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Abstract—We introduce a new notion of sparsification, called
strong sparsification, in which constraints are not removed but
variables can be merged. As our main result, we present a strong
sparsification algorithm for 1-in-3-SAT. The correctness of the
algorithm relies on establishing a sub-quadratic bound on the
size of certain sets of vectors in Fd

2 . This result, obtained using
the recent Polynomial Freiman-Ruzsa Theorem (Gowers, Green,
Manners and Tao, Ann. Math. 2025), could be of independent
interest. As an application, we improve the state-of-the-art
algorithm for approximating linearly-ordered colourings of 3-
uniform hypergraphs (Håstad, Martinsson, Nakajima and Živný,
APPROX 2024).

Index Terms—sparsification, 1-in-3-SAT, additive combinatorics,
approximation, linearly-ordered colourings

I. INTRODUCTION

Sparsification, the idea of reducing the size of an object of
interest (such as a graph or a formula) while preserving its
inherent properties, has been tremendously successful in many
corners of computer science.

One notion of sparsification comes from the influential
paper of Benczúr and Karger [11], who showed that, for
any n-vertex graph G, one can efficiently find a weighted
subgraph G′ of G with O(n log n) many edges, so that the
size of all cuts in G is approximately preserved in G′, up
to a small multiplicative error. The bound on the size of
G′ was later improved to linear by Batson, Spielman and
Srivastava [9]. Andoni, Chen, Krauthgamer, Qin, Woodruff.
and Zhang showed that the dependency on ε is optimal [1].
From the many follow-up works, we mention the paper
of Kogan and Krauthgamer [35], who initiated the study
of sparsification for constraint satisfaction problems (CSPs),
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Filtser and Krauthgamer [23], who classified sparsifiable
Boolean binary CSPs, and Butti and Živný [15], who classified
sparsifiable binary CSPs on all finite domains. Some impressive
progress on this line of work has been made in recent years by
Khanna, Putterman, and Sudan [32]–[34], establishing optimal
sparsifiers for classes of CSPs and codes, and Brakensiek and
Guruswami [14], who pinned down the sparsifiability of all
CSPs (up to polylogarithmic factors, and non-efficiently). A
different but related notion of sparsification is the concept of
(unweighted) additive cut sparsification, introduced by Bansal,
Svensson and Trevisan [6], later studied for other CSPs by
Pelleg and Živný [38].

Another study on sparsification comes from computational
complexity. The Exponential Time Hypothesis (ETH) of Im-
pagliazzo, Paturi and Zane [30] postulates that 3-SAT requires
exponential time: there exists δ > 0 such that an n-variable 3-
SAT instance requires time O(2δn).1 The sparsification lemma
from the same paper [30] is then used to establish that ETH
implies that exponential time is needed for a host of other
problems. The lemma roughly says that any n-variable 3-SAT
instance is equisatisfiable to an OR of exponentially many
3-SAT formulae, each of which has only linearly many clauses
in n.2 This should be contrasted with what can (or rather
cannot) be done in polynomial time: under the assumption that
NP ̸⊆ coNP/poly, Dell and Melkebeek showed that 3-SAT
cannot be sparsified in polynomial time into an equivalent
formula with O(n3−ε) clauses [19].

Drawing on techniques from fixed-parameter tractability [18]
and kernelisation [18], [24], Jansen and Pieterse [31] and
Chen, Jansen and Pieterse [17] studied which NP-complete
Boolean CSPs admit a non-trivial sparsification. In particular,

1The weaker hypothesis P ̸= NP only postulates that 3-SAT requires
super-polynomial time.

2The precise statement includes a universal quantification over an arbitrarily
small ε > 0 that controls the growth of the exponentials involved.



they observed that 1-in-3-SAT admits a linear-size sparsifier,
meaning an equivalent instance with O(n) many clauses, where
n is the number of variables [31]. Building on techniques from
the algebraic approach to CSPs, Lagerkvist and Wahlström
then considered CSPs over domains of larger size [36].

In the present article we will be interested in sparsifying
approximate problems. When dealing with NP-hard problems,
there are two natural ways to relax the goal of exact solvability
and turn to approximation: a quantitative one and a qualitative
one. The first one seeks to maximise the number of satisfied
constraints. A canonical example is the max-cut problem:
finding a cut of maximum size is NP-hard, but a cut of size at
least roughly 0.878 times the optimum can be efficiently found
by the celebrated result of Goemans and Williamson [26].
The second goal seeks to satisfy all constraints but in a
weaker form. Here are a few examples of such problems.
Firstly, the approximate graph colouring problem, studied by
Garey and Johnson in the 1970s [25]: given a k-colourable
graph G, find an ℓ-colouring of G for some ℓ ≥ k. Secondly,
finding a satisfying assignment to a k-SAT instance that is
promised to admit an assignment satisfying at least ⌈k/2⌉
literals in each clause — a problem coined (2 + ε)-SAT by
Austrin, Guruswami and Håstad [4]. Finally, given a satisfiable
instance of (monotone) 1-in-3-SAT, find a satisfying not-all-
equal assignment [13]. The former, quantitative notion of
approximation has led to many breakthroughs in the last three
decades, including the Probabilistically Checkable Proof (PCP)
theorem [2], [3], [20]. The latter, qualitative notion has been
investigated systematically only very recently under the name
of Promise Constraint Satisfaction Problems (PCSPs) [8], [13].
Unfortunately, traditional notions of sparsification, involving
removing constraints, fail when applied to qualitative approxi-
mation.

To illustrate that, consider the following naive procedure
for graph 2-colouring: given an n-vertex instance graph G, if
G is bipartite then return a spanning forest of G; if G is not
bipartite then return one of the odd cycles in G. This simple
algorithm is essentially the best possible: it outputs an instance
G′ with at most n edges, whose set of 2-colourings is exactly
the same as that of G. However, the above approach breaks
down for approximate solutions: there are 3-colourings of G′

that are not 3-colourings of G (see Figure 1a).
Therefore, we need a notion that allows us to turn approxi-

mate solutions of our simplified instance into the solutions of
the original one. In the above example of 2-colouring, a desired
outcome would be a sparse graph G′ that is 2-colourable if and
only if G is and, furthermore, any k-colouring of G′ translates
into a k-colouring of G. Luckily, it is easy to see how to do
this here. Suppose there exist two vertices with a common
neighbour in G, say x−y−z. Then, x and z must be coloured
identically in all 2-colourings of G. Hence, we can identify
x with z; that is, we replace x and z with a new vertex x′,
both in the vertex set of G and the edges of G.3 Let G′ be

3Blum used the idea of merging two vertices that must be assigned the
same colour in his paper on approximate graph colouring [12]. He calls this
“Type 3 progress.”

the result of applying the identification procedure iteratively
for all such triples. Now, if G was originally 2-colourable,
so is G′. (Indeed, there is a 1-to-1 correspondence between
the 2-colourings of G and those of G′.) Furthermore, any k-
colouring of G′ can be easily extended to a k-colouring of
G: we colour each vertex of G according to the colour of the
vertex it was merged into in G′ (see Figure 1b).

