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Abstract
We propose CAVIA for meta-learning, a simple
extension to MAML that is less prone to meta-
overfitting, easier to parallelise, and more inter-
pretable. CAVIA partitions the model parame-
ters into two parts: context parameters that serve
as additional input to the model and are adapted
on individual tasks, and shared parameters that
are meta-trained and shared across tasks. At test
time, only the context parameters are updated,
leading to a low-dimensional task representation.
We show empirically that CAVIA outperforms
MAML for regression, classification, and rein-
forcement learning. Our experiments also high-
light weaknesses in current benchmarks, in that
the amount of adaptation needed in some cases is
small.

1. Introduction
The challenge of fast adaptation in machine learning is to
learn on previously unseen tasks fast and with little data.
In principle, this can be achieved by leveraging knowledge
obtained in other, related tasks. However, the best way to
do so remains an open question. We are interested in the
meta-learning approach to fast adaptation, i.e., learning how
to learn on unseen problems/datasets within few shots.

One approach for fast adaptation is to use gradient-based
methods: at test time, only one or a few gradient update steps
are performed to solve the new task, using a task-specific
loss function. Model agnostic meta learning (MAML) (Finn
et al., 2017a) is a general and powerful gradient-based meta-
learning algorithm, which learns a model initialisation that
allows fast adaptation at test time. Given that MAML is
model-agnostic, it can be used with any gradient-based learn-
ing algorithm, and a variety of methods build on it (a.o., Lee
& Choi (2018); Li et al. (2017); Al-Shedivat et al. (2018);
Grant et al. (2018)).
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MAML is trained with an interleaved training procedure,
comprised of inner loop and outer loop updates that operate
on a batch of related tasks at each iteration. In the inner
loop, MAML learns task-specific network parameters by
performing one gradient step on a task-specific loss. Then,
in the outer loop, the model parameters from before the
inner loop update are updated to reduce the loss after the
inner loop update on the individual tasks. Hence, MAML
learns a model initialisation that can generalise to a new task
after only a few gradient updates at test time. One drawback
of MAML is meta-overfitting: since the entire network is
updated on just a few data points at test time, it can easily
overfit (Mishra et al., 2018).

In this paper, we propose an alternative to MAML which
is more interpretable and less prone to overfitting, with-
out compromising performance. Our method, fast context
adaptation via meta-learning (CAVIA) learns a single
model that adapts to a new task via gradient descent by
updating only a set of input parameters at test time, instead
of the entire network. These inputs, which we call con-
text parameters φ (see Figure 1), can be interpreted as a
task embedding that modulates the behaviour of the model.
We confirm empirically that the learned context parame-
ters indeed match the latent task structure. Like MAML,
our method is model-agnostic, i.e., it can be applied to any
model that is trained via gradient descent.

CAVIA is trained with an interleaved training procedure
similar to MAML: in the inner loop only the context pa-
rameters φ are updated, and in the outer loop the rest of the
model parameters, θ, are updated (which requires backprop-
agating through the inner-loop update). This allows CAVIA
to explicitly optimise the task-independent parameters θ
for good performance across tasks, while ensuring that the
task-specific parameters φ can quickly adapt to new tasks at
test time.

The separation of parameters into task-specific and task-
independent parts has several advantages. First, the size
of both components can be chosen appropriately for the
task. The network parameters θ can be made expressive
enough without overfitting to a single task in the inner loop,
which MAML is prone to. Furthermore, for many practical
problems we have prior knowledge of which aspects vary
across tasks and hence how much capacity φ should have.
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Second, CAVIA is significantly easier to parallelise com-
pared to MAML: learning task-specific context parameters
for a batch of tasks can be parallelised in the inner loop.
Other benefits are that parameter copies are not necessary
which saves memory writes; we do not need to manually
access and perform operations on the network weights and
biases to set up the computation graphs; and CAVIA can
help distributed machine learning systems, where the same
model is deployed to different machines and we wish to
learn different contexts concurrently.

CAVIA is conceptually related to embedding-based ap-
proaches for fast adaptation such as conditional neural pro-
cesses (CNPs) (Garnelo et al., 2018) and meta-learning with
latent embedding optimisation (LEO) (Rusu et al., 2019).
These share the benefit of learning a low-dimensional rep-
resentation of the task, which has the potential to lead to
greater interpretability compared to MAML. In contrast to
existing methods, CAVIA uses the same network to learn the
embedding (during a backward pass) and make predictions
(during a forward pass). Therefore CAVIA has fewer pa-
rameters to train, but must compute higher-order gradients
during training.

Our experiments show that CAVIA outperforms MAML
and CNPs on regression problems, can outperform MAML
on a challenging classification benchmark by scaling up the
network without overfitting, and outperforms MAML in a
reinforcement learning setting while adapting significantly
fewer parameters. We also show that CAVIA is robust to hy-
perparameters and demonstrate that the context parameters
represent meaningful embeddings of tasks. Our experiments
also highlight a weakness in current benchmarks in meta-
learning, in that the amount of adaptation needed is small
in some cases, confirming that task inference and multitask
learning are enough to do well.

2. Background
Our goal is to learn models that can quickly adapt to new
tasks with little data. Hence, learning on the new task is
preceded by meta-learning on a set of related tasks.

