
CLAP: A NEW ALGORITHM FOR PROMISE CSPS∗

LORENZO CIARDO† AND STANISLAV ŽIVNÝ‡

Abstract. We propose a new algorithm for Promise Constraint Satisfaction Problems (PCSPs).
It is a combination of the Constraint Basic LP relaxation and the Affine IP relaxation (CLAP).
We give a characterisation of the power of CLAP in terms of a minion homomorphism. Using this
characterisation, we identify a certain weak notion of symmetry which, if satisfied by infinitely many
polymorphisms of PCSPs, guarantees tractability.

We demonstrate that there are PCSPs solved by CLAP that are not solved by any of the
existing algorithms for PCSPs; in particular, not by the BLP + AIP algorithm of Brakensiek et
al. [SICOMP’20] and not by a reduction to tractable finite-domain CSPs.

Key words. promise constraint satisfaction, homomorphism problems, linear programming

AMS subject classifications. 68Q25, 68R01, 90C05

1. Introduction.
Constraint Satisfaction. Constraint Satisfaction Problems (CSPs) have driven

some of the most influential developments in theoretical computer science, from
NP-completeness to the PCP theorem [2, 1, 39] to semidefinite programming algo-
rithms [63] to the Unique Games Conjecture [53].

A CSP over domain A is specified by a finite collection A of relations over A, and
is denoted by CSP(A). Given on input a set of variables and a set of constraints, each
of which uses relations from A, the task is to decide the existence of an assignment
of values from A to the variables that satisfies all the constraints. Classic examples
of CSPs include 2-SAT, graph 3-colouring, and linear equations of fixed width over
finite groups.

For Boolean CSPs, which are CSPs with |A| = 2, Schaefer proved that ev-
ery such CSP is either solvable in polynomial time or is NP-complete [65]. Feder
and Vardi famously conjectured that the same holds true for CSPs over arbitrary
finite domains [41]. Furthermore, they realised the importance of considering clo-
sure properties of solution spaces of CSPs [41], which initiated the algebraic ap-
proach [50, 49, 26]. The key notion in the algebraic approach is that of polymor-
phisms, which are operations that take solutions to a CSP and are guaranteed to
return, by a coordinatewise application, a solution to the same CSP. All CSPs ad-
mit projections (also known as dictators) as polymorphisms. However, the presence
of less trivial polymorphisms, satisfying some notion of symmetry, is necessary for
tractability. For instance, the set of solutions to 2-SAT is closed under the ternary
majority operation maj : {0, 1}3 → {0, 1} that satisfies the following notion of sym-
metry: maj(a, a, b) = maj(a, b, a) = maj(b, a, a) = a for any a, b ∈ {0, 1}. Simi-

∗An extended abstract of this work appeared in the Proceedings of the 2022 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’22) [32].
†Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1

3QD Oxford, UK. Email: lorenzo.ciardo@cs.ox.ac.uk

Funding: Research supported by funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532)
and by UKRI EP/X024431/1.
‡Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1

3QD Oxford, UK. Email: standa.zivny@cs.ox.ac.uk.
Funding: Research supported by a Royal Society University Research Fellowship, by funding

from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 714532), and by UKRI EP/X024431/1.

1

2 L. CIARDO, S. ŽIVNÝ

larly, the set of solutions to Horn-SAT is closed under the binary minimum operation
min : {0, 1}2 → {0, 1} that satisfies a different notion of symmetry: min(a, a) = a,
min(a, b) = min(b, a), and min(a,min(b, c)) = min(min(a, b), c) for any a, b, c ∈ {0, 1}.
The binary max operation – which is a polymorphism of dual Horn-SAT – has the
same notion of symmetry, called semilattice [11]. Together with the ternary minority
polymorphism, which captures linear equations on {0, 1}, this gives all non-trivial
tractable cases from Schaefer’s dichotomy result.1

The polymorphisms of any CSP form a clone, in that they include all projec-
tions and are closed under composition. For instance, since Horn-SAT has min as a
polymorphism, it also has the 4-ary minimum operation

min4(a, b, c, d) = min(a,min(b,min(c, d)))

as a polymorphism. Building on the connection to universal algebra, the algebraic
approach has been tremendously successful beyond decision CSPs, e.g. for robust
satisfiability of CSPs [36, 10, 35], for exact optimisation of CSPs [57, 66, 54], and for
characterising the power of algorithms [59, 9, 14, 55, 56, 67, 68]. The culmination
of the algebraic approach is the positive resolution of the dichotomy conjecture by
Bulatov [28] and Zhuk [71]. We refer the reader to [11] for a survey on the algebraic
approach.

Promise Constraint Satisfaction. In this paper, we study Promise Constraint
Satisfaction Problems (PCSPs), whose systematic study was initiated by Austrin,
Guruswami, and H̊astad [5], and Brakensiek and Guruswami [20]. PCSPs form a vast
generalisation of CSPs. In PCSP(A,B), each constraint comes in two forms, a strict
one in A and a weak one in B. The goal is to distinguish between (i) the case in
which (the strong form of) the constraints can be simultaneously satisfied in A and
(ii) the case in which (even the weak form of) the constraints cannot be simultaneously
satisfied in B. The promise is that it is never the case that the PCSP is not satisfiable
in the strict sense but is satisfiable in the weak sense. If the strict and weak forms
coincide in every constraint (i.e., if A = B) we get the (non-promise) CSPs. However,
PCSPs include many fundamental problems that are inexpressible as CSPs.

The simplest example of strict vs. weak constraints is when the weak constraints
are supersets of the strict constraints on the same domain (the first two examples
below) or on a larger domain (the third example below); the notion of homomorphism
from A to B formalises this for any PCSP.

First, can we distinguish a g-satisfiable k-SAT instance (in the sense that there
is an assignment that satisfies at least g literals in each clause) from an instance that
is not even 1-satisfiable? This problem was studied in [5], where it was shown to be
solvable in polynomial time if gk ≥

1
2 and NP-complete otherwise. Recently, this result

has been generalised to arbitrary finite domains [23].
Second, can we distinguish a 3-SAT formula that admits an assignment satisfying

exactly 1 literal in each clause (i.e., a satisfiable instance of 1-in-3-SAT) from one
that does not admit an assignment satisfying 1 or 2 literals in each clause (i.e., a non-
satisfiable instance of Not-All-Equal-3-SAT)? Remarkably, while both 1-in-3 and
NAE are NP-hard, this promise version is solvable in polynomial time [20, 19].