Observe that the key property of the procedure outlined
above is that, since all we do is merge variables that are equal
in all solutions, no constraints are deleted. There is nothing
special about 2-colourings in this argument — an analogous
method, which we call a strong sparsification, can be applied
to other computational problems, including variants of graph
and hypergraph colouring problems, cf. the full version of this
paper [10]. Here, we focus on a particular generalisation of
2-colouring, namely (monotone) 1-in-3-SAT: given a set of
variables X = {x1, . . . , xn}, together with a set C ⊆ X3 of
clauses, assign values 0 and 1 to the variables so that for every
clause (xi, xj , xk) ∈ C exactly one variable among xi, xj , xk

is set to 1, with the remaining two set to 0.4

Definition 1. A strong sparsification algorithm for monotone 1-
in-3-SAT is an algorithm which, given an instance X = (X,C)
of monotone 1-in-3-SAT, outputs an equivalence relation ∼
on X such that if xi ∼ xj then xi and xj have the same
value in all solutions to X . We define the instance X/∼ =
(X/∼, C/∼) of monotone 1-in-3-SAT as follows: X/∼ is the
set of the equivalence classes [x1]∼, . . . , [xn]∼, and each clause
(xi, xj , xk) ∈ C induces a clause ([xi]∼, [xj ]∼, [xk]∼) in C/∼.
The performance of the algorithm is given by the number of
clauses in X/∼, as a function of n = |X|.

We emphasise that the notion of strong sparsification can be
defined in an analogous way for other satisfiability problems.
However, since a strong sparsification is, in particular, a
sparsification in the sense of the aforementioned work of Dell
and van Melkebeek [19], for some classic problems of this type
(3-SAT in particular), it is unlikely to obtain any non-trivial
results. We focus on 1-in-3-SAT, one of the first problems for
which positive sparsification results were obtained [31].

The trivial strong sparsification for monotone 1-in-3-SAT
(the one that does not merge any variables) has worst-case
performance O(n3). There is a slightly cleverer approach
that has performance O(n2) (noted e.g. in [22]). Suppose
there exist clauses (x, y, z) and (x, y, t). There are only 3
possible assignments to (x, y, z, t): (1, 0, 0, 0), (0, 1, 0, 0) and
(0, 0, 1, 1). We see immediately that z and t are the same in
all solutions and thus can be merged. After the exhaustive
application of this rule, we get an instance in which, for
every pair of variables x, y, there is at most one z such that
(x, y, z) ∈ C, so the number of clauses is O(n2).

With this approach, the O(n2) bound is essentially tight: let
X = {0, 1}d, and C = {(i, j, k) | i, j, k ∈ X, i⊕ j ⊕ k = 0},
where ⊕ denote the bitwise Boolean XOR operation. It is not

4A strong sparsification algorithm for monotone 1-in-3-SAT can be
generically transformed into one for non-monotone 1-in-3-SAT (i.e. allowing
negated literals), cf. Section IV. Thus, we shall focus on monotone 1-in-3-SAT.
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difficult to see that, for any i, j ∈ X , there is exactly one
variable k (namely k = i⊕ j) such that (i, j, k) is a clause.
Hence, the above strong sparsification does nothing and outputs
the original instance with Θ(n2) clauses.

It is much harder to find a strong sparsification with better
than quadratic performance, and in fact the existence of such
an algorithm is not a priori clear. As our main contribution,
we show that such an algorithm exists and thus improve the
trivial quadratic upper bound.

Theorem 2 (Main). There exists a polynomial-time strong
sparsification algorithm for monotone 1-in-3-SAT with perfor-
mance O(n2−ε), for ε ≈ 0.0028.

A proof of Theorem 2 can be found in Section III. The main
technical ingredient is the following theorem, which could be
of independent interest. It is proved in Section II using tools
from additive combinatorics.

Theorem 3. Fix n, d. Consider V = {v1, . . . , vn} ⊆ Fd
2 and

let N1, . . . , Nn ⊆ V satisfy
(i) for all i ∈ [n], vi +Ni = Ni, and

(ii) for all i ∈ [n], v1, v2 . . . , vi−1 /∈ ⟨Ni +Ni⟩.
Then

∑n
i=1 |Ni| = O(n2−ε) for ε ≈ 0.0028.

Note that the answer is polynomial in n since, for example, a
linear lower bound is achieved by taking Ni = {0, vi}. In fact,
in the remark following Proposition 10, we provide an example
where

∑
i |Ni| = Ω(nlog2 3). Note also that, since |Ni| ≤ n,

there is a trivial bound
∑

i |Ni| ≤ n2. Hence, our contribution
consists in improving the trivial bound by a polynomial saving
of nε.

In the full version of this paper [10], we also show that no
algorithm (even one with exponential runtime) can output a
strong sparsifier for monotone 1-in-3-SAT with n variables with
performance o(n1.725...). This is because there are instances
with Ω(n1.725...) constraints in which no merges of any two
variables are possible.

Application: As an application of our result, we improve
the state-of the-art approximation of hypergraph colourings.
There are several different notions of colourings for hy-
pergraphs, the classic one being nonmonochromatic colour-
ings [21]. We shall focus on linearly-ordered (LO) colour-
ings [7], also known as unique-maximum colourings [16]: the

colours are taken from a linearly-ordered set, such as the
integers, with the requirement that the maximum colour in
each hyperedge is unique.

Notice that finding an LO 2-colouring of a 3-uniform
hypergraph H is precisely the same problem as monotone
1-in-3-SAT (interpret the clauses of an instance as edges of
H , and take the order 0 < 1). Hence, our strong sparsification
algorithm from Theorem 2 also applies to LO 2-colouring 3-
uniform hypergraphs. Thus, we can improve the state-of-the-art
algorithms for approximate LO colouring, where we are given
an LO 2-colourable 3-uniform hypergraph H , and are asked
to find an LO-colouring with as few colours as possible. The
best known algorithm so far is the following, due to Håstad,
Martinsson, Nakajima and Živný.

Theorem 4 ( [29, Theorem 1]). There is a polynomial-time
algorithm that, given an n-vertex 3-uniform LO 2-colourable
hypergraph H with n ≥ 4,5 returns an LO (log2 n)-colouring
of H .

Using our sparsification algorithm, we improve this to the
following.

Corollary 5. There is a polynomial-time algorithm that, given
an n-vertex 3-uniform LO 2-colourable hypergraph H with
n ≥ 5, returns an LO (0.999 log2 n)-colouring of H .

