do not use the fact that the policy they are searching for is a function
from states to actions; they do not notice which states an individual passes through during its
lifetime, or which actions it selects. In some cases this information can be misleading (e.g.,
when states are misperceived) but more often it should enable more efficient search (Sutton
and Barto, 1998, p. 9).

These facts can put evolutionary methods at a theoretical disadvantage. For exam-
ple, in some circumstances, dynamic programming methods are guaranteed to find
an optimal policy in time polynomial in the number of states and actions (Littman
et al, 1995). By contrast, evolutionary methods, in the worst case, must iterate over
an exponential number of candidate policies before finding the best one. Empirical
results have also shown that evolutionary methods sometimes require more episodes
than temporal-difference methods to find a good policy, especially in highly stochas-
tic tasks in which many Monte Carlo simulations are necessary to achieve a reliable
estimate of the fitness of each candidate policy (Runarsson and Lucas, 2005; Lucas
and Runarsson, 2006; Lucas and Togelius, 2007; Whiteson et al, 2010b).

However, despite these limitations, evolutionary computation remains a popular
tool for solving reinforcement-learning problems and boasts a wide range of empir-
ical successes, sometimes substantially outperforming temporal-difference methods
(Whitley et al, 1993; Moriarty and Miikkulainen, 1996; Stanley and Miikkulainen,
2002; Gomez et al, 2008; Whiteson et al, 2010b). There are three main reasons why.

First, evolutionary methods can cope well with partial observability. While evo-
lutionary methods do not exploit the relationship between subsequent states that an

Evolutionary Computation for Reinforcement Learning 3

agent visits, this can be advantageous when the agent is unsure about its state. Since
temporal-difference methods rely explicitly on the Markov property, their value es-
timates can diverge when it fails to hold, with potentially catastrophic consequences
for the performance of the greedy policy. In contrast, evolutionary methods do not
rely on the Markov property and will always select the best policies they can find
for the given task. Severe partial observability may place a ceiling on the perfor-
mance of such policies, but optimization within the given policy space proceeds
normally (Moriarty et al, 1999). In addition, representations that use memory to re-
duce partial observability, such as recurrent neural networks, can be be optimized in
a natural way with evolutionary methods (Gomez and Miikkulainen, 1999; Stanley
and Miikkulainen, 2002; Gomez and Schmidhuber, 2005a,b).

Second, evolutionary methods can make it easier to find suitable representations
for the agent’s solution. Since policies need only specify an action for each state,
instead of the value of each state-action pair, they can be simpler to represent. In
addition, it is possible to simultaneously evolve a suitable policy representation (see
Sections 3 and 4.2). Furthermore, since it is not necessary to perform learning up-
dates on a given candidate solution, it is possible to use more elaborate representa-
tions, such as those employed by generative and developmental systems (GDS) (see
Section 6).

Third, evolutionary methods provide a simple way to solve problems with large
or continuous action spaces. Many temporal-difference methods are ill-suited to
such tasks because they require iterating over the action space in each state in or-
der to identify the maximizing action. In contrast, evolutionary methods need only
evolve policies that directly map states to actions. Of course, actor-critic methods
(Doya, 2000; Peters and Schaal, 2008) and other techniques (Gaskett et al, 1999;
Millán et al, 2002; van Hasselt and Wiering, 2007) can also be used to make
temporal-difference methods suitable for continuous action spaces. Nonetheless,
evolutionary methods provide a simple, effective way to address such difficulties.

Of course, none of these arguments are unique to evolutionary methods, but ap-
ply in principle to other policy-search methods too. However, evolutionary methods
have proven a particularly popular way to search policy space and, consequently,
there is a rich collection of algorithms and results for the reinforcement-learning
setting. Furthermore, as modern methods, such as distribution-based approaches,
depart further from the original genetic algorithms, their resemblance to the pro-
cess of natural selection has decreased. Thus, the distinction between evolutionary
methods and other policy search approaches has become fuzzier and less important.

This chapter provides an introduction to and overview of evolutionary methods
for reinforcement learning. The vastness of the field makes it infeasible to address
all the important developments and results. In the interest of clarity and brevity, this
chapter focuses heavily on neuroevolution (Yao, 1999), in which evolutionary meth-
ods are used to evolve neural networks (Haykin, 1994), e.g., to represent policies.
While evolutionary reinforcement learning is by no means limited to neural-network
representations, neuroevolutionary approaches are by far the most common. Fur-
thermore, since neural networks are a popular and well-studied representation in
general, they are a suitable object of focus for this chapter.

4 Shimon Whiteson

The rest of this chapter is organized as follows. By way of introduction, Section 2
describes a simple neuroevolutionary algorithm for reinforcement learning. Section
3 considers topology- and weight-evolving artificial neural networks (TWEANNs),
including the popular NEAT method, that automatically discover their own internal
representations. Section 4 considers hybrid approaches, such as evolutionary func-
tion approximation and learning classifier systems, that integrate evolution with
temporal-difference methods. Section 5 discusses coevolution, in which multiple
competing and/or cooperating policies are evolved simultaneously. Section 6 de-
scribes generative and developmental systems (GDSs) such as HyperNEAT, which
rely on indirect encodings: more complex representations in which the agent’s pol-
icy must be constructed or grown from the evolved parameter values. Section 7
discusses on-line methods that strive to maximize reward during evolution instead
of merely discovering a good policy quickly.

2 Neuroevolution

Neural networks (Haykin, 1994) are an extremely general-purpose way of represent-
ing complex functions. Because of their concision, they are a popular representation
for reinforcement-learning policies, not only for evolutionary computation, but also
for other policy-search algorithms and for temporal-difference methods. This sec-
tion introduces the basics of neuroevolutionary approaches to reinforcement learn-
ing, in which evolutionary methods are used to optimize neural-network policies.

Figure 1 illustrates the basic steps of a neuroevolutionary algorithm (Yao, 1999).
In each generation, each network in the population is evaluated in the task. Next, the
best performing are selected, e.g., via rank-based selection, roulette wheel selection,
or tournament selection (Goldberg and Deb, 1991). The selected networks are bred
via crossover and mutation and reproduced (Sywerda, 1989; De Jong and Spears,
1991)) to form a new population and the process repeats.

Fig. 1 The basic steps of neuroevolution.

Evolutionary Computation for Reinforcement Learning 5

In a reinforcement-learning setting, each input node in a network typically corre-
sponds to a state feature, such that the value of the inputs together describe the
agent’s state. There are many ways to represent actions. If the actions can also be
described with features, as is common with continuous action spaces, then each out-
put node can correspond to an action feature. In this case, the value of the outputs
together describe the action to be selected for the given state. When the number of
actions is small and discrete, a separate network can be used for each action, as is
common in value-function approximation. In this case, each network has only one
output node. The policy’s action for a given state then corresponds to the network
that produces the largest output for that state.

In this chapter, we focus on a variation of this approach called action-selection
networks. As before, we assume the set of actions is small and discrete. However,
only one network is used to represent the policy. This network has one output node
for each action. The policy’s action for a given state then corresponds to the node
that produces the largest output for that state.

Algorithm 1 contains a high-level description of a simple neuroevolutionary
method that evolves action-selection networks for an episodic reinforcement-learning
problem. It begins by creating a population of random networks (line 4). In each
generation, it repeatedly iterates over the current population (lines 6–7). During
each step of a given episode, the agent takes whatever action corresponds to the out-
put with the highest activation (lines 10–12). Note that s′ and a′ are the current state
and action while s and a are the previous state and action. Neuroevolution main-
tains a running total of the reward accrued by the network during its evaluation (line
13). Each generation ends after e episodes, at which point each network’s average
fitness is N. f itness/N.episodes. In stochastic domains, e typically must be much
larger than |P| to ensure accurate fitness estimates for each network. Neuroevolu-
tion creates a new population by repeatedly calling the BREED-NET function (line
18), which generates a new network from highly fit parents.

Note that, while the action selection described in lines 10–12 resembles greedy
action selection from a value function, the network should not be interpreted as a
value function.1 Evolution does not search for the networks that best approximate
the optimal value function. Instead, it searches for networks representing high per-
forming policies. To perform well, a network need only generate more output for the
optimal action than for other actions. Unlike with value functions, the scale of the
outputs can be arbitrary, as well as the relative outputs of the non-selected actions.

The neural network employed by Algorithm 1 could be a simple feed-forward
network or a more complex recurrent network. Recurrent neural networks can con-
tain cycles (e.g., the output emerging from an output node can be fed into an input
node). Consequently, such networks can contain internal state. In a reinforcement-
learning context, this internal state can record aspects of the agent’s observation his-
tory, which can help it cope with partial observability (Wieland, 1991; Gomez and
Miikkulainen, 1999; Moriarty et al, 1999; Stanley and Miikkulainen, 2002; Igel,
2003; Gomez and Schmidhuber, 2005a,b).

