
Binary Constraint Satisfaction Problems
Defined by Excluded Topological MinorsI

David A. Cohena, Martin C. Cooperb, Peter G. Jeavonsc, Stanislav Živnýc,∗

aRoyal Holloway, University of London, UK
bIRIT, University of Toulouse, France

cUniversity of Oxford, Oxford, UK

Abstract

The binary Constraint Satisfaction Problem (CSP) is to decide whether there exists an assignment to a set
of variables which satisfies specified constraints between pairs of variables. A binary CSP instance can be
presented as a labelled graph encoding both the forms of the constraints and where they are imposed. We
consider subproblems defined by restricting the allowed form of this graph. One type of restriction that
has previously been considered is to forbid certain specified substructures (patterns). This captures some
tractable classes of the CSP, but does not capture classes defined by language restrictions, or the well-known
structural property of acyclicity.

In this paper we extend the notion of pattern and introduce the notion of a topological minor of a binary
CSP instance. By forbidding a finite set of patterns from occurring as topological minors we obtain a compact
mechanism for expressing novel tractable subproblems of the binary CSP, including new generalisations of
the class of acyclic instances. Forbidding a finite set of patterns as topological minors also captures all
other tractable structural restrictions of the binary CSP. Moreover, we show that several patterns give rise
to tractable subproblems if forbidden as topological minors but not if forbidden as sub-patterns. Finally,
we introduce the idea of augmented patterns that allows for the identification of more tractable classes,
including all language restrictions of the binary CSP.

Keywords: constraint satisfaction, forbidden substructures, forbidden patterns, topological minors

1. Introduction

The Constraint Satisfaction Problem (CSP) is to decide whether it is possible to find an assignment
to a set of variables which satisfies constraints between certain subsets of the variables. This paradigm
has been applied in diverse application areas such as Artificial Intelligence, Bioinformatics and Operations
Research [40, 30].

As the CSP is known to be NP-complete, much theoretical work has been devoted to the identification
of tractable subproblems. Important tractable cases have been identified by restricting the hypergraph
structure of the constrained subsets of variables [26, 17]. Other tractable cases have been identified by
restricting the forms of constraints (sometimes called the constraint language) [32, 24]. Work on both of

IAn extended abstract of part of this work appeared in the Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15) [9]. The authors were supported by EPSRC grant EP/L021226/1. Stanislav Živný was
supported by a Royal Society University Research Fellowship. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Commission. The European Union
is not liable for any use that may be made of the information contained therein.
∗Corresponding Author
Email addresses: dave@cs.rhul.ac.uk (David A. Cohen), cooper@irit.fr (Martin C. Cooper),

peter.jeavons@.cs.ox.ac.uk (Peter G. Jeavons), standa.zivny@cs.ox.ac.uk (Stanislav Živný)

Preprint submitted to Elsevier September 22, 2018

these areas is now essentially complete: full complexity classifications have been established for all structural
restrictions [28, 37] and all language restrictions [4, 43].

However, identifying the subproblems of the CSP that can be obtained by restricting either the structure
or the language alone is not a sufficiently rich framework in which to investigate the full complexity landscape.
For example, we may wish to identify all the instances solved by a particular algorithm, such as enforcing
arc-consistency [18, 40]. It has been shown [24, 10] that this class of instances includes all instances defined
by a certain structural restriction, together with all instances defined by a certain language restriction, as
well as further instances that are not defined by either kind of restriction alone. Hence we need a more
flexible mechanism for describing subproblems that will allow us to unify and generalise such descriptions.

Here we develop a new mechanism of this kind that uses certain tools from graph theory to define
restricted classes of labelled graphs that represent binary CSP instances. Our mechanism allows us to
impose simultaneous restrictions on both the structure and the language of an instance, and hence obtain
a more refined collection of subproblems, allowing a more detailed complexity analysis. Subproblems of the
CSP of this kind are sometimes referred to as hybrid subproblems and, currently, very little is known about
the complexity of such subproblems [15].

The tools that we use to obtain restricted classes of labelled graphs build on a well-established line of
research in graph theory, by considering local “obstructions” or “forbidden patterns”. The idea of using
forbidden patterns has previously been applied to the binary CSP and resulted in the discovery of a number
of new tractable classes [7, 8, 12, 23]; related ideas also appeared in [36, 34]. In more detail, [7] characterised
all so-called negative patterns that give rise to tractable classes of binary CSPs (this result is summarised
in Theorem 3.12 below). Moreover, [12] characterised all patterns consisting of at most two constraints that
give rise to tractable classes of binary CSPs. Finally, [8] investigated the notion of forbidden patterns in the
context of variable and value elimination in CSPs.

However, the existing theory of forbidden patterns is not sufficient to capture all known tractable struc-
tural restrictions, or language restrictions, as we show below. In particular, we show that even the simplest
tractable structural class, the class of tree-structures CSP instances, cannot be captured by forbidding any
finite set of patterns (Corollary 4.4). To describe all the relevant structural, language and hybrid restrictions
that can ensure tractability therefore requires a more flexible way to define restricted classes of instances.

In graph theory it proved useful to go beyond the idea of forbidden subgraphs and introduce the more
flexible concept of forbidden minors. A well-known result of Robertson and Seymour states that any set of
graphs closed under the operation of taking minors is specified by a finite set of forbidden minors. Rather
than adapting the full machinery of graph minors to the CSP framework, we consider here the slightly
simpler notion of a topological minor [20]. We show that by adapting the notion of topological minor to the
CSP framework we are able to provide a unified description of all tractable structural classes, all tractable
language classes, and some new hybrid tractable classes that cannot be captured as either structural classes
or language classes. Moreover, we are able to show that the class of tree-structured CSP instances has a
very simple description in this framework, and there exist tractable classes of the binary CSP that properly
extend this class and yet still have a very simple description.

The structure of the paper is as follows: in Section 2 we define the CSP and the notion of a pattern,
and show how to associate each CSP instance with a corresponding pattern. In Section 3 we define what
it means for a pattern to occur in another pattern, either as a sub-pattern or as a topological minor, and
use these notions to define restricted classes of CSP instances where specified patterns are forbidden from
occurring in one or other of these ways.

In Section 4 we show that all tractable structural classes of the CSP can be characterised by forbidding
certain patterns from occurring as topological minors. We extend this idea in Section 5 to obtain novel hybrid
tractable classes of CSP instances, including classes that properly extend the class of acyclic instances.

In Section 6 we consider the complexity of determining whether a given pattern occurs as a topological
minor in a CSP instance, and in Section 7 we show that including additional structure in patterns allows us
to characterise more classes of CSP instances, including all tractable language classes. Finally, in Section 8,
we conclude with a discussion of our results and present some open questions.

2

2. Preliminaries

2.1. The CSP
Constraint satisfaction is a paradigm for describing computational problems. Each problem instance is

represented as a constraint network: a collection of variables that take their value from some given domain.
Some subsets of the variables have a further restriction on their allowed simultaneous assignments, called
a constraint. A solution to such a network assigns a value to each variable such that every constraint is
satisfied.

In this paper we consider only binary constraint networks, where every constraint limits the possible
assignments of precisely two variables. It has been shown that any constraint network can be reduced to an
equivalent binary network over a different domain of values [19, 41].

Definition 2.1 An instance of the binary constraint satisfaction problem (CSP) is a triple (V,D,C) where
V is a finite set of variables, for each v ∈ V , D(v) is a finite domain of values for v, and C is a set of
constraints, containing a constraint Ruv for each pair of variables (u, v). The constraint Ruv ⊆ D(u)×D(v)
is the set of compatible assignments to the variables u and v.

A solution to a binary CSP instance is an assignment s : V → D of values to variables such that, for
each constraint Ruv, (s(u), s(v)) ∈ Ruv.

We will assume that there is exactly one binary constraint between any two variables. That is, if we
define R′uv as {(b, a) | (a, b) ∈ Ruv}, then Rvu = R′uv. This is just a notational convenience since we can
pre-process each instance, replacing Ruv with Ruv ∩R′vu. A constraint will be called trivial if it is equal to
the Cartesian product of the domains of its two variables.

The size of a CSP instance will be taken to be the sum of the sizes of the constraint relations. Given a
fixed bound on the size of the domain for any variable and the arity of the constraints, this is polynomial in
the number of variables. We will say that a class of CSP instances is tractable if there is a polynomial-time
algorithm to decide whether any instance in the class has a solution.

Note that Definition 2.1 describes a standard form of mathematical specification for a CSP instance that
is convenient for theoretical analysis. In the next subsection we will introduce an alternative representation in
terms of patterns (see Construction 2.5). Often more concise representations are used, and trivial constraints
are usually not represented [40].

Arc-consistency (AC) is a fundamental concept for the binary CSP [18, 40].

Definition 2.2 A pair of variables (u, v) is said to be arc-consistent if for each value a ∈ D(u) in the
domain of u, there is a value b ∈ D(v) in the domain of v such that (a, b) ∈ Ruv.

A binary CSP instance is arc-consistent if every pair of variables is arc-consistent.

Given an arbitrary CSP instance I there is a unique minimal set of domain values which can be removed
to make the instance arc-consistent. Furthermore the discovery of this unique minimal set of domain values
and their removal, called establishing arc-consistency, can be done in polynomial time [11]. For a given
instance I we will denote by AC(I) the instance obtained after establishing arc-consistency.

2.2. Patterns
We now introduce the central notion of a pattern, which can be thought of as a labelled graph, with

three distinct kinds of edges.

Definition 2.3 A pattern is a structure (X,E∼, E+, E−), where

• X is a set of points;

• E∼ is a binary equivalence relation over X whose equivalence classes are called parts;

• E+ is a symmetric binary relation over X whose tuples are called positive edges;

• E− is a symmetric binary relation over X whose tuples are called negative edges.

The sets E∼ and E+ are disjoint, and the sets E∼ and E− are disjoint.

3

�
�	• �
�	•
�
�	•
(a)

�
�	• �
�	•
�

�
	•••

�
�
�

@
@
@

(b)

�
�	• �
�	•
(c)

�
�	• �
�	•
�

�
	•••

�
�
�

@
@
@

(d)

Figure 1: Some example patterns. Points are shown as filled circles, parts as ovals, positive edges as solid lines and negative
edges as dashed lines.

In a general pattern there may be pairs of points x and y in distinct parts such that (x, y) is neither a
positive nor a negative edge, and there may be pairs of points x and y in distinct parts such that (x, y) is
both a positive and a negative edge. A pattern is called complete if every pair of points x and y in distinct
parts are connected by either a positive or negative edge (but not both), and hence E∼ ∪ E+ ∪ E− = X2.