2.1. Problem Setting

In few-shot learning problems, we are given distributions
over training tasks ptrain(T ) and test tasks ptest(T ). Training
tasks can be used to learn how to adapt fast to any of the
tasks with little per-task data, and evaluation is then done
on (previously unseen) test tasks. Unless stated otherwise,
we assume that ptrain = ptest and refer to both as p. Tasks in
p typically share some structure, so that transferring knowl-
edge between tasks can speed up learning. During each
meta-training iteration, a batch of N tasks T = {Ti}Ni=1 is
sampled from p.

Supervised Learning. Supervised learning learns a model
f : x 7→ ŷ that maps data points x ∈ X that have a true label
y ∈ Y to predictions ŷ ∈ Y . A task Ti = (X ,Y,L, q) is a
tuple where X is the input space, Y is the output space,
L(y, ŷ) is a task-specific loss function, and q(x, y) is a
distribution over labelled data points. We assume that all
data points are drawn i.i.d. from q. Different tasks can be
created by changing any element of Ti.

Training in supervised meta-learning proceeds over meta-
training iterations, where for each Ti ∈ T, we sample two
datasets Dtrain

i and Dtest
i from qTi :

Dtrain
i = {(x, y)i,m}M

train
i

m=1 , Dtest
i = {(x, y)i,m}M

test
i

m=1, (1)

where (x, y) ∼ qTi and M train
i and M test

i are the number of
training and test datapoints. The training data is used to
update f , and the test data is then used to evaluate how good
this update was, and adjust f or the update rule accordingly.

Reinforcement Learning. Reinforcement learning (RL)
learns a policy π that maps states s ∈ S to actions a ∈ A.
Each task corresponds to a Markov decision process (MDP):
a tuple Ti = (S,A, r, q, q0), where S is a set of states,
A is a set of actions, r(st, at, st+1) is a reward function,
q(st+1|st, at) is a transition function, and q0(s0) is an initial
state distribution. The goal is to maximise the expected
cumulative reward J under π,

J (π) = Eq0,q,π

[
H−1∑
t=0

γtr(st, at, st+1)

]
, (2)

where H ∈ N is the horizon and γ ∈ [0, 1] is the discount
factor. During each meta-training iteration, for each Ti ∈ T,
we first collect a trajectory

τ train
i = {s0, a0, r0, s1, a1, r1, . . . ,

sM train
i −1, aM train

i −1, rM train
i −1, sM train

i
},

where the initial state s0 is sampled from q0, the actions
are chosen by the current policy π, the state transitions
according to q, and M train

i is the number of environment
interactions. We unify several episodes in this formulation:
if the horizon H is reached within the trajectory, the envi-
ronment is reset using q0. Once the trajectory is collected,
this data is used to update the policy. Another trajectory τ test

i

is then collected by rolling out the updated policy for M test
i

time steps. This test trajectory is used to evaluate the quality
of the update on that task, and to adjust π or the update rule
accordingly.

Evaluation for both supervised and reinforcement learning
problems is done on a new (unseen) set of tasks drawn from
p. For each such task, the model is updated using L or J
and only a few data points (Dtrain or τ train). Performance of
the updated model is reported on Dtest or τ test.
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2.2. Model-Agnostic Meta-Learning

One method for few-shot learning is model-agnostic meta-
learning (Finn et al., 2017a, MAML). MAML learns an
initialisation for the parameters θ of a model fθ such that,
given a new task, a good model for that task can be learned
with only a small number of gradient steps and data points.
In the inner loop, MAML computes new task-specific pa-
rameters θi (starting from θ) via one gradient update1,

θi = θ − α∇θ
1

M i
train

∑
(x,y)∈Dtrain

i

LTi(fθ(x), y) . (3)

For the meta-update in the outer loop, the original model pa-
rameters θ are then updated with respect to the performance
after the inner-loop update, i.e.,

θ ← θ−β∇θ
1

N

∑
Ti∈T

1

M i
test

∑
(x,y)∈Dtest

i

LTi(fθi(x), y) . (4)

The result of training is a model initialisation θ that can
be adapted with just a few gradient steps to any new task
drawn from p. Since the gradient is taken with respect to the
parameters θ before the inner-loop update (3), the outer-loop
update (4) involves higher order derivatives of θ.

3. CAVIA
We propose fast context adaptation via meta-learning
(CAVIA), which partitions the model parameters into two
parts: context parameters φ are adapted in the inner loop for
each task, and parameters θ are meta-learned in the outer
loop and shared across tasks.

3.1. Supervised Learning

At every meta-training iteration and for the current batch T
of tasks, we use the training data Dtrain

i of each task Ti ∈ T
as follows. Starting from a fixed value φ0 (we typically
choose φ0 = 0; see Section 3.4), we learn task-specific
parameters φi via one gradient update:

φi = φ0 − α∇φ
1

M train
i

∑
(x,y)∈Dtrain

i

LTi(fφ0,θ(x), y). (5)

While we only take the gradient with respect to φ, the up-
dated parameter φi is also a function of θ, since during
backpropagation, gradients flow through the model. Given
updated parameters φi for all sampled tasks, we proceed to
the meta-learning step, in which θ is updated:

θ ← θ − β∇θ
1

N

∑
Ti∈T

1

M test
i

∑
(x,y)∈Dtest

i

LTi(fφi,θ(x), y) .