1 This does not apply to the hybrid methods discussed in Section 4.

6 Shimon Whiteson

Algorithm 1 NEUROEVOLUTION(S,A, p,g,e)
1: // S: set of all states, A: set of all actions, p: population size
2: // g: number of generations, e: episodes per generation
3:
4: P← INIT-POPULATION(S,A, p) // create new population P with random networks
5: for i← 1 to g do
6: for j← 1 to e do
7: N,s,s′← P[j % p], null, INIT-STATE(S) // select next network
8: repeat
9: Q← EVAL-NET(N,s′) // evaluate selected network on current state

10: a′← argmaxiQ[i] // select action with highest activation
11: s,a← s′,a′

12: r,s′← TAKE-ACTION(a′) // take action and transition to new state
13: N. f itness← N. f itness+ r // update total reward accrued by N
14: until TERMINAL-STATE?(s)
15: N.episodes← N.episodes+1 // update total number of episodes for N
16: P′← new array of size p // new array will store next generation
17: for j← 1 to p do
18: P′[j]← BREED-NET(P) // make a new network based on fit parents in P
19: P← P′

While Algorithm 1 uses a traditional genetic algorithm to optimize neural-network
weights, many variations are also possible. For example, estimation of distribution
algorithms (EDAs) (Larranaga and Lozano, 2002; Hansen et al, 2003; Rubinstein
and Kroese, 2004) can be used instead. EDAs, also called probabilistic model-
building genetic algorithms (PMBGAs), do not explicitly maintain a population of
candidate solutions. Instead, they maintain a distribution over solutions. In each
generation, candidate solutions are sampled from this distribution and evaluated.
A subset is then selected and used to update the distribution using density estima-
tion techniques, unsupervised learning techniques for approximating the distribution
from which a set of samples was drawn.

One of the most popular and effective EDAs is the covariance matrix adapta-
tion evolution strategy (CMA-ES) (Hansen et al, 2003), a variable-metric EDA in
which the distribution is a multivariate Gaussian whose covariance matrix adapts
over time. When used to optimize neural networks, the resulting method, called
CMA-NeuroES, has proven effective on a wide range of reinforcement-learning
tasks (Igel, 2003; Heidrich-Meisner and Igel, 2008, 2009a,b,c).

3 TWEANNs

In its simplest form, Algorithm 1 evolves only neural networks with fixed repre-
sentations. In such a setup, all the networks in a particular evolutionary run have
the same topology, i.e., both the number of hidden nodes and the set of edges con-
necting the nodes are fixed. The networks differ only with respect to the weights of
these edges, which are optimized by evolution. The use of fixed representations is

Evolutionary Computation for Reinforcement Learning 7

by no means unique to neuroevolution. In fact, though methods exist for automat-
ically discovering good representations for value-functions (Mahadevan and Mag-
gioni, 2007; Parr et al, 2007) temporal-difference methods typically also use fixed
representations for function approximation.

Nonetheless, reliance on fixed representations is a significant limitation. The pri-
mary reason is that it requires the user of the algorithm to correctly specify a good
representation in advance. Clearly, choosing too simple a representation will doom
evolution to poor performance, since describing high quality solutions becomes im-
possible. However, choosing too complex a representation can be just as harmful.
While such a representation can still describe good solutions, finding them may be-
come infeasible. Since each weight in the network corresponds to a dimension of
the search space, a representation with too many edges can lead to an intractable
search problem.

In most tasks, the user is not able to correctly guess the right representation.
Even in cases where the user possesses great domain expertise, deducing the right
representation from this expertise is often not possible. Typically, finding a good
representation becomes a process of trial and error. However, repeatedly running
evolution until a suitable representation is found greatly increases computational
costs. Furthermore, in on-line tasks (see Section 7) it also increases the real-world
costs of trying out policies in the target environment.

For these reasons, many researchers have investigated ways to automate the dis-
covery of good representations (Dasgupta and McGregor, 1992; Radcliffe, 1993;
Gruau, 1994; Stanley and Miikkulainen, 2002). Evolutionary methods are well
suited to this challenge because they take a direct policy-search approach to rein-
forcement learning. In particular, since neuroevolution already directly searches the
space of network weights, it can also simultaneously search the space of network
topologies. Methods that do so are sometimes called topology- and weight-evolving
artificial neural networks (TWEANNs).

Perhaps the earliest and simplest TWEANN is the structured genetic algorithm
(sGA) (Dasgupta and McGregor, 1992), which uses a two-part representation to
describe each network. The first part represents the connectivity of the network in
the form of a binary matrix. Rows and columns correspond to nodes in the network
and the value of each cell indicates whether an edge exists connecting the given pair
of nodes. The second part represents the weights of each edge in the network. In
principle, by evolving these binary matrices along with connection weights, sGA
can automatically discover suitable network topologies. However, sGA suffers from
several limitations. In the following section, we discuss these limitations in order to
highlight the main challenges faced by all TWEANNs.

3.1 Challenges

There are three main challenges to developing a successful TWEANN. The first
is the competing conventions problem. In most tasks, there are multiple different

8 Shimon Whiteson

policies that have similar fitness. For example, many tasks contain symmetries that
give rise to several equivalent solutions. This can lead to difficulties for evolution
because of its reliance on crossover operators to breed new networks. When two
networks that represent different policies are combined, the result is likely to be
destructive, producing a policy that cannot successfully carry out the strategy used
by either parent.

While competing conventions can arise in any evolutionary method that uses
crossover, the problem is particularly severe for TWEANNs. Two parents may not
only implement different policies but also have different representations. There-
fore, to be effective, TWEANNs need a mechanism for combining networks with
different topologies in a way that minimizes the chance of catastrophic crossover.
Clearly, sGA does not meet this challenge, since the binary matrices it evolves are
crossed over without regard to incompatibility in representations. In fact, the dif-
ficulties posed by the competing conventions problem were a major obstacle for
early TWEANNs, to the point that some researchers simply avoided the problem by
developing methods that do not perform crossover at all (Radcliffe, 1993).

The second challenge is the need to protect topological innovations long enough
to optimize the associated weights. Typically, when new topological structures are
introduced (e.g., the addition of a new hidden node or edge), it has a negative ef-
fect on fitness even if that structure will eventually be necessary for a good policy.
The reason is that the weights associated with the new structure have not yet been
optimized.

For example, consider an edge in a network evolved via sGA that is not activated,
i.e., its cell in the binary matrix is set to zero. The corresponding weight for that
edge will not experience any selective pressure, since it is not manifested in the
network. If evolution suddenly activates that edge, the effect on fitness is likely to be
detrimental, since its weight is not optimized. Therefore, if topological innovations
are not explicitly protected, they will typically be eliminated from the population,
causing the search for better topologies to stagnate.

Fortunately, protecting innovation is a well-studied problem in evolutionary com-
putation. Speciation and niching methods (Holland, 1975; Goldberg and Richard-
son, 1987; Mahfoud, 1995; Potter and De Jong, 1995; Darwen and Yao, 1996) en-
sure diversity in the population, typically by segregating disparate individuals and/or
penalizing individuals that are too similar to others. However, using such methods
requires a distance metric to quantify the differences between individuals. Devis-
ing such a metric is difficult for TWEANNs, since it is not clear how to compare
networks with different topologies.

The third challenge is how to evolve minimal solutions. As mentioned above,
a central motivation for TWEANNs is the desire to avoid optimizing overly com-
plex topologies. However, if evolution is initialized with a population of randomly
chosen topologies, as in many TWEANNs, some of these topologies may already
be too complex. Thus, at least part of the evolutionary search will be conducted in
an unnecessarily high dimensional space. It is possible to explicitly reward smaller
solutions by adding size penalties in the fitness function (Zhang and Muhlenbein,

Evolutionary Computation for Reinforcement Learning 9

1993). However, there is no principled way to determine the size of the penalties
without prior knowledge about the topological complexity required for the task.

3.2 NEAT

Perhaps the most popular TWEANN is neuroevolution of augmenting topologies
(NEAT) (Stanley and Miikkulainen, 2002). In this section, we briefly describe
NEAT and illustrate how it addresses the major challenges mentioned above.

NEAT is often used to evolve action selectors, as described in Section 2. In fact,
NEAT follows the framework described in Algorithm 1 and differs from traditional
neuroevolution only in how INIT-POPULATION and BREED-NET are implemented.

To represent networks of varying topologies, NEAT employs a flexible genetic
encoding. Each network is described by a list of edge genes, each of which describes
an edge between two node genes. Each edge gene specifies the in-node, the out-
node, and the weight of the edge. During mutation, new structure can be introduced
to a network via special mutation operators that add new node or edge genes to the
network (see Figure 2).

Inputs

Nodes
Hidden

Outputs

Mutation
Add Node

Inputs

Nodes
Hidden

Outputs

Mutation
Add Link

(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Fig. 2 Structural mutation operators in NEAT. At left. a new node is added by splitting an existing
edge in two. At right, a new link (edge) is added between two existing nodes.

To avoid catastrophic crossover, NEAT relies on innovation numbers, which track
the historical origin of each gene. Whenever a new gene appears via mutation, it
receives a unique innovation number. Thus, the innovation numbers can be viewed
as a chronology of all the genes produced during evolution.

During crossover, innovation numbers are used to determine which genes in the
two parents correspond to each other. Genes that do not match are either disjoint or
excess, depending on whether they occur within or outside the range of the other
parent’s innovation numbers. When crossing over, pairs of genes with the same in-
novation number (one from each parent) are lined up. Genes that do not match are
inherited from the fitter parent. This approach makes it possible for NEAT to min-
imize the chance of catastrophic crossover without conducting an expensive topo-
logical analysis. Since genomes with different topologies nonetheless remain com-
patible throughout evolution, NEAT essentially avoids the competing conventions
problem.