Example 2.4 Some examples of patterns are illustrated in a standard way in Figure 1.
The pattern shown in Figure 1(a) is complete, but the others are not. �

It will often be convenient to build special patterns to represent binary CSP instances, so we now define
the following construction.

Construction 2.5 For any binary CSP instance I = (V,D,C), where C = {Ruv | u, v ∈ V, u 6= v}, we
define a corresponding complete pattern Patt(I) = (X,E∼, E+, E−) where

• X = {xv,a | v ∈ V, a ∈ D(v)};

• E∼ = {(xu,a, xv,b) ∈ X ×X | u = v};

• E+ = {(xu,a, xv,b) ∈ X ×X | u 6= v, (a, b) ∈ Ruv};

• E− = {(xu,a, xv,b) ∈ X ×X | u 6= v, (a, b) 6∈ Ruv}.

We remark that for any instance I the points of Patt(I) are the possible assignments for each individual
variable, and the parts of Patt(I) correspond to sets of possible assignments for a particular variable. Positive
edges in Patt(I) correspond to allowed pairs of assignments and are therefore closely related to the edges
of the microstructure representation of I defined in [33]; negative edges correspond to disallowed pairs of
assignments and are closely related to the edges of the microstructure complement discussed in [6].

Example 2.6 Figure 1(a) shows the pattern Patt(I) for a rather trivial instance I with three variables,
each of which has only one possible value. Note that I has no solution because the only possible assignments
for two pairs of variables are in negative edges and hence disallowed by the constraints. �

A pattern with no positive edges will be called a negative pattern. It will sometimes be convenient to
build negative patterns from graphs, so we now define the following construction.

Construction 2.7 For any graph G = (V,E), we define a corresponding negative pattern Patt(G) =
(X,E∼, ∅, E−) where

• X = {xe,v | e ∈ E, v ∈ e};

• E∼ = {(xe,u, xf,v) ∈ X ×X | u = v};

• E− = {(xe,u, xf,v) ∈ X ×X | e = f, u 6= v}.

4

�

�
	•• �

�
	••

�

�
	••xe1,v1

xe3,v1

xe1,v2
xe2,v2

xe3,v3
xe2,v3

Figure 2: The pattern Patt(C3) constructed from the cycle graph C3 by Construction 2.7.

�
�	•
�
�	•
�
�	•

�
�	•
�
�	•

�

�

	••
•
•
•

xe3,v3

xe2,v2

xe1,v1

xe5,v5

xe4,v4

xe1,u
xe2,u
xe3,u
xe4,u
xe5,u

Figure 3: The pattern Patt(K1,5) constructed from the star graph K1,5 by Construction 2.7.

Example 2.8 Let C3 be the 3-cycle, that is, the graph with three vertices, v1, v2, v3, and 3 edges e1, e2, e3,
where e1 = {v1, v2}, e2 = {v2, v3} and e3 = {v3, v1}. The associated negative pattern Patt(C3) defined by
Construction 2.7 is the pattern with 6 points, 3 parts, and 3 negative edges, shown in Figure 2.

Let K1,k be a star graph with k leaves; that is, the graph with vertices {u, v1, . . . , vk} and edges {u, vi}
for 1 ≤ i ≤ k. The pattern Patt(K1,k) has 2k points, k + 1 parts, and k negative edges. The case of k = 5
is shown in Figure 3. �

In graph theory, a subdivision operation on a graph replaces an edge (u, v) with a path of length two
by introducing a new vertex zuv, and connecting u to zuv and zuv to v [20]. A graph G is said to be a
topological minor of a graph H if some sequence of subdivision operations on G yields a subgraph of H [20].
We now define an operation on patterns that is analogous to the subdivision operation on graphs, but takes
into account the three different types of edges that are present in a pattern. This subdivision operation for
patterns is crucial to the idea of defining topological minors in patterns, as described in Section 3.

Definition 2.9 Let P = (X,E∼, E+, E−) be a pattern.
For any two distinct parts U, V of P , we define E+

UV = E+ ∩ (U × V), E−UV = E− ∩ (U × V), and
ZUV = {zxy | (x, y) ∈ E+

UV } ∪ {z′xy, z′′xy | (x, y) ∈ E−UV }. The subdivision of P at U, V is defined to be the

pattern Pd = (Xd, E
∼
d , E

+
d , E

−
d) where

• Xd = X ∪ ZUV ;

• E∼d = E∼ ∪ (ZUV × ZUV);

• E+
d = (E+\{(x, y), (y, x) | (x, y) ∈ E+

UV })
∪ {(x, zxy), (zxy, x), (zxy, y), (y, zxy) | (x, y) ∈ E+

UV };

• E−d = (E−\{(x, y), (y, x) | (x, y) ∈ E−UV })
∪ {(x, z′xy), (z′xy, x), (z′′xy, y), (y, z′′xy) | (x, y) ∈ E−UV }.

Pattern P ′ is called a subdivision of P if it can be obtained from P by some (possibly empty) sequence of
subdivision operations.

5

Example 2.10 The pattern shown in Figure 1(d) can be obtained by performing a single subdivision
operation on the pattern shown in Figure 1(c). �

We remark that positive and negative edges are treated differently in Definition 2.9: a single extra point,
zxy, is added for each positive edge (x, y), and two extra points, z′xy and z′′xy, are added for each negative
edge (see Example 2.10). This difference reflects a semantic difference between positive and negative edges
in a CSP instance, which we illustrate as follows. Suppose that the assignment of value a to variable u
and value b to variable v extends to a solution. In this case, for any other variable w, the points (u, a) and
(v, b) must both be compatible with some common point (w, c). On the other hand, the assignment of a to
variable u and b to variable v may fail to extend to a solution if there are points (w, c) and (w, d) where
(u, a) is incompatible with (w, c), (v, b) is incompatible with (w, d) and the rest of the instance forces w to
take either value c or value d.

3. Forbidding patterns

In the remainder of this paper we consider classes of binary CSP instances that are defined by forbidding
a specified set of patterns from occurring in certain ways, which we now define.

3.1. Occurrences of one pattern in another

Definition 3.1 A pattern P1 = (X1, E
∼
1 , E

+
1 , E

−
1) is said to have a homomorphism to a pattern P2 =

(X2, E
∼
2 , E

+
2 , E

−
2), if there is a mapping h : X1 → X2 such that

• if (x, y) ∈ E∼1 then (h(x), h(y)) ∈ E∼2 , and

• if (x, y) ∈ E+
1 then (h(x), h(y)) ∈ E+

2 , and

• if (x, y) ∈ E−1 then (h(x), h(y)) ∈ E−2 .

A homomorphism h from a pattern P1 = (X1, E
∼
1 , E

+
1 , E

−
1) to a pattern P2 = (X2, E

∼
2 , E

+
2 , E

−
2) will be

said to preserve parts if it satisfies the additional property that for all (x, y) ∈ X2
1 , if (x, y) 6∈ E∼1 , then

(h(x), h(y)) 6∈ E∼2 .

Definition 3.2 A pattern P1 is said to occur as a sub-pattern in a pattern P2, denoted P1
SP→ P2, if there

is a homomorphism from P1 to P2 that preserves parts.

Earlier papers [7, 12] have defined the notions of pattern and the notion of occurring as a sub-pattern
in slightly different ways, but these are all essentially equivalent to Definition 3.2.

Example 3.3 The pattern shown in Figure 1(d) has a homomorphism to the pattern shown in Figure 1(c),
but does not occur as a sub-pattern in this pattern. The pattern shown in Figure 1(d) does occur as a
sub-pattern in the pattern shown in Figure 1(b). �

Now we introduce a new form of occurrence that will be our focus in this paper, and will allow us to
define a wider range of restricted subproblems of the CSP.

Definition 3.4 A pattern P1 is said to occur as a topological minor in a pattern P2, denoted P1
TM→ P2, if

some subdivision of P1 occurs as a sub-pattern in P2.

Example 3.5 The pattern shown in Figure 1(c) occurs as a topological minor in the pattern shown in
Figure 1(d) and in the pattern shown in Figure 1(b). �

Lemma 3.6 For any patterns P, P ′ and P ′′ the following properties hold:

(a) P
SP→ P and P

TM→ P ;

6

(b) If P
SP→ P ′, then P

TM→ P ′;

(c) If P
SP→ P ′ and P ′

SP→ P ′′, then P
SP→ P ′′;

(d) If P
TM→ P ′ and P ′

TM→ P ′′, then P
TM→ P ′′.

Proof: Part (a) is obtained by taking the identity function as a homomorphism, and an empty sequence
of subdivisions. Part (b) is obtained by taking an empty sequence of subdivisions. Part (c) is obtained by
composing the two homomorphisms.

Part (d) follows from the following observation: assume that h is a homomorphism from P1 to P2 that
preserves parts, and that P3 is the pattern obtained by performing a subdivision operation on P2 at parts
U and V . Now consider the pattern Q obtained by performing a subdivision operation on P1 at the parts
that are mapped by h to U and V . By our definition of subdivision, it follows that h can be extended to a
homomorphism h′ from Q to P3 that preserves parts.

Hence in any sequence of subdivision operations and homomorphisms that preserve parts we can re-order
the operations to perform all subdivisions at the start, and then compose all the homomorphisms.

Recall that establishing arc-consistency in an instance I involves removing domain values from I and
yields the (unique) instance AC(I), hence it cannot introduce an occurrence of a pattern as a sub-pattern
or as a topological minor if it did not already occur. This gives the following result.

Lemma 3.7 For any patterns P and I, where I represents an instance, the following properties hold:

(a) If P
SP→ Patt(AC(I)), then P

SP→ Patt(I);

(b) If P
TM→ Patt(AC(I)), then P

TM→ Patt(I).

Establishing arc-consistency can be done in polynomial time, so for many of our results we will only need
to consider arc-consistent CSP instances.

3.2. Restricted classes of instances

We can use Definition 3.2 to define restricted classes of binary CSP instances by forbidding the occurrence
of certain patterns as sub-patterns in those instances.

Definition 3.8 Let S be a set of patterns.
We denote by CSPSP(S) the set of all binary CSP instances I such that for all P ∈ S it is not the case

that P
SP→ Patt(I).

Definition 3.9 We will say that a pattern P is sub-pattern tractable if CSPSP({P}) is tractable; we will
say that a pattern P is sub-pattern NP-complete if CSPSP({P}) is NP-complete.

For simplicity, we write CSPSP(P) for CSPSP({P}).
The complexity of the class CSPSP(S) has been determined for a wide range of patterns [13, 7, 12]. In

fact, for all negative patterns P the complexity of CSPSP(P) has been completely characterised [7]. To
define this characterisation, we need to introduce the idea of star patterns.

