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ABSTRACT
A key challenge in information retrieval is that of on-line
ranker evaluation: determining which one of a finite set of
rankers performs the best in expectation on the basis of user
clicks on presented document lists. When the presented lists
are constructed using interleaved comparison methods, which
interleave lists proposed by two different candidate rankers,
then the problem of minimizing the total regret accumulated
while evaluating the rankers can be formalized as a K-armed
dueling bandits problem. In this paper, we propose a new
method called relative confidence sampling (RCS) that aims
to reduce cumulative regret by being less conservative than
existing methods in eliminating rankers from contention. In
addition, we present an empirical comparison between RCS
and two state-of-the-art methods, relative upper confidence
bound and SAVAGE. The results demonstrate that RCS can
substantially outperform these alternatives on several large
learning to rank datasets.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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Evaluation; implicit feedback; on-line learning

1. INTRODUCTION
An important challenge in information retrieval is that

of ranker evaluation: determining which of a finite set of
rankers performs best in expectation. In off-line ranker
evaluation, which goes back to the early Cranfield experi-
ments [8], rankers are assessed based on a fixed set of queries
and documents manually judged by human assessors. Un-
fortunately, obtaining such judgments is expensive and error
prone. Because the assessors typically did not formulate the
queries on which they judge documents, their assessments
may not accurately reflect how well those documents meet
the needs of real users.
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These difficulties can be addressed by on-line ranker eval-
uation, in which rankers are assessed using click feedback
from actual users. A common approach is to use interleaved
comparison methods [6, 7, 13, 15, 19, 26, 28], in which the
document lists proposed by two candidate rankers for a given
query are interleaved and the resulting list presented to the
user, whose clicks are used to infer a noisy preference for one
ranker over the other. Recently, interleaving methods have
been successfully applied in large-scale settings [6, 7].

The use of interleaved comparison methods gives rise to a
key challenge in ranker evaluation: how to efficiently deter-
mine the best ranker from a set using only pairwise compar-
isons. This challenge can be formalized as a K-armed duel-
ing bandits problem [37], wherein the best ranker is defined
as the one that in expectation wins an interleaved compari-
son with each other ranker.

In the explore-then-exploit setting [37], the algorithm’s
goal is defined with respect to a fixed period of time called
the horizon, at the end of which the algorithm must report
what it thinks the best ranker is. Performance is then eval-
uated according to both the accuracy with which it picks
the best ranker and the cumulative regret it accrues dur-
ing that period. Regret is a measure of the suboptimality,
with respect to the best ranker, of the rankers selected for
interleaving. Several algorithms have been proposed for this
setting, including interleaved filter (IF) [37], beat the mean
(BTM) [36], and sensitivity analysis of variables for generic
exploration (SAVAGE) [32].

By contrast, in the ongoing regret minimization setting
[23], no horizon is specified in advance and the goal is to
minimize cumulative regret for all horizons. The relative
upper confidence bounds (RUCB) [38] algorithm was recently
proposed for this setting.

In this paper, we propose and evaluate a new method
for evaluating rankers, called relative confidence sampling
(RCS). To determine which rankers to interleave at each
iteration, RCS proceeds in two phases. First, it uses the
results of the comparisons conducted so far to simulate a
round-robin tournament among the rankers. Second, the
champion of this tournament is compared against a chal-
lenger deemed to have the best chance of beating it. As
more comparisons are conducted, the best ranker is increas-
ingly likely to be selected as both champion and challenger,
causing regret to fall steeply over time.

To validate RCS, we evaluate its performance on large
Microsoft and Yahoo! learning to rank datasets using both
the explore-then-exploit and the ongoing regret minimiza-
tion settings. Our results show that RCS significantly and



substantially outperforms both SAVAGE, the state of the
art in the explore-then-exploit setting, and RUCB, the state
of the art in ongoing regret minimization.

The main contributions of this paper are thus:

1. We evaluate two existing K-armed dueling bandits al-
gorithms on online ranker evaluation using two large
learning to rank datasets, and

2. We propose and evaluate a new K-armed dueling ban-
dits algorithm that performs better than existing state-
of-the-art algorithms for online ranker evaluation.

In Section 2, we detail our problem setting and in Section 3
we discuss existing methods for ranker evaluation. Section 4
details relative confidence sampling, our new method for on-
line ranker evaluation. Section 5 details our experimental
setup and Section 6 presents our experimental results and
discusses our findings. Section 7 contains our conclusions.

2. PROBLEM SETTING
One approach to ranker evaluation is to use manual expert

annotations in a TREC-like setting [34]. However, collect-
ing the necessary annotations is expensive and, because they
are not based on real users, such annotations may not reflect
real users’ actual information needs. An attractive alterna-
tive is thus to evaluate rankers on-line using feedback from
real users. One way to obtain such feedback is to measure
the click-through rate [17, 18]. However, such feedback is of-
ten unreliable, since click-through rates can have substantial
variance, particularly across users and topics [20, 21, 28, 29].

Fortunately, on-line feedback can also be obtained using
interleaved comparison methods, which give relative feedback
about how one ranker compares to another and has been
shown to be more reliable [6, 26]. To compare two rankers
on a given query, an interleaved comparison constructs a
ranking that is an amalgamation of the rankings proposed by
the two rankers for that query. Schemes for constructing the
amalgamation include balanced interleave [19], team draft
[28], document constraints [13], probabilistic interleave [15],
and optimized interleave [27].

