
The Power of Arc Consistency for CSPs
Defined by Partially-Ordered Forbidden Patterns ∗

Martin C. Cooper
IRIT, University of Toulouse III, France

cooper@irit.fr

Stanislav Živný
Dept. of Computer Science, University of Oxford, UK

standa.zivny@cs.ox.ac.uk

Abstract
Characterising tractable fragments of the constraint satisfaction
problem (CSP) is an important challenge in theoretical computer
science and artificial intelligence. Forbidding patterns (generic sub-
instances) provides a means of defining CSP fragments which are
neither exclusively language-based nor exclusively structure-based.
It is known that the class of binary CSP instances in which the
broken-triangle pattern (BTP) does not occur, a class which in-
cludes all tree-structured instances, are decided by arc consistency
(AC), a ubiquitous reduction operation in constraint solvers. We
provide a characterisation of simple partially-ordered forbidden
patterns which have this AC-solvability property. It turns out that
BTP is just one of five such AC-solvable patterns. The four other
patterns allow us to exhibit new tractable classes.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Logic and constraint programming

Keywords arc consistency, constraint satisfaction problem, for-
bidden pattern, tractability

1. Introduction
The constraint satisfaction problem (CSP) provides a common
framework for many theoretical problems in computer science as
well as for many real-life applications. A CSP instance consists
of a number of variables, a domain, and constraints imposed on
the variables with the goal to determine whether the instance is
satisfiable, that is, whether there is an assignment of domain values
to all the variables in such a way that all the constraints are satisfied.

The general CSP is NP-complete and thus a major research
direction is to identify restrictions on the CSP that render the
problem tractable, that is, solvable in polynomial time.

A substantial body of work exists from the past two decades on
applications of universal algebra in the computational complexity
of and the applicability of algorithmic paradigms to CSPs. More-
over, a number of celebrated results have been obtained through this
method; see (Barto 2014) for a recent survey. However, the alge-
braic approach to CSPs is only applicable to language-based CSPs,

∗ The authors were supported by EPSRC grant EP/L021226/1. Stanislav
Živný was supported by a Royal Society University Research Fellowship.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 20yy held by Owner/Author. Publication Rights Licensed to ACM.

CONF ’yy Month d–d, 20yy, City, ST, Country
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

that is, classes of CSPs defined by the set of allowed constraint re-
lations but with arbitrary interactions of the constraint scopes. For
instance, the well-known 2-SAT problem is a class of language-
based CSPs on the Boolean domain {0, 1} with all constraint rela-
tions being binary, that is, of arity at most two.

On the other side of the spectrum are structure-based CSPs,
that is, classes of CSPs defined by the allowed interactions of the
constraint scopes but with arbitrary constraint relations. Here the
methods that have been successfully used to establish complete
complexity classifications come from graph theory (Grohe 2007;
Marx 2013).

The complexity of CSPs that are neither language-based nor
structure-based, and thus are often called hybrid CSPs, is much
less understood; see (Carbonnel and Cooper 2016) for a recent sur-
vey. One approach to hybrid CSPs that has been rather successful
studies the classes of CSPs defined by forbidden patterns; that is,
by forbidding certain generic subinstances. The focus of this paper
is on such CSPs. We remark that we deal with binary CSPs but, un-
like in most papers on (the algebraic approach to) language-based
CSPs, the domain is not fixed and is part of the input.

An example of a pattern is given in Figure 1(a). This is the
so-called broken triangle pattern (BTP) (Cooper et al. 2010b) (a
formal definition is given in Section 2). BTP is an example of a
tractable pattern, which means that any binary CSP instance in
which BTP does not occur is solvable in polynomial time. The
class of CSP instances defined by forbidding BTP includes, for
instance, all tree-structured binary CSPs (Cooper et al. 2010b).
There are several generalisations of BTP, for instance, to quanti-
fied CSPs (Gao et al. 2011), to existential patterns (Cohen et al.
2015a), to patterns on more variables (Cooper et al. 2014), and
other classes (Naanaa 2013; Cooper et al. 2015b).

The framework of forbidden patterns is general enough to cap-
ture language-based CSPs in terms of their polymorphisms. For
instance, the pattern in Figure 1(b) captures the notion of binary
relations that are max-closed (Jeavons and Cooper 1995).

Surprisingly, there are essentially only two classes of algo-
rithms (and their combinations) known for establishing tractability
of CSPs. These are, firstly, a generalisation of Gaussian elimina-
tion (Bulatov and Dalmau 2006; Dalmau 2006), whose applicabil-
ity for language-based CSPs is known (Idziak et al. 2010), and,
secondly, problems solvable by local consistency methods, which
originated in artificial intelligence; see references in (Rossi et al.
2006). The latter can be defined in many equivalent ways includ-
ing pebble games, Datalog, treewidth, and proof complexity (Feder
and Vardi 1998). Intuitively, a class of CSP instances is solvable by
k-consistency if unsatisfiable instances can always be refuted while
only keeping partial solutions of size k “in memory”. For instance,
the 2-SAT problem is solvable by local consistency methods.

For structure-based CSPs, the power of consistency methods
is well understood: a class of structures can be solved by k-

consistency if and only if the treewidth (modulo homomorphic
equivalence) is at most k (Atserias et al. 2007). Consequently, con-
sistency methods solve all tractable cases of structurally-restricted
bounded-arity CSPs (Grohe 2007). For language-restricted CSPs,
the power of consistency methods has only recently been charac-
terised (Barto and Kozik 2014; Bulatov 2009).

Contributions
Our ultimate goal is to understand the power of local consistency
methods for hybrid CSPs. On this quest, we focus in this article
on the power of the first level of local consistency, known as arc
consistency (AC), for classes of binary hybrid CSPs defined by
forbidden (partially-ordered) patterns.

The class of CSPs defined by forbidding BTP from Figure 1(a)
is in fact solvable by AC. But as it turns out, BTP is not the only
pattern with this property.

As our main contribution, we give, in Theorem 12, a complete
characterisation of so-called simple partially-ordered forbidden
patterns which have this AC-solvability property. Here the partial
orders are on variables and domain values. It turns out that BTP is
just one of five such AC-solvable patterns. The four other patterns
allow us to exhibit new tractable classes, one of which in particular
we expect to lead to new applications since it defines a strict
generalisation of binary max-closed constraints which have already
found applications in computer vision (Cooper 1999) and temporal
reasoning (Dechter et al. 1991). We also provide results on the
associated meta problem of deciding whether a CSP instance falls
into one of these new tractable classes.

Given that AC is the first level of local consistency methods1

and is implemented in all constraint solvers, an understanding of
the power of AC is paramount. We note that focusing on classes of
CSPs defined by forbidden patterns is very natural as AC cannot
introduce forbidden patterns. While simple patterns do not cover
all partially-ordered patterns it is a natural, interesting, and broad
enough concept that covers BTP and four other novel and non-
trivial tractable classes. We expect our results and techniques to
be used in future work on the power of AC.

Related work
Computational complexity classifications have been obtained for
binary CSPs defined by forbidden negative patterns (i.e., only pair-
wise incompatible assignments are specified) (Cohen et al. 2012)
and for binary CSPs defined by patterns on 2 constraints (Cooper
and Escamocher 2015). Moreover, (generalisations of) forbidden
patterns have been studied in the context of variable and domain
value elimination rules (Cohen et al. 2015a). Finally, the idea of
forbidding patterns as topological minors has recently been inves-
tigated (Cohen et al. 2015b).