Third, can we distinguish a k-colourable graph from a graph that is not even
`-colourable, where k ≤ `? This is the approximate graph colouring problem, which
is believed to be NP-hard for any fixed 3 ≤ k ≤ `, but has been elusive since the

1The trivial cases, called 0- and 1-valid, are captured by the constant-0 and constant-1 polymor-
phisms, respectively.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 3

1970s [43]. In particular, the larger the gap is between k and ` the easier the problem
could in principle be and, thus, the more challenging it is to prove NP-hardness. The
current state of the art is NP-hardness for k = 3 and ` = 5 [8], while already the case
of k = 3 and ` = 6 is open. For any k ≥ 4 and ` = `(k) =

(
k
bkc/2

)
− 1, NP-hardness

has been established in [70].

While a systematic study of PCSPs was initiated only recently [5, 20], concrete
PCSPs have been considered for a while, e.g. approximate graph [43, 69, 16, 51, 52,
44] and hypergraph colouring [40]. A highlight result is the dichotomy of Boolean
symmetric PCSPs [42] (in which all constraint relations are symmetric), following an
earlier classification of Boolean symmetric PCSPs with disequalities [20]. Very recent
works have investigated certain Boolean non-symmetric PCSPs [24] and certain non-
Boolean symmetric PCSPs [7]. Other recent results include, e.g., [4, 45, 21].

Most of the recent progress, including results on the approximate graph colouring
problem [8, 70] and on the approximate graph homomorphism problem [58, 70], rely
on the algebraic approach to PCSPs [8]. In particular, the breakthrough results
in [8], building on [12], established that the complexity of PCSPs is captured by the
polymorphism minions and certain types of symmetries these minions satisfy – these
are non-nested identities on polymorphisms, such as the majority example but not
the semilattice example. Crucially, minions are less structured than clones: A minion
(of functions) is a set of operations closed under permuting coordinates, identifying
coordinates, and introducing dummy coordinates, but not under composition.2 Thus,
unlike in our earlier CSP example (corresponding to Horn-SAT), a binary minimum
polymorphism of a PCSP cannot in general be used to generate a 4-ary minimum
polymorphism of the same PCSP.

Despite the momentous results in [8], there is a long way to go to classify all
PCSPs, and it is not even clear whether a dichotomy for all PCSPs should be expected.
When Feder and Vardi conjectured a CSP dichotomy [41], the Boolean case [65] and
the graph case [46] had been fully classified. We seem quite far from these two cases
being classified for PCSPs. Thus, further progress is needed on both the hardness
and tractability part. This paper focusses on the latter.

Finite tractability. Although PCSPs are (much) more general than CSPs, some
PCSPs can be reduced to tractable CSPs. This idea was introduced in [19] under
the name of homomorphic sandwiching (cf. Section 2 for a precise definition); PC-
SPs that are reducible to tractable (finite-domain) CSPs are called finitely tractable.
Finite tractability is not sufficient to explain tractability of all tractable PCSPs. In
particular, Barto et al. [8] showed that the above-mentioned example 1-in-3 vs. NAE
is not finitely tractable, despite being a tractable PCSP [20]. We remark that it is not
inconceivable (and in fact was conjectured in [19]) that every tractable (finite-domain)
PCSP could be reducible to a tractable CSP possibly over an infinite domain; this is
the case for the 1-in-3 vs. NAE problem [19]. However, while certain infinite-domain
CSPs are amenable to algebraic methods, the complexity of infinite-domain CSPs is
far from understood, cf. [17, 18, 13] for recent work.

Since finite tractability does not capture all tractable PCSPs, there is need for
other algorithmic tools. One possibility is to attempt to extend algorithmic techniques
developed for CSPs.

There are two main algorithmic approaches to CSPs. On the one hand, there
are local consistency methods [41], which have been studied in theoretical computer

2In this work, we shall use the more abstract notion of minion introduced in [22], cf. Definition 2.6.

4 L. CIARDO, S. ŽIVNÝ

science but also in artificial intelligence, logic, and database theory. The power of
local consistency for CSPs has been characterised in [25, 9], and it is known that the
third level of consistency solves all so-called bounded-width CSPs [6]. On the other
hand, there are CSPs solvable by algorithms based on generalisations of Gaussian
elimination, most notably CSPs with a Mal’tsev polymorphism [29]. This method
has been pushed to its limit, in a way, in [48, 14]. While the NP-hardness part of the
CSP dichotomy has been known since [26], the challenge in proving the algorithmic
part is the complicated interaction of these two very different algorithmic approaches.
Although this interaction does not occur in Boolean CSPs, it occurs already in CSPs
on three-element domains [27].

The characterisation of the power of the first level of the consistency methods,
1-consistency (also known as arc-consistency [61]), has been lifted from CSPs [41] to
PCSPs in [8]. Rather than establishing 1-consistency combinatorially, one can employ
convex relaxations.

Relaxations. A canonical analogue of 1-consistency is the basic linear program-
ming relaxation (BLP) [59], which in fact is stronger than 1-consistency [60]. The
characterisation of the power of BLP has been lifted from CSPs [59] to PCSPs in [8],
both in terms of a minion and a property of polymorphisms. The power of BLP is
captured by a minion consisting of rational stochastic vectors3 or, equivalently, by
the presence of symmetric polymorphisms of all arities; these are polymorphisms in-
variant under any permutation of the coordinates. For example, we have seen that
Horn-SAT, a classic CSP, has a binary symmetric polymorphism, namely min. We
have also seen that min can generate a 4-ary operation min4, which is symmetric.
Similarly, min can generate (via composition) symmetric operations of all arities, and
thus Horn-SAT is solved by BLP.

A different relaxation of PCSPs is the basic affine integer programming relaxation
(AIP) [19]. The power of AIP has been characterised, both in terms of a minion and
a property of polymorphisms, in [8]. The minion capturing AIP consists of integer
affine vectors.4 Concerning polymorphisms, AIP is captured by polymorphisms of all
odd arities that are invariant under permutations that only permute odd and even
coordinates separately, and additionally satisfy that adjacent coordinates cancel each
other out. The 1-in-3 vs. NAE problem is solved by AIP (cf. Example 2.5).

Brakensiek et al. [22] proposed a combination of the two above-mentioned relax-
ations, called BLP + AIP. Their algorithm has many interesting features. Firstly,
it solves PCSPs that admit only infinitely many symmetric polymorphisms (i.e., not
all arities are required as in the case of BLP). Secondly, it solves all tractable Bool-
ean CSPs, thus demonstrating how research on PCSPs can shed new light on (non-
promise) CSPs. In fact, [22] established the power of BLP + AIP in terms of a minion
and (a property of) polymorphisms. The minion capturing BLP + AIP is essentially
a product of the BLP and AIP minions [22]. Concerning polymorphisms, BLP + AIP
is captured by polymorphisms of all odd arities that are invariant under permutations
that only permute odd and even coordinates.