However, since interleaved comparison methods require
feedback from real users, each comparison has significant
real-world costs, i.e., if either of the compared rankers is
poor, the interleaved ranking may also be poor, leaving the
user dissatisfied. An important question is thus how to find
the best ranker in a way that minimizes these costs.

This problem can be formalized as a K-armed dueling ban-
dits problem [37], which is itself an extension of the K-armed
bandits problem [2]. In the K-armed bandits problem, there
are K rankers, {ρ1, . . . , ρK}. At each time step, a ranker ρi
can be tried, generating a reward drawn from an unknown
stationary distribution with expected value µi, which might
be a quantity like click-through rate [5].

The K-armed dueling bandits problem is a variation that
models the relative feedback available in settings like ranker
evaluation with interleaved comparison methods. The prob-
lem is defined by a matrix of comparison probabilities P =
[pij ]. At each time step, two rankers (ρi, ρj) are compared,
e.g., using an interleaved comparison method, and with prob-
ability pij ranker ρi beats ρj . In this paper, we assume that
there exists a Condorcet winner [32]: a ranker, which with-
out loss of generality we label ρ1, such that p1i >

1
2

for
all i > 1. In other words, when interleaved with any other
ranker, the Condorcet winner is expected to win.

The Condorcet winner is different in a subtle but impor-
tant way from the Borda winner [32], which is a ranker ρb
that satisfies∑

j

pbj ≥
∑
j

pij , for all i = 1, . . . ,K.

In other words, when averaged across all other rankers, the
Borda winner is the ranker with the highest probability of
winning a given comparison.

To better understand the distinction between these two
types of winners, consider an example from the world of
sports. Suppose we wish to use a K-armed dueling bandit
method to efficiently identify the world’s best tennis player.
In addition, suppose that Rafael Nadal is likely to win, say
with probability 0.55, a match against the other top play-
ers since, according to The New York Times (June 9, 2013)
“Nadal is also the only member of the so-called Big Four to
have a head-to-head edge over all the other members of that
club: [Novak] Djokovic, Roger Federer and Andy Murray.”
Finally, suppose also that, though Federer loses in expecta-
tion to Nadal, he has a 0.75 probability of beating Djokavic
and Murray. Thus, Nadal is the Condorcet winner but Fed-
erer is the Borda winner.

It is not immediately obvious which player should be con-
sidered the best. While Nadal is the only undominated
player, a gambler who could only bet on one player before
the start of a tournament should pick Federer. However, in
ranker evaluation, the Condorcet winner is the more suitable
choice. The reason is that, although Federer is more likely
than Nadal to win a given match, the goal of ranker evalua-
tion is not to win interleaved comparisons but to identify and
use the best ranker. Interleaving is thus only a means to an
end, whereas in tennis the match is an end in itself. Choos-
ing anything other than the Condorcet winner as the best
ranker is suboptimal because it means that by definition an-
other ranker exists that would beat the chosen ranker. More
precisely, given a distribution over user-query pairs encoun-
tered by the retrieval system and a ranker ρi other than the
Condorcet winner ρ1, then ρ1 is morely likely to win an in-
terleaved comparison against ρi for a given user-query pair
than vice-versa. In Section 3, we compare the Condorcet
assumption, i.e., the assumption of the existences of a Con-
dorcet winner, with the typically much stronger assumptions
made by other K-armed dueling bandits algorithms.

The goal of an algorithm for the K-armed dueling bandits
problem can be formalized in several ways. In this paper,
we consider two standard settings:

1. Explore-then-exploit [37]: In this setting, the algorithm
is told in advance the exploration horizon: the num-
ber of time steps that the evaluation process is given
to explore before it has to produce a single ranker as
the best, which will be exploited thenceforth. The algo-
rithm is assessed on its accuracy, the probability that a
given run of the algorithm reports the Condorcet win-
ner as the best ranker, as well as the amount of regret
accumulated during the exploration phase, where re-
gret for each time step is defined as follows: if rankers
ρi and ρj were chosen for comparison at time t, then
regret at that time is set to be

rt :=
∆1i + ∆1j

2
, (1)



with ∆1k := p1k − 1
2

for all k ∈ {1, . . . ,K}. Thus,
regret measures the average advantage that the Con-
dorcet winner has over the two interleaved rankers.
Given our assumption on the probabilities p1k, this
implies that r = 0 if and only if the best ranker is
interleaved with itself.

2. Ongoing regret minimization [23]: In this setting, no
horizon is specified and the evaluation process con-
tinues indefinitely. Thus, it is no longer sufficient for
the algorithm to maximize accuracy and minimize re-
gret after a single horizon is reached. Instead, it must
minimize regret across all horizons by rapidly decreas-
ing the frequency of interleaved comparisons involving
suboptimal rankers, particularly those that fare worse
in comparison to the best ranker. This goal can be
formulated as minimizing the cumulative regret over
time, rather than with respect to a fixed horizon.

As we describe below in Section 3, most existing K-armed
dueling bandits methods target the explore-then-exploit set-
ting. However, we contend that the ongoing regret mini-
mization setting better captures the key challenges of ranker
evaluation on a deployed retrieval system for the following
reason: explore-then-exploit methods require a horizon as
input and behave differently for different horizons. This
poses a practical problem because it is typically difficult to
know in advance how many comparisons are required to de-
termine the best ranker with confidence and thus how to set
the horizon. If the horizon is set too long, the algorithm is
too exploratory, increasing the number of evaluations needed
to find the best ranker. If it is set too short, the best ranker
remains unknown when the horizon is reached and the algo-
rithm must be restarted with a longer horizon.