(Kolmogorov et al. 2015; Takhanov 2015) recently considered
the possible extensions of the algebraic approach from the language
to the hybrid setting.

The power of the valued version of AC (Cooper et al. 2010a)
has been characterised (Kolmogorov et al. 2015b). Moreover, the
valued version of AC is known to solve all tractable finite-valued
language-based CSPs (Thapper and Živný).

The omitted (parts of the) proofs are given in the full version of
this paper (Cooper and Živný 2016).

1 In some AI literature AC is the second level, the first being node consis-
tency (Rossi et al. 2006). AC is also the first level for relational width (Bu-
latov 2006).

2. Preliminaries
2.1 CSPs and patterns
A pattern can be seen as a generalisation of the concept of a binary
CSP instance that leaves the consistency of some assignments to
pairs of variables undefined.

Definition 1 A pattern is a four-tuple 〈X,D,A, cpt〉 where:

• X is a finite set of variables;
• D is a finite set of values;
• A ⊆ X × D is the set of possible variable-value assignments

called points; the domain of x ∈ X is its non-empty set D(x)
of possible values: D(x) = {a ∈ D | 〈x, a〉 ∈ A};

• cpt is a partial compatibility function from the set of unordered
pairs of points {{〈x, a〉, 〈y, b〉} | x 6= y} to {TRUE, FALSE}. If
cpt(〈x, a〉, 〈y, b〉) = TRUE (resp., FALSE) we say that 〈x, a〉
and 〈y, b〉 are compatible (resp., incompatible). For simplicity,
we write cpt(p, q) for cpt({p, q}).

We will use a simple figurative drawing for patterns. Each
variable will be drawn as an oval containing dots for each of its
possible points. Pairs in the domain of the function cpt will be
represented by lines between points: solid lines (called positive) for
compatibility and dashed lines (called negative) for incompatibility.

Example 1 The pattern in Figure 9 is called LX. It consists of three
variables, five points, six positive edges, and two negative edges.

We refine patterns to give a definition of a CSP instance.

Definition 2 A binary CSP instance P is a pattern 〈X,D,A, cpt〉
where cpt is a total function, i.e. the domain of cpt is precisely
{{〈x, a〉, 〈y, b〉} | x 6= y, a ∈ D(x), b ∈ D(y)}.
• The relation Rx,y ⊆ D(x) × D(y) on 〈x, y〉 is {〈a, b〉 |

cpt(〈x, a〉, 〈y, b〉) = TRUE}.
• A partial solution to P on Y ⊆ X is a mapping s : Y → D

where, for all x 6= y ∈ Y we have 〈s(x), s(y)〉 ∈ Rx,y .
• A solution to P is a partial solution on X .

For notational simplicity we have assumed that there is exactly
one binary constraint between each pair of variables. In particular,
this means that the absence of a constraint between variables x, y
is modelled by a complete relation Rx,y = D(x)×D(y) allowing
every possible pair of assignments to x and y. We say that there is
a non-trivial constraint on variables x, y if Rx,y 6= D(v)×D(y).
We also use the simpler notation Rij for Rxi,xj .

The main focus of this paper is on ordered patterns, which
additionally allow for variable and value orders.

Definition 3 An ordered pattern is a six-tuple 〈X,D,A, cpt, <X

, <D〉 where:

• 〈X,D,A, cpt〉 is a pattern;
• <X is a (possibly partial) strict order on X; and
• <D is a (possibly partial) strict order on D.

A pattern 〈X,D,A, cpt〉 can be seen as an ordered pattern with
empty variable and value orders, i.e. 〈X,D,A, cpt, ∅, ∅〉.

Throughout the paper when we say “pattern” we implicitly
mean “ordered pattern” and use the word “unordered” to empha-
size, if needed, that the pattern in question is not ordered.

We do not consider patterns with structure (such as equality or
order) between elements in the domains of distinct variables.

Definition 4 A pattern P = 〈X,D,A, cpt, <X , <D〉 is called
basic if (1) D(x) and D(y) do not intersect for distinct x, y ∈ X ,
and (2) <D only contains pairs of elements 〈a, b〉 from the domain
of the same variable, i.e., a, b ∈ D(x) for some x ∈ X .

Example 2 The pattern in Figure 1(a) is known as the broken
triangle pattern (BTP) (Cooper et al. 2010b). BTP consists of three
variables, four points, three positive edges, two negative edges,
<X= {x < z, y < z}, and<D= ∅. Given a basic pattern, we can
refer to a point 〈x, a〉 in the pattern as simply a when the variable
is clear from the context or a figure. For instance, the point 〈z, γ〉
in Figure 1(a) can be referred to as γ.

Example 3 The pattern in Figure 1(b) is the (binary) max-closed
pattern (MC). The pattern MC consists of two variables, four
points, two positive edges, one negative edge, <X= ∅, and
<D= {β < α, δ < γ}. MC (Figure 1(b)) together with the extra
structure α > γ is an example of a pattern that is not basic.

For some of the proofs we will require patterns with additional
structure, namely, the ability to enforce certain points to be distinct.

Definition 5 A pattern with a disequality structure is a seven-tuple
〈X,D,A, cpt, <X , <D, 6=D〉 where:

• 〈X,D,A, cpt, <X , <D〉 is a pattern; and
• 6=D⊆ D×D is a set of pairs of domain values that are distinct.

An example of such a pattern is given in Figure 12(b).

2.2 Pattern occurrence
Some points in a pattern are indistinguishable with respect to the
rest of the pattern.

Definition 6 Two points a, b ∈ D(x) are mergeable in a pattern
〈X,D,A, cpt, <X , <D〉 if there is no point p ∈ A for which
cpt(〈x, a〉, p), cpt(〈x, b〉, p) are both defined and cpt(〈x, a〉, p) 6=
cpt(〈x, b〉, p).

Definition 7 A pattern is called unmergeable if it does not contain
any mergeable points.

Example 4 The points γ and δ in BTP (Figure 1(a)) are not merge-
able since they have different compatibility with, for instance, the
point in variable x. The pattern LX (Figure 9) is unmergeable.

Some points in a pattern (known as dangling points) are redun-
dant in arc-consistent CSP instances and hence can be removed.

Definition 8 Let P = 〈X,D,A, cpt, <X , <D〉 be a pattern. A
point p ∈ A is called dangling if it is not ordered by <D and if
there is at most one point q ∈ A for which cpt(p, q) is defined, and
furthermore (if defined) cpt(p, q) = TRUE.

Example 5 The point β in the pattern MC (Figure 1(b)) is not
dangling since it is ordered.

In order to use (the absence of) patterns for AC-solvability we
need to define what we mean when we say that a pattern occurs in a
CSP instance. We define the slightly more general notion of occur-
rence of a pattern in another pattern, thus extending the definitions
for unordered patterns (Cooper and Escamocher 2015). Recall that
a CSP instance corresponds to the special case of a pattern whose
compatibility function is total. We first make the observation that
dangling points in a pattern provide no useful information since we
assume that all CSP instances are arc consistent, which explains
why dangling points can be eliminated from patterns.

Definition 9 A pattern is simple if it is (i) basic, (ii) has no merge-
able points, and (iii) has no dangling points.