It may be that BLP + AIP is the only algorithm needed to solve all tractable
Boolean PCSPs. However, as already observed in [22], BLP + AIP does not solve
some rather simple, tractable, non-Boolean PCSPs. Motivated by this, we investigate
algorithms that are stronger than BLP + AIP. We note that all PCSPs hitherto
known to be tractable are solved by BLP + AIP or by finite tractability (i.e., by a

3A vector is stochastic if its entries are nonnegative and sum up to one.
4An integer vector is affine if its entries sum up to one.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 5

reduction to a tractable finite-domain CSP). In this work, we provide an example of
a PCSP that is tractable (through our algorithm) but is not solved by either of those
two algorithmic techniques.

Contributions. Building on the work of Brakensiek et al. [22], we study stronger
relaxations for PCSPs and give three main contributions.

(1) CLAP Our first contribution is the introduction of CLAP to the study of
PCSPs. Our goal was to design an algorithm that, unlike BLP + AIP, solves all CSPs
of bounded width. While all bounded-width CSPs can be solved by 3-consistency [6],
and thus also by the third level of the Sherali-Adams hierarchy for BLP (e.g., by [67]),
Kozik showed that already (a special case of) the singleton arc-consistency (SAC)
algorithm, introduced in [38] (cf. [15, 30]), solves all bounded-width CSPs [56]. Thus,
we study the LP relaxation that we call the singleton BLP (SBLP), which is at least
as strong as SAC. A special case of SBLP (without this name) implicitly appeared in
the literature, e.g. in [5, 20] for Boolean PCSPs. The idea behind SBLP is essentially
to run SAC but replace the arc-consistency check by the BLP; i.e., the algorithm
repeatedly takes a variable-value pair (x, a) and tests the feasibility of the BLP with
the requirement that x should be assigned the value a. If this LP is infeasible then a
is removed from the domain of x. This is repeated until convergence. If any variable
ends up with an empty domain then SBLP rejects, otherwise it accepts. Overall, the
number of BLP calls occurring for an instance of PCSP(A,B) with variable-set X
is at most polynomial in the size of X. As mentioned above, this simple algorithm
solves all bounded-width CSPs [56].

We adopt a modification of SBLP that turns out to be more naturally captured
by a minion-oriented analysis: the constraint BLP (CBLP). This (possibly) stronger
algorithm is a generalisation of SBLP in which we do not consider only variable-value
pairs (x, a), but rather the constraint-assignment pairs (x,a) for every constraint in
the instance. As in SBLP, if fixing a (local) assignment to a constraint yields an
infeasible BLP then the assignment is removed from the constraint relation. Upon
convergence, which takes at most polynomially many BLP calls, if any constraint ends
up with an empty relation then CBLP rejects, otherwise it accepts.

Our algorithm CLAP first runs CBLP and then, upon termination, refines the
solutions of CBLP by running (essentially) AIP. If one believes the suggestion in [22]
that constantly many rounds of the Sherali-Adams hierarchy for BLP + AIP could
solve all tractable (non-promise) CSPs, then it is not outrageous to believe that the
same could be true for CLAP, and CLAP might be easier to analyse than such an
algorithm.

(2) Characterisation Our second contribution is a minion characterisation of the
power of CLAP, stated as Theorem 3.3. The objects in the minion are essentially
matrices with a particular structure, which we call skeletal (cf. Definition 3.1). These
matrices capture the CBLP part of CLAP and together with certain integer affine
vectors form the minion (cf. Definition 3.2). Another, more conceptual contribution
is the introduction of a minion of matrices to the study of PCSPs.

(3) H-symmetric polymorphisms The minion characterisation is crucial to our
third contribution: the identification of a sufficient condition for CLAP to work in
terms of the symmetries of the polymorphisms. This is stated as Theorem 3.5, using
the notion of H-symmetry. This condition can be more easily checked for concrete
templates, thus allowing us to design a separating example that is not finitely tractable
and is not solved by BLP + AIP (nor by local consistency methods, see [3]), but is
solved by CLAP. It follows that our new algorithm is strictly more powerful than

6 L. CIARDO, S. ŽIVNÝ

BLP + AIP (and separated by an interesting PCSP that is not reducible to a tractable
finite-domain CSP via “gadget reductions”, which capture the algebraic approach to
PCSPs [8]).

For a matrix H, a polymorphism f is H-symmetric if f is invariant under per-
mutations of the coordinates but only on a specific set of inputs determined by H
(cf. Definition 3.4). For instance, if H is a row vector then we obtain the requirement
that f be symmetric on all inputs. If H is the identity matrix then we require that
f be symmetric only on inputs in which different entries occur with different mul-
tiplicities. In general, the intuition is that we capture “symmetry with exceptions
that depend on multiplicities”. We refer the reader to the discussion in Section 3 for
details.

After necessary background material in Section 2, our algorithm CLAP and the
main results are presented in Section 3; the proofs appear in Sections 4 and 5.

2. Preliminaries. We let N = {1, 2, . . .} and N0 = N ∪ {0}. The cardinality of
N shall be denoted by ℵ0. For k ∈ N, [k] denotes the set {1, . . . , k}. For a set A,
P(A) denotes the set of all subsets of A. We denote by ≤p many-one polynomial-time
reductions. We shall use standard notation for vectors and matrices. Vectors will be
treated as column vectors and whenever convenient identified with the corresponding
(row) tuples. Both tuples and vectors will be typed in bold font. We denote by ei
the i-th standard unit vector of the appropriate size (which will be clear from the
context); i.e., ei is equal to 1 in the i-th coordinate and 0 elsewhere. We denote by
0p and by 1p the all-zero and all-one vector, respectively, of size p; if the size is clear,
we occasionally drop the subscript. The support of a vector v = (vi) of size p is the
set supp(v) = {i ∈ [p] : vi 6= 0}. Ip denotes the identity matrix of order p, while O
denotes an all-zero matrix of suitable size.

Promise CSPs. A signature σ is a finite set of relation symbols R, each with
its arity ar(R) ∈ N. A relational structure over a signature σ, or a σ-structure, is
a finite universe A, called the domain of A, and a relation RA ⊆ Aar(R) for each
symbol R ∈ σ. For two σ-structures A and B, a mapping f : A → B is called a
homomorphism from A to B, denoted by f : A → B, if f preserves all relations;
that is, for every R ∈ σ and every tuple a ∈ RA, we have f(a) ∈ RB, where f is
applied coordinatewise. The existence of a homomorphism from A to B is denoted
by A→ B. A PCSP template is a pair (A,B) of relational structures over the same
signature such that A→ B. Without loss of generality, we will often assume that A,
the domain of A, is [n].