We will use the following result from [29]. Since its
performance depends on the number of edges in the input,
it benefits from our sparsification scheme.

Theorem 6 ( [29, Theorem 3]). There is a polynomial-time
algorithm that, given a 3-uniform LO 2-colourable hypergraph
H with m edges, returns an LO (2+ 1

2 log2 m)-colouring of H .

Proof of Corollary 5. Recall that a hypergraph H = (V,E)
can be interpreted as an instance X = (V,E) of monotone
1-in-3-SAT, where V is the set of variables, the clauses of X
are the edges of H , and any solution to X correspond to an
LO 2-colouring of H and vice-versa. Thus, using Theorem 2,
we compute an equivalence relation ∼ on V so that, if u ∼ v,
then u and v get the same colour in any LO 2-colouring; and

5Assumptions like this are to make sure that log2 n ≥ 2. We will have
similar assumptions for other algorithms.



H ′ = H/∼ has O(n2−ε) edges for ε ≈ 0.0028. Since H is LO
2-colourable, H ′ is as well (and, in fact, the LO 2-colourings
of H and H ′ are in a 1-to-1 correspondence).

Next, using Theorem 6, find an LO (2 + 1
2 log2(O(n2−ε)))-

colouring of H ′, i.e. an LO colouring with O(1) + 2−ε
2 log2 n

colours. Note that (2 − ε)/2 ≈ 0.9986, and so, for n larger
than some constant, we have O(1)+ 2−ε

2 log2 n ≤ 0.999 log2 n;
whereas, for n smaller than a constant, we can find an LO
2-colouring by brute force. Since for every n ≥ 5 any LO
2-colouring is in particular an LO (0.999 log2 n)-colouring, in
all cases we have found an LO (0.999 log2 n)-colouring of H ′.
Note that any LO colouring of H ′ = H/∼ immediately gives
rise to an LO colouring of H , by assigning each vertex of H
the colour given to its equivalence class in H/∼.

Finally, we remark that we find the introduced notion of
strong sparsification interesting and worth exploring for other
satisfiability problems and CSPs. This could unveil a new and
exciting line of work, going beyond the results of the present
article. We start this exploration in the full version of this
paper [10], where we obtain bounds for some CSPs, including
monotone 1-in-k-SAT and, more generally, ℓ-in-k-SAT, Not-
All-Equal-k-SAT, graph k-colouring, and systems of linear
equations.

Paper structure: Section II gives a prof of the main
technical result, Theorem 3. Section III gives a proof of our
sparsification algorithm, Theorem 2. Section IV shows that
monotone strong sparsification implies non-monotone strong
sparsification.

Acknowledgements: We thank the anonymous reviewers
of FOCS 2025 for their very useful and detailed feedback on
an extended abstract of this work. We also thank Alexandru
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II. ADDITIVE COMBINATORICS

In this section we prove Theorem 3. We reformulate it into an
equivalent, notationally more convenient statement as follows.

Theorem 7. Let

C (n) :− max
V,Ni


n∑

i=1

|Ni|

∣∣∣∣∣∣
V ⊆ Fd

2, |V | = n, and
N1, . . . , Nn ⊆ V satisfy
(i), (ii) of Theorem 3

 .

Then, C (n) = O(n2−ε) for ε = 0.0028.

Our proof of this bound employs two prominent results
from the area of additive combinatorics, namely the Balog-
Szemerédi-Gowers and Polynomial Freiman-Ruzsa Theorems.
In particular, the value of ε that we obtain with this approach
depends (essentially linearly) on the strongest known constants
in these theorems. To state them, we need to introduce some
standard concepts from additive combinatorics.

For a set A ⊆ Fd
2 and an integer k, we define its k-energy

Ek(A) :− #{(a1, a2, . . . , ak) ∈ Ak | a1+a2+ · · ·+ak = 0}.

Note that if rA(x) :− #{(a1, a2) ∈ A2 | a1 + a2 = x}, then
we can equivalently write E4(A) =

∑
x∈Fd

2
rA(x)

2.6 It may
be helpful to keep in mind the trivial upper bound |Ek(A)| ≤
|A|k−1 which holds since after choosing a1, . . . , ak−1, the
element ak, if exists, is fixed by the equation. We also define
the sumset A + A :− {a1 + a2 | aj ∈ A}, and the ratio
|A + A|/|A|, known as the doubling constant of A. Again,
there are the trivial bounds |A| ≤ |A+A| ≤ |A|2. One should
think of sets with “large energy” (say E4(A) ≥ |A|3/K) and
sets with “small doubling” (say |A + A| ≤ K|A|) as being
highly additively structured. The latter notion is strictly stronger,
and it is not hard to show that a set B with doubling constant
L automatically satisfies E4(B) ≥ |B|3/L.

The following Balog-Szemerédi-Gowers Theorem is a stan-
dard result in additive combinatorics [5], [27], and provides
a partial converse. Roughly speaking, it states that a set with
large additive energy contains a rather large subset with small
doubling. We will use a recent version due to Reiher and
Schoen with the current best dependence on K.

Theorem 8 (Balog-Szemerédi-Gowers Theorem [39]). Let
K ≥ 1 and let B have additive energy E4(B) ≥ |B|3/K.
Then there exists a subset B′ ⊆ B of size |B′| ≥ |B|/(2K1/2)
with doubling |B′ +B′| = O(K4|B′|).

Another very recently proved celebrated theorem, known as the
Polynomial Freiman-Ruzsa Conjecture or Marton’s Conjecture,
describes the structure of sets B with small doubling in Fd

2,
stating that they must essentially be contained in a small number
of translates of a subgroup.

Theorem 9 (Polynomial Freiman-Ruzsa Theorem [28]). Let
K ≥ 1 and let B ⊆ Fd

2 be a set with doubling |B+B| ≤ K|B|.
Then there exists a subspace G ≤ Fd

2 such that |G| ≤ |B| and
B is contained in at most 2K9 translates of G.

We begin with a proposition proving Theorem 7 in the
setting where V = Fd

2 is itself a vector space. The argument
in this special case relies on the so-called polynomial method,
and does not require the two theorems above. The power
of the Balog-Szemerédi-Gowers and Polynomial Freiman-
Ruzsa Theorems will be required to deal with general sets
V , essentially by reducing the general problem in Theorem 7
to this special setting in the following proposition (or more
accurately Corollary 11).

Proposition 10. Let V = {v1, v2, . . . , vn} = Fd
2 and

N1, . . . , Nn ⊆ V satisfy conditions (i) and (ii) from Theo-
rem 3. Then

∑n
i=1 |Ni| = O(nlog2 3), where we note that

log2 3 ≈ 1.585.