A connected graph G is called a star if it is acyclic, and has exactly one vertex of degree greater than
2. The vertex of degree greater than 2 in a star graph will be called the central vertex. A pattern P will be
called a star pattern if it can be obtained from the pattern Patt(G) for some star graph G by merging zero
or more points in the part of Patt(G) corresponding to the central vertex of G.

Example 3.10 Since the empty graph is a star graph, the simplest star pattern is the empty pattern, which
has no points. Some other examples of star patterns are shown in Figure 4. �

7

�
�	•

�

�
	••

�

�
	••�
�	• �
�	• �
�	•

(a)

�
�	•

�
�	•
�
�	•

�
�	•�

�
	•••
•

(b)

�
�	•

�
�	•
�
�	•

�
�	•�
�	•
(c)

Figure 4: Examples of star patterns.

�

�
	••

�

�
	••

�

�
	•• �

�
	••

�

�
	••

�

�
	••

�

�
	••�

�
	••

�

�
	••

�

�
	••

. . .

. . .

. . .

k edges︷ ︸︸ ︷

︸ ︷︷ ︸
k edges

︸ ︷︷ ︸
k edges

Figure 5: The pattern Pivot(k).

Definition 3.11 ([7]) For any k ≥ 1, the star pattern with 3 branches, each of length k, where exactly two
points are merged in the central part, as shown in Figure 5, is called Pivot(k).

Theorem 3.12 ([7]) For any k ≥ 1, the negative pattern Pivot(k) shown in Figure 5 is sub-pattern

tractable, as are all negative patterns P such that P
SP→ Pivot(k); all other negative patterns are sub-pattern

NP-complete.

Example 3.13 By Theorem 3.12 all the negative patterns shown in Figures 2, 3 and 4 are sub-pattern
NP-complete. �

To go beyond the earlier results for forbidden sub-patterns [7, 8, 12, 23], and define a wider range of restricted
classes, we use Definition 3.4 to define restricted classes of binary CSP instances by forbidding the occurrence
of certain patterns as topological minors in those instances.

Definition 3.14 Let S be a set of patterns.
We denote by CSPTM(S) the set of all binary CSP instances I such that for all P ∈ S it is not the case

that P
TM→ Patt(I).

Definition 3.15 We will say that a pattern P is topological-minor tractable if CSPTM({P}) is tractable;
we will say that a pattern P is topological-minor NP-complete if CSPTM({P}) is NP-complete.

For simplicity, we write CSPTM(P) for CSPTM({P}).
By Lemma 3.6 (b), if P occurs as a sub-pattern of some pattern Q, then it also occurs as a topological

minor of Q. Hence for any pattern P we have that CSPTM(P) ⊆ CSPSP(P). The following is an immediate
consequence.

Lemma 3.16 If a pattern P is sub-pattern tractable then P is also topological-minor tractable.

8

Example 3.17 By the results of earlier work, the two patterns shown in Figure 1(a) and 1(b) are known to
be sub-pattern tractable: the tractability of the pattern shown in Figure 1(a) follows from the tractability
of a more general pattern (called JWP) defined in [14]; the tractability of the pattern shown in Figure 1(b)
follows from [23, Lemma 46] (where it corresponds to pattern U ′30).

Hence both patterns are also topological-minor tractable, by Lemma 3.16. �

By Lemma 3.6 (d), if P occurs as a topological minor in Q then CSPTM(P) ⊆ CSPTM(Q). The following
is an immediate consequence.

Lemma 3.18 If pattern P
TM→ Q, and Q is topological-minor tractable, then P is also topological-minor

tractable.

Example 3.19 We can deduce from Lemma 3.18 that Figure 1(d) is topological-minor tractable, since
Figure 1(d) occurs as a sub-pattern (and hence also as a topological minor) in Figure 1(b), and it was shown
in Example 3.17 that Figure 1(b) is topological-minor tractable. �

The converse of Lemma 3.16 does not hold: there exist patterns that are topological-minor tractable
but sub-pattern NP-complete, as the following example demonstrates. More significant examples will be
discussed in Section 5.

Example 3.20 Figure 1(c) is sub-pattern NP-complete, since it cannot occur as a sub-pattern of any
instance, so for this pattern P, CSPSP(P) contains all possible CSP instances. However, by Lemma 3.18,
Figure 1(c) is topological-minor tractable, since it occurs as a topological minor in Figure 1(d), and it was
shown in Example 3.19 that Figure 1(d) is topological-minor tractable. �

For some patterns P , the sets CSPSP(P) and CSPTM(P) are identical, as our next result shows. A
pattern P will be called star-like if removing the positive edges from P gives a negative pattern P ′ such

that P ′
SP→ P ′′ for some star pattern P ′′.

Example 3.21 All of the patterns shown in Figures 1, 3 and 4 are star-like, but the pattern shown in
Figure 2 is not star-like. �

Proposition 3.22 If P is a star-like negative pattern, then CSPTM(P) = CSPSP(P).

Proof: By Lemma 3.6 (b), for any pattern P we have that CSPTM(P) ⊆ CSPSP(P).
To obtain the reverse inclusion, let P be a star-like negative pattern, and let Q be a star pattern such

that P
SP→ Q. By the definition of star pattern, for any subdivision Q′ of Q, we have that Q

SP→ Q′.

Hence, by Lemma 3.6 (c) P
SP→ Q′, so CSPSP(P) ⊆ CSPSP(Q′). But this implies, by Definition 3.4, that

CSPSP(P) ⊆ CSPTM(P).

Example 3.23 By Theorem 3.12, any pattern Pivot(k) is sub-pattern tractable, and by Proposition 3.22 we
know that forbidding Pivot(k) as a topological minor defines the same set of instances as forbidding Pivot(k)
as a sub-pattern. Therefore, for any k ≥ 1, the pattern Pivot(k) is also topological-minor tractable.

Similarly, by Theorem 3.12, each star pattern P shown in Figure 4 is sub-pattern NP-complete. By
Proposition 3.22, for each of these patterns CSPTM(P) = CSPSP(P). Consequently, these patterns are also
topological-minor NP-complete. �

We now give a partial converse of Proposition 3.22, by showing that for all patterns P that are not
star-like, CSPTM(P) cannot be expressed by forbidding any finite set of sub-patterns. This means that the
notion of forbidding the occurrence of a pattern as a topological minor provides more expressive power than
forbidding arbitrary (finite) sets of patterns from occurring as sub-patterns.

9

Proposition 3.24 If P is a pattern that is not star-like, then CSPTM(P) 6= CSPSP(S) for all finite sets
of patterns S.

Proof: Let P be a pattern that is not star-like, and let P ′ be the negative pattern obtained by removing

all positive edges of P . Note that P ′
SP→ P .

In any pattern, say that a part U is distinguished if two negative edges share a single point in U or if
there are negative edges from U to more than two other parts.

Since P is not star-like, the negative pattern P ′ must contains a cycle of parts connected by negative
edges, or at least two distinguished parts.

Hence, for any fixed k, by a sufficiently long sequence of subdivision operations, we can construct a
subdivision P ′′ of P ′ which either has a cycle of parts of length greater than k or two distinguished parts
separated by a sequence of connected parts of length greater than k. By adding positive edges, we can then
convert P ′′ into a complete pattern of the form Patt(I) for some CSP instance I.

Now for any fixed finite set of patterns S there will be a bound k on the number of parts of any pattern
in S. It follows that CSPTM(P) cannot be defined by forbidding the sub-patterns in S, since I /∈ CSPTM(P)
but no pattern in S can occur as a sub-pattern in Patt(I).

4. Structural restrictions

For any CSP instance I = (V,D,C), the constraint graph of I is defined to be the graph (V,E), where
E is the set of pairs {x, y} for which the associated constraint Rxy is non-trivial. A number of tractable
subproblems of the CSP have been defined by specifying restrictions on the constraint graph; such restricted
classes of instances are known as structural classes [28, 37].

It is known that a structural class of binary CSP instances defined in this way is tractable if and only
if every instance has a constraint graph of bounded treewidth [28, Theorem 5.1] (subject to the standard
complexity-theoretic assumption that FPT 6= W[1], which we will assume throughout this section; we refer
the reader to the textbooks [22, 25] for more details). We show in this section that structural classes of this
kind cannot be defined by forbidding the occurrence of a finite set of sub-patterns. However, they can be
defined by forbidding the occurrence of one or more patterns as topological minors.

We will also use this characterisation of tractable structural classes to show that a large class of negative
patterns are topological minor tractable.

First we extend the notion of a constraint graph to arbitrary patterns.

Definition 4.1 For any pattern P , the constraint graph of P , denoted GP , is defined to be the graph (V,E),
where V is the set of all parts of P , and E is the set of pairs of parts {U,W} such that there is a negative
edge (x, y) ∈ P with x ∈ U and y ∈W .

For any binary CSP instance I, the constraint graph of I defined above is equal to GPatt(I). For simplicity,
this graph will usually be denoted by GI .

Now we note the close link between our notion of a pattern occurring as a topological minor of another
pattern and the standard notion of a topological minor in a graph [20].

Lemma 4.2 For any graph G and any pattern P , Patt(G)
TM→ P if and only if G is a topological minor of

the graph GP .

The simplest structural class of CSP instances of bounded treewidth is the class of instances whose constraint
graph is acyclic (that is, has treewidth 1). This class is known as the class of acyclic binary CSP instances
and was one of the first sub-problems of the CSP to be shown to be tractable [26]. We now show that this
class can be characterised very simply by excluding the single pattern Patt(C3) shown in Figure 2 from
occurring as a topological minor.

10

Proposition 4.3 The class of acyclic binary CSP instances equals CSPTM(Patt(C3)).

Proof: The class of acyclic graphs may be characterised as graphs which do not contain C3 as a topological
minor [20]. Hence, by Lemma 4.2 and Definition 4.1, a binary CSP instance I has an acyclic constraint

graph if and only if it is not the case that Patt(C3)
TM→ Patt(I).

Since the pattern Patt(C3) is not star-like (see Example 3.21), it follows immediately from Proposition 3.24
that acyclic CSP instances cannot be defined by any finite set of forbidden sub-patterns.

Corollary 4.4 The class of acyclic binary CSP instances is not equal to CSPSP(S) for any finite set of
patterns S.

Proposition 4.3 can easily be extended to any of the tractable structural classes of binary CSP instances
defined by imposing any fixed bound on the treewidth of the constraint graph [27], although in this case the
set of of forbidden patterns is explicitly known only for k ≤ 3 [1].

Theorem 4.5 For any fixed k ≥ 1, the class of binary CSP instances whose constraint graph has treewidth
at most k equals CSPTM(Sk), for some finite set of patterns Sk.