Definition 2.1. Let (A,B) be a PCSP template. Then, the decision version of
PCSP(A,B) is the following problem: Given as input a relational structure X over
the same signature as A and B, output Yes if X→ A and No if X 6→ B. The search
version of PCSP(A,B) is the following problem: Given as input a relational structure
X over the same signature as A and B and such that X→ A, find a homomorphism
from X to B.

For a relational structure A, the constraint satisfaction problem (CSP) with tem-
plate A [41], denoted by CSP(A), is PCSP(A,A).

Example 2.2. For k ≥ 2, let Kk be the structure with domain [k] and a binary
relation {(i, j) ∈ [k]2 | i 6= j}. Then, CSP(Kk) is the standard graph k-colouring
problem. For k ≤ `, PCSP(Kk,K`) is the approximate graph colouring problem [43].
In the decision version, the task is to decide whether a graph is k-colourable or not
even `-colourable. In the search version, given a k-colourable graph G, the task is

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 7

to find an `-colouring of G. It is widely believed that for any fixed 3 ≤ k ≤ `,
PCSP(Kk,K`) is NP-hard; i.e., constantly many colours do not help. The current
most general NP-hardness result is known for k = 3 and ` = 5 by Buĺın, Krokhin,
and Opršal [8] and for k ≥ 4 and ` = `(k) =

(
k
bkc/2

)
− 1 by Wrochna and Živný [70].

We call a PCSP template (A,B) tractable if any instance of PCSP(A,B) can be
solved in polynomial time in the size of the input structure X. It is easy to show that
the decision version reduces to the search version [8] (but the converse is not known
in general); for CSPs, the two versions are equivalent [33, 26]. Our results are for the
decision version.

Example 2.3. Let 1-in-3 be the Boolean structure with domain {0, 1} and a single
ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Let NAE be the structure with domain
{0, 1} and a single ternary relation {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Then, CSP(1-in-3) is
the (positive) 1-in-3-SAT problem and CSP(NAE) is the (positive) Not-All-Equal-3-
SAT problem. Since both of these problems are NP-hard [65], the PCSP templates
(1-in-3,1-in-3) and (NAE,NAE) are both intractable. However, the PCSP tem-
plate (1-in-3,NAE) is tractable, as shown by Brakensiek and Guruswami [20].

Definition 2.4. Let (A,B) be a PCSP template with signature σ. An operation
f : AL → B, where L ∈ N, is a polymorphism of arity L of (A,B) if for every R ∈ σ
of arity k = ar(R) and for any possible L × k matrix whose rows are tuples in RA,
the application of f on the columns of the matrix gives a tuple in RB. We denote by
Pol(A,B) the set of all polymorphisms of (A,B).

Example 2.5. The unary operation ¬ : {0, 1} → {0, 1} defined by ¬(a) = 1− a is
a polymorphism of (NAE,NAE) but not a polymorphism of (1-in-3,1-in-3). For
any odd L, the L-ary operation f : {0, 1}L → {0, 1} defined by f(a1, . . . , aL) = 1 if
a1 − a2 + a3 − · · · + aL > 0 and f(a1, . . . , aL) = 0 otherwise is a polymorphism of
(1-in-3,NAE).

Minions. Polymorphisms of CSPs form clones; i.e., Pol(A,A) contains all projec-
tions (also known as dictators) and is closed under composition [11]. Polymorphisms
of the (more general) PCSPs form minions; i.e, they are closed under taking mi-
nors.5 Formally, given an L-ary function f : AL → B, its minor relative to a map
π : [L]→ [L′] is the L′-ary function f/π : AL

′ → B defined by

f/π(a1, . . . , aL′) = f(aπ(1), . . . , aπ(L)).(2.1)

Equivalently, a minor of f is a function obtained from f by identifying variables,
permuting variables, and introducing dummy variables. Rather than focussing on
minions of functions, we consider here abstract minions, as described and used in [22].

Definition 2.6. A minion M consists in the disjoint union of sets M (L) for
L ∈ N equipped with operations (·)/π : M (L) →M (L′) for all functions π : [L]→ [L′],
which satisfy

• (M/π)/π̃ = M/π̃◦π for π : [L]→ [L′], π̃ : [L′]→ [L′′] and
• M/ id = M

for all M ∈M (L).

Definition 2.7. For two minions M and N , a minion homomorphism ξ : M →
N is a map that preserves arities and minors: Given M ∈M (L) and π : [L]→ [L′],
ξ(M) ∈ N (L) and ξ(M/π) = ξ(M)/π.

5We remark that clones are also closed under taking minors.

8 L. CIARDO, S. ŽIVNÝ

For any PCSP template (A,B), the set Pol(A,B) of its polymorphisms equipped
with the operations described by (2.1) is a minion [8]. One of the results in [8] estab-
lished that minion homomorphisms give rise to polynomial-time reductions: If there
is a minion homomorphism from Pol(A,B) to Pol(A′,B′), then PCSP(A′,B′) ≤p
PCSP(A,B). Minions are also useful for characterising the power of algorithms, as
we will discuss later.

Remark 2.8. Although we will not use this categorical view, we remark that a
minion is nothing but a functor from the category of nonempty finite sets to the
category of nonempty sets, and a minion homomorphism is a natural transformation.

Existing algorithms. One way to establish tractability of PCSPs is to reduce to
CSPs. Let (A,B) be a PCSP template. A structure C is called a (homomorphic)
sandwich if A → C → B. It is known that, in this case, PCSP(A,B) ≤p CSP(C).6

Thus, if C is a tractable CSP template then (A,B) is a tractable PCSP template. If
C has a finite domain, we say that (A,B) is finitely tractable.

Example 2.9. The PCSP template (1-in-3,NAE) from Example 2.3 is tractable,
as shown in [20], but not finitely tractable unless P=NP, as shown in [8].

Another way to establish tractability for PCSPs is to leverage convex relaxations.
In Section 1, we mentioned three studied relaxations: BLP [59], AIP [20], and
BLP + AIP [22]. Their powers have been characterised in [8, 22] in terms of cer-
tain minions and polymorphism identities. The details of these relaxations and the
characterisations are provided in Appendix A.

All PCSPs hitherto known to be tractable are solved by finite tractability (i.e., by
a reduction to a tractable finite-domain CSP) or by BLP + AIP. The next example
identifies a simple PCSP template not captured by either of these two methods.