From a given pattern it is possible to create an infinite number
of equivalent patterns by adding dangling points or by duplicating
points. By restricting our attention to simple patterns we avoid
having to consider such patterns.

Definition 10 Let P ′ = 〈X ′, D′, A′, cpt′, <X′ , <D′〉 and P =
〈X,D,A, cpt, <X , <D〉 be two patterns. A homomorphism from
P ′ to P is a mapping f : A′ → A which satisfies:

• If cpt′(p, q) is defined, then cpt(f(p), f(q)) = cpt′(p, q).
• The mapping fvar : X ′ → X , given by fvar(x′) = x if ∃a′, a

such that f(〈x′, a′〉) = 〈x, a〉, is well-defined and injective.
• If x′ <X′ y

′ then fvar(x′) <X fvar(y′).
• If a′, b′ ∈ D′(x′), a′ <D′ b′, f(〈x′, a′〉) = 〈x, a〉 and
f(〈x′, b′〉) = 〈x, b〉 then a <D b.

A consistent linear extension of a pattern P = 〈X,D,A, cpt,
<X , <D〉 is a pattern P t obtained from P by first identifying
any number of pairs of points p, q which are both mergeable and
incomparable (according to <D) and then extending the orders on
the variables and the domain values to total orders.

Definition 11 A pattern P ′ = 〈X ′, D′, A′, cpt′, <X′ , <D′〉 oc-
curs in a pattern P = 〈X,D,A, cpt, <X , <D〉 if for all consistent
linear extensions P t of P , there is a homomorphism from P ′ to P t.
We use the notation CSPSP (P) to represent the set of binary CSP
instances in which the pattern P does not occur.

This definition extends in a natural way to patterns with a
disequality structure.

Remark 1 We can add a 6= b to a pattern, without changing its
semantics, when a > b or a and b are unmergeable. Furthermore,
all domain values a, b in an instance are distinct so there is an
implicit a 6= b.

Example 6 The pattern MC (Figure 1(b)) occurs in pattern EMC
(Figure 3) but not in patterns BTP (Figure 1(a)) or BTX (Figure 7).

For a pattern P , we denote by unordered(P) the underlying
unordered pattern, that is,

unordered(〈X,D,A, cpt, <X , <D〉) = 〈X,D,A, cpt〉.
For instance, the pattern unordered(BTP) is the pattern from Fig-
ure 1(a) without the structure x, y < z.

The following three simple lemmas follow from the definitions.

Lemma 1 If P occurs in Q and Q occurs in R, then P occurs in
R.

Lemma 2 If P occurs inQ and P does not occur in I , thenQ does
not occur in I , i.e. CSPSP (P) ⊆ CSPSP (Q).

Lemma 3 For any pattern P , unordered(P) occurs in P .

2.3 AC solvability
Arc consistency (AC) is a fundamental concept for CSPs.

Definition 12 Let I = 〈X,D,A, cpt〉 be a CSP instance. A point
〈x, a〉 ∈ A is called arc consistent if, for all variables y 6= x in X
there is some point 〈y, b〉 ∈ A compatible with 〈x, a〉.

The CSP instance 〈X,D,A, cpt〉 is called arc consistent if
A 6= ∅ and every point in A is arc consistent.

Points that are not arc-consistent cannot be part of a solu-
tion so can safely be removed. There are optimal O(cd2) algo-
rithms for establishing arc consistency which repeatedly remove
such points (Bessière et al. 2005), where c is the number of non-
trivial constraints and d the maximum domain size. Algorithms es-
tablishing arc consistency are implemented in all constraint solvers.

AC is a decision procedure for a CSP instance if, after establish-
ing arc consistency, non-empty domains for all variables guarantee
the existence of a solution. (Note that a solution can then be found
without backtrack by maintaining AC during search). AC is a de-
cision procedure for a class of CSP instances if AC is a decision
procedure for every instance from the class.

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x, y < z

γ

δ

(a)

�
�

�
•

•
�
�

�
•

•XXXXXXXX��
���

���

x y

α > β
γ > δ

α

β

γ

δ

(b)

Figure 1. Two AC-solvable patterns: (a) BTP (b) MC.

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x, y < z
γ > δ

γ

δ

(a)

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x < y < z

γ

δ

(b)

Figure 2. Two equivalent versions of the broken triangle property: forbidding the pattern (a) BTPdo or forbidding the pattern (b) BTPvo

defines the same class of instances.

Definition 13 A pattern P is called AC-solvable if AC is a decision
procedure for CSPSP (P).

The following lemma is a straightforward consequence of the
definitions.

Lemma 4 A pattern P is not AC-solvable if and only if there is an
instance I ∈ CSPSP (P) that is arc consistent and has no solution.

The following lemma follows directly from Lemmas 2 and 4.

Lemma 5 If P occurs in Q and P is not AC-solvable, then Q is
not AC-solvable.

As our main result we will, in Theorem 12, characterise all
simple patterns that are AC-solvable.

2.4 Pattern symmetry and equivalence
For an ordered pattern P , we denote by invDom(P), invVar(P)
the patterns obtained from P by inversing the domain order or the
variable order, respectively.

Lemma 6 If P is not AC-solvable, then neither is invDom(P),
invVar(P) or invDom(invVar(P)).

Proof: The claims follow from inversing the respective orders in
the instance I of Lemma 4 proving that P is not AC-solvable.

Some patterns define the same classes of CSP instances.

Definition 14 Patterns P and P ′ are equivalent if

CSPSP (P) = CSPSP (P ′).

Lemma 7 If P occurs in P ′ and P ′ occurs in P , then P, P ′ are
equivalent.

Example 7 Let LX< be the pattern obtained from LX (Figure 9) by
adding the partial variable order y < z. Due to the symmetry of
LX, observe that LX and LX< are equivalent.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

x

y z

y < z
α > β
γ > δ

α

β

γ

δ

ε

Figure 3. The ordered pattern EMC (Extended Max-Closed)

Example 8 The two patterns shown in Figure 2 are also equiva-
lent: (a) BTPdo with structure x, y < z and c < d, and (b) BTPvo

with variable order x < y < z. We will call these the variable-
ordered and domain-ordered versions of BTP, respectively, when it
is necessary to make the distinction between the two. BTP (Fig-
ure 1(a)) will refer to the same pattern with the only structure
x, y < z which again, by symmetry, is equivalent to both BTPdo

and BTPvo.

3. New tractable classes solved by arc consistency
Our search for a characterisation of all simple patterns decided by
arc consistency surprisingly uncovered four new tractable patterns,
which we describe in this section. The first pattern we study is
shown in Figure 3. It is a proper generalisation of the MC pattern
(Figure 1(b)) since it has an extra variable and three extra edges.

Theorem 1 AC is a decision procedure for CSPSP (EMC) where
EMC is the pattern shown in Figure 3.