Interestingly, this bound is optimal as the following example
shows. Let V = Fd

2; by abuse of notation we let S ⊆ [d]
denote the indicator vector for the set S ⊆ [d]. Thus V =
{S | S ⊆ [d]}; also we have implicitly defined addition on
sets to be the symmetric difference. We order V in decreasing

6We remark that E4(A) = #{(a1, a2, a3, a4) ∈ A4 | a1+a2 = a3+a4}
is commonly known as the additive energy of V in the additive combinatorics
community.



order of size i.e. S comes before T if |S| > |T |. Next, define
NS :− {T ∈ V | T ⊆ S}. Note that (i) is satisfied: S +
NS = NS , since if T ⊆ S then S + T = (S \ T ) ⊆ S. One
can also check that (ii) is satisfied because if T ∈ NS for
S ̸= T , then S ⊃ T , hence |S| > |T | which implies that
T comes after S in our ordering. Finally, |NS | = 2|S| (it
contains one vector for each subset of S) and we calculate∑

S⊆[d] |NS | =
∑n

i=0

(
d
i

)
2i = 3d = (2d)log2 3.

Before giving the proof, we note that Proposition 10 implies
a power saving bound whenever V is contained in subspace
H whose size is not much larger than that of V itself.

Corollary 11. Let

V = {v1, v2, . . . , vn} ⊆ Fd
2

and N1, . . . , Nn ⊆ V satisfy conditions (i) and (ii) from
Theorem 3. If V ⊆ H is contained in a subspace H , then∑n

i=1 |Ni| = O(|H|log2 3).

Proof of Corollary 11. Define

V ′ = {v1, . . . , vn, vn+1, . . . , v|H|}

where vn+1, . . . , v|H| is an arbitrary ordering of the elements
of H \ V . Let N ′

i = Ni if i ∈ [n] and N ′
i = ∅ if i > n. By

Proposition 10, the claimed bound clearly follows.

Proof of Proposition 10. Let the sets V = Fd
2 and Ni be given.

Since conditions (i) and (ii) (as well as the sizes |Ni|) are
preserved under translating Ni (i.e. replacing Ni by Ni + x
for some x ∈ Fd

2), we may assume without loss of generality
that 0 ∈ Ni for each i. Hence, ⟨Ni +Ni⟩ = ⟨Ni⟩ −: Hi for
subspaces Hi ≤ Fd

2. We may further assume without loss of
generality that for each i we have Ni = Hi. Indeed, condition
(ii) remains unaffected, while Ni + vi = Ni implies that
⟨Ni⟩ + vi = ⟨Ni⟩ (and replacing Ni by ⟨Ni⟩ can also only
increase the sizes |Ni|).

Thus, it is enough to show that, if v1, v2, . . . , vn is an
ordering of Fd

2 and Hi are subspaces such that
(i) vi ∈ Hi, and

(ii) v1, v2, . . . , vi−1 /∈ Hi,
then

∑
i |Hi| = O(nlog2 3). Let us write hi = codimHi =

d− dimHi, so that for each i we may find hi many vectors
u
(i)
1 , u

(i)
2 , . . . , u

(i)
hi

∈ Fd
2 for which

Hi = {x ∈ Fd
2 | x · u(i)

r = 0 for all r = 1, 2, . . . , hi}. (1)

We emphasise that for x, y ∈ Fd
2 we write x·y =

∑d
j=1 xjyj ∈

F2.
Consider the following polynomial in the variable X =

(X1, X2, . . . , Xd) for each i ∈ [n]:

Fi(X) = Fi(X1, X2, . . . , Xd) :−
hi∏
r=1

(
X · u(i)

r − 1
)
, (2)

which is simply a product of hi many linear polynomials. Since
we will only ever evaluate this polynomial for X ∈ Fd

2, we
may employ a multilinearisation trick which replaces each
occurrence of a power Xt

s by Xs, for t = 1, 2, 3, . . . and

s ∈ [n]. One should note that this does not affect evaluations of
Fi(X) for X ∈ Fd

2, since Y t = Y for Y ∈ F2. Multilinearizing
each Fi(X), we obtain the polynomials F̃i which are linear
combinations of monomials in d variables, having degree 0 or
1 in each variable:

F̃i(X) ∈ ⟨1, X1, . . . , Xd, X1X2, . . . , X1X2 . . . Xd⟩.

By construction, Fi(X) = F̃i(X) for each X ∈ Fd
2. The crucial

property of these polynomials is the following.

Lemma 12. We have that F̃j(vi) = Fj(vi) =

{
0 if i < j,

1 if i = j.

Proof of Lemma 12. Note that if i < j, then by condition
(ii) we have vi /∈ Hj and hence from (1) there exists
r ∈ {1, 2, . . . , hj} such that vi · u(j)

r = 1 . Clearly (2)
then shows that Fj(vi) = 0. Now, if i = j, then by
condition (i) we have vi = vj ∈ Hi which by (1) means
precisely that vi · u(i)

r = 0 for all r ∈ {1, 2, . . . , hi}. Hence,
Fj(vi) = 1. (End of proof of Lemma 12) ■

Lemma 12 easily implies the following.

Lemma 13. The polynomials F̃1, F̃2, . . . , F̃n are linearly
independent in the polynomial vector space given by

⟨1, X1, . . . , Xk, X1X2, . . . , X1X2 . . . Xd⟩.

Proof of Lemma 13. Suppose not. Then there is a dependence
relation

F̃j1 + F̃j2 + · · ·+ F̃jm = 0

for some 1 ≤ j1 < · · · < jm ≤ n. But then, evaluating
this polynomial at X = vj1 ∈ Fd

2 would give a contradiction
by Lemma 12: 0 = F̃j1(vj1) + F̃j2(vj1) + · · · + F̃jm(vj1) =
1 + 0 + · · ·+ 0 = 1. (End of proof of Lemma 13) ■

To use this information to bound
∑n

i=1 |Ni| =
∑

i |Hi|, we
find a bound on the sizes of the level sets Vα :− {i ∈ [n] |
|Hi| ≥ αn = α2d} for each α ∈ [0, 1]. As each Hi is a
subspace, it suffices to bound |Vα| when α = 2−b for some
b ∈ [d]. Now note that if i ∈ V2−b , then |Hi| ≥ 2d−b so that
hi = codimHi ≤ b. Hence, from the definition (2) we see
that the collection of polynomials

{F̃i(X) | i ∈ V2−b}

⊆

〈
d∏

i=1

Xmi
i

∣∣∣∣∣ mi ∈ {0, 1} and
d∑

i=1

mi ≤ b

〉
−: Pb

is a set of |V2−b | many linearly independent polynomials which
are all contained in the subspace

Pb ≤ ⟨1, X1, . . . , X1X2, . . . , X1 . . . Xd⟩

of polynomials of total degree at most b. This implies

|V2−b | ≤ dimPb =

b∑
r=0

(
d

r

)
.