Example 2.10. Consider the relational structures A = (A;RA
1 , R

A
2) and B =

(B;RB
1 , R

B
2) on the domain A = B = {0, . . . , 6} with the following relations: RA

1 =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)} is 1-in-3 on {0, 1}, RB

1 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} is
NAE on {0, 1}, and RA

2 = RB
2 = {(2, 3), (3, 2), (4, 5), (5, 6), (6, 4)}. The identity

mapping is a homomorphism from A to B, so (A,B) is a PCSP template. Since the
directed graph corresponding to RA

2 = RB
2 is a disjoint union of a directed 2-cycle

and a directed 3-cycle, [22, Example 6.1] shows that the BLP + AIP algorithm does
not solve PCSP(A,B). We claim that the template (A,B) is not finitely tractable.
For contradiction, assume that there is a finite relational structure C = (C;RC

1 , R
C
2)

such that A → C → B and CSP(C) is tractable. We will argue that this would
imply finite tractability of (1-in-3,NAE), which contradicts the result in [8] (unless
P=NP); cf. Example 2.9. Indeed, the existence of such C gives the following chain of
homomorphisms:

1-in-3 = ({0, 1};RA
1)→ (A;RA

1)→ (C;RC
1)→ (B;RB

1)→ ({0, 1};RB
1) = NAE

(2.2)

where the first map is the inclusion of {0, 1} in A, the second and the third are the
maps witnessing A → C → B, and the fourth is any map g : B → {0, 1} such
that g(0) = 0 and g(1) = 1. Let C̃ = (C;RC

1). Observe that C̃ is tractable since
the inclusion map gives a minion homomorphism Pol(C,C) → Pol(C̃, C̃), and thus
CSP(C̃) = PCSP(C̃, C̃) ≤p PCSP(C,C) = CSP(C) by [8, Theorem 3.1]. This proves

the claim, as (2.2) established 1-in-3→ C̃→ NAE.

6This is a special case of homomorphic relaxation [8], which we do not need here.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 9

Notice that the assignment f 7→ g◦f |{0,1}L (where f is a polymorphism of (A,B)
of arity L and g is the map considered above) yields a minion homomorphism from
Pol(A,B) to Pol(1-in-3,NAE). As established in [3, Corollary 4.2], the template
(1-in-3,NAE) does not have bounded width – i.e., is not solved by local consistency
methods. It follows from [8, Lemma 7.5] that (A,B) does not have bounded width
either.

The template from Example 2.10 will be proved tractable later (in Example 3.6)
using our new algorithm, which we will present next.

3. The CLAP algorithm. Let (A,B) be a PCSP template with signature σ
and let X be an instance of PCSP(A,B). Without loss of generality, we assume that
σ contains a unary symbol Ru such that RX

u = X, RA
u = A, and RB

u = B. If this is not
the case, the signature and the instance can be extended without changing the set of
solutions. Our algorithm – the combined CBLP+AIP algorithm (CLAP), presented
in Algorithm 3.1 and discussed below – builds on BLP [8] and BLP + AIP [22].

CLAP works in two stages. In the first stage, it runs CBLP; i.e., a modified version
of the singleton arc-consistency algorithm (cf. [38]) where (i) the “arc-consistency”
part is replaced by BLP, and (ii) the “singleton” part is boosted by requiring that
every constraint-assignment pair (as opposed to every variable-value pair) is fixed at
each iteration. In the second stage, it refines CBLP by doing an additional sanity
check: At least one of the solutions computed by CBLP should be compatible with a
solution of AIP. As in [22], this second stage requires that the AIP solution should
only use those variables from the CBLP solution that have nonzero weight. There
are two equivalent ways to enforce this requirement: Either by storing the nonzero
variables at each iteration of CBLP in the first stage of the algorithm, or by simply
running BLP + AIP as a black box in the second stage of the algorithm. We adopt
the latter option to achieve a simpler presentation. Concretely, the first stage of
CLAP is performed by initialising the sets Sx,R of constraint-assignment pairs to
the entire relation RA, and then progressively shrinking these sets by cycling over all
constraint-assignment pairs and removing a pair whenever it yields an infeasible BLP.
The second stage, that occurs if all sets Sx,R are nonempty, is performed by cycling
over each feasible constraint-assignment pair and running BLP + AIP on it. As soon
as one constraint-assignment pair is accepted by BLP + AIP, the algorithm terminates
and outputs Yes. If no constraint-assignment pair is accepted, the algorithm outputs
No.

As in Appendix A, where BLP, AIP, and BLP + AIP are presented in full detail
for completeness, by λx,R(a) we denote the variable of BLP(X,A) associated with
x ∈ RX and a ∈ RA, where R ∈ σ. The algorithm has polynomial time complexity in
the size of the input instance: Letting g =

∑
R∈σ |RX||RA|, O(g2) BLP calls and O(g)

BLP + AIP calls occur. We say that CLAP accepts an instance X of PCSP(A,B)
if Algorithm 3.1 returns Yes. We say that CLAP solves PCSP(A,B) if, for every
instance X of PCSP(A,B), we have (i) if X → A then CLAP accepts X, and (ii) if
X is accepted by CLAP then X→ B.

Characterisation. Our first main result – Theorem 3.3 – is a minion-theoretic
characterisation of the power of the CLAP algorithm. In particular, we will introduce
in Definition 3.2 a minion C such that, for any PCSP template (A,B), the CLAP
algorithm solves PCSP(A,B) if and only if there is a minion homomorphism from C to
Pol(A,B). The two directions will be proved in Theorems 4.10 and 4.11, respectively,
in Section 4. Combining Theorem 4.10 with our second main result – Theorem 3.5,
proved in Section 5 – will then yield a sufficient condition for CLAP to solve a given

10 L. CIARDO, S. ŽIVNÝ

Algorithm 3.1 The CLAP algorithm

Require: an instance X of PCSP(A,B) of signature σ
Ensure: yes if X→ A and no if X 6→ B

1: for R ∈ σ, x ∈ RX do
2: set Sx,R := RA

3: end for
4: repeat
5: for R ∈ σ,x ∈ RX,a ∈ Sx,R do
6: if BLP(X,A) with λx,R(a) = 1 and λx′,R′(a

′) = 0 for every R′ ∈ σ, x′ ∈ R′X,
and a′ 6∈ Sx′,R′ is not feasible then

7: remove a from Sx,R

8: end if
9: end for

10: until no set Sx,R is changed
11: if some Sx,R is empty then
12: return No;
13: else
14: for R ∈ σ,x ∈ RX, a ∈ Sx,R do
15: if BLP + AIP(X,A) with λx,R(a) = 1 and λx′,R′(a

′) = 0 for every R′ ∈ σ,
x′ ∈ R′X, and a′ 6∈ Sx′,R′ is feasible then

16: return Yes
17: else
18: return No
19: end if
20: end for
21: end if

PCSP template, in terms of a weak notion of symmetry for the polymorphisms of the
template.

The L-ary objects of the minion C are pairs (M,µ), where M is a matrix with L
rows and infinitely many columns encoding the BLP computations of CLAP and µ
is an L-ary vector of integers encoding the AIP computation of CLAP. The matrices
M in C have a special structure, which we call “skeletal”.

