
Deep Residual Reinforcement Learning
Shangtong Zhang, Wendelin Boehmer, Shimon Whiteson

Department of Computer Science, University of Oxford, United Kingdom
shangtong.zhang@cs.ox.ac.uk

ABSTRACT
We revisit residual algorithms in both model-free and model-based
reinforcement learning settings. We propose the bidirectional tar-
get network technique to stabilize residual algorithms, yielding a
residual version of DDPG that significantly outperforms vanilla
DDPG in the DeepMind Control Suite benchmark. Moreover, we
find the residual algorithm an effective approach to the distribution
mismatch problem in model-based planning. Compared with the
existing TD(k) method, our residual-based method makes weaker
assumptions about the model and yields a greater performance
boost.

KEYWORDS
reinforcement learning, residual algorithms
ACM Reference Format:
Shangtong Zhang, Wendelin Boehmer, Shimon Whiteson. 2020. Deep Resid-
ual Reinforcement Learning. In Proc. of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Semi-gradient algorithms have recently enjoyed great success in
deep reinforcement learning (RL) problems, e.g., DQN [33] achieves
human-level control in the Arcade Learning Environment (ALE,
[3]). However, such algorithms lack theoretical support. Most semi-
gradient algorithms suffer from divergence under nonlinear func-
tion approximation or off-policy training [2, 52]. By contrast, resid-
ual gradient (RG, [2]) algorithms are true stochastic gradient al-
gorithms and enjoy convergence guarantees (to a local minimum)
under mild conditions with both nonlinear function approxima-
tion and off-policy training. Baird [2] further proposes residual
algorithms (RA) to unify residual gradients and semi-gradients via
mixing them together.

Residual algorithms suffer from the double sampling issue [2]:
two independently sampled successor states are required to com-
pute the residual gradients. This requirement can be easily satisfied
in model-based RL or in deterministic environments. However, even
in these settings, residual algorithms have long been either over-
looked or dismissed as impractical. In this paper, we aim to overturn
that conventional wisdom with new algorithms built on RA and
empirical results showing their efficacy.

Our contributions are threefold. First, we give a thorough overview
of existing comparisons between residual gradient algorithms and
semi-gradient algorithms.

Second, we showcase the advantages of RA in a model-free RL
setting with deterministic environments. While target networks

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

[33] are usually an important component in deep RL algorithms
to stabilize training [29, 33], we find a naive combination of target
networks and residual algorithms, in general, does not improve
performance. Therefore, we propose the bidirectional target network
technique to stabilize residual algorithms. We show that our resid-
ual version of Deep Deterministic Policy Gradients (DDPG, [29])
significantly outperforms vanilla DDPG in the DeepMind Control
Suite (DMControl, [51]) and Mujoco benchmarks.

Third, we showcase the advantages of RA in a model-based RL
setting, where a learned model generates imaginary transitions to
train the value function. In general, model-based methods suffer
from a distribution mismatch problem [14]. The value function
trained on real states does not generalize well to imaginary states
generated by a model. To address this issue, Feinberg et al. [14]
train the value function on both real and imaginary states via the
TD(k) trick. However, TD(k) requires that predictions k steps in the
future made by model rollouts will be accurate [14]. In this paper,
we show that RA naturally allows the value function to be trained
on both real and imaginary states and requires only 1-step rollouts.
Our experiments show that RA-based planning boosts performance
more than TD(k)-based planning in most cases.

2 BACKGROUND
We consider an MDP [37] consisting of a finite state spaceS, a finite
action space A, a reward function r : S × A → R, a transition
kernel p : S ×S ×A → [0, 1] and a discount factor γ ∈ [0, 1). With
π : A × S → [0, 1] denoting a policy, at time t , an agent at a state
St takes an action At according to π (·|St). The agent then gets a
reward Rt+1 satisfying E[Rt+1] = r (St ,At) and proceeds to a new
state St+1 according to p(·|St ,At). We use Gt �

∑∞
i=t+1 γ

i−t−1Ri
to denote the return from time t , vπ (s) � Eπ [Gt | St = s] to de-
note the state value function of π , and qπ (s,a) � Eπ [Gt | St =
s,At = a] to denote the state-action value function of π . In the
rest of this section, we use a bold capital letter to denote a ma-
trix and a bold lowercase letter to denote a column vector. We
use Pπ to denote the transition matrix induced by a policy π , i.e.,
Pπ [s, s ′] �

∑
a π (s,a)p(s

′ |s,a), and use dπ to denote its unique
stationary distribution, assuming Pπ is ergodic. The reward vector
induced by π is rπ [s] =

∑
a π (a |s)r (s,a).

The value function vπ is the unique fixed point of the Bellman
operator T [4]. In a matrix form, T is defined as Tv � rπ +γPπ v,
where v can be any vector in RN . Here N � |S| is the number of
states.

Policy Evaluation: We consider the problem of finding vπ for
a given policy π and use v, parameterized by w ∈ Rd , to denote
an estimate of vπ , the vector form of vπ . We start with on-policy
linear function approximation and use x : S → Rd to denote a
feature function which maps a state to a d-dimensional feature. The
feature matrix is then X � [x(s1), . . . ,x(sN)]T ∈ RN×d , and the
value estimate is v � Xw.

To approximate vπ , one direct goal is to minimize the Mean
Squared Value Error:

MSVE(w) � | |v − vπ | |2dπ �
∑
s dπ (s)

(
v(s) − vπ (s)

)2
.