Innovation numbers also make possible a simple way to protect topological in-
novation. In particular, NEAT uses innovation numbers to speciate the population

10 Shimon Whiteson

based on topological similarity. The distance δ between two network encodings is
a simple linear combination of the number of excess (E) and disjoint (D) genes, as
well as the average weight differences of matching genes (W):

δ =
c1E
N

+
c2D
N

+ c3 ·W

The coefficients c1, c2, and c3 adjust the importance of the three factors, and the
factor N, the number of genes in the larger genome, normalizes for genome size.
Networks whose distance is greater than δt , a compatibility threshold, are placed
into different species. Explicit fitness sharing (Goldberg, 1989), in which networks
in the same species must share the fitness of their niche, is employed to protect
innovative species.

To encourage the evolution of minimal solutions, NEAT begins with a uniform
population of simple networks with no hidden nodes and inputs connected directly
to outputs. New structure is introduced incrementally via the mutation operators that
add new hidden nodes and edges to the network. Since only the structural mutations
that yield performance advantages tend to survive evolution’s selective pressure,
minimal solutions are favored.

NEAT has amassed numerous empirical successes on difficult reinforcement-
learning tasks like non-Markovian double pole balancing (Stanley and Miikku-
lainen, 2002), game playing (Stanley and Miikkulainen, 2004b), and robot con-
trol (Stanley and Miikkulainen, 2004a; Taylor et al, 2006; Whiteson et al, 2010b).
However, Kohl and Miikkulainen (2008, 2009) have shown that NEAT can perform
poorly on tasks in which the optimal action varies discontinuously across states.
They demonstrate that these problems can be mitigated by providing neurons with
local receptive fields and constraining topology search to cascade structures

4 Hybrids

Many researchers have investigated hybrid methods that combine evolution with
supervised or unsupervised learning methods. In such systems, the individuals being
evolved do not remain fixed during their fitness evaluations. Instead, they change
during their ‘lifetimes’ by learning from the environments with which they interact.

Much of the research on hybrid methods focuses on analyzing the dynamics that
result when evolution and learning interact. For example, several studies (Whitley
et al, 1994; Yamasaki and Sekiguchi, 2000; Pereira and Costa, 2001; Whiteson and
Stone, 2006a) have used hybrids to compare Lamarckian and Darwinian systems.
In Lamarckian systems, the phenotypic effects of learning are copied back into the
genome before reproduction, allowing new offspring to inherit them. In Darwinian
systems, which more closely model biology, learning does not affect the genome.
As other hybrid studies (Hinton and Nowlan, 1987; French and Messinger, 1994;
Arita and Suzuki, 2000) have shown, Darwinian systems can indirectly transfer the
results of learning into the genome by way of the Baldwin effect (Baldwin, 1896), in

Evolutionary Computation for Reinforcement Learning 11

which learning creates selective pressures favoring individuals who innately possess
attributes that were previously learned.

Hybrid methods have also been employed to improve performance on supervised
learning tasks (Gruau and Whitley, 1993; Boers et al, 1995; Giraud-Carrier, 2000;
Schmidhuber et al, 2005, 2007). However, such methods are not directly applicable
to reinforcement-learning problems because the labeled data they require is absent.

Nonetheless, many hybrid methods for reinforcement learning have been devel-
oped. To get around the problem of missing labels, researchers have employed un-
supervised learning (Stanley et al, 2003), trained individuals to resemble their par-
ents (McQuesten and Miikkulainen, 1997), trained them to predict state transitions
(Nolfi et al, 1994), and trained them to teach themselves (Nolfi and Parisi, 1997).
However, perhaps the most natural hybrids for the reinforcement learning setting are
combination of evolution with temporal-difference methods (Ackley and Littman,
1991; Wilson, 1995; Downing, 2001; Whiteson and Stone, 2006a). In this section,
we survey two such hybrids: evolutionary function approximation and XCS, a type
of learning classifier system.

4.1 Evolutionary Function Approximation

Evolutionary function approximation (Whiteson and Stone, 2006a), is a way to syn-
thesize evolutionary and temporal-difference methods into a single method that au-
tomatically selects function approximator representations that enable efficient in-
dividual learning. The main idea is that, if evolution is directed to evolve value
functions instead of action selectors, then those value functions can be updated, us-
ing temporal-difference methods, during each fitness evaluation. In this way, the
system can evolve function approximators that are better able to learn via temporal-
difference methods. This biologically intuitive combination, which has been applied
to many computational systems (Hinton and Nowlan, 1987; Ackley and Littman,
1991; Boers et al, 1995; French and Messinger, 1994; Gruau and Whitley, 1993;
Nolfi et al, 1994), can yield effective reinforcement-learning algorithms. In this sec-
tion, we briefly describe NEAT+Q, an evolutionary function approximation tech-
nique resulting from the combination of NEAT and Q-learning with neural-network
function approximation.

To make NEAT optimize value functions instead of action selectors, all that is
required is a reinterpretation of its output values. The structure of neural-network
action selectors (one input for each state feature and one output for each action)
is already identical to that of Q-learning function approximators. Therefore, if the
weights of the networks NEAT evolves are updated during their fitness evaluations
using Q-learning and backpropagation, they will effectively evolve value functions
instead of action selectors. Hence, the outputs are no longer arbitrary values; they
represent the long-term discounted values of the associated state-action pairs and
are used, not just to select the most desirable action, but to update the estimates of
other state-action pairs.

12 Shimon Whiteson

Algorithm 2 shows the inner loop of NEAT+Q, replacing lines 9–13 in Algo-
rithm 1. Each time the agent takes an action, the network is backpropagated to-
wards Q-learning targets (line 7) and ε-greedy selection occurs (lines 4–5). Figure
3 illustrates the complete algorithm: networks are selected from the population for
evaluation and the Q-values they produce are used to select actions. The resulting
feedback from the environment is used both to perform TD updates and to measure
the network’s fitness, i.e., the total reward it accrues while learning.

Algorithm 2 NEAT+Q (inner loop)
1: // α: learning rate, γ: discount factor, λ : eligibility decay rate, ε: exploration rate
2:
3: Q← EVAL-NET(N,s′) // compute value estimates for current state
4: with-prob(ε) a′← RANDOM(A) // select random exploratory action
5: else a′← argmaxkQ[k] // or select greedy action
6: if s 6= null then
7: BACKPROP(N,s,a,(r+ γmaxkQ[k]),α,γ,λ) // adjust weights
8: s,a← s′,a′

9: r,s′← TAKE-ACTION(a′) // take action and transition to new state
10: N. f itness← N. f itness+ r // update total reward accrued by N

Like other hybrid methods, NEAT+Q combines the advantages of temporal-difference
methods with those of evolution. In particular, it harnesses the ability of NEAT to
discover effective representations and uses it to aid neural-network value-function
approximation. Unlike traditional neural-network function approximators, which
put all their eggs in one basket by relying on a single manually designed network
to represent the value function, NEAT+Q explores the space of such networks to
increase the chance of finding a high performing representation. As a result, on cer-
tain tasks, this approach has been shown to significantly outperform both temporal-
difference methods and neuroevolution on their own (Whiteson and Stone, 2006a).

Fig. 3 The NEAT+Q algorithm.

Evolutionary Computation for Reinforcement Learning 13

4.2 XCS

A different type of hybrid method can be constructed using learning classifier sys-
tems (LCSs) (Holland, 1975; Holland and Reitman, 1977; Bull and Kovacs, 2005;
Butz, 2006; Drugowitsch, 2008). An LCS is an evolutionary system that uses rules,
called classifiers, to represent solutions. A wide range of classification, regression,
and optimization problems can be tackled using such systems. These include rein-
forcement learning problems, in which case a set of classifiers describes a policy.

Each classifier contains a condition that describes the set of states to which the
classifier applies. Conditions can be specified in many ways (e.g., fuzzy conditions
(Bonarini, 2000) or neural network conditions (Bull and O’Hara, 2002)) but perhaps
the simplest is the ternary alphabet used for binary state features: 0, 1, and #, where
indicates “don’t care”. For example, a classifier with condition 01#10 applies to
the states 01010 and 01110. Classifiers also contain actions, which specify what
action the agent should take in states to which the classifier applies, and predictions
which estimate the corresponding action-value function.

In Pittsburgh-style classifier systems (De Jong et al, 1993), each individual in
the evolving population consists of an entire rule set describing a complete policy.
These methods can be viewed as standard evolutionary approaches to reinforcement
learning with rule sets as a way to represent policies, i.e., in lieu of neural net-
works. In contrast, in Michigan-style classifier systems, each individual consists of
only one rule. Thus, the entire population represents a single, evolving policy. In
the remainder of this section, we give a brief overview of XCS (Wilson, 1995, 2001;
Butz et al, 2008), one of the most popular Michigan-style classifiers. Since predic-
tion updates in XCS are based on Q-learning, it can be viewed as a hybrid between
temporal-difference methods and evolutionary reinforcement-learning algorithms.

In XCS, each classifier’s prediction contributes to an estimate of the Q-values of
the state-action pairs to which the classifier applies. Q(s,a) is the weighted average
of the predictions of all the matching classifiers, i.e., those that apply to s and have
action a. The fitness of each classifier determines its weight in the average (fitness
is defined later in this section). In other words:

Q(s,a) =
∑c∈M(s,a) c. f · c.p

∑c∈M(s,a) c. f
,

where M(s,a) is the set of all classifiers matching s and a; c. f and c.p are the fitness
and prediction, respectively, of classifier c.