Proof: Since establishing arc consistency only eliminates domain
elements, and hence cannot introduce the pattern, it suffices to
show that every arc-consistent instance I = 〈X,D,A, cpt〉 ∈
CSPSP (EMC) has a solution. We give a constructive proof. Let

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

xj

xmh xk

xmh < xk
b0 > ak

amh

bh

b0

ak

aj

Figure 4. To avoid the pattern EMC, we must have bh > amh .

x1 < . . . < xn be an ordering of X such that EMC does not
occur in I . Define an assignment 〈a1, . . . , an〉 to 〈x1, . . . , xn〉
recursively as follows: a1 = max(D(x1)) and, for i > 1,

ai = min{aji | 1 ≤ j < i},
where aji = max{a ∈ D(xi) | (aj , a) ∈ Rji} (1)

For i > 1, we denote by pred(i) a value of j < i such that
ai = aji . Arc consistency guarantees that aji exists and hence that
ai and pred(i) are well defined. We claim that 〈a1, . . . , an〉 is
a solution. Suppose, for a contradiction, that (aj , ak) /∈ Rjk for
some 1 ≤ j < k ≤ n. If there is more than one such pair (j, k),
then choose k to be minimal and then for this value of k choose j
to be minimal.

We prove our claim that 〈a1, . . . , an〉 is a solution to I by
induction on n. The claim trivially holds for n = 1 since a1 ∈
D(x1). It remains to show that if the claim holds for instances of
size less than n then it holds for instances of size n.

Let m0 = k and mr = pred(mr−1) for r ≥ 1 if mr−1 > 1.
Let t be such that mt = 1. By definition of pred, we have

1 = mt < mt−1 < . . . < m1 < m0 = k

which implies that this series is finite and hence that t is well-
defined.

We distinguish two cases: (1) j > m1, and (2) j < m1. Since
(aj , ak) /∈ Rjk and (am1 , ak) ∈ Rjk we know that j 6= m1.

Case (1) j > m1: Define b0 = ajk. By definition of ak, we know
that ak ≤ ajk. Since (aj , ak) /∈ Rjk and (aj , a

j
k) ∈ Rjk, we have

b0 = ajk > ak.
By our choice of j to be minimal, and since j > m1 we know

that (amr , ak) ∈ Rmrk for r = 1, . . . , t. Indeed, by minimality
of k, we already had (amr , ams) ∈ Rmrms for 1 ≤ s ≤ r ≤ t.
Thus, since k = m0, we have

(amr , ams) ∈ Rmrms for 0 ≤ s ≤ r ≤ t. (2)

By arc consistency, ∃b1 ∈ D(xm1) such that (b1, b0) ∈ Rm1k.
We have (am1 , aj) ∈ Rm1j by minimality of k and since
m1, j < k. Since m1 = pred(k) and hence ak = am1

k , we
have (am1 , ak) ∈ Rm1k and (am1 , b0) /∈ Rm1k by the maximal-
ity of am1

k in Equation (1). We thus have the situation illustrated in
Figure 4 for h = 1. Since the pattern EMC does not occur in I , we
must have b1 > am1 .

For 1 ≤ r ≤ t, let Hr be the following hypothesis.

Hr: ∃s(r) ∈ {0, . . . , r − 1}, ∃p(r) < k, ∃br ∈ D(xmr), with
br > amr , such that we have the situation shown in Figure 5.

We have just shown that H1 holds (with s(1) = 0 and p(1) = j).
We now show, for 1 ≤ r < t, that (H1 ∧ . . . ∧Hr)⇒ Hr+1.

We know that (amr+1 , amr) ∈ Rmr+1mr and (amr+1 , br) /∈
Rmr+1mr , sincemr+1 = pred(mr) and by maximality of amr =

a
mr+1
mr in Equation (1). Let q ∈ {0, . . . , r} be minimal such that

�
�

�
•

•

�
�

�
•

�
�

�
•

•

Z
Z
Z
Z�
�
�
�
�

xp(r)

xmr
xms(r)

xmr < xms(r)

br > amr

bs(r) > ams(r)

br

amr

bs(r)

ams(r)

ap(r)

Figure 5. The situation corresponding to hypothesis Hr .

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

xms(q)

xmr+1 xmq

xmr+1 < xmq

bq > amq

amr+1

br+1

bq

amq

bs(q)

Figure 6. To avoid the pattern EMC, we must have br+1 > amr+1 .

(amr+1 , bq) /∈ Rmr+1mq . We distinguish two cases: (a) q = 0,
and (b) q > 0.

If q = 0, then we have (amr+1 , ak) ∈ Rmr+1k (from Equa-
tion (2), since k = m0), (amr+1 , b0) /∈ Rmr+1k (since q = 0),
(amr+1 , aj) ∈ Rmr+1j (by minimality of k, since mr+1, j < k).
By arc consistency, ∃br+1 ∈ D(xmr+1) such that (br+1, b0) ∈
Rmr+1k. We then have the situation illustrated in Figure 4 for
h = r + 1. As above, from the absence of pattern EMC, we can
deduce that br+1 > amr+1 . We thus haveHr+1 (with s(r+1) = 0
and p(r + 1) = j).

If q > 0, then H1 ∧ . . . ∧ Hr implies that Hq holds. By
minimality of q, we know that (amr+1 , bs(q)) ∈ Rmr+1ms(q)

since s(q) < q. We know that (amr+1 , amq) ∈ Rmr+1mq from
Equation (2), and that (amr+1 , bq) /∈ Rmr+1mq by definition
of q. We know that (bq, bs(q)) ∈ Rmqms(q)

and (amq , bs(q)) /∈
Rmqms(q)

from Hq . By arc consistency, ∃br+1 ∈ D(xmr+1) such
that (br+1, bq) ∈ Rmr+1mq . We then have the situation illustrated
in Figure 6. As above, from the absence of pattern EMC, we can
deduce that br+1 > amr+1 . We thus haveHr+1 (with s(r+1) = q
and p(r + 1) = s(q)).

Case (2) j < m1: Consider the subproblem I ′ of I on the
subset of variables {x1, x2, . . . , xm1−1} ∪ {xk}. Since xm1 does
not belong to the set of variables of I ′, this instance has size
strictly less than n, and hence by our inductive hypothesis has a
solution. The values of ai may differ between I and I ′. However,
we can see from its definition given in Equation (1), that the value
of ai depends uniquely on the subproblem on previous variables
{x1, . . . , xi−1}. Showing the dependence on the instance by a
superscript, we thus have aI

′
i = aIi (i = 1, . . . ,m1 − 1) although

aI
′

k may (and, in fact, does) differ from aIk. By our inductive
hypothesis, 〈a1, . . . , am1−1, a

I′
k 〉 is a solution to I ′. Setting b0 =

aI
′

k , it follows that (ai, b0) ∈ Rik for 1 ≤ i < m1. In particular,
since j < m1, we have (aj , b0) ∈ Rjk. Now aIk ≤ aI

′
k = b0,

since I ′ is a subinstance of I (and so, from Equation (1), aIk is
the minimum of a superset over which aI

′
k is a minimum). Thus

ak = aIk < b0, since (aj , b0) ∈ Rjk and (aj , ak) /∈ Rjk.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

x

y z

y < x, z
α > β

α

β

γ

δ

ε

Figure 7. The ordered pattern BTX.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

x

y z

x < z
α > β

α

β

γ

δ

ε

Figure 8. The ordered pattern BTI.

By arc consistency, ∃b1 ∈ D(xm1) such that (b1, b0) ∈ Rm1k.
As in case (1), we have the situation illustrated in Figure 4 for
h = 1. Since the pattern EMC does not occur in I , we must have
b1 > am1 .