To minimize MSVE, a Monte Carlo return can be used as a sample
for vπ to train v. However, this method suffers from a large variance
and usually requires off-line learning [5]. To address those issues,
we consider minimizing the Mean Squared Projected Bellman Error
(MSPBE) and the Mean Squared Bellman Error (MSBE):

MSPBE(w) � | |v − ΠTv| |2dπ , MSBE(w) � | |v − Tv| |2dπ .

HereΠ is a projection operator which maps an arbitrary vector onto
the column vector space ofX, minimizing a dπ -weighted projection
error, i.e., Πv � Xw̄, where w̄ � arg minw | |v−Xw| |2dπ . With linear
function approximation and fixed features, Π is linear.

There are various algorithms for minimizing MSPBE and MSBE.
Temporal Difference learning (TD, [44]) is commonly used to mini-
mize MSPBE. TD updates w as

w← w + α
(
Rt+1 + γv(St+1) − v(St)

)
∇wv(St),

where α is a step size. Under mild conditions, on-policy linear TD
converges to the point where MSPBE is 0 [52]. TD is a semi-gradient
[46] algorithm in that it ignores the dependency of v(St+1) on w.
There are also true gradient algorithms for optimizing MSPBE, e.g.,
Gradient TD methods [47]. Gradient TD methods compute the
gradient of MSPBE directly and also enjoy convergence guarantees.

Baird [2] proposes residual gradient algorithms for minimizing
MSBE, which updates w as

w← w − α
(
Rt+1 + γv(St+1) − v(St)

)
·
(
γ∇wv(S ′t+1) − ∇wv(St)

)
, (1)

where S ′t+1 is another sampled successor state for St , independent
of St+1. This requirement for two independent samples is known as
the double sampling issue [2]. If both the transition kernel p and the
policy π are deterministic, we can simply use one sample without
introducing bias. Otherwise, we may need to have access to the
transition kernel p, which is usually not available in model-free
RL. Regardless, RG is a true gradient algorithm with convergence
guarantees under mild conditions.

We now expand our discussion about policy evaluation into
off-policy learning and nonlinear function approximation, where
the states {St } are drawn according to a behavior policy µ instead
of the target policy π . True gradient algorithms like Gradient TD
methods and RG remain convergent to local minima under off-
policy training with any function approximator [2, 31, 47]. However,
the empirical success of Gradient TD methods is limited to simple
domains due to its large variance [48]. Semi-gradient algorithms
are not convergent in general, e.g., the divergence of off-policy
linear TD is well-documented [52].

Semi-gradient algorithms are fast but in general not convergent.
Residual gradient algorithms are convergent but slow [2]. To take
advantage of both, Baird [2] proposes to mix semi-gradients and
residual gradients together, yielding the residual algorithms. The
RA version of TD [2] updates w as

w← w − α
(
Rt+1 + γv(St+1) − v(St)

)
·
(
γη∇wv(S ′t+1) − ∇wv(St)

)
,

where η ∈ [0, 1] controls how the two gradients are mixed. Little
empirical study has been conducted for RA.

Control: We now consider the problem of control, where we
are interested in finding an optimal policy π∗ such that vπ ∗ (s) ≥
vπ (s)∀(π , s). We use q∗ to denote the state-action value function
of π∗ and Q to denote an estimate of q∗, parameterized by θ . Q-
learning [54] is usually used to train Q and enjoys convergence
guarantees in the tabular setting. When Q-learning is combined
with neural networks, Deep-Q-Networks (DQN, [33]) update θ as

θ ← θ + α1(rt+1 +maxa Q̄(st+1,a) −Q(st ,at))

·∇θQ(st ,at), (2)

where α1 is a step size, (st ,at , rt+1, st+1) is a transition sampled
from a replay buffer [30], and Q̄ indicates the estimate is from a
target network [33], parameterized by θ−, which is synchronized
with θ periodically.

When the action space is continuous, it is hard to perform the
max operation in the DQN update (2). DDPG can be interpreted
as a continuous version of DQN, where an actor µ : S → A,
parameterized by ν , is trained to output the greedy action. DDPG
updates θ and ν as

θ ← θ + α1
(
rt+1

+ γQ̄(st+1, µ̄(st+1)) −Q(st ,at)
)
∇θQ(st ,at), (3)

ν ← ν + α2∇aQ(st ,a)|a=µ(st)∇ν µ(st), (4)

where α2 is a step size, µ̄ indicates the greedy action is from a target
network, parameterized by ν−.

Both DQN and DDPG are semi-gradient algorithms. There are
also true gradient methods for control, e.g., Greedy-GQ [32] and the
residual version of Q-learning [2]. As with Gradient TD methods,
the empirical success of Greedy-GQ is limited to simple domains
due to its large variance [48].

3 COMPARING TD AND RG
In this section, we review existing comparisons between RG and
TD. We start by comparing their fixed points, MSBE and MSPBE,
in the setting of linear function approximation.

Cons of MSBE:
• Sutton and Barto [46] show that MSBE is not uniquely deter-
mined by the observed data. Different MDPs may have the
same data distribution due to state aliasing, but the minima
of MSBE can still be different. This questions the learnability
of MSBE as sampled transitions are all that is available in
model-free RL. By contrast, the minima of MSPBE are always
the same for MDPs with the same data distribution.
• Empirically, optimizing MSBE can lead to unsatisfying solu-
tions. For example, in the A-presplit example [46], the value
of most states can be represented accurately by the function
approximator but the MSBE minimizer does not do so, while
the MSPBE minimizer does. Furthermore, empirically the
MSBE minimizer can be further from the MSVE minimizer
than the MSPBE minimizer [11].