Each time the agent is in state s, takes action a, receives reward r, and transitions
to state s′, the following update rule is applied to each c ∈M(s,a):

c.p← c.p+β [r+ γmaxa′Q(s′,a′)− c.p]
c. f

∑c′∈M(s,a) c′. f
,

14 Shimon Whiteson

where β is a learning rate parameter. This is essentially a Q-learning update, except
that the size of the update is scaled according to the relative fitness of c, since this
determines its contribution to the Q-value.

Many LCS systems use strength-based updates, wherein each classifier’s fitness
is based on its prediction, i.e., classifiers that expect to obtain more reward are fa-
vored by evolution. However, this can lead to the problem of strong over-generals
(Kovacs, 2003), which are general classifiers that have high overall value but select
suboptimal actions for a subset of states. With strength-based updates, such clas-
sifiers are favored over more specific ones that select better actions for that same
subset but have lower overall value.

To avoid this problem, XCS uses accuracy-based updates, in which a classifier’s
fitness is inversely proportional to an estimate of the error in its prediction. This
error c.ε is updated based on the absolute value of the temporal-difference error
used in the Q-learning update:

c.ε ← c.ε +β (|r+ γmaxa′Q(s′,a′)− c.p|− c.ε)

Classifier accuracy is then defined in terms of this error. Specifically, when c.ε > ε0,
a minimum error threshold, the accuracy of c is defined as:

c.κ = α(c.ε/ε0)
−η ,

where α and η are accuracy parameters. When c.ε ≤ ε0, c.κ = 1.
However, fitness is computed, not with this accuracy, but instead with the set-

relative accuracy: the accuracy divided by the sum of the accuracies of all matching
classifiers. This yields the following fitness update:

c. f ← c. f +β (
c.κ

∑c′∈M(s,a) c′.κ
− c. f)

At every timestep, the prediction, error and fitness of each matching classifier are
updated. Since XCS is a steady-state evolutionary method, there are no generations.
Instead, the population changes incrementally through the periodic selection and
reproduction of a few fit classifiers, which replace a few weak classifiers and leave
the rest of the population unchanged. When selection occurs, only classifiers that
match the current state and action are considered. New classifiers are created from
the selected ones using crossover and mutation, and weak classifiers (chosen from
the whole population, not just the matching ones) are deleted to make room.

Thanks to the Q-learning updates, the accuracy of the classifiers tends to improve
over time. Thanks to steady-state evolution, the most accurate classifiers are selec-
tively bred. General rules tend to have higher error (since they generalize over more
states) and thus lower accuracy. It might seem that, as a result, XCS will evolve only
highly specific rules. However, more general rules also match more often. Since only
matching classifiers can reproduce, XCS balances the pressure for specific rules with
pressure for general rules. Thus, it strives to learn a complete, maximally general,
and accurate set of classifiers for approximating the optimal Q-function.

Evolutionary Computation for Reinforcement Learning 15

Though there are no convergence proofs for XCS on MDPs, it has proven empir-
ically effective on many tasks. For example, on maze tasks, it has proven adept at
automatically discovering what state features to ignore (Butz et al, 2005) and solv-
ing problems with more than a million states (Butz and Lanzi, 2009). It has also
proven adept at complex sensorimotor control (Butz and Herbort, 2008; Butz et al,
2009) and autonomous robotics (Dorigo and Colombetti, 1998).

5 Coevolution

Coevolution is a concept from evolutionary biology that refers to the interactions
between multiple individuals that are simultaneously evolving. In other words, co-
evolution occurs when the fitness function of one individual depends on other indi-
viduals that are also evolving. In nature, this can occur when different populations
interact, e.g., cheetahs and the gazelles they hunt, or within a population, e.g., mem-
bers of the same species competing for mates. Furthermore, coevolution can be
cooperative, e.g., humans and the bacteria in our digestive systems, or competitive,
e.g., predator and prey. All these forms of coevolution have been investigated and
exploited in evolutionary reinforcement learning, as surveyed in this section.

5.1 Cooperative Coevolution

The most obvious application of cooperative coevolution is to cooperative multi-
agent systems (Panait and Luke, 2005) which, in the context of reinforcement learn-
ing, means evolving teams of agents that coordinate their behavior to solve a sequen-
tial decision problem. In principle, such problems can be solved without coevolu-
tion by using a monolithic approach: evolving a population in which each individual
specifies the policy for every agent on the team. However, such an approach quickly
becomes intractable, as the size of the search space grows exponentially with respect
to the number of agents.

One of the primary motivations for a coevolutionary approach is that it can help
address this difficulty (Wiegand et al, 2001; Jansen and Wiegand, 2004; Panait et al,
2006). As Gomez et al. put it, “many problems may be decomposable into weakly
coupled low-dimensional subspaces that can be searched semi-independently by
separate species” (Gomez et al, 2008). In general, identifying these low-dimensional
subspaces requires a lot of domain knowledge. However, in multi-agent problems,
it is often sufficient to divide the problem up by agent, i.e., evolve one population
for each agent on the team, in order to make evolution tractable. In this approach,
one member of each population is selected, often randomly, to form a team that is
then evaluated in the task. The total reward obtained contributes to an estimate of
the fitness of each participating agent, which is typically evaluated multiple times.

16 Shimon Whiteson

While this approach often outperforms monolithic evolution and has found suc-
cess in predator-prey (Yong and Miikkulainen, 2007) and robot-control (Cai and
Peng, 2002) applications, it also runs into difficulties when there are large numbers
of agents. The main problem is that the contribution of a single agent to the total
reward accrued becomes insignificant. Thus, the fitness an agent receives depends
more on which teammates it is evaluated with than on its own policy. However, it
is possible to construct special fitness functions for individual agents that are much
less sensitive to such effects (Agogino and Tumer, 2008). The main idea is to use
difference functions (Wolpert and Tumer, 2002) that compare the total reward the
team obtains when the agent is present to when it is absent or replaced by a fixed
baseline agent. While this approach requires access to a model of the environment
and increases the computational cost of fitness evaluation (so that the reward in both
scenarios can be measured), it can dramatically improve the performance of coop-
erative coevolution.

Coevolution can also be used to simultaneously evolve multiple components of
a single agent, instead of multiple agents. For example, in the task of robot soccer
keepaway, domain knowledge has been used to decompose the task into different
components, each representing an important skill such as running towards the ball
or getting open for a pass (Whiteson et al, 2005). Neural networks for each of these
components are then coevolved and together comprise a complete policy. In the
keepaway task, coevolution greatly outperforms a monolithic approach.

Cooperative coevolution can also be used in a single-agent setting to facilitate
neuroevolution. Rather than coevolving multiple networks, with one for each mem-
ber of a team or each component of a policy, neurons are coevolved, which to-
gether form a single network describing the agent’s policy (Potter and De Jong,
1995, 2000). Typically, networks have fixed topologies with a single hidden layer
and each neuron corresponds to a hidden node, including all the weights of its in-
coming and outgoing edges. Just as dividing a multi-agent task up by agent often
leads to simpler subproblems, so too can breaking up a neuroevolutionary task by
neuron. As Moriarty and Mikkulainen say,“neuron-level evolution takes advantage
of the a priori knowledge that individual neurons constitute basic components of
neural networks” (Moriarty and Miikkulainen, 1997).

One example is symbiotic adaptive neuroevolution (SANE) (Moriarty and Mi-
ikkulainen, 1996, 1997) in which evolution occurs simultaneously at two levels.
At the lower level, a single population of neurons is evolved. The fitness of each
neuron is the average performance of the networks in which it participates during
fitness evaluations. At the higher level, a population of blueprints is evolved, with
each blueprint consisting of a vector of pointers to neurons in the lower level. The
blueprints that combine neurons into the most effective networks tend to survive se-
lective pressure. On various reinforcement-learning tasks such as robot control and
pole balancing, SANE has outperformed temporal-difference methods, monolithic
neuroevolution, and neuron-level evolution without blueprints.

The enforced subpopulations (ESP) method (Gomez and Miikkulainen, 1999)
eliminates the blueprint population but segregates neurons into subpopulations, one
for each hidden node. One member of each population is selected randomly to form

Evolutionary Computation for Reinforcement Learning 17

a network for each fitness evaluation. This encourages subpopulations to take on
different specialized roles, increasing the likelihood that effective networks will be
formed even without blueprints. ESP has performed particularly well on partially
observable tasks, solving a non-Markovian version of the double pole-balancing
problem. In addition H-ESP, a hierarchical variant that does use blueprints, has
proven successful on deep memory POMDPs, i.e., those requiring history of hun-
dreds or thousands of timesteps (Gomez and Schmidhuber, 2005a). ESP has even
been used to evolve control systems for a finless sounding rocket (Gomez and Mi-
ikkulainen, 2003).

In cooperative synapse neuroevolution (CoSyNE) (Gomez et al, 2006, 2008), the
idea of separate subpopulations is taken even further. Rather than a subpopulation
for every neuron, which contains multiple weights, CoSyNE has a subpopulation
for each edge, which has only one weight (see Figure 4). Thus the problem of find-
ing a complete network is broken down into atomic units, solutions to which are
coevolved. On several versions of the pole balancing problem, CoSyNE has been
shown to outperform various temporal-difference methods and other policy-search
approaches, as well as SANE, ESP, and NEAT (Gomez et al, 2006, 2008). How-
ever, in a more recent study, CMA-NeuroES (see Section 2) performed even better
(Heidrich-Meisner and Igel, 2009b).