Consider the hypothesis Hr stated in case (1) and illustrated in
Figure 5. We have just shown that H1 holds (with s(1) = 0 and
p(1) = j). We now show, for 1 ≤ r < t, that (H1 ∧ . . . ∧Hr)⇒
Hr+1.

As in case (1), we know that (amr+1 , amr) ∈ Rmr+1mr

and (amr+1 , br) /∈ Rmr+1mr . Let q ∈ {0, . . . , r} be minimal
such that (amr+1 , bq) /∈ Rmr+1mq . We have seen above that
(amr+1 , b0) ∈ Rmr+1k (since xmr+1 , xm0 are assigned, respec-
tively, the values amr+1 , b0 in a solution to I ′). Therefore, we can
deduce that q > 0. ThereforeH1∧ . . .∧Hr implies thatHq holds.
By minimality of k, and since mq < m0 = k, we know that
(amr+1 , amq) ∈ Rmr+1mq . As in case (1), by minimality of q,
we know that (amr+1 , bs(q)) ∈ Rmr+1ms(q)

. By arc consistency,
∃br+1 ∈ D(xmr+1) such that (br+1, bq) ∈ Rmr+1mq . We thus
have the situation illustrated in Figure 6. Again, from the absence
of pattern EMC, we can deduce that br+1 > amr+1 . We thus again
have Hr+1 with s(r + 1) = q and p(r + 1) = s(q).

Thus, by induction on r, we have shown in both cases that
Ht holds. But recall that mt = 1 and that a1 was chosen to the
maximal element of D(x1) and hence @bt ∈ D(x1) such that
bt > a1. This contradiction shows that 〈a1, . . . , an〉 is a solution,
as claimed.

The next two patterns we study in this section, shown in Fig-
ure 7 and Figure 8, are similar to EMC but the three patterns are
incomparable (in the sense that none occurs in another) due to the
different orders on the three variables.

Theorem 2 AC is a decision procedure for CSPSP (BTX) where
BTX is the pattern shown in Figure 7.

Theorem 3 AC is a decision procedure for CSPSP (BTI) where
BTI is the pattern shown in Figure 8.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

x

y z

α

β

γ

δ

ε

Figure 9. The pattern LX.

We conclude this section with a pattern which is essentially dif-
ferent from the patterns EMC, BTX, and BTI, since it includes two
negative edges that meet but has no domain or variable order, and
whose tractability was previously unknown (Escamocher 2014).

Theorem 4 AC is a decision procedure for CSPSP (LX) where LX
is the pattern shown in Figure 9.

Proof: Since establishing arc consistency only eliminates domain
elements, and hence cannot introduce the pattern, we only need to
show that every arc-consistent instance I ∈ CSPSP (LX) has a
solution. In fact we will show a stronger result by proving that the
hypothesis Hn, below, holds for all n ≥ 1.

Hn: for all arc-consistent instances I = 〈X,D,A, cpt〉 ∈
CSPSP (LX) with |X| = n, ∀xi ∈ X , ∀a ∈ D(xi), I has
a solution s such that s(xi) = a.

Trivially, H1 holds. Suppose that Hn−1 holds where n > 1. We
will show that this implies Hn, which will complete the proof by
induction.

Consider an arc-consistent instance I = 〈X,D,A, cpt〉 from
CSPSP (LX) with X = {x1, . . . , xn} and let a ∈ D(xi) where
1 ≤ i ≤ n. Let In−1 denote the subproblem of I on variables
X \{xi}. For any solution s of In−1, we denote byCV (〈xi, a〉, s)
the set of variables in X \ {xi} on which s is compatible with the
unary assignment 〈xi, a〉, i.e.

CV (〈xi, a〉, s) = {xj ∈ X \ {xi} | (a, s(xj)) ∈ Rij}

Consider two distinct solutions s, s′ to In−1. If we have xj ∈
CV (〈xi, a〉, s) \ CV (〈xi, a〉, s′) and xk ∈ CV (〈xi, a〉, s′) \
CV (〈xi, a〉, s), then the pattern LX occurs in I under the mapping
x 7→ xi, y 7→ xj , z 7→ xk, α 7→ s(xj), β 7→ s′(xj), γ 7→ s′(xk),
δ 7→ s(xk), ε 7→ a (see Figure 9). Since LX does not occur in
I , we can deduce that the sets CV (〈xi, a〉, s), as s varies over all
solutions to In−1, form a nested family of sets. Let sa be a solution
to In−1 such that CV (〈xi, a〉, sa) is maximal for inclusion.

Consider any xj ∈ X \ {xi}. By arc consistency, ∃b ∈ D(xj)
such that (a, b) ∈ Rij . By our inductive hypothesis Hn−1, there
is a solution s to In−1 such that s(xj) = b. Since (a, s(xj)) =
(a, b) ∈ Rij , we have xj ∈ CV (〈xi, a〉, s). By maximality of sa,
this implies xj ∈ CV (〈xi, a〉, sa), i.e. (a, sa(xj)) ∈ Rij . Since
this is true for any xj ∈ X \ {xi}, we can deduce that sa can be
extended to a solution to I (which assigns a to xi) by simply adding
the assignment 〈xi, a〉 to sa.

4. Recognition problem for unknown orders
For an unordered pattern P of size k, checking for (the non-
occurrence of) P in a CSP instance I is solvable in time O(|I|k)
by simple exhaustive search. Consequently, checking for (the non-
occurrence of) unordered patterns of constant size is solvable in

polynomial time. However, the situation is less obvious for ordered
patterns since we have to test all possible orderings of I .

The following result was shown in (Cooper et al. 2010b).

Theorem 5 Given a binary CSP instance I with a fixed total order
on the domain, there is a polynomial-time algorithm to find a
total variable ordering such that BTP does not occur in I (or to
determine that no such ordering exists).

We show that the same result holds for the other three ordered
patterns studied in this paper, namely BTI, BTX, and EMC.

Theorem 6 Given a binary CSP instance I with a fixed total order
on the domain and a pattern P ∈ {BTI, BTX, EMC}, there is a
polynomial-time algorithm to find a total variable ordering such
that P does not occur in I (or to determine that no such ordering
exists).

Proof: We give a proof only for BTX as the same idea works for
the other two patterns as well. Given a binary CSP instance I with
n variables x1, . . . , xn, we define an associated CSP instance ΠI

that has a solution precisely when there exists a suitable variable
ordering for I . To construct ΠI , let O1, . . . , On be variables tak-
ing values in {1, . . . , n} representing positions in the ordering. We
impose the ternary constraint Oi > max(Oj , Ok) for all triples of
variables xi, xj , xk in I such that the BTX pattern occurs for some
α, β ∈ D(xi) withα > β, ε ∈ D(xj), and γ, δ ∈ D(xk) when the
variables are ordered xi < xj , xk. The instance ΠI has a solution
precisely if there is an ordering of the variables x1, . . . , xn of I for
which BTX does not occur. Note that if the solution obtained repre-
sents a partial order (i.e. if Oi and Oj are assigned the same value
for some i 6= j), then it can be extended to a total order which still
satisfies all the constraints by arbitrarily choosing the order of those
Oi’s that are assigned the same value. This reduction is polynomial
in the size of I . We now show that all constraints in ΠI are ternary
max-closed and thus ΠI can be solved in polynomial time (Jeavons
and Cooper 1995). Let 〈p1, q1, r1〉 and 〈p2, q2, r2〉 satisfy any con-
straint in ΠI . Then p1 > max(q1, r1) and p2 > max(q2, r2),
and thus max(p1, p2) > max(max(q1, r1),max(q2, r2)) =
max(max(q1, q2),max(r1, r2)). Consequently, 〈max(p1, p2),
max(q1, q2), max(r1, r2)〉 also satisfies the constraint. We can
deduce that all constraints in ΠI are max-closed.