Definition 3.1. Let M be a p×ℵ0 matrix with p ∈ N. We say that M is skeletal
if, for each j ∈ [p], either eTj M = 0Tℵ0 or Mei = ej for some i ∈ N.

In other words, either the j-th row of M is the zero vector or some column of M is
the j-th standard unit vector. Equivalently, M is skeletal if there exist permutation

matrices P ∈ Rp,p and Q ∈ Rℵ0,ℵ0 such that PMQ =

[
Ik M̃
O O

]
for some k ≤ p

and some M̃ ∈ Rk,ℵ0 . The name indicates that the “body” of a skeletal matrix (the
nonzero rows) is completely supported by a “skeleton” (the identity block).

We are now ready to define the minion C . The L-ary objects of C are pairs
(M,µ), where M is a skeletal matrix of size L×ℵ0 and µ is an affine vector (i.e., an
integer vector whose entries sum up to one) of size L. We require that every column
of M should be stochastic and M should have only finitely many different columns;
the latter is formalised in (c5) in Definition 3.2, which says that starting from some
point all the columns are equal. We also require a particular relationship between M
and µ formalised in (c4).

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 11

Definition 3.2. For L ∈ N, let C (L) be the set of pairs (M,µ) such that M ∈
QL,ℵ0 , µ ∈ ZL, and the following requirements are met:

(c1) M is entrywise nonnegative; (c4) supp(µ) ⊆ supp(Me1);
(c2) 1TLM = 1Tℵ0 ; (c5) ∃t ∈ N such that Mei = Met ∀i ≥ t;
(c3) 1TLµ = 1; (c6) M is skeletal.

We define C as the disjoint union of L-ary parts, C :=
⋃
L≥1 C (L).

We defined C as a set. For C to be a minion, we need to define the minor operation on
C and verify that it preserves the structure of C . This is easy and done in Section 4.1.

Our first result is the following characterisation of the power of CLAP.

Theorem 3.3. Let (A,B) be a PCSP template. Then, CLAP solves PCSP(A,B)
if and only if there is a minion homomorphism from C to Pol(A,B).

H-symmetry. Our second main result is a sufficient condition on a PCSP template
(A,B) to guarantee that CLAP solves PCSP(A,B). The condition is through symme-
tries satisfied by polymorphisms of the template. In particular, in Theorem 3.5 we will
show that if Pol(A,B) contains infinitely many operations that are “H-symmetric”
for a suitable matrix H, then there is a minion homomorphism from C to Pol(A,B),
and thus CLAP solves PCSP(A,B) by Theorem 4.10.

In order to define the notion of H-symmetry, we need a few auxiliary definitions.
A vector w = (wi) ∈ Rp is tieless if, for any two indices i 6= i′ ∈ [p], wi 6= 0 ⇒
wi 6= wi′ . A tie matrix is a matrix having integer nonnegative entries, each of whose
columns is a tieless vector. Given an m×p tie matrix H, we say that a vector v ∈ Rp
is H-tieless if Hv is tieless.

Let A be a finite set, let L ∈ N, and take a = (a1, . . . , aL) ∈ AL. We define
the (multiplicity) vector a# as the integer vector of size |A| whose a-th entry is
|{i ∈ [L] : ai = a}| for each a ∈ A.

Definition 3.4. Let A,B be finite sets, and consider a function f : AL → B for
some L ∈ N. Given an m× |A| tie matrix H, we say that f is H-symmetric if

f/π(a) = f(a) ∀π : [L]→ [L] permutation, ∀a ∈ AL such that a# is H-tieless.

Our second result is the following sufficient condition for tractability of PCSPs.

Theorem 3.5. Let (A,B) be a PCSP template and suppose Pol(A,B) contains
H-symmetric operations of arbitrarily large arity for some m × |A| tie matrix H,
m ∈ N. Then there exists a minion homomorphism from C to Pol(A,B).

Recall from Definition 3.1 the notion of a skeletal matrix. As it will be clear from
the rest of the paper, the “skeleton” represents the link between CLAP and the above-
defined notion of H-symmetry. Indeed, on the one hand the presence of the identity
block in a skeletal matrix captures the fact that each BLP solution computed by
CLAP gives probability 1 to some constraint-assignment pair and probability 0 to all
other constraint-assignment pairs for the same constraint (cf. line 6 of Algorithm 3.1).
On the other hand, Lemma 5.2 (stated and proved in Section 5) shows that finitely
many skeletal matrices can always be simultaneously reduced to H-tieless probability
distributions – which are exactly the distributions on which H-symmetric functions
are symmetric (cf. Definition 3.4).

We now mention some consequences of Theorem 3.5. First, observe that a vector
of size 1 is always tieless. Hence, if we take any 1× |A| integer nonnegative matrix as
H, we have that H is a tie matrix and a# is H-tieless for each tuple a in the domain

12 L. CIARDO, S. ŽIVNÝ

of f ; therefore, for such an H, f being H-symmetric reduces to f being symmetric.
On the other hand, having Definition 3.4 in mind, adding rows to H increases the
chance that Ha# has some ties, in which case f is released from the requirement of
being symmetric on a. In this sense, H encodes the “exceptions to symmetry” that
f is allowed to have: The more rows H has, the stronger Theorem 3.5 becomes. If,
for instance, H is the identity matrix of order |A|, then an H-symmetric operation
needs to be symmetric only on those tuples where each entry occurs with a different
multiplicity. A very special example of such an I|A|-symmetric operation is a function
f that returns (the homomorphic image of) the most-frequent entry in the input tuple
whenever it is unique, and, in any other case, f is, say, (the homomorphic image of)
a projection. Other, more creative choices for H allow capturing operations having
more complex exceptions to symmetry, as shown in Example 3.6.

Theorems 3.3 and 3.5 together establish that the CLAP algorithm solves any
PCSP template admitting arbitrarily large polymorphisms having some exceptions to
symmetry that can be encoded via a tie matrix.

The importance of the next example lies in the fact that it provably separates
CLAP from finite tractability and BLP + AIP; i.e., there are PCSP templates solvable
by CLAP that are not finitely tractable and not solvable by BLP + AIP.

Example 3.6. Recall the PCSP template (A,B) from Example 2.10, where it was
shown that PCSP(A,B) is not finitely tractable and not solved by the BLP + AIP
algorithm from [22]. We will show that PCSP(A,B) is solved by CLAP.