Pros of MSBE:
• Williams and Baird [56] show MSBE can be used to bound
MSVE (up to a constant). By contrast, at a point where
MSPBE is minimized, MSVE can be arbitrarily large [5].

• MSBE is an upper bound of MSPBE [38], indicating that
optimizing MSBE implicitly optimizes MSPBE.

We now compare RG and TD.
Cons of RG:
• Due to the double sampling issue, it is usually hard to apply
RG in the stochastic model-free setting [2], while TD is com-
patible with both deterministic and stochastic environments.
• RG is usually slower than TD. Empirically, this is observed
by Baird [2], van Hasselt [53], Gordon [19] and Gordon [20].
Intuitively, in the RG update (1), a state St and its successor
S ′t+1 are often similar under function approximation. As a
result, the two gradients ∇wv(St) and ∇wv(S ′t+1) tend to
be similar and cancel each other, slowing down the learn-
ing. Theoretically, Schoknecht and Merke [40] prove TD
converges faster than RG in a tabular setting.
• Lagoudakis and Parr [27] argue that TD usually provides a
better solution than RG, even though the value function is
not as well approximated. The TD solution “preserves the
shape of the value function to some extent rather than trying
to fit the absolute values”. Thus “the improved policy from
the corresponding approximate value function is closer to the
improved policy from the exact value function” [27, 28, 43].

Pros of RG:
• RG is a true gradient algorithm and enjoys convergence guar-
antees in most settings under mild conditions. By contrast,
the divergence of TD with off-policy learning or nonlinear
function approximation is well documented [52]. Empiri-
cally, Munos [34] and Li [28] show that RG is more stable
than TD.
• Schoknecht andMerke [40] observe that RG converges faster
than TD in the four-room domain [49] with linear function
approximation. Scherrer [38] shows empirically that the TD
solution is usually slightly better than RG but in some cases
fails dramatically.

Others:
• Li [28] proves that TD makes more accurate predictions (i.e.,
the predicted state value is close to the true state value),
while RG yields smaller temporal differences (i.e., the value
predictions for a state and its successor are more consistent).
This is also explained in Sutton and Barto [46].

To summarize, previous insights about RG and TD are mixed.
There is little empirical study for RG in deep RL problems, much
less RA. It is not clear whether and how we can take advantage of
RA in model-free and model-based RL to solve deep RL problems.

4 RESIDUAL ALGORITHMS IN MODEL-FREE
RL

In this section, we investigate how to combine RA and DDPG. In
particular, we consider (almost) deterministic environments (e.g.,
DMControl) to avoid the double sampling issue.

In semi-gradient algorithms, value propagation goes backwards
in time. The value of a state depends on the value of its successor
through bootstrapping, and a target network is used to stabilize
this bootstrapping. RA allows value propagation both forwards
and backwards. The value of a state depends on the value of both

its successor and predecessor. Therefore, we need to stabilize the
bootstrapping in both directions. To this end, we propose the bidi-
rectional target network technique. Employing this in DDPG yields
Bi-Res-DDPG, which updates the critic parameters θ as:

θ ← θ − α1
(
rt+1 + γQ̄(st+1, µ̄(st+1)) −Q(st ,at)

)
×
(
− ∇θQ(st ,at)

)
− α1

(
rt+1 + γQ(st+1, µ(st+1)) − Q̄(st ,at)

)
× ηγ∇θQ(st+1, µ(st+1)),

where Q̄, µ̄ are target networks and η ∈ [0, 1] controls how the two
gradients are mixed. The actor update remains unchanged.

We compared Bi-Res-DDPG to DDPG in 28 DMControl tasks
and 5 Mujoco tasks. Our DDPG implementation uses the same ar-
chitecture and hyperparameters as Lillicrap et al. [29], which are
inherited by Bi-Res-DDPG (and all other DDPG variants in this pa-
per). For Bi-Res-DDPG, we tune η over {0, 0.05, 0.1, 0.2, 0.4, 0.8, 1}
on walker-stand and use η = 0.05 across all tasks. We perform
20 deterministic evaluation episodes every 104 training steps and
plot the averaged evaluation episode returns. All curves are aver-
aged over 5 independent runs and are available in the appendix.
In the main text, we report the improvement of AUC (area under
the curve) of the evaluation curves in Figure 2. AUC serves as a
proxy for learning speed (e.g., see Example 8.2 in Sutton and Barto
[46]). Bi-Res-DDPG achieves a 20% (41%) AUC improvement over
the original DDPG in terms of the median (mean). Our DDPG base-
line reaches the same performance level as the DDPG baseline in
Fujimoto et al. [16] and Buckman et al. [6] in Mujoco tasks.