Using the same technique, we can also show the following.

Theorem 7 Given a binary CSP instance I with a fixed total vari-
able order and a pattern P ∈ {BTI, BTX}, there is a polynomial-
time algorithm to find a total domain ordering such that P does not
occur in I (or determine that no such ordering exists).

It is known that determining a domain order for which MC does
not occur is NP-hard (Green and Cohen 2008). Not surprisingly,
for EMC when the domain order is not known, detection becomes
NP-hard. For the case of BTX and BTI, if neither the domain nor
variable order is known, finding orders for which the pattern does
not occur is again NP-hard.

Theorem 8 For the pattern EMC, even for a fixed total variable
order of an arc-consistent binary CSP instance I , it is NP-hard to
find a total domain ordering of I such that the pattern does not
occur in I . For patterns BTX and BTI, it is NP-hard to find total
variable and domain orderings of an arc-consistent binary CSP
instance I such that the pattern does not occur in I .

5. Characterisation of patterns solved by AC
5.1 Instances not solved by arc consistency
We first give a set of instances, each of which is arc consistent
and has no solution. If for any of these instances I , we have I ∈

�

�

�

�•

•

•
�

�

�

�•

•

•

�
�

�
�• • •

�
�

�
�• • •x1

x2

x3

x4

(((
((((

(((
((((

(((
(

hhhhhhhhhhhhhhhhhh

hhh
hhhh

hhh
hhhh

hhh
h

((((((((((((((((((

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE E

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
���

���
���

���
�

�
�
�

�
�
�

�
�
�

�
�
�

A
A
A
A
A
A
A
A
A
A
A
A

S
S
S
S
S
S
S
S
S
S
S
S

@
@
@
@
@
@
@
@
@
@
@
@H

HH
H

HH
H

HH
H

HH

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

H
HHH

HHH
HHH

HH

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

@
@
@
@
@
@
@
@
@
@
@
@A
A
A
A
A
A
A
A
A
A
A
A

S
S
S
S
S
S
S
S
S
S
S
S

�
��

�
��

�
��

�
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

1 2 3

3 2 1

1

2

3

3

2

1

Figure 10. The instance IK4.

�
�

�
�•

•

�
�

�
�•

•
�
�

�
�•

•

�
�

�
�•

•1

0

1

0

1

0

1

0

x1

x2 x3

x4

hhhhhhhhhhhhhhh

b
b
b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c
c
c

C
C
C
C
C
C
C
C
C
C

b
b
b
b
b
b
b
b
b
b
b
b

A
A
A
A
A

B
B
B
B
B
B
BB

"
"
"
"
"
"
"
"
"
"
"
"

!!
!!

!!
!!

!!
!!

XXXXXXXXXX"
"
"
"
"
"
"
"
"
"
"
"

�
�
�
�
�
�
��

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 11. The instance ISAT
K4 .

CSPSP (P), then this constitutes a proof, by Lemma 4, that pattern
P is not solved by arc consistency. For simplicity of presentation,
in each of the following instances, we suppose the variable order
given by xi < xj if i < j.

• IK4 (shown in Figure 10) is composed of four variables
with domains D(xi) = {1, 2, 3} (i = 1, 2, 3, 4), and the
following constraints: (xi = 1) ∨ (xj = 3) ((i, j) =
(1, 2), (2, 3), (3, 4), (4, 1)) and (xi = 2) ∨ (xj = 2) ((i, j) =
(1, 3), (2, 4)).

• I4 is composed of four variables with domains D(x0) =
{1, 2, 3}, D(xi) = {0, 1} (i = 1, 2, 3), and the following
constraints: xi ∨ xj (1 ≤ i < j ≤ 3) and (x0 = i) ∨ xi
(i = 1, 2, 3).

• ISAT
2∆ is composed of five Boolean variables and the following

constraints: x1∨x2, x3∨x4, x1∨x5, x2∨x5, x3∨x5, x4∨x5.
• I5 is composed of five variables with domains D(wi) = {0, 1}

(i = 1, 2, 3), D(xi) = {1, 2, 3}, and the constraints: wi ∨
(x1 = i) (i = 1, 2, 3) and wi ∨ (x2 = i) (i = 1, 2, 3). In this
instance the variable order is w1 < w2 < x1 < x2 < x3.

• ISAT
6 is composed of six Boolean variables and the following

constraints: x1∨x2, x1∨x3, x1∨x4, x3∨x4, x2∨x5, x2∨x6,
x5 ∨ x6.

• ISAT
K4 (shown in Figure 11) is composed of four Boolean vari-

ables and the following constraints: x1∨x2, x3∨x4 and xi∨xj
(for (i, j) = (1, 3), (1, 4), (2, 3), (2, 4)).

• I2COL
3 is composed of three Boolean variables and the three

inequality constraints: xi 6= xj (1 ≤ i < j ≤ 3).

We illustrate two of these instances in Figure 10 and Figure 11.
Figure 12(a) is a pattern which does not occur in the instance IK4

(Figure 10). Similarly, Figure 12(b) is a pattern which does not
occur in the instance I4 and the pattern in Figure 12(c) does not
occur in instance ISAT

2∆ . Figure 12(d), (e) and (f) are three pat-
terns which do not occur in the instance I5. The pattern (known
as T1) shown in Figure 12(d) is, in fact, a tractable pattern (Cooper
and Escamocher 2015), but the fact that it does not occur in I5
(an arc-consistent instance which has no solution) shows that arc
consistency is not a decision procedure for CSPSP (T1). This in-
stance was constructed using certain known properties of the pat-
tern T1 (Escamocher 2014).

It can easily be verified that the three patterns Figure 12(g),
(h), (i) do not occur in ISAT

6 . Similarly, the four patterns in Fig-
ure 12(j),(k),(l),(m) do not occur in the instance ISAT

K4 (Figure 11).
The instance I2COL

3 is the problem of colouring a complete
graph on three vertices with only two colours. It is arc consistent
but clearly has no solution. It is easy to verify that none of the
six patterns in Figure 12(n),(o),(p),(q),(r),(s) occur in I2COL

3 . Fur-
thermore, trivially, no pattern on four or more variables occurs in
I2COL
3 and no pattern with three or more distinct values in the same

domain occurs in I2COL
3 .

By Lemma 4, we know that if a pattern P does not occur in any
of the instances IK4, I4, ISAT

2∆ , I5, ISAT
6 , ISAT

K4 , I2COL
3 , then it is

not AC-solvable. Let P be any of the patterns shown in Figure 12.
By Lemma 5, any pattern Q in which P occurs is not AC-solvable.

By the pattern in Figure 12(g), an simple AC-solvable pattern
cannot contain two negative edges between the same pair of vari-
ables. Since instance I2COL

3 contains only three variables and in-
stance I5 contains no triple of variables which have a negative edge
between each pair of variables, an AC-solvable pattern can con-
tain at most three variables and at most two negative edges. Thus
to identify simple AC-solvable patterns we only need to consider
patterns on at most three variables, at most two points per variable
and with none, one or two negative edges. Furthermore, in the case
of two negative edges these negative edges cannot be between the
same pair of variables.