Proof: The graph minor theorem [39] implies that for any fixed k ≥ 1 there is a finite set Ok of graphs
such that the class of graphs of treewidth at most k is precisely the class of graphs excluding all graphs
from the set Ok as topological minors [20]. (More precisely, the graph minor theorem gives a finite set of
minors as obstructions but this set can be turned into a finite set of topological minors as obstructions in a
standard way, see [20, Exercise 34, Chapter 12].) Consequently, by Lemma 4.2, for any k ≥ 1 the class of
binary CSP instances with constraint graphs of treewidth at most k can be defined as CSPTM(Sk) for the
finite set of negative patterns Sk given by Sk = {Patt(G) | G ∈ Ok}.

In fact, we are able to show that many other patterns are topological-minor tractable using other standard
results from graph theory. The following theorem characterises the topological-minor tractability of patterns
of the form Patt(G), for all graphs G of maximum degree three.

Theorem 4.6 Let G be an arbitrary graph of maximum degree three. Then, Patt(G) is topological-minor
tractable if and only if G is planar (assuming FPT 6= W[1]).

Proof: One of the well-known results of Robertson and Seymour shows that the class of graphs obtained by
excluding G as a minor has bounded treewidth if and only if G is planar [38] (see also [20, Theorem 12.4.3]).
It is known that for a graph G of maximum degree three and any graph G′, G is a minor of G′ if and
only if G is a topological minor of G′ [20, Proposition 1.7.4 (ii)]. Thus, for a graph G of maximum degree
three, the class of graphs obtained by excluding G as a topological minor has bounded treewidth if and
only if G is planar. The theorem then follows from Lemma 4.2 and the fact that, assuming FPT 6= W[1], a
structural class of binary CSP instances is tractable if and only if the associated class of constraint graphs
is of bounded treewidth [28].

Unfortunately this result does not extend to graphs of higher degree, as the following example shows.

Example 4.7 Consider a star graph G where the central vertex has degree 4. Note that G is planar.
In all subdivisions of G, the central vertex still has degree 4, so it cannot occur as a topological minor in

any graph of maximum degree three. Hence, by Lemma 4.2, Patt(G) cannot occur as a topological minor in
any CSP instance whose constraint graph is a hexagonal grid. Since the treewidth of the class of hexagonal
grids is unbounded [20], this structural class of CSP instances is intractable, assuming FPT 6= W[1], by the
results of [28]. �

11

�
�	• �
�	•�
�	•
J

�

�
	•• �

�
	••

�
�	•

K

�
�	• �
�	• �
�	• �
�	•
L

Figure 6: Three patterns which are topological-minor tractable.

5. Tractable classes that generalise acyclicity

In this section we will give several more examples of patterns that are topological-minor tractable. We
conclude the section with Theorem 5.4 where we define several new tractable classes which properly extend
the class of acyclic CSP instances discussed in Section 4.

Consider the patterns shown in Figure 6. By Theorem 3.12, J is sub-pattern tractable and hence also
topological-minor tractable, by Lemma 3.16. However, the remaining patterns, K and L are more interesting.

Theorem 5.1 The pattern K, shown in Figure 6, is sub-pattern NP-complete but topological-minor tractable.

Proof: By Theorem 3.12, K is sub-pattern NP-complete.
To show that K is topological-minor tractable, consider an instance I in which the pattern K does not

occur as a topological minor. If the pattern J from Figure 6 does not occur as a sub-pattern in Patt(I) then
we are done since, as noted above, CSPSP(J) is tractable and thus I can be solved in polynomial time.

On the other hand, if J does occur as a sub-pattern in Patt(I), then we will build a special tree
decomposition T of the constraint graph of I, where each node of T is a subset of the vertices of the
constraint graph of I, and all non-leaf nodes of T have size 1.

In more detail, let GI be the constraint graph of I. Suppose the pattern J , shown in Figure 6, occurs
as a sub-pattern in Patt(I) on the three parts corresponding to the triple of variables (x, y, z) in I, with y
being the variable at which the two negative edges meet. Since K does not occur as a topological minor in
I, it follows that there is no path from x to z in GI that does not pass through y. Hence y is an articulation
point of GI .

Let C1, . . . , Ck be the components of GI \ {y}, and denote by ICi the sub-instance of I on the variables
of Ci ∪ {y}. We form a tree decomposition of GI as follows: the root of T is the subset containing just the
variable y and has k children. If the pattern J does not occur as a sub-pattern in Ci ∪ {y}, then the i-th
child of the root is a leaf node corresponding to the sub-instance ICi

. Otherwise, if the pattern J does occur
as a sub-pattern in Ci ∪ {y}, then we proceed in the same fashion and decompose Ci into a sub-tree rooted
at the i-th child.

Since CSPSP(J) is tractable, any sub-instance corresponding to a leaf of this tree decomposition can be
solved in polynomial time for each possible assignment to its unique articulation variable which joins it to its
parent node in the tree-decomposition. Hence in polynomial time we can solve this sub-instance, eliminate
the corresponding leaf, and possibly eliminate some values in the domain of this articulation variable. After
eliminating all non-trivial leaf nodes in this way, the remaining sub-instance of GI is tree structured and
hence can be solved in polynomial time.

We will show in Theorem 5.3 below that the pattern L shown in Figure 6 is also topological-minor
tractable. In order to do so, we will extend the proof technique used in Theorem 5.1 to a generic scheme
for proving topological-minor tractability of patterns.

To develop our generic scheme we need some standard results from graph theory. If S is a set of vertices
of a graph G, we write G[S] for the induced graph on S.

12

A tree decomposition of a graph G = (V,E) is a tree T , together with a subset Vt of the vertices of G
for each node t ∈ T , such that

⋃
t∈T Vt = V , each edge e ∈ E is contained in Vt for some t ∈ T , and for

any vertex v ∈ V the set {t | v ∈ Vt} is a connected sub-tree of T . The torsos of a tree decomposition
(T, (Vt)t∈T) of a graph G are the graphs Ht, t ∈ T , obtained from G[Vt] by adding all the edges {x, y} such
that x, y ∈ Vt ∩ Vt′ where t′ is any neighbour of t in T .

A Tutte decomposition of a graph G is a tree decomposition (T, (Vt)t∈T) of G, where |Vt ∩ Vt′ | ≤ 2 for
every pair of neighbours t and t′ in T , and the torso of each node is either three-connected, or a cycle, or
has at most 2 vertices. It is known that every finite graph has a Tutte decomposition of this kind [42], and
that such a decomposition can be found in linear time [31].

Example 5.2 Figure 7 shows a graph and a possible Tutte decomposition. �

a

b c

d e

f g h

i j

k `

m

n

a, b, c, d, e

d, e, f

e, f, k

f, k,m e, g, k

f, i, j,m g, h, k, `

`, n

Figure 7: A graph and its Tutte decomposition.

To demonstrate topological-minor tractability for a pattern P we proceed as follows. Let I be an instance
in which P does not occur as a topological minor and let GI be its constraint graph. We denote by n the
number of variables in I and by d the maximum domain size of any variable in I.

Build a Tutte decomposition of GI , and consider any leaf node s in this decomposition. The subset of
variables associated with node s will be denoted S, and the variables associated with the remainder of the
nodes of the tree decomposition after removing the leaf s will be denoted by T . Note that S and T share at
most 2 variables. Let I[S] be the sub-instance of I on S and I[T] be the sub-instance of I on T . Suppose
that the following two assumptions hold:

(A1) I[S] can be solved and its solutions projected onto the variables shared with T in polynomial time;
the resulting reduced instance on T will be denoted by I ′[T].

(A2) P does not occur as a topological minor in Patt(I ′[T]).

Then it follows that a recursive algorithm, which at each step chooses some leaf s of the decomposition,
and then solves the associated sub-problem I[S] to obtain the reduced instance I ′[T], will solve the original
instance using a polynomial (in n and d) number of calls to the polynomial-time algorithm from (A1).

In the proofs below we will omit the simple cases where S and T share only 1 variable, or S contains at
most 3 vertices, or the torso of S is a cycle (and hence has treewidth 2 and is solvable in polynomial time).
Hence we will assume that the torso of S contains more than three vertices and is three-connected.

Finally, note that if S and T share the variables {u, v}, then we have the following:

• Any path in GI from a vertex in S to a vertex in T must pass through u or v;

13

• There must exist some path from u to v in GI [T], which we will denote pathT (u, v).

We now use this generic scheme to prove the tractability of pattern L from Figure 6.

Theorem 5.3 The pattern L, shown in Figure 6, is sub-pattern NP-complete but topological-minor tractable.

Proof: By Theorem 3.12, L is sub-pattern NP-complete.
To establish topological-minor tractability using the generic scheme described above we only only need

to establish the two assumptions.
(A1) Let J be the pattern consisting of two intersecting negative edges, shown in Figure 6. Suppose

that J occurs in Patt(I[S]) as a sub-pattern on two disjoint triples of variables (x, y, z) and (x′, y′, z′) in
I[S]. As explained above for the generic scheme, we can assume that the torso of S is 3-connected. It follows
by Menger’s theorem [21] that there are three disjoint paths from x to x′ in the torso of S. There must
be one of these paths, π, which does not pass through y or y′. We claim that there must be a subpath σ
of π which begins at x or z and ends at x′ or z′ and which does not pass through any other variables in
{x, y, z, x′, y′, z′}. To prove the claim first note that if π does not pass through z and z′ then π satisfies the
claim. If z appears on π but z′ does not appear on π then the subpath σ of π from z to x′ satisfies the
claim. A similar argument works for the case when z′ appears on π but z does not. If both z and z′ appear
on π then we have a subpath of π from z to z′. Without loss of generality, suppose that σ joins x to x′. But
then L occurs as a topological minor on the extended path σ+ given by z → y → x, σ, x′ → y′ → z′.

But this implies that L occurs as a topological minor in Patt(I), since if σ+ passes by the edge {u, v} in
the torso of S, this edge can be replaced by pathT (u, v) which is a path from u to v in T , whose existence
was noted in the discussion above. Since this contradicts our initial assumption, we can deduce that J does
not occur in Patt(I[S]) as a sub-pattern on two disjoint triples.

We can therefore deduce that all pairs of triples of variables (x, y, z), (x′, y′, z′) for which J occurs as
a sub-pattern in Patt(I[S]) intersect, i.e., {x, y, z} ∩ {x′, y′, z′} 6= ∅. Now, consider an arbitrary triple
of variables (x, y, z) on which J occurs as a sub-pattern. It follows that the instance which results after
any instantiation (and removal) of the three variables x, y, z contains no occurrence of J as a sub-pattern,
since for each triple of variables (x′, y′, z′) on which J occurs in I[S], at least one of its variables has been
eliminated by instantiation.