3. RELATED WORK
In this section, we briefly survey existing methods for the

K-armed dueling bandits problem, considering both explore-
then-exploit and ongoing regret minimization methods.

3.1 Explore-then-Exploit Methods
To our knowledge, the first method for the K-armed duel-

ing bandits problem that was designed for an explore-then-
exploit scenario is interleaved filter (IF) [37], which proceeds
as follows: a ranker ρ̂ is randomly chosen to be compared
against all other rankers in sequence; these comparisons are
repeated until another ranker ρ′ either loses to or beats ρ̂
by a wide margin, i.e., the winner scores so many more wins
over the loser that one can conclude with a high level of cer-
tainty that the loser can be eliminated. If ρ̂ is the winner,
then ρ′ is eliminated from the pool of rankers and is not
compared against any other rankers. If ρ̂ is the loser, then
it is eliminated from the pool of rankers and ρ′ becomes the
new ρ̂. This process continues until either all but one of the
rankers is eliminated or the horizon is reached. A variation
of the algorithm eliminates not just ρ̂ when it loses badly to
ρ′, but also any other ranker that has lost to ρ̂ on average
(not necessarily by a wide margin).

More recently, the beat the mean (BTM) algorithm has
been shown to perform better than IF [36]. BTM works
by focusing exploration on the rankers that have been in-
volved in the fewest comparisons. When it determines that
a ranker fares on average too poorly in comparison to the
remaining rankers, it removes it from consideration. More

precisely, BTM considers the performance of each ranker
against the mean ranker by averaging the ranker’s scores
against all other rankers and uses these estimates to decide
which ranker should be eliminated.

IF and BTM require the comparison probabilities pij to
satisfy conditions that are difficult to verify without spe-
cific knowledge about the dueling bandits problem at hand.
Specifically, IF and BTM require a total ordering {ρ1, . . . , ρK}
of the rankers to exist such that pij >

1
2

for all i < j. In
Section 6, we show that, in the datasets we consider, the
probability of a total ordering existing decreases quickly as
the number of rankers increases, due to cyclical relationships
among rankers other than the Condorcet winner.

Moreover, in addition to this total ordering, these two al-
gorithms require a form of stochastic transitivity. In partic-
ular, IF requires strong stochastic transitivity : for any triple
(i, j, k), with i < j < k, the following condition is satisfied:

pik ≥ max{pij , pjk},

BTM requies the less restrictive relaxed stochastic transitiv-
ity : there exists a number γ ≥ 1 such that for all pairs (j, k)
with 1 < j < k, we have

γp1k ≥ max{p1j , pjk}.

As pointed out in [36], strong stochastic transitivity is of-
ten violated in practice, a phenomenon also observed in our
experiments: half of the K-armed dueling bandits on which
we experimented require γ > 1.

BTM permits a broader class of K-armed dueling bandits
problems, but it requires γ to be explicitly passed to it as
a parameter, which poses substantial difficulties in practice.
If γ is underestimated, the algorithm can in certain circum-
stances be misled with high probability into choosing the
Borda winner instead of the Condorcet winner, e.g., when
the Borda winner has a larger average advantage over the
remaining arms than the Condorcet winner, as in the Nadal-
Federer example. On the other hand, though overestimating
γ does not cause the algorithm to choose the wrong ranker,
it nonetheless results in a severe penalty: if γ is multiplied
by θ, then the number of interleaved comparisons required
to eliminate suboptimal rankers from further consideration
is multiplied by θ4. Hence, overestimating γ by a factor of 2
means requiring 16 times as many comparisons, which can
substantially affect the amount of regret accumulated.

By contrast, the algorithm we propose in Section 4 makes
only the Condorcet assumption, which is implied by the total
ordering assumption of IF and BTM. However, we show in
Section 6.1 that there are many K-armed dueling bandits
problems that satisfy the Condorcet assumption but do not
have a total ordering.

Sensitivity Analysis of VAriables for Generic Exploration
(SAVAGE) [32] is a recently proposed algorithm that out-
performs both IF and BTM by a wide margin when the num-
ber of rankers is of moderate size. Moreover, one version of
SAVAGE, which we call Condorcet SAVAGE, makes only the
Condorcet assumption and performed the best experimen-
tally [32]. Condorcet SAVAGE compares pairs of rankers
uniformly randomly until there exists a pair for which one
of the rankers beats the other by a wide margin, in which
case the loser is removed from the pool of rankers under con-
sideration. So far, the performance of Condorcet SAVAGE
in the context of online learning to rank has not been eval-
uated on large-scale datasets. We show in this paper that



our proposed algorithm for ranker evaluation substantially
outperforms Condorcet SAVAGE on such datasets.

3.2 Ongoing Regret Minimization Methods
To our knowledge, the recently proposed relative upper

confidence bound (RUCB) [38] is the only existing K-armed
dueling bandits method that explicitly targets the ongoing
regret minimization objective. RUCB is based on a well-
known method for the K-armed bandit problem, called the
upper confidence bound (UCB) algorithm [2], which main-
tains optimistic estimates of the mean reward for each ranker
and selects the ranker with the largest optimistic estimate.
By doing so, UCB ensures adequate exploration of the rank-
ers to avoid fixating on the wrong ranker and accumulating
regret indefinitely.

In a similar fashion, RUCB maintains both optimistic and
pessimistic estimates of each pij and uses them to choose
which rankers to compare against each other. More specif-
ically, it proceeds in two stages. First, it determines which
rankers have a very low chance of being the best ranker
by optimistically comparing each ranker against the rest: if
they lose despite this optimism, they are omitted; one of
the remaining rankers is chosen at random as the cham-
pion. Second, a pessimistic estimate is computed of how
this purported champion would do against all possible op-
ponents. The most formidable opponent is then selected as
the challenger. Finally, the champion and the challenger are
compared, i.e., the rankers are interleaved.