To further investigate the relationship between the target net-
work and RA, we study several variants of DDPG. We define a
shorthand дt � ηγ∇θQ(st+1, µ(st+1)) −∇θQ(st ,at) and the update
rule for θ is θ ← θ−α1(rt+1+∆)дt , where ∆ is different for different
variants. We use “T” and “O” to denote the target network and the
online network respectively. We have:

Res-DDPG:∆ � γQ(st+1, µ(st+1)) −Q(st ,at), (5)

TO-Res-DDPG:∆ � γQ̄(st+1, µ̄(st+1)) −Q(st ,at), (6)

OT-Res-DDPG:∆ � γQ(st+1, µ(st+1)) − Q̄(st ,at), (7)

TT-Res-DDPG:∆ � γQ̄(st+1, µ̄(st+1)) − Q̄(st ,at). (8)

Res-DDPG is a direct combination of RA and DDPGwithout a target
network. TO-Res-DDPG simply adds a residual gradient term to the
original DDPG. OT-Res-DDPG stabilizes the bootstrapping for the
forward value propagation. TT-Res-DDPG stabilizes bootstrapping
in both directions but destroys the connection between prediction
and error. By contrast, Bi-Res-DDPG stabilizes bootstrapping in
both directions and maintains the connection between prediction
and error.

Figure 1 compares these variants on walker-stand. The main
points to note are: (1) Both Bi-Res-DDPG(η = 0) and TO-Res-
DDPG(η = 0) are the same as vanilla DDPG. The curves are similar,
verifying the stability of our implementation. (2) Res-DDPG(η = 0)
corresponds to vanilla DDPG without a target network, which per-
forms poorly. This confirms that a target network is important
for stabilizing training and mitigating divergence when a nonlin-
ear function approximator is used [29, 33]. (3) Increasing η im-
proves Res-DDPG’s performance. This complies with the argument

Figure 1: Performance of Bi-Res-DDPG variants on walker-stand, focusing on the role of target networks.

hopper-stand
Hopper-v2
walker-run
Humanoid-v2
reacher-hard
walker-walk
walker-stand
finger-turn_easy
Swimmer-v2
finger-turn_hard
cartpole-balance_sparse
pendulum-swingup
humanoid-walk
point_mass-easy
ball_in_cup-catch
reacher-easy
swimmer-swimmer6
humanoid-stand
acrobot-swingup_sparse
swimmer-swimmer15
humanoid-run
cartpole-balance
finger-spin
cartpole-swingup
hopper-hop
fish-upright
Walker2d-v2
manipulator-bring_ball
fish-swim
acrobot-swingup
cheetah-run
HalfCheetah-v2
cartpole-swingup_sparse

-100% 0 100% 200% 300%

Figure 2: AUC improvements of Bi-Res-DDPG over DDPG
on 28 DMControl tasks and 5 Mujoco tasks, computed as
AUCBi-Res-DDPG−AUCDDPG

AUCDDPG
.

E
p
is

o
d
e
 R

e
tu

rn

Steps

1000

750

500

250

0
0 106

With target net:
Bi-Res-DDPG (= 0.05)
vanilla DDPG (= 0)

Without target net:
Res-DDPG (= 0.4)
vanilla DDPG (= 0)

η

η
η

η

Figure 3: A selection of the best parameters η from Figure 1.
Note that residual updates stabilize performance asmuch as
the introduction of target networks.

from Baird [2] that residual gradients help semi-gradients converge.
All variants fail with a large η (e.g., 0.8 or 1). This complies with
the argument from Baird [2] that pure residual gradients are slow.

(4) TO-Res-DDPG(η = 0) (i.e., vanilla DDPG) is similar to Res-
DDPG(η = 0.4), indicating a naive combination of RA and DDPG
without a target network is ineffective. (5) For TO-Res-DDPG, η = 0
achieves the best performance, indicating adding a residual gradient
term to DDPG directly is ineffective. To summarize, these variants
confirm the necessity of the bidirectional target network. To better
understand the role of residual updates, we summarize the results
of Figure 1 in Figure 3. Res-DDPG does not have a target network
and outperforms DDPG without a target network. Res-DDPG also
increases the stability. Bi-Res-DDPG has target networks and also
outperforms DDPG with a target network, as well as increases
the stability. This comparison confirms the importance of residual
updates.

We also evaluated a Bi-Res version of DQN in three ALE envi-
ronments (BeamRider, Seaquest, Breakout). The performance was
similar to the original DQN. One of the many differences between
DMControl and ALE is that rewards in ALE are much more sparse.
This might indicate that the forward value propagation in RA is
less likely to yield a performance boost with sparse rewards.

We do not expect residual updates to improve the performance
of all semi-gradient baselines. However, our results do show that
the residual update together with the bidirectional target network
is beneficial in many tasks. Despite the popularity of semi-gradient
methods, we do believe residual algorithms deserve more study.
The combination of residual updates and other semi-gradient algo-
rithms, e.g., TD3 [16], is a possibility for future work. We also do
not address the double sampling issue in stochastic environments.
This is indeed a restriction, but we would like to emphasize that
most available benchmarks with continuous actions have determin-
istic transitions, which indicates that this class of problems is of
practical concern.

5 RESIDUAL ALGORITHMS IN
MODEL-BASED RL

In model-based RL, the double sampling issue can be easily ad-
dressed by querying the learned model (either deterministic or
stochastic). Given the empirical success of deterministic models
and their robustness in complex tasks [6, 14, 26], we consider de-
terministic models in this paper. Dyna [45] is a commonly used
model-based RL framework that trains a value function with imagi-
nary transitions from a learned model. In this paper, we consider
the combination of Dyna and DDPG. For each planning step, we
sample a transition (s,a, r , s ′) from a replay buffer and add some
noise ϵ to the action a, yielding a new action â. We then query a

Algorithm 1: Dyna-DDPG
Input: ;
Q : a critic parameterized by θ ;
µ : an actor parameterized by ν ;
P : planning steps ;
ϵ : a noise process ;
f : a critic update procedure ;
;
Initialize target networks θ− ← θ ,ν− ← ν ;
Initialize a replay buffer B, a modelM ;
Get an initial state S0 and set t ← 0 ;
while true do