Thus, after instantiation of at most three variables, Patt(I[S]) does not contain J as a sub-pattern. This
also holds for any version of I[S] obtained by instantiating the variables u, v. As noted above, CSPSP(J) is
tractable. We can therefore determine in polynomial time which instantiations of u, v can be extended to
a solution of I[S]. We remove the pair (p, q) from Ruv in I whenever the assignment of p to u and q to v
cannot be extended to a solution to I[S]. Finally, we delete all variables in S from I apart from u and v.
Proceeding in this way we construct I ′[T] in polynomial time as required.

(A2): Suppose, for a contradiction, that we introduce some occurrence of the pattern L as a topological
minor in Patt(I ′[T]) when reducing I to I ′[T]. This occurrence of L must use a newly-introduced edge
in I ′[T]. During the reduction from I to I ′[T], we can introduce negative (but not positive) edges in
Patt(I ′[T]) between the parts corresponding to u and v. Suppose that a negative edge (p, q) is introduced
by the reduction from I to I ′[T]. This can only be the case if there was a path π = (u,w1, . . . , wt, v)
in the constraint graph GI [S] and hence a sequence of negative edges between the corresponding parts in
Patt(I[S]) linking p to q. This means that we can replace the newly-introduced edge in the occurrence of
L in Patt(I ′[T]) by a sequence of negative edges so that L occurs as a topological minor in Patt(I) for
the original instance I. This contradiction shows that we cannot introduce L as a topological minor in
Patt(I ′[T]) when reducing I to I ′[T].

Hence we have established both assumptions, so the result follows by our generic proof scheme. Note
that the number of instances of CSPSP(J) that need to be solved is O(nd5).

As our final result in this section we show how the well-known tractable class of acyclic instances can
be generalised to obtain larger tractable classes defined by forbidding the occurrence of certain patterns as
topological minors. The main tool we use will again be the generic scheme based on Tutte decompositions
described above.

14

Theorem 5.4 Let P0 be any sub-pattern tractable pattern with three parts, U1, U2, U3 where there is at most
one negative edge between U1 and U2, and between U2 and U3, and no edges between U1 and U3.

Let P be a pattern with four parts U1, U2, U3, U4 obtained by extending P0 as follows. The pattern P
has six new points p1, p2 ∈ U1, q1, q2 ∈ U4, and r1, r2 ∈ U3, together with three new negative edges {p1, r1},
{p2, q1}, {q2, r2} (see Figure 8). Any such P is topological-minor tractable.

�

�
	••• �

�
	••

�

�
	•••

�

�
	••@@
@�

�
�

U1 U3

U2

U4

p2
p1

r2
r1

q2

q1

�

�
	•••
•

�

�
	••

�

�
	•••

�

�
	••@@
@

����
�
�

�

�
	•••
•

�

�
	••

�

�
	•••

�

�
	••HHH����

�
� �

�
	••• �

�
	••

�

�
	•••

�

�
	•••

�
�
�@

@
@��

� �

�
	••• �

�
	••

�

�
	•••

�

�
	••@@
@��

�

Figure 8: Topological-minor tractable patterns derived from sub-pattern tractable patterns.

Proof: The proof uses the generic scheme described in this section, so we only need to establish the two
assumptions.

(A1) Suppose first that P0 occurs as a sub-pattern in Patt(I[S]) on the triple of variables (x, y, z). As
explained above, when using the generic scheme we will assume that the torso of S is three-connected. Then,
by Menger’s theorem there are three disjoint paths π1, π2, π3 from x to z in the torso of S. Hence there
must be two of these paths, say π1 and π2, which do not pass through y. But this implies that P occurs
as a topological minor in Patt(I), since if either π1 or π2 passes through the edge {u, v} in the torso of S,
this edge can be replaced by pathT (u, v) which is a path from u to v in GI [T], whose existence was shown
in the discussion of the generic scheme above. Since this contradicts our initial assumption, we can assume
that P0 does not occur as a sub-pattern in Patt(I[S]). This also holds for any sub-problem of I[S] obtained
by instantiating the variables u, v. Therefore, by the sub-pattern tractability of P0, we can determine in
polynomial time which instantiations of u, v can be extended to a solution of I[S]. We remove the pair
(p, q) from Ruv in I whenever the assignment of p to u and q to v cannot be extended to a solution to I[S].
Finally, we delete all variables in S from I except for u and v. Proceeding in this way we construct I ′[T] in
polynomial time, as required.

(A2) Suppose, for a contradiction, that we introduce the pattern P as a topological minor of Patt(I ′[T])
when reducing I to I ′[T]. This occurrence of P must use a newly-introduced negative edge. Observe that,
by definition, P contains at most one negative edge between any two parts. Suppose that a negative
edge (p, q) is introduced by the reduction from I to I ′[T]. This can only be the case if there was a path
π = (u,w1, . . . , wt, v) in the constraint graph GI [S] and hence a sequence of negative edges between the
corresponding parts in Patt(I[S]) linking p to q. Furthermore, in I ′[T], if there is a positive edge (p′, q′)
between the parts corresponding to u and v then there is necessarily a solution to I[S] including the
assignments p′ to u and q′ to v (and hence a solution on the subinstance I[π] of I[S] on the path π =
(u,w1, . . . , wt, v) in I[S]). This means that we can replace the edge (p, q) in the occurrence of P in I ′[T] by
a sequence of negative edges so that P occurs as a topological minor in Patt(I) for the original instance I.
This contradiction shows that we cannot introduce an occurrence of P as a topological minor in Patt(I ′[T])
when reducing I to I ′[T].

15

Hence we have established both assumptions, so the result follows by our generic proof scheme. Note
that the number of instances of CSPSP(P0) that need to be solved is O(nd2).

By [12, Theorem 1], all sub-pattern tractable patterns P0 satisfying the conditions of Theorem 5.4 can be
reduced to sub-patterns of one of five specific patterns. Extending each of these to a pattern P as described
in Theorem 5.4 gives the five topological-minor tractable patterns shown in Figure 8. For each of these
patterns P , the pattern shown in Figure 2 occurs as a sub-pattern and hence as a topological minor of P .
Thus, by the transitivity of occurrence as a topological minor, each tractable class CSPTM(P) necessarily
contains all acyclic binary CSP instances.

6. Detection of topological minors

For every fixed undirected graph H, there is an O(n3) time algorithm that tests, given a graph G with
n vertices, if H is a topological minor of G [29].

However, for detecting topological minors in patterns the situation is different. Characterising all patterns
P for which it is possible to decide in polynomial time whether P occurs as a topological minor in a given
pattern P ′ remains an open problem. However, we have the following partial results.

By Lemma 4.2, deciding whether a negative pattern of the form Patt(G) for some graph G occurs as a
topological minor in a pattern P ′ amounts to detecting whether G is a topological minor of the constraint
graph of P ′, and hence can be achieved in polynomial time [29]. By Proposition 3.22, deciding whether a
star-like negative pattern occurs as a topological minor in an instance can also be achieved in polynomial time
because this is equivalent to deciding whether it occurs as a sub-pattern, which is achievable in polynomial
time by exhaustive search.

Proposition 6.1 For each of the patterns J , K or L shown in Figure 6, deciding whether that pattern
occurs as a topological minor in a given instance I can be done in polynomial time.

Proof: The pattern J shown in Figure 6 is star-like, and hence the result follows from the observation just
made. For the pattern K shown in Figure 6 it is sufficient to discover by exhaustive search all occurrences
of J as a sub-pattern of Patt(I) on the three parts corresponding to the triple of variables (x, y, z) in I, with
y being the variable at which the two negative edges meet, and then check for each one whether x and z are
connected in GI \ y.

For the pattern L shown in Figure 6 it is sufficient to consider all pairs of occurrences of J as a sub-
pattern of Patt(I) on parts corresponding to (x, y, z) and (x′, y′, z′) (where the negative edges meet in parts
y and y′). We can then check that either (y, z) and (x′, y′) coincide, or z and x′ coincide, or z and x′ are
connected by a path in GI that does not pass through any of the parts x, y, y′, z′.

For each of the patterns shown in Figure 8 the complexity of deciding whether it occurs as a topological
minor in a given instance I is currently unknown. However, in polynomial time we can build a Tutte
decomposition for I and decide whether each of the sub-problems associated with its nodes are members of
CSPSP(P0) for the appropriate pattern P0, and this is the only condition required to solve I in polynomial
time using the algorithm described in the proof of Theorem 5.4.

Our next result shows that for some patterns (such as the 4-part pattern M shown in Figure 9), it is
coNP-complete to determine whether the pattern occurs as a topological minor in an arbitrary given pattern.

�

�
	••

�

�
	••

�

�
	••

�

�
	••HHH��

� HHH��
�

M

Figure 9: A pattern that is coNP-complete to detect as a topological minor.

16

�
�	• �

�
	••

�

�
	••

�

�
	••

�

�
	••

�

�
	••

�

�
	••

�

�
	••

�

�
	•• �
�	•��

�

Z
Z
Z

HHH

�
�
�pi−1 pi

vi1 vi2 vim

vi1 vi2 vim
(a)

�
�	• �

�
	••

�

�
	••

�

�
	•• �
�	•@

@
@

���

�
�
�

XXX

J
J
J
JJ

pn+r−1 pn+r

vjr

vkr

v`r

(b)

�

�
	••

�

�
	••H

HH�
�� p0u

(c)

�

�
	••

�

�
	••HHH��

� wpn+m

(d)

Figure 10: The building blocks for the CSP instance I constructed in the proof of Theorem 6.2.

Theorem 6.2 The problem of deciding I ∈ CSPTM(M) is coNP-complete.

Proof: The problem is clearly in coNP, so it suffices to give a reduction from 3-SAT to the complement of
the problem of deciding I ∈ CSPTM(M).

Let ISAT be an instance of 3-SAT with variables x1, . . . , xn and clauses C1, . . . , Cm. We will create a
binary CSP instance I with variables {u,w} ∪ {pi | i = 0 . . . n + m} ∪ {vir, vir | i = 1 . . . n, r = 1 . . .m},
such that determining whether M

TM→ Patt(I) is equivalent to deciding whether ISAT has a solution. The
instance I that we create will be Boolean in the sense that all variables will have domain size at most two.
(In fact all the variables pi, except for p0 and pn+m, will have single-valued domains.)

Consider the patterns shown in Figure 10, where each part is labelled with a variable of I. Using these
patterns we build a complete pattern corresponding to the instance I, as follows:

• For each variable xi in ISAT we include a pattern Pxi
of the form shown in Figure 10(a).