(6)
1We outline is MAML for one gradient update step and the

supervised learning setting, but it can be used with several gradient
update steps and for reinforcement learning problems as well.

This update includes higher order gradients in θ due to the
dependency on (5). At test time, only the context parameters
are updated using Equation (5), and θ is held fixed.

3.2. Reinforcement Learning

During each iteration, for a current batch of MDPs T =
{Ti}Ni=1, we proceed as follows. Given φ0, we collect a
rollout τ train

i by executing the policy πφ0,θ. We then compute
task-specific parameters φi via one gradient update:

φi = φ0 + α∇φJ̃Ti(τ train
i , πφ0,θ), (7)

where J̃ (τ, π) is the objective function of any gradient-
based reinforcement learning method that uses trajectories τ
produced by a parameterised policy π to update that policy’s
parameters. After updating the policy, we collect another
trajectory τ test

i to evaluate the updated policy, where actions
are chosen according to the updated policy πφi,θ.

After doing this for all tasks in T, the meta-update step
updates θ to maximise the average performance across tasks
(after individually updating φ for them),

θ ← θ + β∇θ
1

N

∑
MDPi∈T

J̃Ti(τ test
i , πφi,θ). (8)

This update includes higher order gradients in θ due to the
dependency on (7).

3.3. Conditioning on Context Parameters

Since φ is independent of the network input, we need to
decide where and how to condition the network on them.
For an output node h(l)i at a fully connected layer l, we can
for example simply concatenate φ to the inputs of that layer:

h
(l)
i = g

 J∑
j=1

θ
(l,h)
j,i h

(l−1)
j +

K∑
k=1

θ
(l,φ)
k,i φ0,k + b

 , (9)

where g is a nonlinear activation function, b is a bias parame-
ter, θ(l,h)j,i are the weights associated with layer input h(l−1)j ,

and θ(l,φ)k,i are the weights associated with the context param-
eter φ0,k. This is illustrated in Figure 1. In our experiments,
for fully connected networks, we add the context parameter
at the first layer, i.e., concatenate them to the input. Other
conditioning methods can be used with CAVIA as well: e.g.,
for convolutional networks, we use feature-wise linear mod-
ulation FiLM (Perez et al., 2017), which performs an affine
transformation on the feature maps. Given context param-
eters φ and a convolutional layer that outputs M feature
maps {hi}Mi=1, FiLM linearly transforms each feature map
FiLM(hi) = γihi + β, where γ, β ∈ RM are a function
of the context parameters. We use a fully connected layer
[γ, β] =

∑K
k=1 θ

(l,φ)
k,i φ0,k + b with the identity function at

the output.
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Figure 1. Context adaptation. A network layer hl is augmented
with additional context parameters φ (red) initialised to 0 before
each adaptation step and updated by gradient descent during each
inner loop and at test time. Network parameters θ (green) are only
updated in the outer loop and shared across tasks. Hence, they stay
fixed at test time. By initialising φ to 0, the network parameters
associated with the context parameters (blue) do not affect the
output of the layer before adaptation. After the first adaptation step
they modulate the rest of the network to solve the new task.

3.4. Context Parameter Initialisation

When learning a new task, φ have to be initialised to some
value, φ0. We argue that, instead of meta-learning this
initialisation as well, a fixed φ0 is sufficient: in (9), if both
θ
(l,φ)
j,i and φ0 are meta-learned, the learned initialisation

of φ can be subsumed into the bias parameter b, and φ0
can be set to a fixed value. Hence, the initialisation of the
context parameters does not have to be meta-learned and
parameter copies are not required during training. In our
implementation we set the initial context parameter to a
vector filled with zeros, φ0 = 0 = [0, . . . , 0]>.

Furthermore, not updating the context parameters φ in the
outer loop allows for a more flexible and expressive gradient
in the inner loop. Consequently, CAVIA is more robust to
the inner loop learning rate, α in (5). Before an inner loop
update, the part of the model associated with φ does not
affect the output (since they are inputs and initialised at 0).
During the inner update, only φ changes and can affect the
output of the network at test time. Even if this update is
large, the parameters θ(l,φ)k,i that connect φ to the rest of the
model (shown in blue in Figure 1), are automatically scaled
during the outer loop. In other words, θ(l,φ)k,i compensates in
the outer loop for any excessively large inner loop update of
φ. However, doing large gradient updates in every outer loop
update step as well would lead to divergence and numerical
overflow. In Section 5.1, we show empirically that the
decoupling of learning φ and θ can indeed make CAVIA
more robust to the initial learning rate compared to also
learning the initialisation of the context parameters.

4. Related Work
One general approach to meta-learning is to learn the algo-
rithm or update function itself (Schmidhuber, 1987; Bengio
et al., 1992; Andrychowicz et al., 2016; Ravi & Larochelle,
2017). Another approach is gradient-based meta-learning,
which learns a model initialisation such that at test time, a
new task can be learned within a few gradient steps. Ex-
amples are MAML (Finn et al., 2017a) and its probabilistic
variants (Grant et al., 2018; Yoon et al., 2018; Finn et al.,
2018); REPTILE (Nichol & Schulman, 2018), which does
not require second order gradient computation; and Meta-
SGD (Li et al., 2017), which learns the per-parameter inner
loop learning rate. The main difference to our work is that
CAVIA adapts only a few parameters at test time, and these
parameters determine only input context.