Hence, in total we can bound

n∑
i=1

|Ni| =
n∑

i=1

|Hi| ≤
d∑

b=0

2d−b|V2−b | ≤
d∑

b=0

2d−b
b∑

r=0

(
d

r

)

=

d∑
r=0

(
d

r

)
(1 + 2 + · · ·+ 2d−r) ≤ 2

d∑
r=0

(
d

r

)
n/2r.

By the binomial formula and as n = 2d, the final bound gives∑
i |Ni| = O(n(3/2)log2 n). Observing that n(3/2)log2 n =

nlog2 3 concludes the proof of Proposition 10.

We proceed to the proof of the general case.

Proof of Theorem 7. We will prove the bound C (n) ≤ c0n
2−ε

for all n ∈ N, for some constant c0 > 0. At the end we will
find some necessary lower bounds on c0. In particular, we
will proceed by induction on n, assuming that the bound
C (m) ≤ c0m

2−ε holds for all m < n.
Suppose that the set V = {v1, v2, . . . , vn} ⊆ Fd

2 and sets
N1, . . . , Nn ⊆ V satisfy conditions (i), (ii) and are such that∑n

i=1 |Ni| = C (n). We may assume that
n∑

i=1

|Ni| ≥ n2−ε, (3)

as otherwise we are done. The first step in this proof consists
in showing, using tools from additive combinatorics, that under
the assumption (3), a large subset of V must be rather densely
contained in a subspace of Fd

2. We show that (3) implies that
E3(V ), and hence E4(V ), are large.

Lemma 14. Let V and the sets Ni ⊆ V satisfy (3). Then
E3(V ) ≥

∑n
i=1 |Ni| ≥ n2−ε. Moreover, E4(V ) ≥ n3−2ε

Proof of Lemma 14. The bound for E3(V ) is trivial from
condition (i), since whenever j, k ∈ [n] are such that vk ∈ Nj ,
then vj + vk ∈ Nj ⊆ V so that (vj , vk, vj + vk) is a tuple that
contributes to E3(V ).

Note that
∑

v∈V rV (v) = E3(V ) ≥ n2−ε. Also, we ob-
served above that

∑
x rV (x)

2 = E4(V ). By Cauchy-Schwarz,
we then get

E4(V ) =
∑
x∈Fd

2

rV (x)
2 ≥

∑
v∈V

rV (v)
2 ≥

1

|V |

(∑
v∈V

rV (v)

)2

=
E3(V )2

n
≥ n3−2ε.

(End of proof of Lemma 14) ■

We may now combine Lemma 14 with Theorem 8 and
Theorem 9. By Theorem 8 (Balog-Szemerédi-Gowers) and as
E4(V ) ≥ n3−2ε = n3/K for K = n2ε, there exists a subset
A ⊆ V of size |A| ≥ n1−ε/2 with |A−A| = O(n8ε|A|). Now,
by Theorem 9 (Polynomial-Freiman-Ruzsa), we may find a
subspace H ≤ Fd

2 such that A is covered by O(n72ε) translates
of H , and where |H| ≤ |A|. In particular, there is one such
translate x0 +H such that

|V ∩ (x0 +H)| ≥ |A|/O(n72ε) ≥ Ω(n1−73ε).

Also, without loss of generality we may take x0 = 0, as
otherwise we may replace H by ⟨H,x0⟩, which still satisfies
the two properties above up to an additional factor of 2, namely:

• |H| ≤ 2|A|,
• |V ∩H| = Ω(|A|/n72ε) = Ω(n1−73ε).

Thus we have completed the first step of the proof. To use this
information for estimating

∑
i |Ni|, we split Ni = NH

i ∪NC
i

for each i ∈ [n], where

NH
i = Ni ∩ (H ∪ (H + vi)) = Ni ∩ ⟨H, vi⟩

and NC
i = Ni\NH

i . It is notationally convenient to also define
Nv = Ni if v = vi ∈ V , and similarly for NH

v , NC
v . We can

calculate

n∑
i=1

|Ni| =
∑

v∈V ∩H

|NH
v |+

∑
v∈V ∩H

|NC
v |

+
∑

v∈V \H

|NH
v |+

∑
v∈V \H

|NC
v |. (4)

The reason for the definitions of the sets NH
i , NC

i will become
clear shortly: essentially, the idea is that, because V ∩H is
rather dense in the subspace H by the first step, one may
expect to obtain good bounds for the first three terms by
applying Corollary 11. The final term may be bounded using
the induction hypothesis, since it will be clear from our choice
that the sets NC

v still satisfy conditions (i), (ii). The second
step therefore consists in making this approach precise and
bounding each of the four terms above.

1) First, we immediately deduce from Corollary 11 that∑
v∈V ∩H

|NH
v | = O(|H|log2 3),

since the sets V ′ :− V ∩H (ordered in the same way as in
V ) and N ′

v :− NH
v for v ∈ V ∩H still satisfy conditions

(i) and (ii). Only that NH
v + v = NH

v for v ∈ V ∩H is
perhaps non-trivial, but this is satisfied since Nv+v = Nv

holds for the original sets Nv and, as v ∈ H , we may
take the intersection of both sides with H .

2) The final term may be bounded by
∑

v∈V \H |NC
v | ≤

C (|V \H|), since the set Ṽ :− V \H with Ñv :− NC
v ⊆

V \H for v ∈ Ṽ is again a system satisfying conditions (i),
(ii). Indeed, (ii) is straightforward as Ñv ⊆ Nv . Moreover,
(i) holds: if v ∈ V \H , then, as v + Nv = Nv, the set
Nv consists of pairs x, x+ v. Recall that, by definition,
NC

v = Nv \ (Nv ∩⟨H, v⟩), thus we have indeed also only
removed elements in pairs (i.e. x ∈ Nv ∩ ⟨H, v⟩ if and
only if x+ v ∈ Nv ∩ ⟨H, v⟩). Therefore, as we showed
above that |V ∩H| ≥ Ω(n1−73ε), and as C (n) is clearly
increasing in n, we can bound∑

v∈V \H

|NC
v | ≤ C (n− Ω(n1−73ε)).

3) To bound the middle sums in (4), we will use the following
lemma, whose proof we postpone to the end of the section.



Lemma 15. We have that
(a)

∑
v∈V \H

|NH
v | = O(n|H| 12 log2 3),

(b)
∑

v∈V ∩H

|NC
v | = O(n|H| 12 log2 3).

It remains to show how the three bounds above may be
combined to complete the proof of Theorem 7 (and hence
Theorem 3). Using these bounds in (4), we get
n∑

i=1

|Ni| = O(|H|log2 3 + n|H| 12 log2 3) + C (n− Ω(n1−73ε)).