• For each clause Cr in ISAT we include a pattern PCr
of the form shown in Figure 10(b), where the

choice of variables for the three central parts depends on the literals in the clause Cr in the following
way: variable vir corresponds to ¬xi occurring in clause Cr and variable vir corresponds to xi occurring
in clause Cr. That is, the example shown in Figure 10(b) would correspond to the clause xj ∨¬xk∨x`.

• We also include the pattern shown in Figure 10(c) and the pattern shown in Figure 10(d);

• Finally, we complete the resulting pattern to obtain Patt(I) by adding negative edges between all pairs
of points in distinct parts that are not already directly connected by a positive or negative edge.

The only pairs of parts in Patt(I) that are connected by more than one positive edge are {u, p0} and
{pn+m, w}. So, if M occurs as a topological minor in Patt(I), then the points of M must map injectively
to these two pairs of parts. Therefore, deciding whether M occurs as a topological minor in Patt(I) is

17

equivalent to deciding whether there is a path π of positive edges from p0 to pn+m in Patt(I) which passes
through each part at most once.

Any such path π must pass through the points p0, p1, . . . , pn+m in this order, because the positive edges
in Pxi

(1 ≤ i ≤ n) use different points in each part (shown as the bottom of the two points in Figure 10)
from the positive edges in PCr

(1 ≤ r ≤ m) (which use the top points), so there are no short-cuts.
If such a path π exists, then for each variable xi of ISAT , the path π must select in Pxi either the upper

path through variables vir (r = 1, . . . ,m) or the lower path through variables vir (r = 1, . . . ,m). Thus π
selects a truth value for each variable xi: TRUE if π follows the upper of these two paths, FALSE otherwise.

Moreover, for each clause Cr in ISAT the path π must pass from pn+r−1 to pn+r by one of the three
paths in PCr

without passing through parts that have been already used by π. Thus, for π to exist it must
have already assigned TRUE to one of the literals of the clause Cr.

It follows that M occurs as a topological minor of Patt(I) if and only if Patt(I) has an appropriate path
of positive edges, which occurs if and only if ISAT is satisfiable.

The instance I in the proof of Theorem 6.2 is clearly inconsistent since there are some constraint relations
which are empty. An instance is said to be globally consistent if each variable-value assignment (vi, a) can
be extended to a solution. We now give another example of a pattern which is coNP-complete to detect as
a topological minor even in globally-consistent instances.

�

�
	••
•

�

�
	••
•

�
�	•
�
�
�

Z
Z
Z

XXXXXX��
���

�H
HHH

HH��
�
��
�

M ′

�

�
	••
•

�

�
	••
•XXXXXX��

���
�H

HHH
HH��

�
��
�

p0pn+m

E

Figure 11: The pattern M ′ and one of the building blocks for the globally-consistent instance I′ in which detecting it is
coNP-complete.

Theorem 6.3 The problem of deciding I ∈ CSPTM(M ′) for globally-consistent instances I is coNP-complete.

Proof: We use a very similar construction to the one used in the proof of Theorem 6.2. Let I be the
instance constructed in that proof. Let I ′ be identical to I except that:

• we replace the sub-instances obtained from the patterns shown in Figure 10(c) and Figure 10(d) with
a single sub-instance obtained from the pattern E shown in Figure 11;

• for each variable-value assignment (v, a) of I, we create a solution which is an extension of (v, a),
by adding a new value b(v, a, v′) to the domain of each variable v′ 6= v which is compatible with
(v, a) and with all such values b(v, a, v′′) (v′′ /∈ {v, v′}), but incompatible with all other variable-value
assignments.

By construction, I ′ is clearly globally-consistent. If M ′ occurs as a topological minor of Patt(I ′), then
the points of M ′ must map injectively to the points of E, and so again the question is whether there is a
path (of length greater than 1) of positive edges linking p0 to pn+m. As in the proof of Theorem 6.2, this
path exists if and only if the instance ISAT is satisfiable. Hence, the decision problem I ∈ CSPTM(PX) for
globally-consistent instances I is coNP-complete.

Theorems 6.2 and 6.3 show that not all classes defined by forbidding topological minors can be recognized
in polynomial time. Certain uses of tractable classes require polynomial-time recognition: in particular, the
automatic recognition and resolution of easy instances within general-purpose solvers. On the other hand,

18

polynomial-time recognition of a tractable class C is not required for the construction of a polynomial-time
solvable relaxation in C, nor in the proof (by a human being) that a subproblem of CSP encountered in
practice falls in C.

7. Augmented patterns

For some CSP instances we have extra information such as an ordering on the variables or on the domains
(or both). In this section we introduce the idea of adding an additional relation to a pattern to allow us to
capture information of this kind. A pattern P , together with an additional relation on the points of P will
be called an augmented pattern. We will demonstrate that augmented patterns can be used to define new
hybrid tractable classes that extend those described in earlier sections.

Definition 7.1 An augmented pattern is a pair (P,R) where P is a pattern and R is a relation (of any
arity) over the points of P . The augmented pattern (P,R) will be denoted PR.

Obvious examples of relations that could be added to a pattern are disequality relations or partial orders
on points, and this idea has been explored in a number of papers [7, 13, 16].

Definition 7.2 A homomorphism between augmented patterns PR and P ′R′ is a homomorphism h from P
to P ′ such that for all tuples (x1, x2, . . . , xk) ∈ R, the tuple (h(x1), h(x2), . . . , h(xk)) ∈ R′.

Using this extended definition of homomorphism, we can extend the notion of occurring as a sub-pattern
(Definition 3.2) and occurring as a topological minor (Definition 3.4) to augmented patterns in the natural
way.

Now we can extend Definitions 3.8 and 3.14, as follows, to define restricted classes of CSP instances and
associated relations by forbidding the occurrence of certain augmented patterns.

Definition 7.3 Let m be a constant, and let S be a set of augmented patterns such that for each PR ∈ S
the relation R has arity m. Let Rel be a partial function that maps an instance I to a relation RI of arity
m over the points of Patt(I).

We denote by CSPSP(S,Rel) the set of all binary CSP instances I such that Rel(I) is defined and for

all PR ∈ S it is not the case that PR
SP→ Patt(I)Rel(I).

We denote by CSPTM(S,Rel) the set of all binary CSP instances I such that Rel(I) is defined and for

all PR ∈ S it is not the case that PR
TM→ Patt(I)Rel(I).

One of the simplest ways to augment a pattern P is by adding a binary disequality relation, 6=, to specify
that some points of P are distinct. A homomorphism from an augmented pattern P6= to an augmented
pattern Q6= must map points that are specified to be distinct in P to points that are specified to be distinct
in Q. In the next three theorems, we shall assume that for any instance I, all points in Patt(I)6= are
specified to be distinct. In other words, we shall assume that for any instance I the function Rel introduced
in Definition 7.3 always returns the binary relation 6= containing all pairs of distinct points of I. We will
denote this function by Rel 6=.

Now consider the augmented pattern Pivot6=(k) which is obtained from the pattern Pivot(k) defined
in Definition 3.11 by adding a disequality relation specifying that the two points in the central node are
distinct, as shown in Figure 12. Forbidding this pattern from occurring as a sub-pattern results in a larger
class of instances than forbidding the pattern Pivot(k), but our next result shows that this larger class is
still tractable.

Theorem 7.4 The augmented pattern Pivot 6=(k), shown in Figure 12, is sub-pattern tractable.

19

�

�
	••

�

�
	••

�

�
	•• �

�
	••

�

�
	••

�

�
	••

�

�
	••�

�
	••

�

�
	••

�

�
	••

. . .

. . .

. . .
p

q

p 6= q

Figure 12: The augmented pattern Pivot6=(k).

Proof: Let I ∈ CSPSP(Pivot6=(k),Rel 6=) for some constant k. If Patt(I) has a point xv,a which belongs
to no negative edge (i.e., it is compatible with all assignments to all other variables), then we can clearly
remove all points in the same part as xv,a without introducing the pattern or affecting the existence of a
solution. Thus we can assume without loss of generality that Patt(I) contains no such points. A similar
remark holds if Patt(I) has any parts containing just a single point.

We can also assume without loss of generality that the constraint graph of I is connected. A variable v is
called an articulation variable of I if removing v from I disconnects the constraint graph of I. Any instance
can be decomposed into a tree of components which only intersect at articulation variables. It therefore
suffices to show that any instance I without articulation variables can be solved in polynomial time, so we
shall assume that I has no articulation variables.

If Pivot(2k) does not occur as a sub-pattern in Patt(I) then, by Theorem 3.12 we have that I is tractable.
To deal with the remaining case, assume that Pivot(2k) occurs as a sub-pattern in Patt(I) with the

central part U of Pivot(2k) mapping to part V of Patt(I). Let S2k be the set of parts of Patt(I) to which
the parts of Pivot(2k) are mapped.

Since Pivot6=(k) does not occur as a sub-pattern in Patt(I) 6= (and hence neither does Pivot 6=(2k)), the
two points in the central part U of Pivot(2k) must map to the same point in Patt(I), which we denote by
xv,a.

By our assumptions, we know that there is another (distinct) value b in the domain of v which belongs
to a negative edge in Patt(I), connecting part V to some other part W . If W is only connected to S2k in the
constraint graph of Patt(I) via V , then v is an articulation variable of I, which contradicts our assumption.
Hence, there is a path π in the constraint graph of Patt(I) linking W to some part Y ∈ S2k such that
Y 6= V .

By choosing π to be minimal, we can assume that no other parts on the path π belong to S2k. Now,
since Y must lie on one of the three branches of the occurrence of Pivot(2k) in Patt(I), we can extend π
by following this branch from Y either towards or away from the central part V , in order to obtain a path
of length at least k. This length-k path, together with the first k variables of the other two branches of
Pivot(2k), gives an occurrence of the pattern Pivot 6=(k) in Patt(I)6=, which contradicts our choice of I, so
we are done.

�

�
	•• �

�
	••

�
�	•

K6=

p

q

p′

q′

p 6= q
p′ 6= q′

�

�
	•• �

�
	••

�

�
	••

Patt(C3)6=

p

q

p′

q′

p′′

q′′

p 6= q
p′ 6= q′

p′′ 6= q′′

Figure 13: Two augmented patterns which are topological-minor tractable.

20

Now consider the augmented pattern K6=, shown in Figure 13, which is obtained from the pattern K
shown in Figure 6 by adding a disequality relation to specify that any two points in the same part are
distinct. We now show that forbidding K6= from occurring as a topological minor results in a tractable class
(which is larger than the class obtained by forbidding the pattern K as a topological minor discussed in
Theorem 5.1).