At ← µ(St) ;
Execute At and get Rt+1, St+1 ;
Store (St ,At ,Rt+1, St+1) into B ;
FitM with data in B ;
Sample a batch of transitions from B ;
for (s,a, r , s ′) in batch do

Update θ ,ν with (s,a, r , s ′), (3), (4) ;
// Planning

for i ← 1, . . . , P do
â ← a + ϵ ;
r̂ , ŝ ′ ←M(s, â) ;
Update θ with (s, â, r̂ , ŝ ′) and f ;

end
end
t ← t + 1 ;
Update θ−,ν− according to θ ,ν

end

learned model with (s, â) and get (r̂ , ŝ ′). This imaginary transition
is then used to train the Q-function. The pseudocode of this Dyna-
DDPG is provided in Algorithm 1. We aim to investigate different
strategies for updatingQ during planning (i.e., the selection of f in
Algorithm 1).

One naive choice is to use the semi-gradient critic update (3).
However, this suffers from the distribution mismatch problem [14].
When we apply (3) in an imaginary transition (s, â, r̂ , ŝ ′), we need
the Q-value on ŝ ′ for bootstrapping. The Q-function is trained to
make an accurate prediction on the state distribution of s , which is
usually different from the state distribution of ŝ ′. This distribution
mismatch results from both an imperfect model and the different
sampling strategies for a and â. It yields an inaccurate prediction
for Q(ŝ ′, µ(ŝ ′)), leading to poor performance [14]. The TD(k) trick
[14] is one attempt to address this issue. With a real transition
(s−1,a−1, r0, s0) sampled from a replay buffer, a model is unrolled
for k steps following µ̄, yielding a trajectory (s−1,a−1, r0, s0,a0,

r1, s1, . . . , rk , sk). TD(k) then updates θ to minimize

1
k + 1

k−1∑
t=−1

(
Q(st ,at)

−
(k∑
i=t+1

γ i−t−1ri + γ
k−t Q̄(sk , µ̄(sk))

))2
. (9)

With this update, Q is trained on distributions of almost all the
states (s−1, . . . , sk−1), which Feinberg et al. [14] show helps perfor-
mance. However, TD(k) still does not train Q on the last imaginary
state sk , which is used for bootstrapping. On the one hand, the
influence of the bootstrapping error from sk decreases as the tra-
jectory gets longer thanks to discounting. On the other hand, even
small state prediction errors typically compound as trajectories get
longer, yielding a large prediction error of the state sk itself. This
contradiction is deeply embedded in TD(k). Consequently, TD(k)
must assume the model is accurate for k-step unrolling, which is
usually hard to satisfy in practice.

In this paper, we seek to mitigate this distributionmismatch issue
through RA. For an imaginary transition (s, â, r̂ , ŝ ′), RA naturally
allows the Q-function to be trained on both s and ŝ ′, without re-
quiring further unrolling like TD(k). The use of RA in model-based
planning is inspired by the theoretical results from Li [28], who
proves that TD makes better predictions than RG. On a real tran-
sition, this accelerates backward value propagation by providing
better bootstrapping. However, on an imaginary transition from a
model, the value function is never trained on the imaginary suc-
cessor state. It is questionable whether we should trust the value
prediction on an imaginary state as much as a real state. We, there-
fore, propose to use RA on imaginary transitions, which encourages
the Q-function to be consistent with the model as showed by Li
[28].

We now evaluate RA in model-based planning experimentally.
We compare the performance of Dyna-DDPG(f = Eq.(3)) (referred
to as Dyna-DDPG), Dyna-DDPG(f = Eq.(5)) (referred to as Res-
Dyna-DDPG), and DDPG+TD(k) (referred to as MVE-DDPG follow-
ing, [14]). We consider five Mujoco tasks used by Buckman et al.
[6], which is a superset of tasks used by Feinberg et al. [14]. In
Feinberg et al. [14], the unrolling steps of MVE-DDPG are differ-
ent for different tasks, which serve as domain knowledge. For a
fair comparison, Buckman et al. [6] set k = 3 for all tasks in their
baseline MVE-DDPG. In our empirical study, we followed this con-
vention. We use a slightly different TD(k) loss to improve stability
of MVE-DDPG, which is explained in detail in the appendix.

To separate planning from model learning, we first consider
planning with an oracle model. In this section, we restrict our em-
pirical study on Mujoco tasks as we do not have direct access to the
oracle models in DMControl tasks. We tune hyperparameters for
Dyna-DDPG and Res-Dyna-DDPG on Walker and set η = 0.2 for
all tasks. Other details are provided in the appendix. The results are
reported in Figure 4. Curves are averaged over 8 independent runs
and shadowed regions indicate standard errors. Both Dyna-DDPG
and MVE-DDPG with an oracle model improve performance in
2 of 5 games, while Res-Dyna-DDPG improves performance in 4
out of 5 games. These results suggest that RA is a more effective
approach to exploit a model for planning. In HalfCheetah, both

Figure 4: Evaluation performance for different model-based DDPG with an oracle model.

Figure 5: Evaluation performance for different model-based DDPG with a learned model.

MVE-DDPG and Res-Dyna-DDPG fail to outperform Dyna-DDPG.
This could suggest that the distribution mismatch problem is not
significant in this task. Furthermore, MVE-DDPG exhibits insta-
bility in HalfCheetah, which is also observed by Buckman et al.
[6].