1x2

P4

P1

P2

P3

P5

P6

3xmx

Neural Network

x

Fig. 4 The CoSyNE algorithm, using six subpopulations, each containing m weights. All the
weights at a given index i form a genotype xi. Each weight is taken from a different subpopu-
lation and describes one edge in the neural network. Figure taken with permission from (Gomez
et al, 2008).

18 Shimon Whiteson

5.2 Competitive Coevolution

Coevolution has also proven a powerful tool for competitive settings. The most
common applications are in games, in which coevolution is used to simultaneously
evolve strong players and the opponents against which they are evaluated. The hope
is to create an arms race (Dawkins and Krebs, 1979) in which the evolving agents
exert continual selective pressure on each other, driving evolution towards increas-
ingly effective policies.

Perhaps the simplest example of competitive coevolution is the work of Pollack
and Blair in the game of backgammon (Pollack and Blair, 1998). Their approach
relies on a simple optimization technique (essentially an evolutionary method with
a population size of two) wherein a neural network plays against a mutated version
of itself and the winner survives. The approach works so well that Pollack and Blair
hypothesize that Tesauro’s great success with TD-Gammon (Tesauro, 1994) is due
more to the nature of backgammon than the power of temporal-difference methods.2

Using larger populations, competitive coevolution has also found success in the
game of checkers. The Blondie24 program uses the minimax algorithm (Von Neu-
mann, 1928) to play checkers, relying on neuroevolution to discover an effective
evaluator of board positions (Chellapilla and Fogel, 2001). During fitness evalua-
tions, members of the current population play games against each other. Despite the
minimal use of human expertise, Blondie24 evolved to play at a level competitive
with human experts.

Competitive coevolution can also have useful synergies with TWEANNs. In
fixed-topology neuroevolution, arms races may be cut short when additional im-
provement requires an expanded representation. Since TWEANNs can automati-
cally expand their representations, coevolution can give rise to continual complexi-
fication (Stanley and Miikkulainen, 2004a).

The methods mentioned above evolve only a single population. However, as in
cooperative coevolution, better performance is sometimes possible by segregating
individuals into separate populations. In the host/parasite model (Hillis, 1990), one
population evolves hosts and another parasites. Hosts are evaluated based on their
robustness against parasites, e.g., how many parasites they beat in games of check-
ers. In contrast, parasites are evaluated based on their uniqueness, e.g., how many
hosts they can beat that other parasites cannot. Such fitness functions can be imple-
mented using competitive fitness sharing (Rosin and Belew, 1997).

In Pareto coevolution, the problem is treated as a multi-objective one, with each
opponent as an objective (Ficici and Pollack, 2000, 2001). The goal is thus to find
a Pareto-optimal solution, i.e., one that cannot be improved with respect to one
objective without worsening its performance with respect to another. Using this ap-
proach, many methods have been developed that maintain Pareto archives of oppo-

2 Tesauro, however, disputes this claim, pointing out that the performance difference between
Pollack and Blair’s approach and his own is quite significant, analogous to that between an average
human player and a world-class one (Tesauro, 1998).

Evolutionary Computation for Reinforcement Learning 19

nents against which to evaluate evolving solutions (De Jong, 2004; Monroy et al,
2006; De Jong, 2007; Popovici et al, 2010).

6 Generative and Developmental Systems

All of the evolutionary reinforcement-learning methods described above rely on
direct encodings to represent policies. In such representations, evolution optimizes a
genotype (e.g., a vector of numbers specifying the weights of a neural network) that
can be trivially transformed into a phenotype (e.g., the neural network itself). While
the simplicity of such an approach is appealing, it has limited scalability. Since the
genotype is always as large as the phenotype, evolving the complex policies required
to solve many realistic tasks requires searching a high dimensional space.

Generative and developmental systems (Gruau, 1994; Hornby and Pollack, 2002;
Stanley and Miikkulainen, 2003; Stanley et al, 2009) is a subfield of evolutionary
computation that focuses on evolving indirect encodings. In such representations,
the phenotype is ‘grown’ via a developmental process specified by the genotype. In
many cases, good policies possess simplifying regularities such as symmetry and
repetition, which allow for genotypes that are much smaller than the phenotypes
they produce. Consequently, searching genotype space is more feasible, making it
possible to scale to larger reinforcement-learning tasks.

Furthermore, indirect encodings often provide a natural way to exploit a task’s
geometry, i.e., the spatial relationship between state features. In most direct encod-
ings, such geometry cannot be exploited because it is not captured in the represen-
tation. For example, consider a neural network in which each input describes the
current state of one square on a chess board. Since these inputs are treated as an un-
ordered set, the distance between squares is not captured in the representation. Thus,
structures for exploiting the relationship between squares must be evolved, compli-
cating the task. In contrast, an indirect encoding can describe a network where the
structure for processing each square’s state is a function of that square’s position on
the board, with the natural consequence that nearby squares are processed similarly.

Like other evolutionary methods, systems using indirect encodings are inspired
by analogies with biological systems: e.g., human beings have trillions of cells in
their bodies but develop from genomes containing only tens of thousands of genes.
Thus, it is not surprising that many indirect encodings are built on models of natural
development. For example, L-systems (Lindenmayer, 1968), which are formal gram-
mars for describing complex recursive structures, have been used to evolve both the
morphology and control system for autonomous robots, greatly outperforming di-
rect encodings (Hornby and Pollack, 2002). Similarly, cellular encodings (Gruau
and Whitley, 1993; Gruau, 1994) evolve graph grammars for generating modular
neural networks composed of simpler subnetworks. This approach allows evolution
to exploit regularities in the solution structure by instantiating multiple copies of the
same subnetwork in order to build a complete network.

20 Shimon Whiteson

More recently, the HyperNEAT method (Stanley et al, 2009) has been developed
to extend NEAT to use indirect encodings. This approach is based on composi-
tional patten producing networks (CPPNs). CPPNs are neural networks for describ-
ing complex patterns. For example, a two-dimensional image can be described by
a CPPN whose inputs correspond to an x-y position in the image and whose output
corresponds to the color that should appear in that position. The image can then
be generated by querying the CPPN at each x-y position and setting that position’s
color based on the output. Such CPPNs can be evolved by NEAT, yielding a devel-
opmental system with the CPPN as the genotype and the image as the phenotype.

In HyperNEAT, the CPPN is used to describe a neural network instead of an
image. Thus, both the genotype and phenotype are neural networks. As illustrated
in Figure 5, the nodes of the phenotypic network are laid out on a substrate, i.e., a
grid, such that each has a position. The CPPN takes as input two positions instead
of one and its output specifies the weight of the edge connecting the two corre-
sponding nodes. As before, these CPPNs can be evolved by NEAT based on the
fitness of the resulting phenotypic network, e.g., its performance as a policy in a
reinforcement learning task. The CPPNs can be interpreted as describing a spatial
pattern in a four-dimensional hypercube, yielding the name HyperNEAT. Because
the developmental approach makes it easy to specify networks that exploit symme-
tries and regularities in complex tasks, HyperNEAT has proven an effective tool for
reinforcement learning, with successful applications in domains such as checkers
(Gauci and Stanley, 2008, 2010), keepaway soccer (Verbancsics and Stanley, 2010),
and multi-agent systems (D’Ambrosio et al, 2010).

Fig. 5 The HyperNEAT algorithm. Figure taken with permission from (Gauci and Stanley, 2010).

Evolutionary Computation for Reinforcement Learning 21

7 On-Line Methods

While evolutionary methods have excelled in many challenging reinforcement-
learning problems, their empirical success is largely restricted to off-line scenarios,
in which the agent learns, not in the real-world, but in a ‘safe’ environment like a
simulator. In other words, the problem specification usually includes a fitness func-
tion that requires only computational resources to evaluate, as in other optimization
problems tackled with evolutionary computation.

In off-line scenarios, an agent’s only goal is to learn a good policy as quickly as
possible. How much reward it obtains while it is learning is irrelevant because those
rewards are only hypothetical and do not correspond to real-world costs. If the agent
tries disastrous policies, only computation time is lost.

While efficient off-line learning is an important goal, it has limited practical ap-
plicability. In many cases, no simulator is available because the dynamics of the
task are unknown, e.g., when a robot explores an unfamiliar environment or a chess
player plays a new opponent. Other times, the dynamics of the task are too complex
to accurately simulate, e.g., user behavior on a large computer network or the noise
in a robot’s sensors and actuators.

Therefore, many researchers consider on-line learning a fundamental challenge
in reinforcement learning. In an on-line learning scenario, the agent must maximize
the reward it accrues while it is learning because those rewards correspond to real-
world costs. For example, if a robot learning on-line tries a policy that causes it to
drive off a cliff, then the negative reward the agent receives is not hypothetical; it
corresponds to the real cost of fixing or replacing the robot.

Evolutionary methods have also succeeded on-line (Steels, 1994; Nordin and
Banzhaf, 1997; Schroder et al, 2001), especially in evolutionary robotics (Meyer
et al, 1998; Floreano and Urzelai, 2001; Floreano and Mondada, 2002; Pratihar,
2003; Kernbach et al, 2009; Zufferey et al, 2010), and some research has investi-
gated customizing such methods to on-line settings (Floreano and Urzelai, 2001;
Whiteson and Stone, 2006a,b; Priesterjahn et al, 2008; Tan et al, 2008; Cardamone
et al, 2009, 2010).