Let c1 > 0 be a constant that can be used so that Ω(n1−73ε) ≥
c1n

1−73ε in the equation above. Recall that |H| ≤ 2|A| ≤
2n and that we assumed that C (n) =

∑n
i=1 |Ni|. Thus, we

conclude that

C (n) = C (n(1− c1n
−73ε)) +O(n1+ 1

2 log2 3)

≤ C (n(1− c1n
−73ε)) + c2n

1+ 1
2 log2 3,

for some constant c2 > 0. By the induction hypothesis, we
may bound

C (n(1− c1n
−73ε)) ≤ c0n

2−ε(1− c1n
−73ε)2−ε

≤ c0(n
2−ε − c1n

2−74ε),

since certainly (1− c1n
−73ε)2−ε ≤ 1− c1n

−73ε. We deduce
that

C (n) ≤ c0n
2−ε − c0c1n

2−74ε + c2n
1+ 1

2 log2 3.

This implies the desired bound C (n) ≤ c0n
2−ε so long as

c0c1n
2−74ε ≥ c2n

1+ 1
2 log2 ε. If we choose ε > 0 such that

2− 74ε > 1 + 1
2 log2 3, then we can choose c0 large enough

(in terms of the absolute constants c1, c2) so that the required
bound holds for all n ∈ N. Hence, taking ε with this property
suffices — and any value of ε less than 1− 1

2 log2 3

74 ≈ 0.002804
works. This concludes the proof of Theorem 7.

Our final task is then to prove Lemma 15.

Proof of Lemma 15. (a) Recall that we want to bound∑
v∈V \H |NH

v | where NH
v = Nv ∩ ⟨H, v⟩. We begin with

an estimate for the contributions of the sets (V \H)a :− {v ∈
V \ H | |NH

v | ≥ a} for each a ∈ [n]. If v ∈ V \ H , then
NH

v ⊆ Nv ⊆ V , and, as NH
v = Nv ∩ (H ∪ (v +H)) satisfies

NH
v = v+NH

v , by condition (i), it follows that exactly half of
the elements of NH

v = v+NH
v lie in H and the other half lie

in v+H . This means that if v ∈ (V \H)a, then the non-trivial
coset v +H intersects V in at least |NH

v |/2 ≥ a/2 elements.
Let y1+H, y2+H, . . . , yℓ+H be all the distinct non-trivial

cosets of H which each contain at least a/2 elements of V . We
note two things. First, observe that (V \H)a ⊆

⋃ℓ
j=1(yj +H).

Indeed, if v ∈ (V \ H)a, then v ∈ v + H , and we proved
above that v+H contains at least a/2 elements of V . Second,
since distinct cosets are disjoint, it is clear that ℓ ≤ 2n/a as
|V | ≤ n. We claim that if we fix one such large coset, call
it y + H , then

∑
v∈y+H |NH

v | = O(|H|log2 3). By the two

observations above this gives the bound
∑

v∈(V \H)a
|NH

v | ≤∑ℓ
j=1

∑
v∈yj+H |NH

v | = O(|H|log2 3ℓ) = O(|H|log2 3n/a).
To see why the claim holds, simply note that we may apply

Corollary 11 to the set V ′ :− V ∩ (H ∪ (y+H)) = V ∩⟨H, y⟩,
with the sets N ′

v :− NH
v ⊆ V ′ for all v ∈ V ′. It is easy

as always to see that these satisfy conditions (i), (ii), and
note also that |⟨H, y⟩| = 2|H|, so that Corollary 11 gives∑

v∈y+H |NH
v | = O(|⟨H, y⟩|log2 3) = O(|H|log2 3).

From the definition of (V \ H)a we also know that∑
v∈V \(V \H)a

|NH
v | ≤ a|V \ (V \ H)a| ≤ na. Finally, we

can bound in total∑
v∈V \H

|NH
v | ≤

∑
v∈V \(V \H)a

|NH
v |+

∑
v∈(V \H)a

|NH
v |

= O(na+ |H|log2 3n/a)

= O(|H| 12 log2 3n),

if we choose a = (|H|log2 3)1/2.
(b) We now find a good way to bound

∑
v∈V ∩H |NC

v |,
where we recall that NC

v = Nv \ (H ∪ (v + H)). Note in
particular that NC

v ⊆ V \H . We again proceed by considering
estimates for the contributions of the level sets

(V \H)(a) :−{
w ∈ V \H

∣∣∣∣ w appears in at least a many
sets NC

v with v ∈ V ∩H

}
.

These are perhaps slightly more complicated than the level
sets above; note that these level sets are not subsets of the set
V ∩H over which we are summing, but of V \H . However,
it is clear that for any a:∑

v∈V ∩H

|NC
v | =

∑
v∈V ∩H

|NC
v \ (V \H)(a)|

+
∑

v∈V ∩H

|NC
v ∩ (V \H)(a)|

≤ na+
∑

v∈V ∩H

|NC
v ∩ (V \H)(a)|,

so it is sufficient to find, for each a, good bounds on∑
v∈V ∩H |NC

v ∩ (V \H)(a)|.
Similarly as above, if we fix a ∈ [n] then we claim that we

may find cosets y1 +H, . . . , yℓ +H such that (V \H)(a) ⊆⋃ℓ
j=1(yj + H) and ℓ ≤ 2n/a. Indeed, it is enough to take

all the distinct cosets yj +H which each contain at least a/2
elements of V , and note first that there clearly are at most
2n/a such cosets as in the proof of the first bound. To see
why (V \H)(a) ⊆

⋃ℓ
j=1(yj +H), pick a w ∈ (V \H)(a) and

recall that by definition, w ∈ NC
v ⊆ Nv for at least a many

v ∈ V ∩H . By condition (i), this means that w+v ∈ Nv ⊆ V
for at least a many vectors v ∈ H , so that the coset w +H
contains at least a elements of V . This completes the proof of
the claim.

Again, we apply Corollary 11 for each subspace ⟨H, yi⟩
with the set V ′ :− V ∩ ⟨H, yi⟩ and N ′

v :− Nv ∩ ⟨H, yi⟩ ⊆ V ′



for v ∈ V ∩H (and to be fully rigorous we may take N ′
v = ∅

for v ∈ V ∩ (yi +H)). We deduce that∑
v∈V ∩H

|NC
v ∩ (yi +H)| ≤

∑
v∈V ′

|N ′
v|

= O(|⟨H, yi⟩|log2 3) = O(|H|log2 3),

since NC
v ∩(yi+H) ⊆ N ′

v . Hence, summing over all ℓ ≤ 2n/a
cosets, we get∑

v∈V ∩H

|NC
v ∩ (V \H)(a)|

≤
ℓ∑

j=1

∑
v∈V ∩H

|NC
v ∩ (yj +H)| = O(|H|log2 3n/a),

and, in total,∑
v∈V ∩H

|NC
v | ≤ an+

∑
v∈V ∩H

|NC
v ∩ (V \H)(a)|

≤ an+O(|H|log2 3n/a) = O(|H| 12 log2 3n),

if we choose a = (|H|log2 3)1/2. That concludes the proof of
Lemma 15.