RUCB has a parameter α that controls how exploratory it
is. If α > 1

2
, then the regret accumulated by RUCB is proven

to grow at most logarithmically with high probability [38].
In addition, it has been shown empirically to accumulate
orders of magnitude less regret than BTM. Moreover, RUCB
makes only the Condorcet assumption.

So far, the performance of RUCB in the context of on-
line learning to rank has not been evaluated on large-scale
datasets. We show that our proposed algorithm for ranker
evaluation substantially outperforms RUCB on such datasets.

4. RELATIVE CONFIDENCE SAMPLING
In this section, we propose the relative confidence sam-

pling (RCS) algorithm, which aims to reduce cumulative
regret by being less conservative than the existing meth-
ods about eliminating rankers from contention. Though de-
signed for the ongoing regret minimization setting, RCS is
also easily adapted to the explore-then-exploit setting, and
we show in Section 6 that it substantially outperforms the
state-of-the-art methods in both settings.

While RCS is related to RUCB, which is also designed for
the ongoing regret minimization setting, it differs in one cru-
cial respect: the use of sampling when conducting a round-
robin tournament to select a champion. The goal in doing
so is to exploit one of the key lessons that has been learned
in the study of regular K-armed bandits: that much bet-
ter performance can be obtained by maintaining posterior
distributions over the expected value of each ranker and
sampling from those posteriors to determine which ranker
to select. This is evidenced by the superior performance of
Thompson Sampling [1, 22, 31], a K-armed bandit method
that employs such sampling, over various UCB algorithms
[5, 22]. Unlike UCB algorithms, which rely on estimates of
the expected value that can be far off, sampling-based meth-

Algorithm 1 Relative Confidence Sampling (RCS)

Input: A set of rankers ρ1, . . . , ρK and an oracle that can
take a pair of rankers and return one as the winner (e.g.,
an interleaved comparison method)

1: Choose α > 1
2

2: W← 0K×K // 2D array of wins: Wij is the number of
times ρi beat ρj

3: for t = 1, 2, . . . do
4: // I: Run a simulated “tournament”:

5: Θ(t)← 1K×K
2

6: for i, j = 1, . . . ,K with i < j do
7: Θij(t) ∼ Beta(Wij + 1,Wji + 1)
8: Θji(t) = 1−Θij(t)
9: end for

10: Pick c such that Θcj(t) ≥ 1
2

for all j. If no such ranker
exists, pick the ranker that has been chosen champion
least often.

11: // II: Run UCB in relation to c:

12: U(t) = W
W+WT +

√
α ln t

W+WT // All operations are

element-wise, with x
0

:= 1 for any x.

13: Uii(t)← 1
2

for each i = 1, . . . ,K.
14: d← arg max

j
Ujc(t)

15: // III: Update W
16: Compare rankers ρc and ρd and increment either Wcd

if ρc beat ρd or Wdc otherwise.
17: end for

ods rely on posteriors that tend not to gravitate toward the
extremes, leading to more appropriate choices more often.

As we show in the experiments in Section 6, the advan-
tage of sampling from the posterior distribution also appears
in ranker evaluation and is in fact even more pronounced.
RUCB tends to be very conservative in its choice of a poten-
tial champion, so unless it is highly confident that a ranker
ρi is inferior to another ranker, it will go on considering ρi
as a potential champion. By contrast, RCS is less timid in
its choices: the more a ranker beats the rest, the greater
its chances of being chosen as a champion to be compared
against the rest.

The RCS algorithm, described in Algorithm 1, takes as
input a set of rankers and an oracle such as an interleaved
comparison method that can compare these rankers and re-
turn a noisy estimate of which is the winner. As it is hori-
zonless, RCS does not have an output: as time goes by it
chooses the best ranker more and more frequently. RCS has
one parameter α (Line 1), which controls how exploratory
the algorithm’s behavior is: the higher the value of α, the
more slowly the algorithm settles on a single ranker. RCS
maintains a scoresheet W (Line 2), in which it records the
comparison results and proceeds in two phases:

I: A tournament is simulated based on the current score-
sheet, i.e., samples Θij are collected for each pair of
rankers (i, j) with i > j, from the posterior Beta dis-
tribution maintained on pij ; Since pji = 1 − pij , RCS
sets Θji = 1−Θij (Lines 6-9). Also, RCS sets Θii = 1

2

for each ranker i, since pii = 1
2

and thus its posteri-

ors are all concentrated at 1
2

(Line 5). Given these
sampled results, ranker i beats ranker j in the simu-



lated tournament if Θij >
1
2

for i 6= j. There are two
possibilities at this stage (Line 10):

1. There is a champion ranker c that beats all other
rankers in this tournament, i.e., Θcj >

1
2

for all
j 6= c.

2. No ranker beats all other rankers, in which case
RCS sets c = argminiNi, where Ni is the number
of times ranker i was previously chosen as cham-
pion. In other words, c is the ranker that has been
the champion least often.

Eventually, once the Condorcet winner has been com-
pared against the rest of the rankers often enough, its
superiority over the rest will cause their elimination in
this phase of the algorithm. So, as times goes by, c
will be the Condorcet winner more and more often.