5.2 Characterising AC-solvable unordered patterns
In this subsection, we consider only patterns P that have no asso-
ciated structure (i.e. with <X = <D = ∅). We prove the following
characterisation of unstructured AC-solvable patterns.

Theorem 9 If P is an simple unordered pattern, then P is AC-
solvable if and only if P occurs in the pattern LX (Figure 9) or in
the pattern unordered(BTP).

Proof sketch: Let P be an simple unordered pattern. By exhaus-
tive search we can deduce that either (1) P occurs in LX or un-
ordered(BTP), or (2) at least one of the following patterns occurs in
P : Figure 12(a), (b), (d), (n), (p), (q), (s). In case (1), by Lemma 1,
Lemma 2, Lemma 3, Theorem 4 and the fact that BTP is known
to be AC-solvable (Cooper et al. 2010b), it follows that P is AC-
solvable. In case (2), since all patterns in Figure 12 are not AC-
solvable, by Lemma 5, P is not AC-solvable.

5.3 Characterising AC-solvable variable-ordered patterns
In this subsection we consider simple patterns P which have no
domain order, but do have a partial order on the variables. We first
require the following lemma.

Lemma 8 If P< is a pattern whose only structure is a partial order
on its variables and P− = unordered(P<), then

1. P< is simple if and only if P− is simple.
2. P< is AC-solvable only if P− is AC-solvable.

Proof: The property of being simple is independent of any variable
order, henceP< is simple if and only ifP− is simple. By Lemma 3,
P− occurs in P<. The fact that P< is AC-solvable only if P− is
AC-solvable then follows from Lemma 5.

Recall pattern LX< from Example 7 that is obtained from the
pattern LX (Figure 9) by adding the partial variable order y < z.

Lemma 8 allows us to give the following characterisation of
variable-ordered AC-solvable patterns.

Theorem 10 If P is an simple pattern whose only structure is a
partial order on its variables, then P is AC-solvable if and only if
P occurs in the pattern LX<, the pattern BTPvo (Figure 2) or the
pattern invVar(BTPvo).

Proof sketch: By Lemma 8 and Theorem 9, we only need to
consider patterns occurring in LX or unordered(BTP) to which
we add a partial order on the variables. Let P be such a pattern.
By exhaustive search we can show that either (1) P occurs in
LX<, BTPvo or invVar(BTPvo), or (2) at least one of the patterns
in Figure 12(e), (f) occurs in P . In case (1), P is AC-solvable,
since LX< and BTPvo are equivalent to the AC-solvable patterns
LX and BTP, respectively. In case (2), P is not AC-solvable, by
Lemma 5, since the patterns in Figure 12 are not AC-solvable.

5.4 Characterising AC-solvable domain-ordered patterns
In this subsection we consider simple patternsP with a partial order
on domains but no ordering on the variables.

Let EMC− be the no-variable-order version of the pattern EMC
depicted in Figure 3.

We prove the following characterisation of domain-ordered AC-
solvable patterns.

Theorem 11 If P is an simple pattern whose only structure is a
partial order on its domains, then P is AC-solvable if and only if P
occurs in the pattern LX (Figure 9), or the pattern EMC−, or the
pattern invDom(EMC−).

Proof sketch: As in the proofs of Theorem 9 and 10, we only need
to consider patterns on at most three variables, with at most two
points per variable and at most two negative edges. Let P be such
a pattern. By exhaustive search, we can deduce that either (1) P
occurs in LX, EMC− or invDom(EMC−), or (2) at least one of the
patterns Figure 12(a), (b), (h), (i), (m), (n), (o), (p), (r), (s) (or its
domain-inversed version) occurs in P .

In case (1), by Lemmas 1, 2 , 3 and Theorems 1 and 4, it follows
that P is AC-solvable. In case (2), by Lemma 5, P is not AC-
solvable, since no pattern in Figure 12 is AC-solvable.

5.5 Characterising AC-solvable ordered patterns
In this subsection we consider the most general case of simple pat-
terns P which have a partial domain order and a partial variable
order. We prove the following characterisation of AC-solvable pat-
terns with partial orders on domains and variables.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���

Z
Z
Z
Z�

�
�
�

(a)

�
�

�
•

•

�
�

�
•

•

�
�

�
•

•

��
���

���

�
�
�
�

@
@
@

@

a

b

c

d

e

f

a 6= b
c 6= d
e 6= f(b)

�
�

�
•

•

�
�

�
•

�
�

�
•

a

b

i k

j

a > b
i, j < k

(c)

�
�

�
• �

�
�
•

•

�
�

�
•\

\
\
\
\�
�
�
�
�

(d)

�
�

�
• �

�
�
•

�
�

�
•

j

k

j < k

(e)

�
�

�
• �

�
�
•

•

�
�

�
•

i

j

ke

f e 6= f
i < j < k

(f)

�
�

�
•

•
�
�

�
•

•a

b

a 6= b
(g)

�
�

�
•

•

�
�

�
•

�
�

�
•

a

b

a > b

(h)

�
�

�
• �

�
�
•

�
�

�
•

• c

d

c > d

(i)�
�

�
•

•

�
�

�
•

�
�

�
•

a

b

i

j

k

a > b
i, j < k

(j)

�
�

�
•

•

�
�

�
•

�
�

�
•

•a

b

c

d

k

j

a > b
c > d
j < k(k)

�
�

�
• �

�
�
•

�
�

�
•

• c

d

i

j

c > d
i < j

(l)

�
�

�
•

•

�
�

�
•

•

�
�

�
•

•a

b

e

f
a > b
e > f

(m)

�
�

�
• �

�
�
•

�
�

�
•

•

@
@
@

@

�
�
�
�

c

d

c 6= d

(n)

�
�

�
•

•
�
�

�
•

•a

b

c

d

a > b
c > d

(o)

�
�

�
• �

�
�
•

�
�

�
•

@
@

@
@

�
�
�
�

(p)

�
�

�
• �

�
�
•

�
�

�
•

@
@
@

@

(q)

�
�

�
•

•
�
�

�
•

•a

b

c

d

a 6= b
c 6= d

(r)�
�

�
•

•

�
�

�
•

���
���

��a

b
a 6= b

(s)

Figure 12. Patterns which does not occur in (a) IK4; (b) I4; (c) ISAT
2∆ ; (d),(e),(f) I5; (g),(h),(i) ISAT

6 ; (j),(k),(l),(m) ISAT
K4 ;

(n),(o),(p),(q),(r),(s) I2COL
3 .

Theorem 12 If P is an simple pattern with a partial order on its
domains and/or variables, then P is AC-solvable if and only if P
occurs in one of the patterns LX<, EMC (Figure 3), BTPvo, BTPdo

(Figure 2), BTX (Figure 7) or BTI (Figure 8) (or versions of these
patterns with inversed domain-order and/or variable-order).

Proof sketch: Let P be a pattern on at most three variables,
with at most two points per variable and at most two negative
edges. By exhaustive search we can deduce that either (1) P occurs
in one of the patterns LX<, EMC, BTPvo, BTPdo, BTX or BTI
(or versions of these patterns with inversed domain-order and/or
variable-order), or (2) at least one of the patterns in Figure 12(c),
(e), (f), (j), (k), (l), (or versions of these patterns with inversed
domain-order and/or variable-order) occurs in P .