III. SPARSIFICATION ALGORITHM

In this section, we prove Theorem 2, i.e. present an efficient
algorithm for strong sparsification of monotone 1-in-3-SAT. For
convenience, we consider the problem of monotone 2-in-3-SAT
which is obtained by swapping the roles of 0 and 1 in the
definition of 1-in-3-SAT — it is clear that for our purposes
these two problems are equivalent. Exploiting the ideas of [29],
[37], we will make use of the linear structure of 2-in-3-SAT: a
clause (x, y, z) of a monotone 2-in-3-SAT instance is satisfied
if and only if x+ y + z = 2, x, y, z ∈ {0, 1}.

Definition 16. Consider an instance X = (X,C) of monotone
2-in-3-SAT. We define a system of modulo 2 linear equations
AX as follows. The set of variables of AX is X , and for
every clause (x, y, z) ∈ C, AX contains the linear equation
x+ y + z ≡ 0 mod 2.

Clearly AX is a relaxation of X — every solution to X is
also a solution to AX ; in particular, if two variables are always
equal in every solution to AX , then they are always equal in
every solution to X . We say that two distinct variables x and
y are twins if x̂ = ŷ for every solution (v̂)v∈X to AX — and
we say that X is twin-free if no such pair of variables exists.
Note that it is easy to check in polynomial time whether x
and y are twins — simply solve AX with (x̂, ŷ) set to (0, 1)
and (1, 0).

Fix a twin-free instance X = (X,C) of monotone 2-in-3-
SAT and consider the vector space F2[X], i.e. the space of
formal linear combinations of elements in X with coefficients
in F2. Each equation x + y + z ≡ 0 mod 2 in AX can be
associated with an element x + y + z of F2[X]. We let ⟨C⟩
denote the subspace generated by all of these equations.

Lemma 17. For every solution (v̂)v∈X of AX , and for any
x1 + · · ·+ xk ∈ ⟨C⟩, we have x̂1 + · · ·+ x̂k ≡ 0 mod 2.

Proof. The term x1 + · · · + xk can be formed by summing
together multiple equations from AX . Hence it must equal 0
in any solution to AX .

Thus, whenever X = (X,C) is twin-free, for any distinct
x, y ∈ X we have x+y ̸∈ ⟨C⟩, and hence x and y are different
as elements of F2[X]/⟨C⟩. Observing that F2[X]/⟨C⟩ is just
some finite-dimensional vector space of the form Fd

2, we have
the following.

Lemma 18. Whenever X = (X,C) is twin-free, we can
compute in polynomial time an integer d and an injective
map α : X → Fd

2 so that the following holds. For any
x1, . . . , xk ∈ X with α(x1) + · · · + α(xk) = 0, we have
x̂1 + · · · + x̂k ≡ 0 mod 2 in any solution (v̂)v∈X to AX .
Furthermore, for every equation x + y + z ≡ 0 in AX , we
have α(x) + α(y) + α(z) = 0.

Proof. Note that X → F2[X] → F2[X]/⟨C⟩ ∼= Fd
2. We output

this composite as α. For every input in X it is straightforward
to see what it should be mapped to in F2[X] and further in
F2[X]/⟨C⟩. Moreover, from the previous discussion it follows
that α satisfies the required conditions. Finally, the image in Fd

2

can be computed simply by finding a basis for the quotient
space, which can be done in polynomial time.

Fix a twin-free instance X = (X,C), and let α be given by
Lemma 18. Consider two variables x, y ∈ X . If there exists
an even number of neighbours7 of x, say z1, . . . , z2k, so that
α(z1)+· · ·+α(z2k) = α(y), then write x ⪰ y. This suggestive
notation has the following justification.

Lemma 19. Suppose X = (X,C) is twin-free and x ⪰ y.
Then, in any solution (v̂)v∈X to X , we have x̂ ≥ ŷ.

Proof. If x̂ = 1 then the claim holds, so suppose x̂ = 0.
Since (v̂)v∈X is a solution to X (which, recall, is a 2-in-3-SAT
instance), it follows that for all neighbours z of x we have
ẑ = 1. Now, by assumption we have that α(z1)+· · ·+α(z2k) =
α(y) i.e. α(z1) + · · ·+ α(z2k) + α(y) = 0. Hence

ŷ ≡ ŷ + 2k ≡ ŷ + ẑ1 + · · ·+ ẑ2k ≡ 0 mod 2.

Thus ŷ = 0 and x̂ ≥ ŷ as required.

We can check whether x ⪰ y in polynomial time, as we will
now describe. Let z1, . . . , zt be the neighbours of x. For j ∈ [d]
let αj be defined so that α(x) = (α1(x), . . . , αd(x)). We check
whether there exist b1, . . . , bt ∈ F2 so that

∑t
i=1 bi = 0 and,

for all j ∈ [d], we have
∑t

i=1 biα
j(zi) = αj(y). If they exist,

let Z be the set of these zi’s for which bi = 1. Clearly, the first
sum guarantees that Z has an even number of elements, while
the others give that

∑
z∈Z α(z) = α(y). Therefore, x ⪰ y if

and only if b1, . . . , bt exist, and we can decide that by solving
a system of linear equations.

Call a sequence of variables x1, . . . , xk a cycle if x1 ⪰ · · · ⪰
xk ⪰ x1. If X does not admit any cycles, call it cycle-free.
With these definitions in place, we can finally apply Theorem 3
in the following theorem.

7We say two variables are neighbours if they belong to the same clause.



Theorem 20. Suppose X = (X,C) is an n-variable, m-clause
instance of monotone 2-in-3-SAT that is twin-free and cycle-free.
Then m = O(n2−ε), for the same ε as in Theorem 3.

Proof. Let α, d be given by Lemma 18. Consider the relation
⪰. As ⪰ is assumed to be acyclic, there exists a topological
sort of V with respect to ⪰. In other words, we order X =
{x1, . . . , xn} in such a way that for j ≤ i we have xi ̸⪰ xj .

With this in hand, we apply Theorem 3 to

V = {α(x1), . . . , α(xn)}
Ni = {α(y) | y is a neighbour of xi}.

Let us first check that the properties of Theorem 3 are satisfied.

(i) Consider any element α(y) ∈ Ni. There exists z so that
(xi, y, z) is a clause of X . The properties of α guarantee
that α(xi) + α(y) + α(z) = 0, hence α(y) + α(xi) =
α(z) ∈ Ni, as z is also a neighbour of xi.