Closely related are MT-Nets (Lee & Choi, 2018), which
learn which parameters to update in MAML. MT-Nets learn:
an M-Net which is a mask indicating which parameters to
update in the inner loop, sampled (from a learned probability
distribution) for each new task; and a T-net which learns
a task-specific update direction and step size. CAVIA is
a simpler, more interpretable alternative where the task-
specific and shared parameters are disjoint sets.

Additional input biases to MAML were considered by Finn
et al. (2017b), who show that this improves performance on
a robotic manipulation setting. By contrast, we update only
the context parameters in the inner loop, and initialise them
to 0 before adaptation to a new task. Rei (2015) propose a
similar approach in the context of neural language models,
where a context vector represents the sentence that is cur-
rently being processed (see also the Appendix of Finn et al.
(2017a)). Unlike CAVIA, this approach updates context
parameters in the outer loop, i.e., it learns the initialisation
of φ. This coupling of the gradient updates leads to a less
flexible meta-update and is not as robust to the inner loop
learning rate like CAVIA, as we show empirically in 5.1.

Silver et al. (2008) proposed context features as a component
of inductive transfer, using a predefined one-hot encoded
task-specifying context as input to the network. They show
that this works better than learning a shared feature extractor
and having separate heads for all tasks. In this paper, we
instead learn this contextual input from data of a new task.
Such context features can also be learned by a separate
embedding network as in, e.g., Oreshkin et al. (2018) and
Garnelo et al. (2018), who use the task’s training set to
condition the prediction network. CAVIA instead learns the
context parameters via backpropagation through the same
network used to solve the task.

Several methods learn to produce network weights from
task-specific embeddings or labelled datapoints (Gordon
et al., 2018; Rusu et al., 2019), which then operate on the
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Number of Additional Input Parameters
Method 0 1 2 3 4 5 50
CAVIA - 0.84(±0.06) 0.21(±0.02) 0.20(±0.02) 0.19(±0.02) 0.19(±0.02) 0.19(±0.02)
MAML 0.33(±0.02) 0.29(±0.02) 0.24(±0.02) 0.24(±0.02) 0.23(±0.02) 0.23(±0.02) 0.23(±0.02)

Table 1. Results for the sine curve regression task. Shown is the mean-squared error of CAVIA and MAML for varying number of input
parameters, with 95% confidence intervals in brackets.

(a) Test Performance (b) Learning Rates (c) Gradient Norms

Figure 2. Analysis of the sine curve experiments. (a) Test performance after several gradient steps (on the same batch) averaged over
1000 unseen tasks. Both CAVIA and MAML continue to learn, but MAML performs worse and is less stable. (b) Test Performance after
training with different inner loop learning rates. (c) CAVIA scales the model weights so that the inner learning rate is compensated by the
context parameters gradients magnitude.

task-specific inputs. By contrast, we learn an embedding
that modulates a fixed network, and is independent of the
task-specific inputs during the forward pass. Specific to few-
shot image classification, metric-based approaches learn to
relate (embeddings of) labelled images and new instances
of the same classes (Snell et al., 2017; Sung et al., 2018).
By contrast, CAVIA can be used for regression and rein-
forcement problems as well. Other meta-learning methods
are also motivated by the practical difficulties of learning in
high-dimensional parameter spaces, and the relative ease of
fast adaptation in lower dimensional space (e.g., Sæmunds-
son et al., 2018; Zhou et al., 2018).

In the context of reinforcement learning, Gupta et al. (2018)
condition the policy on a latent random variable trained sim-
ilarly to CAVIA, together with the reparametrisation trick
(although they do not explicitly interpret these parameters as
task embeddings). This latent variable is sampled once per
episode, and thus allows for structured exploration. Unlike
CAVIA, they adapt the entire network at test time, which
can be prone to overfitting.

5. Experiments
In this section, we empirically evaluate CAVIA on regres-
sion, classification, and RL tasks. We show that: 1) adapting
a small number of input parameters (instead of the entire
network) is sufficient to yield performance equivalent to
or better than MAML, 2) CAVIA is robust to the task-
specific learning rate and scales well without overfitting,

and 3) an embedding of the task emerges in the context
parameters solely via backpropagation. Code is available at
https://github.com/lmzintgraf/cavia.

5.1. Regression

5.1.1. SINE CURVES

We start with the regression problem of fitting sine curves
from Finn et al. (2017a). A task is defined by the amplitude
and phase of the sine curve and generated by uniformly
sampling the amplitude from [0.1, 0.5] and the phase from
[0, π]. For training, ten labelled datapoints (uniformly sam-
pled from x ∈ [−5, 5]) are given for each task for the inner
loop update, and we optimise a mean-squared error (MSE)
loss. We use a neural network with two hidden layers and
40 nodes each. The number of context parameters varies
between 2 and 50. Per meta-update we use a batch of 25
tasks. During testing we present the model with ten data-
points from 1000 newly sampled tasks and measure MSE
over 100 test points.