We now consider planning with a learned model. We use the
same model parameterization and model training protocol as Fein-
berg et al. [14]. We set η = 0.2 for all tasks. The results are reported
in Figure 5. In Swimmer and Humanoid, Res-Dyna-DDPG signifi-
cantly outperforms all other methods, where Humanoid is usually
considered to be the hardest task among all Mujoco tasks. InWalker
and Hopper, Res-Dyna-DDPG reaches similar performance as MVE-
DDPG. In HalfCheetah, Res-Dyna-DDPG (η = 0.2) fails dramati-
cally. We further test other values for η and find η = 0.05 produces
reasonable performance, as shown by the extra black curve. This
indicates that η can serve as domain knowledge, reflecting our con-
fidence in a learned model. A possibility for future work is to use
model uncertainty estimation from a model ensemble to determine
η automatically, similar to what Buckman et al. [6] propose for the
unrolling steps in TD(k), which significantly improves performance
over MVE-DDPG.

In this section, we consider the vanilla residual update (5) without
the bidirectional target network. Our preliminary experiments show
that introducing the bidirectional target network during planning
does not further boost performance. The main purpose of a target
network is to stabilize bootstrapping (value propagation). Due to the
distribution mismatch problem on imaginary transitions, however,
it may be more important for the value function to be consistent
with themodel than simply propagating the value in either direction.
This may reduce the importance of the bidirectional target network.

6 RELATEDWORK
There are other studies on Bellman residual methods. Geist et al.
[18] show that for policy-based methods, maximizing the average
reward is better than minimizing the Bellman residual. Schoknecht
and Merke [39] show RG converges with a problem-dependent con-
stant learning rate when combined with certain function approxi-
mators. Dabney and Thomas [9] extend RG with natural gradients.
However, this paper appears to be the first to contrast residual
gradients and semi-gradients in deep RL problems and demonstrate
the efficacy of RA with new algorithms. Dai et al. [10] attack the
double sampling issue via dual embedding, which translates the
minimization of MSBE into a minimax problem. For this translation
to hold, the maximization step has to be conducted over a function
class which is rich enough to contain the true maximizer. This
condition, however, does not necessarily hold when linear func-
tion approximation is considered. It can be easily verified that with
linear function approximation, dual embedding indeed translates
MSBE into MSPBE. Besides MSPBE, other losses have also been
proposed to avoid the double sampling issue in minimizing MSBE,
for example, Feng et al. [15] propose a kernel loss based on the
Bellman equation, Antos et al. [1] add a penalty term to MSBE.

Dyna-style planning in RL has been widely used. Gu et al. [21]
learn a local linear model for planning. Kurutach et al. [26] learn a
model ensemble to avoid overfitting to an imperfect model, which is
also achieved by meta-learning [8]. Kalweit and Boedecker [25] use
a value function ensemble to decide when to use a model. Besides
Dyna-style planning, learned models are also used for a lookahead
tree-search to improve value estimation at decision time [36, 41, 50].
This tree-search is also used as an effective inductive bias in value
function parameterization [13, 42, 57]. Trajectories from a learned
model are also used as extra inputs for value functions [55], which
reduces the negative influence of the model prediction error. In this
paper, we focus on the simplest Dyna-style planning and leave the

0 106

Steps

0

2000

4000

6000
E

pi
so

de
R

et
ur

n

HalfCheetah-v2
DDPG

Bi-Res-DDPG(η = 0.05)

0 106

Steps

0

1000

2000

3000

Walker2d-v2

0 106

Steps

0

1000

2000

3000

Hopper-v2

0 106

Steps

0

50

100

Swimmer-v2

0 106

Steps

100

200

300

400

500

Humanoid-v2

Figure 6: Evaluation curves of DDPG and Bi-Res-DDPG(η = 0.05) on 5 Mujoco tasks. Curves are averaged over 5 independent
runs and shaded regions indicate standard errors.

combination of RA and more advanced planning techniques for
future work.

Besides RL, learned models are also used in other control meth-
ods, e.g., model predictive control (MPC, [17]). Nagabandi et al.
[35] learn deterministic models via neural networks for MPC. Chua
et al. [7] conduct a thorough comparison between deterministic
models and stochastic models and use particle filters when un-
rolling a model. Besides modeling the observation transition, Ha
and Schmidhuber [22] and Hafner et al. [23] propose to model the
abstract state transition and use MPC on the abstract state space. In
this paper, we focus on the simplest deterministic model and leave
the combination of RA and more advanced models for future work.

7 CONCLUSIONS
In this paper, we give a thorough review of existing comparisons
between RG and TD. We propose the bidirectional target network
technique to stabilize bootstrapping in both directions in RA, yield-
ing a significant performance boost. We also demonstrate that RA
is a more effective approach to the distribution mismatch problem
in model-based planning than the existing TD(k) method. Our em-
pirical study showed the efficacy of RA in deep RL problems, which
has long been underestimated by the community. A possibility for
future work is to study RA in model-free RL with stochastic en-
vironments, where the double sampling issue cannot be trivially
resolved.

ACKNOWLEDGMENTS
SZ is generously funded by the Engineering and Physical Sciences
Research Council (EPSRC). This project has received funding from
the European Research Council under the European Union’s Hori-
zon 2020 research and innovation programme (grant agreement
number 637713). The experiments were made possible by a gener-
ous equipment grant from NVIDIA.