II: The UCB algorithm is applied to the K-armed bandit
problem with means {p1c, . . . , pKc} (Lines 12-14). In
other words, for each j ∈ {1, . . . ,K}, we calculate the
optimistic estimate

ujc :=
Wjc

Wjc + Wcj
+

√
α ln t

Wjc + Wcj
,

where the first term is our estimate of the comparison
probability pjc and the second term is a confidence
radius that is added to ensure adequate exploration
by allowing the other rankers to compare themselves
against c optimistically. RCS picks the ranker d for
which udc is higher than all other ujc.

Finally, rankers c and d are compared against each other
using a real interleaved comparison and W is updated ac-
cordingly (Line 16).

To better understand the rationale behind RCS, consider
our Nadal-Federer example from Section 2. There, a key
danger is that a K-armed dueling bandits algorithm may
mistakenly conclude that Federer is the champion and stop
comparing him against other players, most importantly Na-
dal. RCS avoids this pitfall in two ways. First, if Nadal
has not been compared against the others enough times,
then ΘNF , where N is Nadal and F is Federer, will have
high variance so that in Phase I, Federer will have difficulty
beating the others in the simulated tournament in order to
be chosen as the champion. In cases where no player beats
everyone in the simulated tournament, RCS ensures that
everyone gets a chance at being the champion, including
Nadal. This ensures that our posterior belief in Nadal’s
chance of beating all other players will further concentrate
above 0.5, making it even more likely that he will win future
simulated tournaments. Second, even in cases where Federer
does win the simulated tournament in Phase I, the fact that
Nadal and Federer have not been compared often means
that the upper bound UNF will very likely be above UFF =
1
2
, hence preventing a fruitless comparison between Federer

and himself. Instead, Federer will be compared to Nadal,
ensuring that Nadal’s superiority is eventually discovered.

RCS can be easily adapted to the explore-then-exploit set-
ting: when the horizon is reached, it picks any ranker that
beats the greatest number of other rankers according to the
final scoresheet. We call this modification RCS also, since it
is clear from context which version is meant.

5. EXPERIMENTAL SETUP
We seek to answer the following questions:

RQ1 How often does the Condorcet assumption hold in
comparison to the total ordering assumption?

RQ2 How do SAVAGE and RCS perform at ranker eval-
uation on large-scale learning to rank datasets in the
explore-then-exploit setting?

RQ3 How do RUCB and RCS perform on these datasets in
the ongoing regret minimization setting?

RQ4 How does RUCB perform when the parameter α is too
small for its theoretical guarantees to hold? Moreover,
how does RCS perform in the same range?

RQ5 How do RUCB and RCS scale as the number of rankers
grows?

We address these questions using an experimental setup
built on two large-scale learning to rank datasets: the Mi-
crosoft Learning to Rank (MSLR) and the Yahoo! Learning
to Rank Challenge (YLR) datasets. The latter consists of
two distinct subsets, Set 1 and Set 2, both of which we use.
The specifics of these datasets are described in Table 1.

Table 1: The specifics of the datasets used.

Datasets Queries URLs Features Reference

MSLR-WEB30K 31,531 3,771,125 136 [24]
YLR Set 1 19,944 473,134 519 [4]
YLR Set 2 1,266 34,815 596 [4]

Using these datasets, we create a finite set of rankers,
each of which corresponds to a ranking feature provided in
the dataset, e.g., PageRank or BM25, and from this set we
choose a subset to test our algorithms on. The ranker eval-
uation task thus corresponds to determining which single
feature constitutes the best ranker.

The subsets were chosen by listing the rankers by their
numbers and sorting them alphabetically and then taking
the first K rankers: given the fact that, at least with the
features in the MSLR dataset, nearby features tend to be
similar to each other,1 this way of picking rankers ensures
that not all the selected rankers are extremely similar to
each other but there are nonetheless some similar rankers in
the selected set. Consequently, some diversity is introduced
without making the problem too easy, as would be the case
if the rankers were picked completely randomly.

To compare a pair of rankers, we use probabilistic inter-
leave (PI) [14], though any other interleaved comparison
method could be used instead. To model the user’s click be-
havior on the resulting interleaved lists, we employ a prob-
abilistic user model [9, 14] that uses as input the manual
labels (classifying documents as relevant or not for given
queries) provided with both datasets. Queries are sampled
randomly and clicks are generated probabilistically by condi-
tioning on these assessments using a user model that resem-
bles the behavior of an actual user [11, 12]. This approach
follows an experimental paradigm that has previously been
used for assessing the performance of rankers [13–16].

1We assume that a similar phenomenon also holds for the
Yahoo! datasets, but there is no specific list of features for
them that we could use to verify that claim.



Because we use probabilistic interleave, which already in-
troduces noise into the interleaved comparison, we employ
the perfect click model in our experiments. While another
click model that injects additional noise, such as the nav-
igational click model or the informational click model [15],
could be used instead, doing so would only shift each pij
closer to 0.5. As a result, all methods would need more time
to identify the best ranker, making our experiments take
even longer to run.

We use two evaluation metrics, corresponding to the two
objectives outlined in Section 2. We use accuracy (or best
ranker rate) and cumulative regret, both of which are used in
the explore-then-exploit setting, while only the latter is used
for the ongoing regret minimization objective. Cumulative
regret is the total amount of regret encountered by the algo-
rithm until a given time, where regret at each time step is as
defined in (1). A ranker evaluation algorithm accumulates
regret when it makes a suboptimal choice, meaning that it
does not interleave the best ranker with itself. The more
suboptimal the rankers in the interleaved comparisons, the
higher the accumulated regret. Thus, according to the on-
going regret minimization objective, the goal of the ranker
evaluation algorithm is to increase the frequency with which
it chooses the best ranker as soon as possible; doing so re-
sults in lower regret curves: the flatter the curve, the lower
the frequency of picking poor rankers.