To allow a fair comparison, we add additional input biases
to MAML (the same number as context parameters that
CAVIA uses), an extension that was also done by Finn
et al. (2017b). These additional parameters are meta-learned
together with the rest of the network.

Table 1 shows that CAVIA outperforms MAML even when
MAML gets the same number of additional parameters,
despite the fact that CAVIA adapts only 2-5 parameters,

https://github.com/lmzintgraf/cavia
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Figure 3. Visualisation of what the two context parameters learn
on a new task. Shown is the value they take after 5 gradient update
steps on a new task. Each dot is one random task; its colour
indicates the amplitude (left) or phase (right) of that task.

instead of around 1600. CAVIA’s performance on the re-
gression task correlates with how many variables are needed
to encode the tasks. In these experiments, two parameters
vary between tasks, which is exactly the context parameter
dimensionality at which CAVIA starts to perform well (the
optimal encoding is three dimensional, as phase is periodic).
This suggests CAVIA indeed learns task descriptions in the
context parameters via backpropagation at test time. Figure
3 illustrates this by plotting the value of the learned inputs
against the amplitude/phase of the task in the case of two
context parameters. The model learns a smooth embedding
in which interpolation between tasks is possible.

We also test how well CAVIA can continue learning at test
time, when more gradient steps are performed than during
training. Figure 2a shows that CAVIA outperforms MAML
even after taking several gradient update steps and is more
stable, as indicated by the monotonic learning curve.

As described in Section 3.4, CAVIA can scale the gradients
of the context parameters since they are inputs to the model
and trained separately. Figure 2b shows the performance
of CAVIA, MAML, and CAVIA when also learning the
initialisation of φ (i.e., updating the context parameters in
the outer loop), for a varying learning rate from 10−6 to 10.
CAVIA is robust to changes in learning rate while MAML
performs well only in a small range. Figure 2c gives insight
into how CAVIA does this: we plot the inner learning rate
against the norm of the gradient of the context parameters
at test time. The weights are adjusted so that lower learning
rates bring about larger context parameter gradients and
vice-versa. MT-Nets (Lee & Choi, 2018), which learn which
subset of parameters to adapt on a new task, are also robust
to the inner-loop learning rate, but in a smaller range than
CAVIA.2 Similarly, Li et al. (2017) show that MAML can
be improved by learning a parameter-specific learning rate,
which, however, introduces a lot of additional parameters.

2We do not show the numbers they report since we outperform
them significantly, likely due to a different experimental protocol.

Figure 4. Image completion results on CelebA. Top row: true im-
age on the left, and the training pixels for 10, 100, and 1000
training points. Bottom row: prediction of CAVIA when 128
context parameters were updated for 5 gradient steps.

Random Pixels Ordered Pixels
10 100 1000 10 100 1000

CNP∗ 0.039 0.016 0.009 0.057 0.047 0.021
MAML 0.040 0.017 0.006 0.055 0.047 0.007
CAVIA 0.037 0.014 0.006 0.053 0.047 0.006

Table 2. Pixel-wise MSE (for the entire image) for the image com-
pletion task on the CelebA data set. We test different number of
available training points per image (10, 100, 1000). The trainig
pixels are chosen either at random or ordered from the top-left
corner to the bottom-right. (*Results from Garnelo et al. (2018))

5.1.2. IMAGE COMPLETION

To evaluate CAVIA on a more challenging regression task,
we consider image completion (Garnelo et al., 2018). The
task is to predict pixel values from coordinates, i.e., learn
a function f : [0, 1]2 → [0, 1]3 (for RGB values) which
maps 2D pixel coordinates x ∈ [0, 1]2 to pixel intensities
y ∈ [0, 1]3. An individual picture is considered a single
task, and we are given a few pixels as a training set Dtrain

and use the entire image as the test set Dtest (including the
training set). We train CAVIA on the CelebA (Liu et al.,
2015) training set, perform model selection on the validation
set, and evaluate on the test set.

Garnelo et al. (2018) use an MLP encoder with three hidden
layers and 128 nodes each, a 128-dimensional embedding
size, and a decoder with five hidden layers with 128 nodes
each. To allow a fair comparison, we therefore choose a
context vector of size 128, and use an MLP with five hidden
layers (128 nodes each) for the main network. We chose an
inner-learning rate of 1.0 without tuning. To train MAML,
we use the same five-layer MLP network including 128
additional input biases, and an inner-loop learning rate of
0.1 (other tested learning rates: 1.0, 0.01). Both CAVIA and
MAML were trained with five inner-loop gradient updates.