A EXPERIMENT DETAILS
All our implementations and the corresponding Docker environ-
ment are made publicly available.1 Open AI Gym and DMControl
are available at https://gym.openai.com/ and https://github.com/
deepmind/dm_control.

Our DDPG implementation uses the same parameterization and
hyperparameters as Lillicrap et al. [29], which are inherited by all

1https://github.com/ShangtongZhang/DeepRL

the variants of DDPG in this paper without further turning. We do
not use batch normalization.

For the model-based experiments, we tune extra hyperparam-
eters in Walker with an oracle model for both Dyna-DDPG and
Res-Dyna-DDPG. The planning steps P is tuned over {1, 2, 4}. The
noise process ϵ is Gaussian noise N(0,σ 2), with σ tuned over
{0.05, 0.1, 0.2}. The mix coefficient η in RA is tuned over
{0, 0.05, 0.1, 0.2, 0.4, 0.8, 1}. In all our experiments (with both an
oracle model and a learned model), we set P = 1,σ = 0.1,η = 0.2.

For MVE-DDPG, we find the original TD(k) loss (9) yields signif-
icant instability. To improve stability, we made two modifications.
First, for a trajectory (s−1,a−1, r0, s0,a0, r1, s1, . . . , rk , sk), instead
of minimizing the loss (9), we minimize(

Q(s−1,a−1) −
(
r0 + γQ̄(s0,a0)

))2

+
1
k

k−1∑
t=0

(
Q(st ,at) −

(k∑
i=t+1

γ i−t−1ri + γ
k−t Q̄(sk , µ̄(sk))

))2
.

This new loss is different from (9) mainly in that it uses the real
transition (s−1,a−1, r0, s0)more. We find this significantly improves
stability. Second, we replace the mean squared loss with a Huber
loss [24], which has been reported to improve stability [12]. Our
MVE-DDPG implementation significantly outperforms the MVE-
DDPG baselines in Buckman et al. [6] in Hopper and Walker while
maintains a similar performance in remaining tasks. The MVE-
DDPG in Feinberg et al. [14] has task-dependent learning rates.
By contrast, we do not tune hyperparameters task by task for any
compared algorithm.

We conducted our experiments on an Nvidia DGX-1 with Py-
Torch.

B OTHER EXPERIMENTAL RESULTS
The evaluation curves of DDPG and Bi-Res-DDPG(η = 0.05) on 5
Mujoco tasks and 28 DMControl tasks are reported in Figure 6 and
Figure 7 respectively.

REFERENCES
[1] András Antos, Csaba Szepesvári, and Rémi Munos. 2008. Learning near-optimal

policies with Bellman-residual minimization based fitted policy iteration and a
single sample path. Machine Learning (2008).

[2] Leemon Baird. 1995. Residual algorithms: Reinforcement learning with function
approximation. Machine Learning (1995).

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research (2013).

[4] Richard E. Bellman. 1957. Dynamic programming. Princeton University Press.

https://gym.openai.com/
https://github.com/deepmind/dm_control
https://github.com/deepmind/dm_control
https://github.com/ShangtongZhang/DeepRL

Figure 7: Evaluation curves of DDPG and Bi-Res-DDPG(η = 0.05) on 28 DMControl tasks. Curves are averaged over 5 indepen-
dent runs and shaded regions indicate standard errors.

[5] Dimitri P Bertsekas and John N Tsitsiklis. 1996. Neuro-Dynamic Programming.
Athena Scientific Belmont, MA.

[6] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak
Lee. 2018. Sample-efficient reinforcement learning with stochastic ensemble
value expansion. In Advances in Neural Information Processing Systems.

[7] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. 2018.
Deep reinforcement learning in a handful of trials using probabilistic dynamics
models. In Advances in Neural Information Processing Systems.

[8] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour,
and Pieter Abbeel. 2018. Model-based reinforcement learning via meta-policy
optimization. arXiv preprint arXiv:1809.05214 (2018).

[9] William Dabney and Philip Thomas. 2014. Natural temporal difference learning.
In Proceedings of the 28th AAAI Conference on Artificial Intelligence.

[10] Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen,
and Le Song. 2017. SBEED: Convergent reinforcement learning with nonlinear
function approximation. arXiv preprint arXiv:1712.10285 (2017).

[11] Christoph Dann, Gerhard Neumann, and Jan Peters. 2014. Policy evaluation with
temporal differences: A survey and comparison. Journal of Machine Learning
Research (2014).

[12] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, YuhuaiWu, and Peter Zhokhov.
2017. OpenAI Baselines. https://github.com/openai/baselines. (2017).

[13] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. 2018.
TreeQN and ATreeC: Differentiable tree-structured models for deep reinforce-
ment learning. arXiv preprint arXiv:1710.11417 (2018).

[14] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez,
and Sergey Levine. 2018. Model-based value estimation for efficient model-free
reinforcement learning. arXiv preprint arXiv:1803.00101 (2018).

[15] Yihao Feng, Lihong Li, and Qiang Liu. 2019. A Kernel Loss for Solving the Bellman
Equation. arXiv preprint arXiv:1905.10506 (2019).

[16] Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing function
approximation error in actor-critic methods. arXiv preprint arXiv:1802.09477
(2018).

[17] Carlos E Garcia, David M Prett, and Manfred Morari. 1989. Model predictive
control: theory and practice—a survey. Automatica (1989).

[18] Matthieu Geist, Bilal Piot, and Olivier Pietquin. 2017. Is the Bellman residual a
bad proxy?. In Advances in Neural Information Processing Systems.