Take L ∈ N and consider the function f : AL → B defined as follows: For
a = (a1, . . . , aL) ∈ AL,

• if a ∈ {0, 1}L, look at a#
1 , i.e., the multiplicity of 1 ∈ A in the tuple a;

∗ if a#
1 < L

3 , set f(a) = 0;

∗ if a#
1 > L

3 , set f(a) = 1;

∗ if a#
1 = L

3 , set f(a) = a1;
• if a ∈ {2, 3, 4, 5, 6}L,

∗ if there is a unique element a ∈ A having maximum multiplicity in a,
set f(a) = a;

∗ if there is more than one element of A having maximum multiplicity in
a, set f(a) = a1;

• otherwise, set f(a) = 0.7

We claim that f ∈ Pol(A,B). To see that f preserves R1, consider a tuple ρ =
(r1, . . . , rL) of elements of RA

1 , where ri = (ai, bi, ci) for i ∈ [L]. We shall let a =
(a1, . . . , aL), b = (b1, . . . , bL), and c = (c1, . . . , cL). Notice that

a#
1 + b#

1 + c#
1 = L.(3.1)

If f(a) = f(b) = f(c) = 0, then a#
1 ≤ L

3 , b#
1 ≤ L

3 , and c#
1 ≤ L

3 ; by (3.1), this

implies that a#
1 = b#

1 = c#
1 = L

3 . Hence, (0, 0, 0) = (f(a), f(b), f(c)) = (a1, b1, c1) =

r1 ∈ RA
1 , a contradiction. Similarly, f(a) = f(b) = f(c) = 1 would yield a#

1 ≥ L
3 ,

b#
1 ≥ L

3 , and c#
1 ≥ L

3 ; again by (3.1), this implies that a#
1 = b#

1 = c#
1 = L

3 ,
hence (1, 1, 1) = (f(a), f(b), f(c)) = (a1, b1, c1) = r1 ∈ RA

1 , also a contradiction. We
conclude that f(ρ) = (f(a), f(b), f(c)) ∈ RB

1 , thus showing that f preserves R1.
As for R2, let ρ = (r1, . . . , rL) be a tuple of elements of RA

2 , where ri = (ai, bi)
for i ∈ [L], and let a = (a1, . . . , aL) and b = (b1, . . . , bL). The directed graph having

7Assigning any value in {0, . . . , 6} to f(a) would work here.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 13

vertex set {2, 3, 4, 5, 6} and edge set RA
2 = RB

2 consists of the disjoint union of a
directed 2-cycle and a directed 3-cycle and, hence, all of its vertices have in-degree
and out-degree one. As a consequence, the multiplicity of a directed edge (a, b) in
the tuple ρ equals both the multiplicity of a in a and the multiplicity of b in b.
Therefore, if the tuple ρ has a unique element r = (a, b) with maximum multiplicity,
then f(ρ) = (f(a), f(b)) = (a, b) = r ∈ RB

2 . Otherwise, f(ρ) = (a1, b1) = r1 ∈ RB
2 .

This shows that f preserves R2, too, and is thus a polymorphism of (A,B).
Consider the matrix H = diag(1, 2, 1, 1, 1, 1, 1), and observe that H is a tie matrix.

We claim that f is H-symmetric. Let π : [L] → [L] be a permutation, and take
a tuple a = (a1, . . . , aL) ∈ AL such that a# is H-tieless; i.e., the vector Ha# =

(a#
0 , 2a

#
1 ,a

#
2 ,a

#
3 ,a

#
4 ,a

#
5 ,a

#
6) is tieless. Write ã = (aπ(1), . . . , aπ(L)), and observe

that ã# = a#.
• If a ∈ {0, 1}L, we get a#

0 6= 2a#
1 ; since a#

0 +a#
1 = L, this gives 2a#

1 6= L−a#
1

so that a#
1 6= L

3 . As a consequence, f(a) = f(ã).
• If a ∈ {2, 3, 4, 5, 6}L, the condition above implies that the tuple

(a#
2 ,a

#
3 ,a

#
4 ,a

#
5 ,a

#
6)

has a unique maximum element and, hence, there is a unique element a of A
having maximum multiplicity in a (and in ã). Therefore, f(a) = a = f(ã).

• If a 6∈ {0, 1}L ∪ {2, 3, 4, 5, 6}L, then f(a) = 0 = f(ã).
We conclude that, in each case, f(a) = f(ã) = f/π(a), which means that f is H-
symmetric. By Theorems 3.3 and 3.5, CLAP solves PCSP(A,B).

Remark 3.7. Consider the minion MBLP + AIP from [22] (cf. Appendix A.3). A
direct consequence of Example 3.6, Theorem 3.3, and [22, Lemma 5.4] is that there is
no minion homomorphism from MBLP + AIP to C . On the other hand, the function

ϑ : C →MBLP + AIP

(M,µ) 7→ (Me1,µ)

is readily seen to be a minion homomorphism. It follows that CLAP solves any
PCSP template solved by BLP + AIP (as is also clear from the description of the two
algorithms).

Remark 3.8. Similar to [22], the assumption in Theorem 3.5 can be weakened as
follows: Instead of requiring H-symmetric polymorphisms of arbitrarily large arity,
it turns out to be enough requiring H-block-symmetric polymorphisms of arbitrarily
large width, where the definition of an H-block-symmetric operation mirrors that
of a block-symmetric operation in [22]. The proof of this possibly stronger result is
very similar to that of Theorem 3.5. For completeness, we include it in Appendix C.
We point out that we do not know whether the condition in Theorem 3.5 (or the
possibly weaker condition based on H-block-symmetric polymorphisms) is necessary
for tractability via CLAP, but we suspect it is not.

Remark 3.9. A possibly stronger version of the CLAP algorithm consists in run-
ning BLP + AIP (instead of just BLP) at each iteration in the for loop in lines 5–9
of Algorithm 3.1, and then removing the additional for loop in lines 14–18. This
algorithm can be called C(BLP + AIP). An analysis entirely analogous to the one
presented in this paper shows that the power of C(BLP + AIP) is captured by the
minion C̃ defined like C with the following difference: The L-ary elements of C̃
are pairs (M,N), where M is as in C while N is an integer matrix of the same

14 L. CIARDO, S. ŽIVNÝ

size as M taking the role of µ (in particular, N satisfies the “refinement condition”
supp(Nei) ⊆ supp(Mei) ∀i ∈ N, analogous to (c4) in Definition 3.2). A possible
direction for future research is to investigate whether the richer structure of C̃ can be
exploited to obtain a stronger version of Theorem 3.5.

Remark 3.10. For CSPs, the characterisation of bounded width [9, 25] and its col-
lapse [6] was preceded by a characterisation of width-1 CSPs [41, 37] and the collapse
of width 2 to width 1 [34]. Thus the difference between width-1 CSPs and bounded-
width CSPs is well understood. BLP and SBLP are the (convex relaxation) analogues
of width 1 and SAC, respectively, and SAC solves all bounded-width CSPs [56]. There-
fore, a natural question is whether a similar analysis can cast light on the difference
in power between BLP on one side, and SBLP (and thus perhaps also of CBLP and
CLAP) on the other side. We remark on two obstacles: Firstly, BLP is strictly more
powerful than width 1 for CSPs [60]. Secondly, a good characterisation of the power of
SBLP (and stronger algorithms studied in the present paper) would imply that these
algorithms solve, in the special case of CSPs, all bounded-width CSPs – a non-trivial
result implied by [56].