Table 2 shows the results in terms of pixel-wise MSE for dif-
ferent numbers of training pixels (k = 10, 100, 1000 shot),
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5-way accuracy
Method 1-shot 5-shot
Matching Nets (Vinyals et al., 2016) 46.6% 60.0%
Meta LSTM (Ravi & Larochelle, 2017) 43.44± 0.77% 60.60± 0.71%
Prototypical Networks (Snell et al., 2017) 46.61± 0.78% 65.77± 0.70%
Meta-SGD (Li et al., 2017) 50.47± 1.87% 64.03± 0.94%
REPTILE (Nichol & Schulman, 2018) 49.97± 0.32% 65.99± 0.58%
MT-NET (Lee & Choi, 2018) 51.70± 1.84% -
VERSA (Gordon et al., 2018) 53.40± 1.82% 67.37± 0.86

MAML (32) (Finn et al., 2017a) 48.07± 1.75% 63.15± 0.91%
MAML (64) 44.70± 1.69% 61.87± 0.93%
CAVIA (32) 47.24± 0.65% 59.05± 0.54%
CAVIA (128) 49.84± 0.68% 64.63± 0.54%
CAVIA (512) 51.82± 0.65% 65.85± 0.55%
CAVIA (512, first order) 49.92± 0.68% 63.59± 0.57%

Table 3. Few-shot classification results on the Mini-Imagenet test set (average accuracy with 95% confidence intervals on a random set of
1000 tasks). For MAML, we show the results reported by Finn et al. (2017a), and when using a larger network (results obtained with the
author’s open sourced code and unchanged hyperparameters except the number of filters). These results show that CAVIA is able to scale
to larger networks without overfitting, and outperforms MAML by doing so. We also include other CNN-based methods with similar
experimental protocol. Note however that we did not tune CAVIA to compete with these methods, but focus on the comparison to MAML
in this experiment.

and for the case of randomly selected pixels and ordered
pixels (i.e., selecting pixels starting from the top left of the
image). CAVIA outperforms CNPs and MAML in most
settings. Figure 4 shows an example image reconstruction
produced by CAVIA (see Appendix C.3 for more results).

These results show that it is possible to learn an embedding
only via backpropagation and with far fewer parameters
than when using a separate embedding network.

5.2. Classification

To evaluate how well CAVIA can scale to problems that re-
quire larger networks, we test it on the few-shot image clas-
sification benchmark Mini-Imagenet (Ravi & Larochelle,
2017). In N -way K-shot classification, a task is a random
selection of N classes, for each of which the model gets to
see K examples. From these it must learn to classify unseen
images from the N classes. The Mini-Imagenet dataset con-
sists of 64 training classes, 12 validation classes, and 24 test
classes. During training, we generate a task by selecting N
classes at random from the 64 classes and training the model
on K examples of each, i.e., a batch of N ×K images. The
meta-update is done on a set of unseen images of the same
classes.

On this benchmark, MAML uses a network with four convo-
lutional layers with 32 filters each and one fully connected
layer at the output (Finn et al., 2017a). We use the same
network architecture, but between 32 and 512 filters per
layer. We use 100 context parameters and add a FiLM layer
that conditions on these after the third convolutional layer
and whose parameters are meta-learned with the rest of the

network, i.e., they are part of θ. All our models were trained
with two gradient steps in the inner loop and evaluated with
two gradient steps. Following (Finn et al., 2017a), we ran
each experiment for 60, 000 meta-iterations and selected the
model with the highest validation accuracy for evaluation
on the test set.

Table 3 shows our results on Mini-Imagenet held-out test
data for 5-way 1-shot and 5-shot classification. Our small-
est model (32 filters) underperforms MAML (within the
confidence intervals), and our largest model (512 filters)
clearly outperforms MAML. We also include results for the
first order approximation of our largest models, where the
gradient with respect to θ is not backpropagated through the
inner loop update of the context parameters φ. As expected,
this results in a lower accuracy (a drop of 2%) , but we still
outperform MAML.

CAVIA benefits from increasing model expressiveness:
since we only adapt the context parameters in the inner
loop per task, we can substantially increase the network
size without overfitting during the inner loop update. We
tested scaling up MAML to a larger network size as well
(see Table 3), but found that this hurt accuracy, which was
also observed by Mishra et al. (2018).

Note that we focus on the comparison to MAML in these
experiments, since our goal is to show that CAVIA can scale
to larger networks without overfitting compared to MAML,
and can be used out-of-the-box for classification problems
as well. We did not tune CAVIA in terms of network archi-
tecture or other hyperparameters, but only varied the number
of filters at each convolutional layer. The best performing
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(a) Direction (b) Velocity

Figure 5. Performance of CAVIA and MAML on the RL Cheetah experiments. Both agents were trained to perform one gradient update,
but are evaluated for several update steps. Results are averaged over 40 randomly selected tasks.

method with similar architecture and experimental protocol
is VERSA (Gordon et al., 2018), which learns to produce
weights of the classifier, instead of modulating the network.
The current state-of-the-art results in Mini-Imagenet is (to
the best of our knowledge) the method LEO Rusu et al.
(2019) who use pre-trained feature representations from a
deep residual network (He et al., 2016) and a different exper-
imental protocol. CAVIA can be used with such embeddings
as well, and we expect an increase in performance.

In conclusion, CAVIA can achieve much higher accura-
cies than MAML by increasing the network size, without
overfitting. Our results are obtained by adjusting only 100
parameters at test time (instead of > 30, 0000 like MAML),
which embed the five different classes of the current task.