In most of our experiments, we set α = 0.501 for both
RUCB and RCS, as this ensures that RUCB’s theoretical
results apply without it being too exploratory. However, in
one experiment, in order to address RQ4, we set α = 0.1.
In the experiments addressing RQ2–RQ4, the number of
rankers that we consider is set to 10. In the addressing
RQ5, we contrast the performance of RUCB and RCS with
sets of 10, 20, 30 and 40 rankers.

6. RESULTS AND DISCUSSION
In this section, we present and discuss results concerning

each of our research questions.

6.1 The Condorcet Assumption
RCS, like RUCB and Condorcet SAVAGE, relies on the

Condorcet assumption. Other methods such as IF and BTM,
rely on the even stronger assumption of total ordering, among
others. Therefore, it is of interest to know to what extent
these assumptions hold in learning to rank datasets. In or-
der to address RQ1, we consider the 136 feature rankers in
the MSLR-WEB30K dataset.

Using the full matrix of comparison probabilities P, which
was estimated by carrying out 80, 000 interleaved compar-
isons between each pair of feature rankers, and a simple
combinatorial calculation, we determined that the proba-
bility that a random subset of these features satisfies the
Condorcet assumption is always above 0.91. For small and
large subsets, the probability is even higher.

The probability that the total ordering assumption holds
was estimated using a sampling approach: for each K =
1, . . . , 136, we randomly sampled 10, 000 sets of K feature
rankers and used the proportion of these subsets that satisfy
total ordering as an approximation to the probability that
total ordering holds for a subset of the given size K.

Figure 1 shows these probabilities as a function of the size
of the subset of features considered: the blue curve shows the
probability that the Condorcet assumption is satisfied for a
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Figure 1: The probability that the Condorcet and the total
ordering assumptions hold for subsets of the feature rankers
in the MSLR-WEB30K dataset. The probability is shown
as a function of the size of the subset.

subset of given size, while the red curve shows the same for
the total ordering assumption. In the case of the Condorcet
assumption, these probabilities are slightly smaller for inter-
mediate subset sizes, since it is harder for larger subsets to
avoid cycles in the superiority graph (the directed graph that
has an edge from i to j if pij > 0.5), while for very large sub-
sets, the total number of possible subsets is relatively small,
so the probability becomes large again. By contrast, the
larger the subset of rankers under consideration, the more
likely it is to include a cycle, causing the probability of a
total ordering existing to fall quickly.

One source of difficulty in this analysis are probabilities
pij that are very close or equal to 0.5. Even with 80, 000
comparisons between each pair of rankers, our estimate of
the preference matrix might contain fake loops that are sim-
ply due to the natural variance in frequentist estimates of
such probabilities. This can lead to a reversal of the edges in
the superiority graph. Indeed, for many cycles of size three
in this graph, the “weakest link” is extremely close to 0.5,
making it difficult to state with certainty that a cycle exists.
However, the same variance can also break real cycles, and
so these two phenomena should cancel each others’ effects.
Moreover, there are also many cycles whose edges are strong
enough to deduce a genuine cycle.

6.2 Explore-then-Exploit Results
The performance of RCS in the explore-then-exploit set-

ting was compared against Condorcet SAVAGE, which is
the state of the art in this setting [32]. Recall from Section
2 that this setting considers both the accuracy and the cu-
mulative regret of these algorithms at a given horizon. The
top row of plots in Figure 2 compares the accuracy of RCS
and Condorcet SAVAGE at 10 different horizons on three
10-armed bandits obtained from the three different datasets
by considering 10 of the feature rankers. Note that the hor-
izontal axis is in log scale and accuracy is the percentage
of the runs that correctly produced the best ranker as the
winner at the given horizon.

Note that, because Condorcet SAVAGE requires the hori-
zon as input, the algorithm must be rerun from scratch for
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Figure 2: Accuracy (best ranker rate) and average cumulative regret over 90 runs; in top row of plots, the x-axis uses a log
scale; in the bottom plots, both axes use log scales. Log scales were used for the x-axes to make the accuracy plots easier
to read and in the y-axes of the regret plots since the regret accumulated by Condorcet SAVAGE is an order of magnitude
higher than that of RCS.

each horizon. Thus, to obtain the plotted results, we con-
ducted independent runs for each of the 10 horizons consid-
ered. By contrast, since RCS is a horizonless algorithm, we
simply ran it until the longest horizon and then measured
its accuracy at each of the 10 horizons.

Concerning RQ2, these results show that RCS has con-
sistently higher accuracy than Condorcet SAVAGE on all
datasets. This is a particularly striking result because RCS
does not have any parameters optimized for the specific hori-
zons in these experiments. Condorcet SAVAGE, by contrast,
has the advantage that it receives the horizon as input and
can thus adapt its behavior accordingly. Nonetheless, RCS
outperforms Condorcet SAVAGE according to the metric for
which Condorcet SAVAGE was designed. Though the lines
appear close in the graph due to the log scale, the learning
speed actually differs substantially: RCS reaches the same
level of accuracy almost twice as quickly as Condorcet SAV-
AGE. For example, on the Yahoo! Set 1, RCS achieves an
accuracy of 0.8 after 1000 steps while SAVAGE achieves it
only after 2000 steps.