Nonetheless, in most applications, researchers typically report performance us-
ing only the off-line measures common for optimization problems, e.g., the number
of fitness evaluations needed to find a policy achieving a threshold performance or
the performance of the best policy found after a given number of fitness evalua-
tions. Therefore, determining how best to use evolutionary methods for reinforce-
ment learning in on-line settings, i.e., how to maximize cumulative reward during
evolution, remains an important and under-explored research area.

7.1 Model-Based Methods

One possible approach is to use evolution, not as a complete solution method, but
as a component in a model-based method. In model-based algorithms, the agent’s

22 Shimon Whiteson

interactions with its environment are used to learn a model, to which planning meth-
ods are then applied. As the agent gathers more samples from the environment, the
quality of the model improves, which, in turn, improves the quality of the policy pro-
duced via planning. Because planning is done off-line, the number of interactions
needed to find a good policy is minimized, leading to strong on-line performance.

In such an approach, planning is typically conducted using dynamic program-
ming methods like value iteration. However, many other methods can be used in-
stead; if the model is continuous and/or high dimensional, evolutionary or other
policy-search methods may be preferable. Unfortunately, most model-based meth-
ods are designed only to learn tabular models for small, discrete state spaces. Still,
in some cases, especially when considerable domain expertise is available, more
complex models can be learned.

For example, linear regression has been used learn models of helicopter dynam-
ics, which can then be used for policy-search reinforcement learning (Ng et al,
2004). The resulting policies have successfully controlled real model helicopters.
A similar approach was used to maximize on-line performance in the helicopter-
hovering events in recent Reinforcement Learning Competitions (Whiteson et al,
2010a): models learned via linear regression were used as fitness functions for poli-
cies evolved off-line via neuroevolution (Koppejan and Whiteson, 2009).

Alternatively, evolutionary methods can be used for the model-learning compo-
nent of a model-based solution. In particular, anticipatory learning classifier sys-
tems (Butz, 2002; Gerard et al, 2002, 2005; Sigaud et al, 2009), a type of LCS,
can be used to evolve models of the environment that are used for planning in a
framework similar to Dyna-Q (Sutton, 1990).

7.2 On-Line Evolutionary Computation

Another possible solution is on-line evolutionary computation (Whiteson and Stone,
2006a,b). The main idea is to borrow exploration strategies commonly used to select
actions in temporal-difference methods and use them to select policies for evaluation
in evolution. Doing so allows evolution to balance exploration and exploitation in a
way that improves on-line performance.

Of course, evolutionary methods already strive to balance exploration and ex-
ploitation. In fact, this is one of the main motivations originally provided for genetic
algorithms (Holland, 1975). However, this balance typically occurs only across gen-
erations, not within them. Once the members of each generation have been deter-
mined, they all typically receive the same evaluation time.

This approach makes sense in deterministic domains, where each member of the
population can be accurately evaluated in a single episode. However, many real-
world domains are stochastic, in which case fitness evaluations must be averaged
over many episodes. In these domains, giving the same evaluation time to each
member of the population can be grossly suboptimal because, within a generation,
it is purely exploratory.

Evolutionary Computation for Reinforcement Learning 23

Instead, on-line evolutionary computation exploits information gained earlier in
the generation to systematically give more evaluations to more promising policies
and avoid re-evaluating weaker ones. This is achieved by employing temporal-
difference exploration strategies to select policies for evaluation in each generation.

For example, ε-greedy selection can be used at the beginning of each episode to
select a policy for evaluation. Instead of iterating through the population, evolution
selects a policy randomly with probability ε . With probability 1− ε , the algorithm
selects the best policy discovered so far in the current generation. The fitness of
each policy is just the average reward per episode it has received so far. Each time a
policy is selected for evaluation, the total reward it receives is incorporated into that
average, which can cause it to gain or lose the rank of best policy.

For the most part, ε-greedy selection does not alter evolution’s search but simply
interleaves it with exploitative episodes that increase average reward during learn-
ing. However, softmax selection can also be used to focus exploration on the most
promising alternatives. At the beginning of each generation, each individual is eval-
uated for one episode, to initialize its fitness. Then, the remaining e−|P| episodes
are allocated according to a Boltzmann distribution.

Neither ε-greedy nor softmax consider the uncertainty of the estimates on which
they base their selections, a shortcoming that can be addressed with interval estima-
tion (Kaelbling, 1993). When used in temporal-difference methods, interval estima-
tion computes a (100−α)% confidence interval for the value of each available ac-
tion. The agent always takes the action with the highest upper bound on this interval.
This strategy favors actions with high estimated value and also focuses exploration
on promising but uncertain actions. The α parameter controls the balance between
exploration and exploitation, with smaller values generating greater exploration.

The same strategy can be employed within evolution to select policies for eval-
uation. At the beginning of each generation, each individual is evaluated for one
episode, to initialize its fitness. Then, the remaining e− |P| episodes are allocated
to the policy that currently has the highest upper bound on its confidence interval.

All three of these implementations of on-line evolutionary computation have
been shown to substantially improve on-line performance, both in conjunction with
NEAT (Whiteson and Stone, 2006b; Cardamone et al, 2009, 2010) and NEAT+Q
(Whiteson and Stone, 2006a).

8 Conclusion

Evolutionary methods are a powerful tool for tackling challenging reinforcement
learning problems. They are especially appealing for problems that include partial
observability, have continuous action spaces, or where effective representations can-
not be manually specified. Particularly in the area of neuroevolution, sophisticated
methods exist for evolving neural-network topologies, decomposing the task based
on network structure, and exploiting indirect encodings. Thanks to hybrid meth-
ods, the use of evolutionary computation does not require forgoing the power of

24 Shimon Whiteson

temporal-difference methods. Furthermore, coevolutionary approaches extend the
reach of evolution to multi-agent reinforcement learning, both cooperative and com-
petitive. While most work in evolutionary computation has focused on off-line set-
tings, promising research exists in developing evolutionary methods for on-line rein-
forcement learning, which remains a critical and exciting challenge for future work.

Acknowledgments

Thanks to Ken Stanley, Risto Miikkulainen, Jürgen Schmidhuber, Martin Butz, Ju-
lian Bishop, and the anonymous reviewers for their invaluable input regarding the
state of the art in evolutionary reinforcement learning.

References

Ackley D, Littman M (1991) Interactions between learning and evolution. Artificial Life II, SFI
Studies in the Sciences of Complexity 10:487–509

Agogino AK, Tumer K (2008) Efficient evaluation functions for evolving coordination. Evolution-
ary Computation 16(2):257–288

Arita T, Suzuki R (2000) Interactions between learning and evolution: The outstanding strategy
generated by the Baldwin Effect. Artificial Life 7:196–205

Baldwin JM (1896) A new factor in evolution. The American Naturalist 30:441–451
Boers E, Borst M, Sprinkhuizen-Kuyper I (1995) Evolving Artificial Neural Networks using the

“Baldwin Effect”. In: Artificial Neural Nets and Genetic Algorithms, Proceedings of the Inter-
national Conference in Ales, France

Bonarini A (2000) An introduction to learning fuzzy classifier systems. Learning Classifier Sys-
tems pp 83–104

Bull L, Kovacs T (2005) Foundations of learning classifier systems: An introduction. Foundations
of Learning Classifier Systems pp 1–17

Bull L, O’Hara T (2002) Accuracy-based neuro and neuro-fuzzy classifier systems. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp 905–911

Butz M (2002) Anticipatory learning classifier systems. Kluwer Academic Publishers
Butz M (2006) Rule-based evolutionary online learning systems: A principled approach to LCS

analysis and design. Springer Verlag
Butz M, Herbort O (2008) Context-dependent predictions and cognitive arm control with XCSF.

In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation,
ACM, pp 1357–1364

Butz M, Lanzi P (2009) Sequential problems that test generalization in learning classifier systems.
Evolutionary Intelligence 2(3):141–147

Butz M, Goldberg D, Lanzi P (2005) Gradient descent methods in learning classifier systems:
Improving XCS performance in multistep problems. IEEE Transactions on Evolutionary Com-
putation 9(5)

Butz M, Lanzi P, Wilson S (2008) Function approximation with XCS: Hyperellipsoidal condi-
tions, recursive least squares, and compaction. IEEE Transactions on Evolutionary Computa-
tion 12(3):355–376

Evolutionary Computation for Reinforcement Learning 25

Butz M, Pedersen G, Stalph P (2009) Learning sensorimotor control structures with XCSF: Re-
dundancy exploitation and dynamic control. In: Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, pp 1171–1178

Cai Z, Peng Z (2002) Cooperative coevolutionary adaptive genetic algorithm in path planning of
cooperative multi-mobile robot systems. Journal of Intelligent and Robotic Systems 33(1):61–
71

Cardamone L, Loiacono D, Lanzi P (2009) On-line neuroevolution applied to the open racing car
simulator. In: Proceedings of the Congress on Evolutionary Computation (CEC), pp 2622–2629

Cardamone L, Loiacono D, Lanzi PL (2010) Learning to drive in the open racing car simulator
using online neuroevolution. Computational Intelligence and AI in Games, IEEE Transactions
on 2(3):176 –190

Chellapilla K, Fogel D (2001) Evolving an expert checkers playing program without using human
expertise. IEEE Transactions on Evolutionary Computation 5(4):422–428