5.3. Reinforcement Learning

To demonstrate the versatility of CAVIA, we also apply it
to two high dimensional reinforcement learning MuJoCo
(Todorov et al., 2012) tasks using the setup of Finn et al.
(2017a). In the first experiment, a Cheetah robot must run in
a particular, randomly chosen direction (forward/backward),
and receives as reward its speed in that direction. In the sec-
ond experiment, the Cheetah robot must run at a particular
velocity, chosen uniformly at random between 0.0 and 2.0.
The agent’s reward is the negative absolute value between
its current and the target velocity. Each rollout has a length
of 200, and we use 20 rollouts per gradient step during train-
ing, and a meta-batchsize of 40 tasks per outer update. As
in Finn et al. (2017a), our agents are trained for one gradient
update, using policy gradient with generalised advantage
estimation (Schulman et al., 2015b) in the inner loop and
TRPO (Schulman et al., 2015a) in the outer loop update.
Following the protocol of Finn et al. (2017a), both CAVIA
and MAML were trained for up to 500 meta-iterations, and
the models with the best average return during training were
used for evaluation. For these tasks, we use 50 context pa-
rameters for CAVIA and an inner-loop learning rate of 10.
We found that starting with a higher learning rate helps for

RL problems, since the policy update in the outer loop has
a stronger signal from the context parameters.

Figure 5 shows the performance of the CAVIA and MAML
agents at test time, after up to three gradient steps (averaged
over 40 randomly selected test tasks). Both models keep
learning for several updates, although they were only trained
for one update step. CAVIA outperforms MAML on both
domains after one gradient update step, while updating only
50 parameters at test time per task compared to > 10, 000.
For the Cheetah Velocity experiment, MAML catches up
after three gradient update steps.

6. Conclusion and Future Work
CAVIA is a meta-learning approach that separates the model
into task-specific context parameters and parameters that are
shared across tasks. We demonstrated experimentally that
CAVIA is robust to the inner loop learning rate and yields
task embeddings in the context parameters. CAVIA out-
performs MAML on challenging regression, classification,
and reinforcement learning problems, while adapting fewer
parameters at test time and being less prone to overfitting.

We are interested in extending our experimental evaluation
to settings with multi-modal task distributions, as well as
settings where more generalisation beyond task identifica-
tion is necessary at test time. One possible approach here is
to combine CAVIA with MAML-style updates in the future:
i.e., having two separate inner loops (producing φi and θi),
and one outer loop.

We are interested in extending CAVIA to more challenging
RL problems and exploring its role in allowing for smart
exploration in order to identify the task at hand, for ex-
ample building on the work of Gupta et al. (2018) who
use probabilistic context variables, or Stadie et al. (2018),
who propose E-MAML for RL problems, an extension for
MAML which accounts for the effect of the initial sampling
distribution (policy) before the inner-loop update.
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Supplementary Material

A. Pseudocode

Algorithm 1 CAVIA for Supervised Learning

Require: Distribution over tasks p(T )
Require: Step sizes α and β
Require: Initial model fφ0,θ with θ initialised randomly

and φ0 = 0
1: while not done do
2: Sample batch of tasks T = {Ti}Ni=1 where Ti ∼ p
3: for all Ti ∈ T do
4: Dtrain

i ,Dtest
i ∼ qTi

5: φ0 = 0
6: φi = φ0 − α∇φ 1

M train
i

∑
(x,y)∈Dtrain

i

LTi(fφ0,θ(x), y)

7: end for
8: θ ← θ−β∇θ 1

N

∑
Ti∈T

1
M test

i

∑
(x,y)∈Dtest

i

LTi(fφi,θ(x, y))

9: end while

Algorithm 2 CAVIA for RL

Require: Distribution over tasks p(T )
Require: Step sizes α and β
Require: Initial policy πφ0,θ with θ initialised randomly

and φ0 = 0
1: while not done do
2: Sample batch of tasks T = {Ti}Ni=1 where Ti ∼ p
3: for all Ti ∈ T do
4: Collect rollout τ train

i using πφ0,θ

5: φi = φ0 + α∇φJ̃Ti(τ train
i , πφ0,θ)

6: Collect rollout τ test
i using πφi,θ

7: end for
8: θ ← θ + β∇θ 1

N

∑
Ti∈T

J̃Ti(τ test
i , πφi,θ)

9: end while

B. Practical Tips
B.1. Implementation

The context parameters φ can be added to any network,
and do not require direct access to the rest of the network
weights like MAML. In PyTorch this can be done as follows.
To add CAVIA parameters to a network, it is necessary to
first initialise them to zero when the model is initialised:

self.context_params =
torch.zeros(size=[self.num_context_params],
requires_grad=True)

Add a way to reset the context parameters to zero (e.g., a
method that just does the above). During the forward pass,

add the context parameters to the input by concatenating it
(when using a fully connected network):

x = torch.cat((x,
self.context_params.expand(x.shape[0],
-1)), dim=1)

(This is for fully connected networks. We refer the reader
to our implementation for how to use FiLM to condition
CNNs.) To correctly set the computation graph for the
outer loop, it is necessary to assign the context parameters
manually with their gradient. In the inner loop, compute the
gradient:

grad = torch.autograd.grad(task_loss,
model.context_params,
create_graph=True)[0]

The option create graph will make sure that you can take the
gradient of grad again. Then, update the context parameters
using one gradient descent step

model.context_params = model.context_params
- lr_inner * grad

If you now do another forward pass and compute the gra-
dient of the model parameters θ (for the outer loop), these
will include higher order gradients because grad above in-
cludes gradients of θ, and because we kept the computation
graph via the option grad. To see how to train CAVIA
and aggregate the meta-gradient over several tasks, see our
implementation at [blinded; see supplementary material].