The other objective of the explore-then-exploit setting,
which is to minimize the regret accumulated by the horizon,
is addressed in the bottom row of plots in Figure 2. Note
that these plots are in log-log scale. As with the accuracy
plots, these plots select the performance of separate runs
conducted at each horizon for Condorcet SAVAGE, while
each RCS run was used to measure regret at all horizons.
As is clear from these plots, RCS dramatically outperforms
Condorcet SAVAGE despite being ignorant of the predeter-
mined horizon. In fact, in each experiment, by the time
Condorcet SAVAGE reaches 100% accuracy, it has accumu-

lated at least 3 times as much regret as when RCS achieves
that same accuracy.

The superior performance of RCS over Condorcet SAV-
AGE according to both accuracy and regret is due to related
phenomena: the main advantage of RCS over Condorcet
SAVAGE is that, instead of comparing pairs of rankers uni-
formly randomly, it rapidly focuses on comparing the Con-
dorcet winner against the rest, thereby reducing regret, be-
cause one of the summands in the definition of regret (cf. (1))
is now zero and, more importantly, doing so leads to much
better estimates of the probabilities p1j , and thus greater
confidence in the supremacy of the best ranker. This in turn
leads to more frequent comparisons between the best ranker
and itself, further reducing regret and increasing accuracy.

We also tested RUCB in the explore-then-exploit setting
and found higher accuracy for RCS than RUCB, though the
difference was relatively small. There was, however, a sub-
stantial difference in the regret performances of RUCB and
RCS, as demonstrated in the next section. We omitted the
accuracy curves for RUCB in order to increase readability.

6.3 Ongoing Regret Minimization Results
Turning now to the other method for evaluating K-armed

dueling bandits algorithms, Figure 3 shows the expected cu-
mulative regret obtained when applying RUCB and RCS
to three 10-armed dueling bandits problems obtained from
the three different datasets. For both RCS and RUCB, the
parameter α is set to be 0.501 so that RUCB’s theoretical
guarantees [38] hold. The curves in the plots show the mean
cumulative regret over 90 independent runs of each algo-
rithm. The plots show results on the first 50,000 time steps,
using linear scales on both axes.
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Figure 3: Cumulative regret averaged over 90 runs on the three datasets. All plots use axes with linear scale, since the two
curves are much closer to each other than the ones in the regret plots in Figure 2.

0 50000 100000 150000 200000 250000 300000 350000 400000
time

0

200

400

600

800

1000

1200

1400

cu
m

ul
at

iv
e

re
gr

et

MSLR Dataset with 10 rankers and α = 0.1

RUCB α = 0.1

RCS α = 0.1

Figure 4: Cumulative regret averaged over 30 runs.

Regarding RQ3, the plots in Figure 3 clearly demonstrate
that RCS accumulates substantially less regret than RUCB,
with the former accumulating roughly a third less regret
than latter. In other words, not only does RCS find the best
ranker more quickly than RUCB, it also makes less severe
errors in the process of doing so. In more concrete terms, the
difference in the regret levels at which the two algorithms
plateau is on the order of 200 in these three datasets, which
roughly translates to an extra 2000 interleaved comparisons
involving suboptimal rankers: this is because the probabil-
ity with which the Condorcet winner beats the remaining
arms is around 0.6. Needless to say, this performance dif-
ference can have a great impact on user satisfaction and
engagement. Thus, these results highlight the benefits of a
sampling-based approach to exploration.

Moreover, given the qualitative similarity between the per-
formances of RUCB and RCS when α > 0.5, we strongly sus-
pect that similar regret bounds as those proven for RUCB
[38] also hold for RCS. However, the use of sampling would
necessitate a more intricate theoretical argument that we
leave as future work.

Finally, in these experiments both algorithms had similar
variance across runs; the best performing run of RUCB had
a higher regret curve than the average regret curve of RCS.

6.4 Stability of RUCB and RCS
The improved performance of RCS over RUCB in the pre-

vious section can be attributed to the fact that RCS engages

in less unnecessary exploration. Since lowering αmakes both
RCS and RUCB less exploratory, an important question, as
posed in RQ4, is whether regret can be even further reduced
by setting α to values below 0.5.

To address this question, we investigate the stability of
RUCB and RCS by setting α = 0.1, which lies outside the
range permitted by RUCB’s theoretical results. Figure 4
shows the cumulative regret results averaged over 30 runs
of both RUCB and RCS on the MSLR dataset: fewer runs
were used in this case to illustrate how easily RUCB can
misbehave when α is below 0.5. These results show that the
average cumulative regret for RUCB grows linearly, which
was due to two of the runs never reaching the point where
they keep interleaving the best ranker with itself. By con-
trast, though RCS accumulates almost twice as much regret
at α = 0.1 than α = 0.501, the performance degradation
is much less severe than for RUCB, with RCS’s cumulative
regret curve flattening much more. Similar results were also
observed with the other datasets, but are not included here
due to space constraints.

The performance difference is due to the fact that reducing
α results in shrinking the confidence intervals maintained by
RUCB, which results in the tournament phase of the algo-
rithm not being exploratory enough. Hence, RUCB focuses
prematurely on a single arm that has a temporary advantage
over the others, preventing it from getting better estimates
of the comparison probabilities between the Condorcet win-
ner and the rest, which is necessary for the Condorcet win-
ner to be chosen by the tournament. This, however, is not
a stumbling block for RCS because there are no confidence
intervals in the tournament phase, which relies on sampling
instead. Figure 4 demonstrates that these samples ensure
enough exploration to avoid getting stuck with a suboptimal
ranker. Thus, while lower values of α are not beneficial to
either algorithm, RCS remains stable while RUCB can ex-
perience the catastrophic negative performance associated
with linear regret.