In case (1), by Lemmas 1, 2 and 3, P is AC-solvable, since
LX<, EMC, BTPvo, BTPdo, BTX and BTI are all AC-solvable
patterns. In case (2), by Lemma 5, P is not AC-solvable, since none
of the patterns in Figure 12 are AC-solvable.

6. Conclusion
We have identified 4 new tractable classes of binary CSPs. More-
over, we have given a characterisation of all simple partially-
ordered patterns decided by AC. We finish with open problems.

For future work, we plan to study the wider class of un-
mergeable ordered patterns in which two points a, b may be non-
mergeable simply because there is an order a < b on them. In
the present paper, a, b are mergeable unless they have different
compatibilities with a third point c.

Is there a way of combining EMC, BTX and BTI, since to
find a solution after establishing arc consistency we use basically
the same algorithm? Any such generalisation will not be a simple
forbidden pattern by Theorem 12, but there is possibly some other
way of combining these patterns.

Are there interesting generalisations of these patterns to con-
straints of arbitrary arity, valued constraints, infinite domains or
QCSP? BTP has been generalised to constraints of arbitrary ar-
ity (Cooper et al. 2014) as well as to QCSPs (Gao et al. 2011).
Max-closed constraints have been generalised to VCSPs (Cohen
et al. 2006). Infinite domains is an interesting avenue of future
research because simple temporal constraints are binary max-
closed (Dechter et al. 1991).

We have studied classes of CSP instances with totally ordered
domains. However, the framework of forbidden patterns captures
language-based CSPs with partially-ordered domains, such as
CSPs with a semi-lattice polymorphism. In the future, we plan
to investigate CSP instances with partially-ordered domains.

References
A. Atserias, A. A. Bulatov, and V. Dalmau. On the Power of k-Consistency.

In Proc. ICALP’07, 279–290. Springer, 2007.
L. Barto. Constraint satisfaction problem and universal algebra. ACM

SIGLOG News, 1(2):14–24, 2014.
L. Barto and M. Kozik. Constraint Satisfaction Problems Solvable by Local

Consistency Methods. J.ACM, 61(1), 2014. Article No. 3.
C. Bessière, J.-C. Régin, R. H. C. Yap, and Y. Zhang. An optimal coarse-

grained arc consistency algorithm. Artif. Intel., 165(2):165–185, 2005.
A. Bulatov. Combinatorial problems raised from 2-semilattices. Journal of

Algebra, 298:321–339, 2006.
A. Bulatov. Bounded relational width. Unpublished manuscript, 2009.
A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints.

SIAM Journal on Computing, 36(1):16–27, 2006.
C. Carbonnel and M. C. Cooper. Tractability in constraint satisfaction

problems: a survey. Constraints, 21(2):115–144, 2016.

D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The
Complexity of Soft Constraint Satisfaction. Artificial Intelligence, 170
(11):983–1016, 2006.

D. A. Cohen, M. C. Cooper, P. Creed, D. Marx, and A. Z. Salamon. The
tractability of CSP classes defined by forbidden patterns. Journal of
Artificial Intelligence Research, 45:47–78, 2012.

D. A. Cohen, M. C. Cooper, G. Escamocher, and S. Živný. Variable and
value elimination in binary constraint satisfaction via forbidden patterns.
Journal of Computer and System Sciences, 81(7):1127–1143, 2015a.

D. A. Cohen, M. C. Cooper, P. Jeavons, and S. Živný. Tractable classes of
binary CSPs defined by excluded topological minors. In Proc. IJCAI’15,
1945–1951. AAAI Press, 2015b.

M. C. Cooper. Linear-time algorithms for testing the realisability of line
drawings of curved objects. Artificial Intelligence, 108:31–67, 1999.

M. C. Cooper and G. Escamocher. Characterising the complexity of con-
straint satisfaction problems defined by 2-constraint forbidden patterns.
Discrete Applied Mathematics, 184:89–113, 2015.

M. C. Cooper, S. de Givry, M. Sánchez, T. Schiex, M. Zytnicki, and
T. Werner. Soft arc consistency revisited. Artificial Intelligence, 174
(7–8):449–478, 2010a.

M. C. Cooper, P. G. Jeavons, and A. Z. Salamon. Generalizing constraint
satisfaction on trees: Hybrid tractability and variable elimination. Artifi-
cial Intelligence, 174(9–10):570–584, 2010b.

M. C. Cooper, A. El Mouelhi, C. Terrioux, and B. Zanuttini. On broken
triangles. In Proc. CP’14, 9–24. Springer, 2014.

M. C. Cooper, P. Jégou, and C. Terrioux. A Microstructure-Based Family
of Tractable Classes for CSPs. In Proc. CP’15, 74–88. Springer, 2015b.

M. C. Cooper, and S. Živný. The Power of Arc Consistency for CSPs De-
fined by Partially-Ordered Forbidden Patterns. arXiv:1604.07981, 2016.

V. Dalmau. Generalized Majority-Minority Operations are Tractable. Log-
ical Methods in Computer Science, 2(4), 2006.

R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. Artificial
Intelligence, 49:61–95, 1991.

G. Escamocher. Forbidden Patterns in Constraint Satisfaction Problems.
PhD thesis, University of Toulouse, 2014.

T. Feder and M. Y. Vardi. The Computational Structure of Monotone
Monadic SNP and Constraint Satisfaction: A Study through Datalog and
Group Theory. SIAM Journal on Computing, 28(1):57–104, 1998.

J. Gao, M. Yin, and J. Zhou. Hybrid tractable classes of binary quantified
constraint satisfaction problems. In Proc. AAAI’11. AAAI Press, 2011.

M. J. Green and D. A. Cohen. Domain permutation reduction for constraint
satisfaction problems. Artif. Intel., 172(8-9):1094–1118, 2008.

M. Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. J.ACM, 54(1):1–24, 2007.

P. M. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard.
Tractability and learnability arising from algebras with few subpowers.
SIAM Journal on Computing, 39(7):3023–3037, 2010.

P. G. Jeavons and M. C. Cooper. Tractable Constraints on Ordered Domains.
Artificial Intelligence, 79(2):327–339, 1995.

V. Kolmogorov, M. Rolı́nek, and R. Takhanov. Effectiveness of structural
restrictions for hybrid CSPs. CoRR, abs/1504.07067, 2015.

V. Kolmogorov, J. Thapper, and S. Živný. The power of linear programming
for general-valued CSPs, SIAM Journal on Computing, 44(1):1–36,
2015.

D. Marx. Tractable hypergraph properties for constraint satisfaction and
conjunctive queries. Journal of the ACM, 60(6), 2013. Article No. 42.

W. Naanaa. Unifying and extending hybrid tractable classes of csps. J. of
Experimental and Theoretical Artif. Intel., 25(4):407–424, 2013.

F. Rossi, P. van Beek, and T. Walsh, editors. The Handbook of Constraint
Programming. Elsevier, 2006.

R. Takhanov. Hybrid (V)CSPs and algebraic reductions. CoRR,
abs/1506.06540, 2015.

J. Thapper and S. Živný. The complexity of finite-valued CSPs. J.ACM. To
appear.