Coello C, Lamont G, Van Veldhuizen D (2007) Evolutionary algorithms for solving multi-objective
problems. Springer-Verlag

D’Ambrosio D, Lehman J, Risi S, Stanley KO (2010) Evolving policy geometry for scalable mul-
tiagent learning. In: Proceedings of the Ninth International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2010), pp 731–738

Darwen P, Yao X (1996) Automatic modularization by speciation. In: Proceedings of the 1996
IEEE International Conference on Evolutionary Computation (ICEC96), pp 88–93

Dasgupta D, McGregor D (1992) Designing application-specific neural networks using the struc-
tured genetic algorithm. In: Proceedings of the International Conference on Combinations of
Genetic Algorithms and Neural Networks, pp 87–96

Dawkins R, Krebs J (1979) Arms races between and within species. Proceedings of the Royal
Society of London Series B, Biological Sciences 205(1161):489–511

De Jong E (2004) The incremental Pareto-coevolution archive. In: Genetic and Evolutionary
Computation–GECCO 2004, Springer, pp 525–536

De Jong E (2007) A monotonic archive for Pareto-coevolution. Evolutionary computation
15(1):61–93

De Jong K, Spears W (1991) An analysis of the interacting roles of population size and crossover
in genetic algorithms. Parallel problem solving from nature pp 38–47

De Jong K, Spears W, Gordon D (1993) Using genetic algorithms for concept learning. Machine
learning 13(2):161–188

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley
Dorigo M, Colombetti M (1998) Robot shaping: An experiment in behavior engineering. The MIT

Press
Downing KL (2001) Reinforced genetic programming. Genetic Programming and Evolvable Ma-

chines 2(3):259–288
Doya K (2000) Reinforcement learning in continuous time and space. Neural Computation

12(1):219–245
Drugowitsch J (2008) Design and analysis of learning classifier systems: A probabilistic approach.

Springer Verlag
Ficici S, Pollack J (2000) A game-theoretic approach to the simple coevolutionary algorithm. In:

Parallel Problem Solving from Nature PPSN VI, Springer, pp 467–476
Ficici S, Pollack J (2001) Pareto optimality in coevolutionary learning. Advances in Artificial Life

pp 316–325
Floreano D, Mondada F (2002) Evolution of homing navigation in a real mobile robot. IEEE

Transactions on Systems, Man, and Cybernetics, Part B 26(3):396–407
Floreano D, Urzelai J (2001) Evolution of plastic control networks. Autonomous Robots

11(3):311–317
French R, Messinger A (1994) Genes, phenes and the Baldwin effect: Learning and evolution in a

simulated population. Artificial Life 4:277–282
Gaskett C, Wettergreen D, Zelinsky A (1999) Q-learning in continuous state and action spaces.

Advanced Topics in Artificial Intelligence pp 417–428

26 Shimon Whiteson

Gauci J, Stanley KO (2008) A case study on the critical role of geometric regularity in machine
learning. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI-2008)

Gauci J, Stanley KO (2010) Autonomous evolution of topographic regularities in artificial neural
networks. Neural Computation 22(7):1860–1898

Gerard P, Stolzmann W, Sigaud O (2002) YACS: a new learning classifier system using anticipa-
tion. Soft Computing-A Fusion of Foundations, Methodologies and Applications 6(3):216–228

Gerard P, Meyer J, Sigaud O (2005) Combining latent learning with dynamic programming in the
modular anticipatory classifier system. European Journal of Operational Research 160(3):614–
637

Giraud-Carrier C (2000) Unifying learning with evolution through Baldwinian evolution and
Lamarckism: A case study. In: Proceedings of the Symposium on Computational Intelligence
and Learning (CoIL-2000), pp 36–41

Goldberg D (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley

Goldberg D, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms.
Foundations of genetic algorithms 1:69–93

Goldberg D, Richardson J (1987) Genetic algorithms with sharing for multimodal function opti-
mization. In: Proceedings of the Second International Conference on Genetic Algorithms and
their Application, p 49

Gomez F, Miikkulainen R (1999) Solving non-Markovian control tasks with neuroevolution. In:
Proceedings of the International Joint Conference on Artificial Intelligence, pp 1356–1361

Gomez F, Miikkulainen R (2003) Active guidance for a finless rocket using neuroevolution. In:
GECCO-03: Proceedings of the Genetic and Evolutionary Computation Conference

Gomez F, Schmidhuber J (2005a) Co-evolving recurrent neurons learn deep memory POMDPs.
In: GECCO-05: Proceedings of the Genetic and Evolutionary Computation Conference, pp
491–498

Gomez F, Schmidhuber J (2005b) Evolving modular fast-weight networks for control. Artificial
Neural Networks: Formal Models and Their Applications-ICANN 2005 pp 383–389

Gomez F, Schmidhuber J, Miikkulainen R (2006) Efficient non-linear control through neuroevolu-
tion. In: Proceedings of the European Conference on Machine Learning

Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated neural evolution through coopera-
tively coevolved synapses. Journal of Machine Learning Research 9:937–965

Gruau F (1994) Automatic definition of modular neural networks. Adaptive Behavior 3(2):151
Gruau F, Whitley D (1993) Adding learning to the cellular development of neural networks: Evo-

lution and the Baldwin effect. Evolutionary Computation 1:213–233
Hansen N, Müller S, Koumoutsakos P (2003) Reducing the time complexity of the derandomized

evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation
11(1):1–18

van Hasselt H, Wiering M (2007) Reinforcement learning in continuous action spaces. In: IEEE In-
ternational Symposium on Approximate Dynamic Programming and Reinforcement Learning,
2007. ADPRL 2007, pp 272–279

Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall
Heidrich-Meisner V, Igel C (2008) Variable metric reinforcement learning methods applied to the

noisy mountain car problem. Recent Advances in Reinforcement Learning pp 136–150
Heidrich-Meisner V, Igel C (2009a) Hoeffding and Bernstein races for selecting policies in evo-

lutionary direct policy search. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp 401–408

Heidrich-Meisner V, Igel C (2009b) Neuroevolution strategies for episodic reinforcement learning.
Journal of Algorithms 64(4):152–168

Heidrich-Meisner V, Igel C (2009c) Uncertainty handling CMA-ES for reinforcement learning.
In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp
1211–1218

Evolutionary Computation for Reinforcement Learning 27

Hillis W (1990) Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D: Nonlinear Phenomena 42(1-3):228–234

Hinton GE, Nowlan SJ (1987) How learning can guide evolution. Complex Systems 1:495–502
Holland J, Reitman J (1977) Cognitive systems based on adaptive algorithms. ACM SIGART Bul-

letin 63:49–49
Holland JH (1975) Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control and Artificial Intelligence. University of Michigan Press
Hornby G, Pollack J (2002) Creating high-level components with a generative representation for

body-brain evolution. Artificial Life 8(3):223–246
Igel C (2003) Neuroevolution for reinforcement learning using evolution strategies. In: Congress

on Evolutionary Computation, vol 4, pp 2588–2595
Jansen T, Wiegand RP (2004) The cooperative coevolutionary (1+1) EA. Evolutionary Computa-

tion 12(4):405–434
Kaelbling LP (1993) Learning in Embedded Systems. MIT Press
Kernbach S, Meister E, Scholz O, Humza R, Liedke J, Ricotti L, Jemai J, Havlik J, Liu W (2009)

Evolutionary robotics: The next-generation-platform for on-line and on-board artificial evolu-
tion. In: CEC’09: IEEE Congress on Evolutionary Computation, pp 1079–1086

Kohl N, Miikkulainen R (2008) Evolving neural networks for fractured domains. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp 1405–1412

Kohl N, Miikkulainen R (2009) Evolving neural networks for strategic decision-making problems.
Neural Networks 22:326–337, special issue on Goal-Directed Neural Systems.

Koppejan R, Whiteson S (2009) Neuroevolutionary reinforcement learning for generalized heli-
copter control. In: GECCO 2009: Proceedings of the Genetic and Evolutionary Computation
Conference, pp 145–152

Kovacs T (2003) Strength or accuracy: credit assignment in learning classifier systems. Springer-
Verlag

Larranaga P, Lozano J (2002) Estimation of distribution algorithms: A new tool for evolutionary
computation. Springer Netherlands

Lindenmayer A (1968) Mathematical models for cellular interactions in development II. Simple
and branching filaments with two-sided inputs. Journal of Theoretical Biology 18(3):300–315

Littman ML, Dean TL, Kaelbling LP (1995) On the complexity of solving Markov decision pro-
cesses. In: Proceedings of the Eleventh International Conference on Uncertainty in Artificial
Intelligence, pp 394–402

Lucas SM, Runarsson TP (2006) Temporal difference learning versus co-evolution for acquiring
othello position evaluation. In: IEEE Symposium on Computational Intelligence and Games

Lucas SM, Togelius J (2007) Point-to-point car racing: an initial study of evolution versus temporal
difference learning. In: IEEE Symposium on Computational Intelligence and Games, pp 260–
267

Mahadevan S, Maggioni M (2007) Proto-value functions: A Laplacian framework for learning rep-
resentation and control in Markov decision processes. Journal of Machine Learning Research
8:2169–2231

Mahfoud S (1995) A comparison of parallel and sequential niching methods. In: Conference on
Genetic Algorithms, vol 136, p 143

McQuesten P, Miikkulainen R (1997) Culling and teaching in neuro-evolution. In: Proceedings of
the Seventh International Conference on Genetic Algorithms, pp 760–767