6.5 Size of the Set of Rankers
In order to study the issue of scalability, we compare RCS

to RUCB on problems with 20, 30 and 40 rankers, all ex-
tracted from the MSLR dataset. See Figure 5.

Regarding RQ5, these results show that the cumulative
regret curve of RCS flattens much sooner than that of RUCB.
Thus, RCS starts focusing on the best ranker more quickly
than RUCB: more specifically, where the two curves cross,
RUCB was spending on average 6 to 9 times more iterations
interleaving non-optimal rankers than RCS. For instance, in
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Figure 5: Cumulative regret averaged over 90 runs on the MSLR-WEB30K dataset, with 20, 30, 40 rankers. For comparison,
the plot for 10 rankers is the leftmost plot in Figure 3; note that the scales differ between the four plots, which is necessary
in order to illustrate the non-asymptotic portion of all of the results.

the experiments with 20 rankers, in the vicinity of the cross-
ing point, 3.6% of RCS’s comparisons involved subptimal
rankers, whereas 27% of RUCB’s did; the same quantities
for the 30 and 40 ranker experiments are 1.9% vs. 17% and
3.3% vs. 21%. On the other hand, at time T = T0

2
, where

T0 is the time at which the two average regret curves cross,
these differences are much smaller with the same numbers
being 31% vs. 33%, 31% vs. 36% and 44% vs. 45% for the
20, 30 and 40 ranker experiments, respectively.

Note that this more rapid convergence to the best ranker
requires more aggressive exploration early on. This can be
deduced from the fact that, before plateauing, the red curves
for RCS have slightly steeper slopes than the green curves
for RUCB during the same period. This is due to the fact
that RCS abstains from removing any rankers from consider-
ation until it became clear which ranker is the best, whereas
RUCB stops comparing poorer rankers earlier in the pro-
cess. Nevertheless, RCS starts interleaving the best ranker
with itself in substantially fewer iterations and thus accu-
mulates much less regret in the long run. For instance, at
time T = 2T0, where T0 is the time at which the two average
regret curves cross, the average cumulative regret of RUCB
is 30%, 12.3% and 12.6% higher than that of RCS for 20, 30
and 40 ranker experiments, respectively.

Moreover, the regret curves for RCS are much flatter after
they plateau than those of RUCB, which means that, once
the best ranker is identified, RCS is more likely to avoid fu-
tile interleaved comparisons with suboptimal rankers. More
precisely, at time T = 2T0, the percentage of comparisons
RUCB devotes to suboptimal arms is still roughly 8 times
higher than that of RCS, e.g., 2% and 0.3%, respectively, for
the 20 ranker experiment.

7. CONCLUSIONS
We have proposed and experimentally evaluated a new

method for addressing the problem of on-line ranker evalua-
tion. Our method, relative confidence sampling (RCS), was
evaluated against the existing methods on large scale learn-
ing to rank datasets, in two settings: explore-then-exploit
and ongoing regret minimization. RCS significantly out-
performs the existing state-of-the-art methods under both
settings. In particular, given the need in online ranker eval-
uation scenarios to identify and compare the best ranker as
quickly as possible, RCS has a large advantage over all exist-
ing algorithms, since when asked to return the best ranker
in the explore-then-exploit setting, it has a higher probabil-
ity of returning the best ranker, while minimizing the num-

ber of queries wasted on comparing suboptimal rankers (as
evidenced by the lower regret curves for RCS), without re-
quiring prior knowledge of the length of the evaluation or
imposing restrictive assumptions such as a total ordering.

In future work, we aim to obtain theoretical guarantees for
RCS, which require a considerably more delicate argument
than that of RUCB because the use of sampling in RCS in-
troduces a new dimension of uncertainty in the tournament
phase of the algorithm.

Another important question is to design ranker evaluation
algorithms that can deal with even larger (possibly infinite)
numbers of rankers, without requiring convexity assump-
tions such as those in [35]. In general, one major techni-
cal difficulty facing interleaved comparisons, as opposed to
approaches using click-through rate, is that the number of
comparisons required to deal with a K-armed dueling ban-
dits problem is of the order K2, since every ranker needs to
be compared against every other ranker. Some algorithms,
such as Beat the Mean, get around this hurdle by averaging
the comparisons between each arm and the rest. However,
in order for these algorithms to find the Condorcet win-
ner, the suboptimal arms need to satisfy a total ordering
condition that is difficult to verify and is often violated in
practice, as shown in Section 6.1. One potential remedy for
dealing with this difficulty is to use correlation information
between rankers and make use of continuous armed bandits
algorithms [3, 10, 25, 30, 33], although both the algorithm
and the theoretical analysis would be considerably more in-
tricate in this setting, since the goal is not simply to find
the maximum of a continuous function.

As explained in Section 5, we based our experiments on
the perfect click model; in future experimental work we
will confirm our experimental findings with alternative click
models [15]. We expect such experiments to produce qualita-
tively similar results, since changing the click model simply
makes the interleaved comparisons noisier without affecting
whether a ranker beats another on average, i.e., the proba-
bility of one ranker beating the other is shifted closer to 0.5
without crossing it. This in turn will make the experiments
take longer before finding the best ranker without affecting
to which ranker the algorithms converge.

Finally, we remarked in Section 6.2 that RCS manages to
beat Condorcet SAVAGE in the performance metrics that
the latter was designed for. Thus, another possibility for
future work is to investigate whether it is possible to fur-
ther improve the performance of RCS (and RUCB, for that
matter) by taking the horizon into account.
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