Theorem 7.5 The augmented pattern K6=, shown in Figure 13, is sub-pattern NP-complete but topological-
minor tractable.

Proof: By Theorem 3.12, the (negative) pattern K shown in Figure 6 is sub-pattern NP-complete. Since
CSPSP(K) ⊆ CSPSP(K 6=,Rel 6=), we have that K6= is also sub-pattern NP-complete.

To show that K 6=is topological-minor tractable we will show that establishing arc-consistency is sufficient
to decide the existence of a solution for any instance in CSPTM(K 6=,Rel 6=).

By Lemma 3.7, without loss of generality we need consider only arc consistent instances. We will show,
by induction on the number of variables, that in any arc-consistent instance I ∈ CSPTM(K6=,Rel 6=), any
assignment to a single variable can be extended to a solution of I. This is certainly true for instances on up
to two variables, by the definition of arc consistency.

Now assume that I has more than two variables, and consider the assignment of the value a to the
variable v. Let I[v = a] be the instance obtained from I by making this assignment, eliminating variable
v and eliminating from the domain of all other variables w all values b such that (a, b) /∈ Rvw. By arc
consistency, none of the resulting domains in I[v = a] is empty, i.e., for each variable w there is a value cw
in the domain of w such that (a, cw) ∈ Rvw. By the absence of K6= as a topological minor in Patt(I)6=, we
can deduce that all variables w that were connected to v in the constraint graph of I are not connected in
the constraint graph of I[v = a].

Let S1, . . . , Sm be the connected components of the constraint graph of I[v = a]. For any k = 1, . . . ,m,
consider the subinstance I[Sk] of the original instance I on the variables of Sk. Clearly, each I[Sk] ∈
CSPTM(K 6=,Rel6=) and each I[Sk] is arc-consistent. Furthermore, since at least the variable v has been
eliminated from the original set of variables, we know that each I[Sk] has strictly fewer variables than I
(even if m = 1). Hence, by our inductive hypothesis, the assignment of any value cw to any variable w in
I[Sk] can be extended to a solution sk to I[Sk]. The solutions sk (k = 1, . . . ,m) together with the assignment
of a to v then form a solution to I and the result follows by induction.

Now consider the augmented pattern Patt(C3) 6=, shown in Figure 13, which is obtained from the pattern
Patt(C3) shown in Figure 2 by adding a disequality relation specifying that any two points in the same
part are distinct. We now show that forbidding Patt(C3)6= from occurring as a topological minor results
in a tractable class (which is larger than the class of acyclic instances obtained by forbidding the pattern
Patt(C3) as a topological minor discussed in Proposition 4.3).

Theorem 7.6 The augmented pattern Patt(C3)6=, shown in Figure 13, is sub-pattern NP-complete but
topological-minor tractable.

Proof: By Theorem 3.12, the (negative) pattern Patt(C3) shown in Figure 2 is sub-pattern NP-complete.
Since CSPSP(Patt(C3)) ⊆ CSPSP(Patt(C3)6=,Rel 6=), we have that Patt(C3)6= is also sub-pattern NP-complete.

Singleton arc consistency (SAC) is an operation which consists in applying the following operation on
an instance I until convergence: if the instance I[v = a] obtained by making the assignment of the value
a to the variable v and establishing arc consistency is empty, then eliminate a from the domain of v in I.
To show that Patt(C3)6= is topological-minor tractable we will show that SAC is a decision procedure for
CSPTM(Patt(C3)6=,Rel 6=).

Since establishing SAC cannot introduce any occurrence of the pattern, we need only consider instances
that are singleton-arc-consistent (i.e., where no more eliminations are possible by SAC). We will show, by in-
duction on the number of variables, that in any singleton-arc-consistent instance I ∈ CSPTM(Patt(C3) 6=,Rel 6=),
any assignment to a single variable can be extended to a solution to I. This is certainly true for instances
on up to two variables, by the definition of arc consistency.

21

Now assume that I has more than two variables, and consider the assignment of the value a to the
variable v. Let N be the set of parts of Patt(I) that are connected by a negative edge to xv,a. We can
assume that N 6= ∅, otherwise we could make the assignment a to variable v without affecting the rest of the
instance I, and thus reduce I to an instance on fewer variables (which by our inductive hypothesis would
have a solution).

Now let I[N] be the subinstance of I on the variables corresponding to parts in N , with the domain of
each variable w of I[N] reduced to those values c such that (a, c) ∈ Rvw. Since I is singleton arc-consistent,
I[N] is arc-consistent.

Let J ′6= be the augmented pattern shown in Figure 14. Note that J ′6=
SP→ Patt(C3)6=. Now, since Patt(C3)6=�

�
	•• �
�	•

�
�	•

J ′6=

p

q

r1

p 6= q

r2

Figure 14: The augmented pattern J ′6= used in the proof of Theorem 7.6

does not occur as a topological minor in Patt(I)6=, we can deduce that J ′6= does not occur as a topological

minor in Patt(I[N]). Hence, K 6= does not occur as a topological minor in Patt(I[N]) either, since J ′6=
SP→ K6=.

By the proof of Theorem 7.5, any arc-consistent instance in CSPTM(K6=,Rel 6=) has a solution, so I[N] has
a solution which we denote by sN .

Let u be a variable of I[N] and denote by au the value assigned to u by sN . Let Iu be the subinstance
of I on all variables of I except {v} ∪ (N \ {u}).

Let Su be the set of variables w of Iu which are either (1) u itself, (2) directly constrained by the
assignment of au to u (i.e., variables w such that (au, b) /∈ Ruw for some b in the domain of w), or (3) such
that the pattern J ′6= occurs as a topological minor in Patt(Iu)6= with the point r1 of J ′6= mapping to xu,au

and the point r2 of J ′6= mapping to some point xw,b for some b.
Let I[Su] be the subinstance of I on the set of variables Su. Clearly I[Su] is singleton arc-consistent (since

I is), and has fewer variables than I (since v /∈ Su). Hence, by our inductive hypothesis, the assignment of
value au to variable u can be extended to a solution su of I[Su].

Now let u′ ∈ N \{u}. By the absence of Patt(C3)6= as a topological minor in Patt(I), we can deduce that
no assignment in su can be incompatible with any assignment to a variable y in Su′ \Su, except possibly in
the case that the assignment to y is directly incompatible with both the assignment of au to u and au′ to
u′. In this latter case, the solution su′ projected onto Su′ \ Su is necessarily consistent with su.

Hence, by a simple inductive argument, we can create a consistent partial assignment composed of the
assignment of a to v, and the assignments specified by sN and each su (projected onto the not-yet-assigned
variables).

The rest of the instance I, if it is non-empty, is not constrained by this partial assignment and by our
inductive hypothesis has a solution; combining these partial solutions gives a solution to I.

Classes of the CSP that are defined by specifying a restricted set of constraint relations over some fixed
domain D are known as language classes [32, 24]. Every known tractable language class [32, 2] of CSP
instances is characterised by an operation f : Dk → D with the property that for all constraints Ruv,
and all pairs (p1, q1), (p2, q2), . . . , (pk, qk) ∈ Ruv, the pair (f(p1, p2, . . . , pk), f(q1, q2, . . . , qk)) ∈ Ruv; such an
operation is known as a polymorphism of the constraint relations [2, 32].

We now show that using augmented patterns we can characterise every known tractable language class
using a single forbidden augmented sub-pattern.

22

Theorem 7.7 Every tractable language class of binary CSP instances that is characterised by a polymor-
phism f is equal to CSPSP(PR,Relf) for some augmented pattern PR and function Relf .

Proof: The k-ary operation f : Dk → D can be specified by a (k + 1)-ary relation Rf over D where
Rf = {(a1, . . . , ak+1) | ak+1 = f(a1, . . . , ak)}. Define Relf to be the function that maps any CSP instance I
over D to the relation R over the points of Patt(I), where R = {(xv,a1 , . . . , xv,ak+1

) | (a1, . . . , ak+1) ∈ Rf}.
The class of all instances I over domain D for which all constraint relations admit f as a polymorphism,

is precisely the class of instances defined by CSPSP(PR,Relf) where P = (X,E∼, E+, E−) with

• X = U ∪ V , where U = {p1, p2, . . . , pk+1} and V = {q1, q2, . . . , qk+1};

• E∼ = (U × U) ∪ (V × V);

• E+ = {(pi, qi) | pi ∈ U, qi ∈ V, i = 1, 2, . . . , k};

• E− = {(pk+1, qk+1)};

and R = {(p1, p2, . . . , pk+1), (q1, q2, . . . , qk+1)}, as illustrated in Figure 15.

�

�

	••
...

•
•

�

�

	••
...

•
•p1

p2

pk
pk+1

q1

q2

qk
qk+1

pk+1 = f(p1, p2, . . . , pk)

qk+1 = f(q1, q2, . . . , qk)

Figure 15: The augmented pattern PR used in the proof of Theorem 7.7.

We remark that the algebraic dichotomy conjecture [5], which is a refinement of the dichotomy conjecture
of Feder and Vardi [24], implies that every tractable language is characterised by a single polymorphism,
and thus under this conjecture Theorem 7.7 applies to all tractable language classes of binary CSP instance
over a fixed domain.

8. Conclusions and open problems

The notion of a pattern occurring as a topological minor, introduced here, allows a new approach to
the definition of tractable classes of CSP instances. We have shown that this approach, together with the
notion of augmented patterns, can unify the description of all tractable structural and language classes, as
well as allowing new and more general tractable classes to be identified. We therefore believe that it has
great potential for systematically identifying all tractable classes of the CSP.

One long-term goal is to characterise precisely which patterns P are topological-minor tractable and for
which such patterns P , CSPTM(P) is recognisable in polynomial time. For example, Figure 16 shows three
simple patterns whose topological minor tractability is currently open.

Another avenue of future research is the discovery of other applications for topological minors, such
as in variable elimination [8]. Indeed, perhaps the most interesting open question is whether the notion
of topological minor, introduced in this paper, will find applications other than the definition of tractable
classes of the CSP. We have seen that certain classic results from graph theory can lead to results concerning
topological minors of CSP instances. An intriguing avenue for future research is to build bridges in the other
direction. For example, a corollary of the proof of Theorem 6.2 is that finding a path linking two given
vertices and which passes at most once through each part of an n-partite graph is NP-hard. Another way of
expressing this is that finding a heterochromatic path linking two given vertices in a vertex-coloured graph
is NP-hard [35, 3].

23

�

�
	•• �
�	•

�
�	•

�
�	• �
�	• �
�	• �
�	• �
�	•

�

�
	•••

�

�
	•••

�

�
	•••

�

�
	•••

Figure 16: Three patterns whose topological-minor tractability is open.