[19] Geoffrey J Gordon. 1995. Stable function approximation in dynamic programming.
Machine Learning (1995).

[20] Geoffrey J Gordon. 1999. Approximate solutions to Markov decision processes. Ph.D.
Dissertation. Carnegie Mellon University.

[21] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. 2016. Contin-
uous deep q-learning with model-based acceleration. In Proceedings of the 33rd
International Conference on Machine Learning.

[22] David Ha and Jürgen Schmidhuber. 2018. World models. arXiv preprint
arXiv:1803.10122 (2018).

[23] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. 2018. Learning latent dynamics for planning from
pixels. arXiv preprint arXiv:1811.04551 (2018).

[24] Peter J Huber et al. 1964. Robust estimation of a location parameter. The Annals
of Mathematical Statistics (1964).

[25] Gabriel Kalweit and Joschka Boedecker. 2017. Uncertainty-driven imagination
for continuous deep reinforcement learning. In Proceedings of the 2017 Conference
on Robot Learning.

[26] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. 2018.
Model-ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592
(2018).

[27] Michail G Lagoudakis and Ronald Parr. 2003. Least-squares policy iteration.
Journal of Machine Learning Research (2003).

[28] Lihong Li. 2008. A worst-case comparison between temporal difference and
residual gradient with linear function approximation. In Proceedings of the 25th
International Conference on Machine Learning.

[29] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[30] Long-Ji Lin. 1992. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning (1992).

[31] Hamid Reza Maei. 2011. Gradient temporal-difference learning algorithms. Ph.D.
Dissertation. University of Alberta.

[32] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S Sut-
ton. 2010. Toward off-policy learning control with function approximation.. In
Proceedings of the 27th International Conference on Machine Learning.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature (2015).

[34] Rémi Munos. 2003. Error bounds for approximate policy iteration. In Proceedings
of the 20th International Conference on Machine Learning.

[35] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. 2018.
Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In Proceedings of the 2018 International Conference on
Robotics and Automation.

[36] Junhyuk Oh, Satinder Singh, and Honglak Lee. 2017. Value prediction network.
In Advances in Neural Information Processing Systems.

[37] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[38] Bruno Scherrer. 2010. Should one compute the temporal difference fix point or
minimize the bellman residual? the unified oblique projection view, In Proceed-
ings of the 27nd International Conference on Machine Learning. arXiv preprint
arXiv:1011.4362.

[39] Ralf Schoknecht and Artur Merke. 2003. Convergent combinations of rein-
forcement learning with linear function approximation. In Advances in Neural
Information Pprocessing Systems.

[40] Ralf Schoknecht and Artur Merke. 2003. TD (0) converges provably faster than
the residual gradient algorithm. In Proceedings of the 20th International Conference
on Machine Learning.

[41] David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim
Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto,
et al. 2017. The predictron: End-to-end learning and planning. In Proceedings of
the 34th International Conference on Machine Learning.

[42] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
2018. Universal planning networks. arXiv preprint arXiv:1804.00645 (2018).

[43] Wen Sun and J Andrew Bagnell. 2015. Online Bellman Residual algorithms with
predictive error guarantees. In Proceedings of the 31st Conference on Uncertainty
in Artificial Intelligence.

[44] Richard S Sutton. 1988. Learning to predict by themethods of temporal differences.
Machine Learning (1988).

[45] Richard S Sutton. 1990. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Proceedings of the
7th International Conference on Machine Learning.

[46] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction (2nd Edition). MIT press.

[47] Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Sil-
ver, Csaba Szepesvári, and EricWiewiora. 2009. Fast gradient-descent methods for
temporal-difference learning with linear function approximation. In Proceedings
of the 26th International Conference on Machine Learning.

[48] Richard S Sutton, A Rupam Mahmood, and Martha White. 2016. An emphatic
approach to the problem of off-policy temporal-difference learning. The Journal
of Machine Learning Research (2016).

[49] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence (1999).

[50] Erik Talvitie. 2017. Self-correcting models for model-based reinforcement learn-
ing. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.

[51] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.
2018. DeepMind control suite. arXiv preprint arXiv:1801.00690 (2018).

[52] John N Tsitsiklis and Benjamin Van Roy. 1997. Analysis of temporal-diffference
learning with function approximation. In Advances in Neural Information Ppro-
cessing Systems.

[53] Hado Philip van Hasselt. 2011. Insights in reinforcement learning. Ph.D. Disserta-
tion. Utrecht University.

[54] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine Learning
(1992).

[55] Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas
Heess, Yujia Li, et al. 2017. Imagination-augmented agents for deep reinforcement
learning. arXiv preprint arXiv:1707.06203 (2017).

[56] Ronald J Williams and Leemon C Baird. 1993. Tight performance bounds on greedy
policies based on imperfect value functions. Technical Report. Citeseer.

[57] Shangtong Zhang, Hao Chen, and Hengshuai Yao. 2019. ACE: An Actor Ensemble
Algorithm for Continuous Control with Tree Search. Proceedings of the 33rd
AAAI Conference on Artificial Intelligence (2019).

https://github.com/openai/baselines

	Abstract
	1 Introduction
	2 Background
	3 Comparing TD and RG
	4 Residual Algorithms in Model-free RL
	5 Residual Algorithms in Model-based RL
	6 Related Work
	7 Conclusions
	Acknowledgments
	A Experiment Details
	B Other Experimental Results
	References