(ii) Consider any j ≤ i. We have xi ̸⪰ xj by our choice
of ordering of x1, . . . , xn. Hence, there is no collection
of an even number of neighbours z1, . . . , z2k of xi so
that α(xj) =

∑2k
ℓ=1 α(zℓ). The set of possible sums on

the right ranges over ⟨Ni + Ni⟩, thus we obtain that
α(xj) ̸∈ ⟨Ni +Ni⟩.

Hence, we can apply Theorem 3, and thus we conclude
that

∑n
i=1 #{α(y) | y is a neighbour of xi} = O(n2−ε) for

ε ≈ 0.0028. Since α is injective, this is the same as saying that
the total number of pairs of variables (x, y) that are neighbours
is at most O(n2−ε).

Observe that, for any four distinct variables x, y, z, t ∈ X ,
it is impossible that there is a clause on variables x, y, and z
and another clause on variables x, y, and t, as then z and t
would be twins. In other words, each pair of variables that are
in a clause together are in exactly one clause together. Thus,
the number of clauses is at most the number of such pairs —
whence the conclusion.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Suppose we are given an instance X
of monotone 2-in-3-SAT. We will construct ∼ by repeatedly
merging pairs of variables that are the same in all solutions to
X . The relation ∼ will then be the transitive, reflexive closure
of all the merges.

Let us now describe what variables we merge. While there
are any twins x and y, merge them. If there are no twins, but
there exists a cycle x1 ⪰ . . . ⪰ xk ⪰ x1, then merge all the
variables x1, . . . , xk. Since variables in a twin-pair have the
same value in all solutions to AX , they must have the same
value in all solutions to X — and the latter is true for all
variables in a cycle as well, due to Lemma 19. Detecting twins
can be done in polynomial time; furthermore, computing ⪯ and
then finding cycles in it can also be done in polynomial time.
Suppose we started with an n-variable instance. We get, at the
end, a twin-free, cycle-free instance on at most n variables. By
Theorem 20 this instance has O(n2−ε) clauses, as desired.

IV. MONOTONE STRONG SPARSIFICATION IMPLIES
NON-MONOTONE

Theorem 21. Suppose that there is a polynomial-time strong
sparsification algorithm A for monotone 1-in-3-SAT with
performance f(n). Then there is a polynomial-time strong
sparsification algorithm for non-monotone 1-in-3-SAT with
performance at most 8f(2n).

Proof. Suppose we are given an instance X of non-monotone
1-in-3-SAT with variables X = {x1, . . . , xn} and clauses C.
Add variables y1, . . . , yn, and create an instance Y with variable
set Y = {x1, y1, . . . , xn, yn} and whose set C ′ of clauses is
the same as in X , but with the literal ¬xi replaced by the
variable yi in every clause. By construction Y is an instance
of monotone 1-in-3-SAT with 2n variables; also every solution
to X extends to a solution to Y , by setting yi = ¬xi.

Thus, we can apply A to Y to create an equivalence relation
∼ on Y such that, in any solution to Y , if v ∼ w then v and w
are assigned the same value. Furthermore, by our assumption on
A , we have that the size of C ′/∼ is f(2n). By construction,
in every solution to X extended to Y , different values are
assigned to xi and yi. Define a graph G = (Y,E), where
(v, w) ∈ E if there exists i ∈ [n] such that v ∼ xi and w ∼ yi.
Note that if (v, w) ∈ E then, in any solution to X extended
to Y , different values are assigned to v and w.

If the graph G is non-bipartite then X is unsatisfiable, and
our strong sparsification algorithm can vacuously return any
equivalence relation; hence, suppose G is bipartite, and denote
by A and B its bipartition classes (if G is not connected, fix
one choice for A and B). We write xi ∼G xj if xi and xj

belong to the same connected component of G, and are both
in A or both in B. If xi ∼G xj , then there exists a path
xi − z1 − . . . − z2k−1 − xj in G, which implies that xi and
xj are assigned the same value in each solution to X . Since
the above procedure can return ∼G in polynomial time, it is a
strong sparsification algorithm for 1-in-3-SAT. It only remains
to prove that this algorithm has the advertised performance;
i.e. that X/∼G does not have too many clauses.

We claim that each element of C ′/∼ corresponds to at most
8 clauses from C/∼G. We will prove this by constructing
a mapping that associates, with each clause c ∈ C/∼G, a
non-empty subset A(c) ⊆ C ′/∼, in such a way that every
clause from C ′/∼ belongs to at most 8 different sets A(c).
We illustrate the construction by example. Consider a clause
(P,¬Q,R) ∈ C/∼G (and recall that P,Q,R are equivalence
classes of ∼G). Define

A(P,¬Q,R) =

{([xi]∼, [yj ]∼, [xk]∼) | xi ∈ P, yj ∈ Q, xk ∈ R}.

Consider some clause (S, T, U) of Y/∼ (recall again that
S, T, U are equivalence classes of ∼). For each of the 8 sign
patterns in {+,−}3 there is at most one clause c = X/∼G

for which (S, T, U) ∈ A(c) which follows that sign pattern.
For example, for the sign pattern (+,−,+), consider any
xi ∈ S, yj ∈ T, xk ∈ U , and note that there is at most
one clause of form c = ([xi]∼G

,¬[xj ]∼G
, [xk]∼G

) in C/∼G.



This is because, for any other xi′ ∈ P, yj′ ∈ Q, xk′ ∈ R,
we have xi ∼ xi′ , yj ∼ yj′ , xk ∼ xk′ and hence xi ∼G

xi′ , xj ∼G xj′ , xk ∼G xk′ . Noting that only such a clause can
have (S, T, U) ∈ A(c) and follow the sign pattern (+,−,+)
completes the proof.
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[5] A. Balog and E. Szemerédi, “A statistical theorem of set addition,” Comb.,
vol. 14, no. 3, pp. 263–268, 1994.

[6] N. Bansal, O. Svensson, and L. Trevisan, “New notions and constructions
of sparsification for graphs and hypergraphs,” Proc. 60th IEEE Annual
Symposium on Foundations of Computer Science (FOCS’19), pp. 910–
928, 2019.

[7] L. Barto, D. Battistelli, and K. M. Berg, “Symmetric Promise Constraint
Satisfaction Problems: Beyond the Boolean Case,” in Proc. 38th
International Symposium on Theoretical Aspects of Computer Science
(STACS’21), ser. LIPIcs, vol. 187. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021, pp. 10:1–10:16.

[8] L. Barto, J. Bulı́n, A. A. Krokhin, and J. Opršal, “Algebraic approach to
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[38] E. Pelleg and S. Živný, “Additive sparsification of CSPs,” ACM Trans.
Algorithms, vol. 20, no. 1, pp. 1:1–1:18, 2024.

[39] C. Reiher and T. Schoen, “Note on the Theorem of Balog, Szemerédi,
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