B.2. Hyperparameter Selection

The choice of network architecture/size and context param-
eters can be guided by domain knowledge. E.g., for the few-
shot image classification problem, an appropriate model is
a deep convolutional model. For the context parameters, it
is important to make sure they are not underparameterised.
CAVIA can deal with larger than necessary context parame-
ters (see Table 1), although it might start overfitting in the
inner loop at some point (we have not experiences this in
practise). Regarding learning rates, we always started with
an inner loop learning rate of 1 and the Adam optimiser
with the standard learning rate of 0.001 for the outer loop.

For CNNs, we found that adding the context parameters
not at the input layer, but after several (in our case after the
third out of four) convolutions works best. We believe this
is because the lower-level features that the first convolutions
extract are useful for any image classification task, and we
only want our task embedding to influence the activations
at the deeper layers. In our experiments we used a FiLM
network with no hidden layers. We tried deeper versions,
but this resulted in inferior performance.

We also tested to add context parameters at several layers
instead of only one. However, in our experience this resulted
in similar (regression and RL) or worse (in the case of
CNNs) performance.
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(a) Multiple gradient updates. (b) Learning rate comparison. (c) Goal position embedding.

Figure 6. Results for the 2D navigation reinforcement learning problem.

C. Experiments
C.1. Classification: Details

For Mini-Imagenet, our model takes as input images of size
84×84×3 and has 5 outputs, one for each class. The model
has four modules that each consist of: a 2D convolution
with a 3 × 3 kernel, padding 1 and 128 filters, a batch
normalisation layer, a max-pooling operation with kernel
size 2, if applicable a FiLM transformation (only at the third
convolution, details below), and a ReLU activation function.
The output size of these four blocks is 5× 5× 128, which
we flatten to a vector and feed into one fully connected layer.
The FiLM layer itself is a fully connected layer with inputs
φ and a 256-dimensional output and the identity function
at the output. The output is divided into γ and β, each of
dimension 128, which are used to transform the filters that
the convolutional operation outputs. The context vector is of
size 100 (other sizes tested: 50, 200) and is added after the
third convolution (other versions tested: at the first, second
or fourth convolution).

The network weights are initialised using He et al. (2015),
the bias parameters are initialised to zero (except at the
FiLM layer). We use the Adam optimiser for the meta-
update step with an initial learning rate of 0.001. This
learning rate is annealed every 5, 000 steps by multiplying
it by 0.9. The inner learning rate is set to 0.1 (others tested:
1.0, 0.01). We use a meta batchsize of 4 and 2 tasks for
1-shot and 5-shot classification respectively. For the batch
norm statistics, we always use the current batch – also during
testing. I.e., for 5-way 1-shot classification the batch size at
test time is 5, and we use this batch for normalisation.

C.2. Reinforcement Learning: Additional Experiments

We also perform reinforcement learning experiments on
the simple 2D Navigation task of Finn et al. (2017a). The
agent moves in a 2D world using continuous actions and at
each timestep is given a negative reward proportional to its
distance from a pre-defined goal position. Each task has a
new unknown goal position.

We follow the same procedure as Finn et al. (2017a). Goals
are sampled from an interval of (x, y) = [−0.5, 0.5]. At
each step we sample 20 tasks for both the inner and outer
loops and testing is performed on 40 new unseen tasks.
We learn for 500 iterations and optimise for one gradient
update in the inner loop. The best performing policy during
training is then presented with new test tasks and allowed
two gradient updates. For each update, the total reward
over 20 rollouts per task is measured. We use a two-layer
network with 100 units per layer and ReLU nonlinearities to
represent the policy and a linear value function approximator.
For CAVIA we use five context parameters at the input layer.

Figure 6a shows that the two methods are highly competi-
tive. We think that the similar performance is mostly due
to a ceiling effect, since the domain is relatively simple.
Notably, CAVIA adapts only five parameters at test time,
whereas MAML adapts around 10, 000. Figure 6b, which
plots performance for several learning rates (at test time,
after two gradient updates), shows that CAVIA is again less
sensitive to the inner loop learning rate. Only when using a
learning rate of 0.1 is MAML competitive in performance.3

As with regression, the optimal task embedding is low di-
mensional enough to plot. We therefore apply CAVIA with
two context parameters and plot how these correlate with
the actual position of the goal for 200 test tasks. Figure 6c
shows that the context parameters obtained after two policy
gradient updates represent a disentangled embedding of the
actual task. Specifically, context parameter 1 encodes the y
position of the goal, while context parameter 2 encodes the
x position. Hence, CAVIA can learn compact interpretable
task embeddings via backpropagation through the inner loss.

C.3. Additional CelebA Image Completion Results

The following images show additional results for the CelebA
image completion task.

3For MAML we halve the learning rate after the first gradient
update, following Finn et al. (2017a).
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Figure 7. Additional image completion results for the CelebA image completion problem, when k = 10 pixels are given.
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Figure 8. Additional image completion results for the CelebA image completion problem, when k = 10 pixels are given.
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Figure 9. Additional image completion results for the CelebA image completion problem, when k = 10 pixels are given.