To achieve further progress it may well be necessary to further refine or modify the definition of a
topological minor given here. We regard this work as simply a first step towards a general topological
theory of complexity for constraint satisfaction problems.

References

[1] Arnborg, S., Proskurowski, A., Corneil, D.G.. Forbidden minors characterization of partial 3-trees. Discrete Mathematics
1990;80(1):1–19. doi:10.1016/0012-365X(90)90292-P.

[2] Barto, L.. Constraint satisfaction problem and universal algebra. ACM SIGLOG News 2014;1(2):14–24. doi:10.1145/
2677161.2677165.

[3] Broersma, H., Li, X., Woeginger, G., Zhang, S.. Paths and cycles in colored graphs. Australasian Journal of
Combinatorics 2005;31:299–311. URL: http://www.combinatorics.cn/publications/papers/2004/LiXL-04A5.pdf.

[4] Bulatov, A.. A dichotomy theorem for nonuniform CSP. In: Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’17). IEEE; 2017. p. 319–330. doi:10.1109/FOCS.2017.37.

[5] Bulatov, A., Krokhin, A., Jeavons, P.. Classifying the complexity of constraints using finite algebras. SIAM Journal on
Computing 2005;34(3):720–742. doi:10.1137/S0097539700376676.

[6] Cohen, D.. A new hybrid class for which arc-consistency is a decision procedure. In: Proceedings of 9th International
Conference on Principles and Practice of Constraint Programming (CP’03). Springer-Verlag; volume 2833 of Lecture Notes
in Computer Science; 2003. p. 807–811. doi:10.1007/978-3-540-45193-8_57.

[7] Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.. The tractability of CSP classes defined by forbidden
patterns. Journal of Artificial Intelligence Research 2012;45:47–78. doi:10.1613/jair.3651.

[8] Cohen, D.A., Cooper, M.C., Escamoche, G., Živný, S.. Variable and value elimination in binary constraint satisfaction
via forbidden patterns. Journal of Computer and System Sciences 2015;81(7):1127–1143. doi:10.1016/j.jcss.2015.02.
001.

[9] Cohen, D.A., Cooper, M.C., Jeavons, P., Živný, S.. Tractable classes of binary CSPs defined by excluded topological
minors. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15). AAAI Press;
2015. p. 1945–1951. URL: http://ijcai.org/Abstract/15/276.

[10] Cohen, D.A., Jeavons, P.G.. The power of propagation: When GAC is enough. Constraints 2017;22(1):3–23. doi:10.
1007/s10601-016-9251-0.

[11] Cooper, M.C.. An optimal k-consistency algorithm. Artificial Intelligence 1989;41:89–95. doi:10.1016/0004-3702(89)
90080-5.

[12] Cooper, M.C., Escamocher, G.. Characterising the complexity of constraint satisfaction problems defined by 2-constraint
forbidden patterns. Discrete Applied Mathematics 2015;184:89–113. doi:10.1016/j.dam.2014.10.035.

[13] Cooper, M.C., Jeavons, P.G., Salamon, A.Z.. Generalizing constraint satisfaction on trees: Hybrid tractability and
variable elimination. Artificial Intelligence 2010;174(9-10):570–584. doi:10.1016/j.artint.2010.03.002.

[14] Cooper, M.C., Živný, S.. Hybrid tractability of valued constraint problems. Artificial Intelligence 2011;175(9-10):1555–
1569. doi:10.1016/j.artint.2011.02.003.

[15] Cooper, M.C., Živný, S.. Hybrid tractable classes of constraint problems. In: Krokhin, A., Živný, S., editors. Complexity
and approximability of Constraint Satisfaction Problems. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik; volume 7
of Dagstuhl Follow-Ups; 2017. p. 113–135. doi:10.4230/DFU.Vol7.15301.113.

[16] Cooper, M.C., Živný, S.. The power of arc consistency for CSPs defined by partially-ordered forbidden patterns. Logical
Methods in Computer Science 2017;13(4). doi:10.23638/LMCS-13(4:26)2017.

[17] Dalmau, V., Kolaitis, P.G., Vardi, M.Y.. Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics. In:
Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming (CP’02). Springer;
volume 2470 of Lecture Notes in Computer Science; 2002. p. 310–326. doi:10.1007/3-540-46135-3_21.

[18] Dechter, R.. Constraint Processing. Morgan Kaufmann, 2003.
[19] Dechter, R., Pearl, J.. Tree clustering for constraint networks. Artificial Intelligence 1989;38:353–366. doi:10.1137/

S0097539794266766.

24

http://dx.doi.org/10.1016/0012-365X(90)90292-P
http://dx.doi.org/10.1145/2677161.2677165
http://dx.doi.org/10.1145/2677161.2677165
http://www.combinatorics.cn/publications/papers/2004/LiXL-04A5.pdf
http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1007/978-3-540-45193-8_57
http://dx.doi.org/10.1613/jair.3651
http://dx.doi.org/10.1016/j.jcss.2015.02.001
http://dx.doi.org/10.1016/j.jcss.2015.02.001
http://ijcai.org/Abstract/15/276
http://dx.doi.org/10.1007/s10601-016-9251-0
http://dx.doi.org/10.1007/s10601-016-9251-0
http://dx.doi.org/10.1016/0004-3702(89)90080-5
http://dx.doi.org/10.1016/0004-3702(89)90080-5
http://dx.doi.org/10.1016/j.dam.2014.10.035
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://dx.doi.org/10.1016/j.artint.2011.02.003
http://dx.doi.org/10.4230/DFU.Vol7.15301.113
http://dx.doi.org/10.23638/LMCS-13(4:26)2017
http://dx.doi.org/10.1007/3-540-46135-3_21
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1137/S0097539794266766

[20] Diestel, R.. Graph Theory. 4th ed. Springer, 2010.
[21] Dirac, G.A.. Short proof of Menger’s graph theorem. Mathematika 1966;13(1):42–44. doi:10.1112/S0025579300004162.
[22] Downey, R., Fellows, M.. Parametrized Complexity. Springer, 1999.
[23] Escamocher, G.. Forbidden Patterns in Constraint Satisfaction Problems. Ph.D thesis; IRIT, University of Toulouse;

2014.
[24] Feder, T., Vardi, M.Y.. The computational structure of monotone monadic SNP and constraint satisfaction: A study

through Datalog and group theory. SIAM Journal of Computing 1998;28(1):57–104. doi:10.1137/S0097539794266766.
[25] Flum, J., Grohe, M.. Parametrized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series.

Springer, 2006.
[26] Freuder, E.. A sufficient condition for backtrack-free search. Journal of the ACM 1982;29(1):24–32. doi:10.1145/322290.

322292.
[27] Freuder, E.. A sufficient condition for backtrack-bounded search. Journal of the ACM 1985;32(4):755–761. doi:10.1145/

4221.4225.
[28] Grohe, M.. The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of

the ACM 2007;54(1):1–24. doi:10.1145/1206035.1206036.
[29] Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.. Finding topological subgraphs is fixed-parameter tractable. In:

Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC’11). 2011. p. 479–488. doi:10.1145/1993636.
1993700.

[30] Hell, P., Nešetřil, J.. Colouring, constraint satisfaction, and complexity. Computer Science Review 2008;2(3):143–163.
doi:10.1016/j.cosrev.2008.10.003.

[31] Hopcroft, J.E., Tarjan, R.E.. Dividing a graph into triconnected components. SIAM Journal on Computing 1973;2(3):135–
158. doi:10.1137/0202012.

[32] Jeavons, P., Cohen, D.A., Gyssens, M.. Closure properties of constraints. Journal of the ACM 1997;44(4):527–548.
doi:10.1145/263867.263489.

[33] Jégou, P.. Decomposition of domains based on the micro-structure of finite constraint-satisfaction problems. In: Pro-
ceedings of the 11th National Conference on Artificial Intelligence (AAAI’93). AAAI Press; 1993. p. 731–736. URL:
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php.

[34] Kun, G., Nešetřil, J.. Forbidden lifts (NP and CSP for combinatorialists). European Journal of Combinatorics
2008;29(4):930–945. doi:10.1016/j.ejc.2007.11.027.

[35] Li, X., Zhang, S., Broersma, H.. Paths and cycles in colored graphs. Electronic Notes in Discrete Mathematics
2001;8:128–132. doi:10.1016/S1571-0653(05)80098-8.

[36] Madelaine, F.R., Stewart, I.A.. Constraint satisfaction, logic and forbidden patterns. SIAM Journal on Computing
2007;37(1):132–163. doi:10.1137/050634840.

[37] Marx, D.. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. Journal of the ACM
2013;60(6). doi:10.1145/2535926; article No. 42.

[38] Robertson, N., Seymour, P.D.. Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B
1986;41(1):92–114. doi:10.1016/0095-8956(86)90030-4.

[39] Robertson, N., Seymour, P.D.. Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B
2004;92(2):325–357. doi:10.1016/j.jctb.2004.08.001.

[40] Rossi, F., van Beek, P., Walsh, T., editors. The Handbook of Constraint Programming. Elsevier, 2006.
[41] Rossi, F., Dahr, V., Petrie, C.. On the equivalence of constraint satisfaction problems. In: Proceedings of the European

Conference on Artificial Intelligence (ECAI90). 1990. p. 550–556.
[42] Tutte, W.T.. Connectivity in Graphs. University of Toronto Press, 1966.
[43] Zhuk, D.. The Proof of CSP Dichotomy Conjecture. In: Proceedings of the 58th Annual IEEE Symposium on Foundations

of Computer Science (FOCS’17). IEEE; 2017. p. 331–342. doi:10.1109/FOCS.2017.38.

25

http://dx.doi.org/10.1112/S0025579300004162
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1145/322290.322292
http://dx.doi.org/10.1145/322290.322292
http://dx.doi.org/10.1145/4221.4225
http://dx.doi.org/10.1145/4221.4225
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1993636.1993700
http://dx.doi.org/10.1145/1993636.1993700
http://dx.doi.org/10.1016/j.cosrev.2008.10.003
http://dx.doi.org/10.1137/0202012
http://dx.doi.org/10.1145/263867.263489
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://dx.doi.org/10.1016/j.ejc.2007.11.027
http://dx.doi.org/10.1016/S1571-0653(05)80098-8
http://dx.doi.org/10.1137/050634840
http://dx.doi.org/10.1145/2535926
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1109/FOCS.2017.38

	Introduction
	Preliminaries
	The CSP
	Patterns

	Forbidding patterns
	Occurrences of one pattern in another
	Restricted classes of instances

	Structural restrictions
	Tractable classes that generalise acyclicity
	Detection of topological minors
	Augmented patterns
	Conclusions and open problems