Meyer J, Husbands P, Harvey I (1998) Evolutionary robotics: A survey of applications and prob-
lems. In: Evolutionary Robotics, Springer, pp 1–21

Millán J, Posenato D, Dedieu E (2002) Continuous-action Q-learning. Machine Learning
49(2):247–265

Monroy G, Stanley K, Miikkulainen R (2006) Coevolution of neural networks using a layered
Pareto archive. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, p 336

Moriarty D, Miikkulainen R (1997) Forming neural networks through efficient and adaptive co-
evolution. Evolutionary Computation 5(4):373–399

28 Shimon Whiteson

Moriarty DE, Miikkulainen R (1996) Efficient reinforcement learning through symbiotic evolution.
Machine Learning 22(11):11–33

Moriarty DE, Schultz AC, Grefenstette JJ (1999) Evolutionary algorithms for reinforcement learn-
ing. Journal of Artificial Intelligence Research 11:199–229

Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, Berger E, Liang E (2004) Inverted
autonomous helicopter flight via reinforcement learning. In: Proceedings of the International
Symposium on Experimental Robotics

Nolfi S, Parisi D (1997) Learning to adapt to changing environments in evolving neural networks.
Adaptive Behavior 5(1):75–98

Nolfi S, Elman JL, Parisi D (1994) Learning and evolution in neural networks. Adaptive Behavior
2:5–28

Nordin P, Banzhaf W (1997) An on-line method to evolve behavior and to control a miniature robot
in real time with genetic programming. Adaptive Behavior 5(2):107

Panait L, Luke S (2005) Cooperative multi-agent learning: The state of the art. Autonomous Agents
and Multi-Agent Systems 11(3):387–434

Panait L, Luke S, Harrison JF (2006) Archive-based cooperative coevolutionary algorithms. In:
GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation, pp 345–352

Parr R, Painter-Wakefield C, Li L, Littman M (2007) Analyzing feature generation for value-
function approximation. In: Proceedings of the 24th International Conference on Machine
Learning, p 744

Pereira FB, Costa E (2001) Understanding the role of learning in the evolution of busy beaver:
A comparison between the Baldwin Effect and a Lamarckian strategy. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2001)

Peters J, Schaal S (2008) Natural actor-critic. Neurocomputing 71(7-9):1180–1190
Pollack J, Blair A (1998) Co-evolution in the successful learning of backgammon strategy. Ma-

chine Learning 32(3):225–240
Popovici E, Bucci A, Wiegand P, De Jong E (2010) Coevolutionary principles. In: Rozenberg G,

Baeck T, Kok J (eds) Handbook of Natural Computing, Springer-Verlag, Berlin
Potter MA, De Jong KA (1995) Evolving neural networks with collaborative species. In: Summer

Computer Simulation Conference, pp 340–345
Potter MA, De Jong KA (2000) Cooperative coevolution: An architecture for evolving coadapted

subcomponents. Evolutionary Computation 8:1–29
Pratihar D (2003) Evolutionary robotics: A review. Sadhana 28(6):999–1009
Priesterjahn S, Weimer A, Eberling M (2008) Real-time imitation-based adaptation of gaming

behaviour in modern computer games. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp 1431–1432

Radcliffe N (1993) Genetic set recombination and its application to neural network topology opti-
misation. Neural Computing & Applications 1(1):67–90

Rosin CD, Belew RK (1997) New methods for competitive coevolution. Evolutionary Computation
5(1):1–29

Rubinstein R, Kroese D (2004) The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation, and machine learning. Springer-Verlag

Runarsson TP, Lucas SM (2005) Co-evolution versus self-play temporal difference learning for ac-
quiring position evaluation in small-board go. IEEE Transactions on Evolutionary Computation
9:628–640

Schmidhuber J, Wierstra D, Gomez FJ (2005) Evolino: Hybrid neuroevolution / optimal linear
search for sequence learning. In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, pp 853–858

Schmidhuber J, Wierstra D, Gagliolo M, Gomez F (2007) Training recurrent networks by evolino.
Neural computation 19(3):757–779

Schroder P, Green B, Grum N, Fleming P (2001) On-line evolution of robust control systems: an
industrial active magnetic bearing application. Control Engineering Practice 9(1):37–49

Evolutionary Computation for Reinforcement Learning 29

Sigaud O, Butz M, Kozlova O, Meyer C (2009) Anticipatory Learning Classifier Systems and
Factored Reinforcement Learning. Anticipatory Behavior in Adaptive Learning Systems pp
321–333

Stanley K, Miikkulainen R (2003) A taxonomy for artificial embryogeny. Artificial Life 9(2):93–
130

Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies.
Evolutionary Computation 10(2):99–127

Stanley KO, Miikkulainen R (2004a) Competitive coevolution through evolutionary complexifica-
tion. Journal of Artificial Intelligence Research 21:63–100

Stanley KO, Miikkulainen R (2004b) Evolving a roving eye for go. In: Proceedinngs of the Genetic
and Evolutionary Computation Conference

Stanley KO, Bryant BD, Miikkulainen R (2003) Evolving adaptive neural networks with and with-
out adaptive synapses. In: Proceeedings of the 2003 Congress on Evolutionary Computation
(CEC 2003), vol 4, pp 2557–2564

Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-based indirect encoding for evolving
large-scale neural networks. Artificial Life 15(2):185–212

Steels L (1994) Emergent functionality in robotic agents through on-line evolution. In: Artificial
Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of
Living Systems, pp 8–16

Sutton RS (1990) Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. In: Proceedings of the Seventh International Conference on
Machine Learning, pp 216–224

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. MIT Press
Sywerda G (1989) Uniform crossover in genetic algorithms. In: Proceedings of the Third Interna-

tional Conference on Genetic Algorithms, pp 2–9
Tan C, Ang J, Tan K, Tay A (2008) Online adaptive controller for simulated car racing. In: Congress

on Evolutionary Computation (CEC), pp 2239–2245
Taylor ME, Whiteson S, Stone P (2006) Comparing evolutionary and temporal difference meth-

ods in a reinforcement learning domain. In: GECCO 2006: Proceedings of the Genetic and
Evolutionary Computation Conference, pp 1321–1328

Tesauro G (1994) TD-gammon, a self-teaching backgammon program achieves master-level play.
Neural Computation 6:215–219

Tesauro G (1998) Comments on co-evolution in the successful learning of backgammon strategy.
Machine Learning 32(3):241–243

Verbancsics P, Stanley K (2010) Evolving Static Representations for Task Transfer. Journal of
Machine Learning Research 11:1737–1769

Von Neumann J (1928) Zur Theorie der Gesellschaftsspiele Math. Annalen 100:295–320
Whiteson S, Stone P (2006a) Evolutionary function approximation for reinforcement learning.

Journal of Machine Learning Research 7:877–917
Whiteson S, Stone P (2006b) On-line evolutionary computation for reinforcement learning in

stochastic domains. In: GECCO 2006: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pp 1577–1584

Whiteson S, Kohl N, Miikkulainen R, Stone P (2005) Evolving keepaway soccer players through
task decomposition. Machine Learning 59(1):5–30

Whiteson S, Tanner B, White A (2010a) The reinforcement learning competitions. AI Magazine
31(2):81–94

Whiteson S, Taylor ME, Stone P (2010b) Critical factors in the empirical performance of tempo-
ral difference and evolutionary methods for reinforcement learning. Autonomous Agents and
Multi-Agent Systems 21(1):1–27

Whitley D, Dominic S, Das R, Anderson CW (1993) Genetic reinforcement learning for neuro-
control problems. Machine Learning 13:259–284

Whitley D, Gordon S, Mathias K (1994) Lamarckian evolution, the Baldwin effect and function
optimization. In: Parallel Problem Solving from Nature - PPSN III, pp 6–15

30 Shimon Whiteson

Wiegand R, Liles W, De Jong K (2001) An empirical analysis of collaboration methods in cooper-
ative coevolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pp 1235–1242

Wieland A (1991) Evolving neural network controllers for unstable systems. In: International Joint
Conference on Neural Networks, vol 2, pp 667–673

Wilson S (1995) Classifier fitness based on accuracy. Evolutionary computation 3(2):149–175
Wilson S (2001) Function approximation with a classifier system. In: GECCO-01: Proceedings of

the Genetic and Evolutionary Computation Conference, pp 974–982
Wolpert D, Tumer K (2002) Optimal payoff functions for members of collectives. Modeling com-

plexity in economic and social systems p 355
Yamasaki K, Sekiguchi M (2000) Clear explanation of different adaptive behaviors between Dar-

winian population and Lamarckian population in changing environment. In: Proceedings of the
Fifth International Symposium on Artificial Life and Robotics, vol 1, pp 120–123

Yao X (1999) Evolving artificial neural networks. Proceedings of the IEEE 87(9):1423–1447
Yong CH, Miikkulainen R (2007) Coevolution of role-based cooperation in multi-agent systems.

Tech. Rep. AI07-338, Department of Computer Sciences, The University of Texas at Austin
Zhang B, Muhlenbein H (1993) Evolving optimal neural networks using genetic algorithms with

Occam’s razor. Complex Systems 7(3):199–220
Zufferey J, Floreano D, Van Leeuwen M, Merenda T (2010) Evolving vision-based flying robots.

In: Biologically Motivated Computer Vision, Springer, pp 13–29