4. The power of the CLAP algorithm. The goal of this section is to prove
Theorem 3.3. In Section 4.1, we will verify that C , which appears in the statement
of Theorem 3.3, is indeed a minion. In Sections 4.2 and 4.3, we will establish a
compactness argument and present a condition that captures CLAP, respectively;
both will be needed in the proof of Theorem 3.3. The two directions of Theorem 3.3
will be then proved in Section 4.4.

Minions are not only useful for capturing the complexity of PCSPs but also for
characterising the power of algorithms. This will be done by using the concept of
the free structure generated, for a given minion, by a relational structure [22] (cf. [8,
Definition 4.1] for the definition in the special case of minions of functions).

Definition 4.1. Let M be a minion and let A be a (finite) relational structure
with signature σ. The free structure FM (A) is a relational structure with domain
M (|A|) (potentially infinite) and signature σ. Given a relation R ∈ σ of arity k, a
tuple (M1, . . . ,Mk) of elements of M (|A|) belongs to RFM (A) if and only if there is

some Q ∈ M (|RA|) such that Mi = Q/πi for each i ∈ [k], where πi : RA → A maps
a ∈ RA to its i-th coordinate ai.

The next result will be useful to establish the connection between our algorithm
CLAP, presented in Section 3, and the minion C .

Lemma 4.2. Let M be a minion and let (A,B) be a PCSP template. Then there
is a minion homomorphism from M to Pol(A,B) if and only if FM (A)→ B.

The proof of Lemma 4.2 is based on that of [8, Lemma 4.4], which proves one-to-
one correspondence but only for minions of functions. For completeness, we prove
Lemma 4.2 in Appendix B.

4.1. C is a minion. The minor operation on C is naturally defined via a matrix
multiplication with a matrix that encodes the minor map. For a function π : [L] →
[L′], let Pπ be the L′×L matrix whose (i, j)-th entry is 1 if π(j) = i, and 0 otherwise.
Note that PTπ 1L′ = 1L and, for each i ∈ [L′], PTπ ei =

∑
j∈π−1(i) ej .

Definition 4.3. For (M,µ) ∈ C (L), we define M/π = PπM and µ/π = Pπµ,
and we let the minor of (M,µ) with respect to π be (M,µ)/π := (M/π,µ/π).

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 15

We remark that this definition is consistent with the minions Qconv and Zaff studied
in [8], and the minion MBLP + AIP studied in [22], cf. Appendices A.1, A.2, and A.3.

Proposition 4.4. C is a minion.

Proof. Write M = [mij] and µ = (µi). Observe that M/π ∈ QL′,ℵ0 and µ/π ∈
ZL′ . The requirements (c1), (c2), (c3), and (c5) are trivially satisfied by (M,µ)/π. As
for (c4), suppose that eTi PπMe1 = 0 but eTi Pπµ 6= 0. It follows that µj 6= 0 for some
j ∈ π−1(i). Hence, mj1 > 0 and, then,

eTi PπMe1 =
∑

j′∈π−1(i)

eTj′Me1 ≥ eTj Me1 > 0,

which is a contradiction. We now show that M/π is skeletal. Choose j ∈ [L′], and
suppose that eTj M/π 6= 0Tℵ0 . We obtain

0ℵ0 6= MTPTπ ej =
∑

`∈π−1(j)

MTe`

and, in particular, ∃` ∈ π−1(j) such that eT` M 6= 0Tℵ0 . Since M is skeletal, this implies
that Mei = e` for some i ∈ N. This yields

M/πei = PπMei = Pπe` = eπ(`) = ej

as required. Hence, (c6) is satisfied, too, and (M,µ)/π ∈ C (L′).
Finally, considering π̃ : [L′] → [L′′] and the identity map id : [L] → [L], one

readily checks that Pπ̃◦π = Pπ̃Pπ and Pid = IL. Hence, the minor operations defined
above satisfy the requirements of Definition 2.6.

4.2. A compactness argument for C . The set C (L) of the L-ary objects in
C is infinite unless L = 1. As a consequence, given a relational structure A whose
domain has size at least 2, the free structure FC (A) has an infinite domain. We now
describe a standard compactness argument analogous to [8, Remark 7.13] that will
circumvent this inconvenience.

For D,L ∈ N, consider the set

C
(L)
D = {(M,µ) ∈ C (L) : DM is entrywise integer,

Mei = MeD ∀i ≥ D, and 1TL|µ| ≤ D},

where |µ| denotes the vector whose entries are the absolute values of the entries of µ.

Since C
(L)
D is unambiguously determined by L× (D+1) integer numbers belonging to

the set {−D, . . . ,D}, it is finite. Observe that the set CD =
⋃
L∈N C

(L)
D is closed under

taking minors. Indeed, given (M,µ) ∈ C
(L)
D and π : [L] → [L′], DPπM = PπDM is

entrywise integer, PπMei = PπMeD ∀i ≥ D, and 1TL′ |Pπµ| ≤ 1TL′Pπ|µ| = 1TL|µ| ≤ D.
Hence, CD is a sub-minion of C . Observe also that C =

⋃
D∈N CD. To see this, take

(M,µ) ∈ C (L) and suppose that Mei = Met ∀i ≥ t. Let D̃ be a common denominator
of the finite set of rational numbers {mij : i ∈ [L], j ∈ [t]}, so that D̃M is entrywise

integer. Let also D̂ = 1TL|µ|. Then, (M,µ) ∈ CtD̃D̂.

Proposition 4.5. Let M be a minion such that M (L) is finite for each L ∈ N,
and suppose that there exist minion homomorphisms ξD : CD →M for each D ∈ N.
Then there exists a minion homomorphism ζ : C →M .

16 L. CIARDO, S. ŽIVNÝ

Proof. For D ∈ N, let C{D} =
⋃
L≤D C

(L)
D! . Observe that C{D} is a finite set and

C{D} ⊆ C{D+1}. Moreover,
⋃
D∈N C{D} =

⋃
D∈N CD = C . Indeed, given D′ ∈ N, we

have that C{D′} ⊆ CD′! ⊆
⋃
D∈N CD, and, given L ∈ N, C

(L)
D′ ⊆ C

(L)
(D′L)! ⊆ C{D′L} ⊆⋃

D∈N C{D}. Consider an infinite rooted tree whose vertices are all the restrictions of
the homomorphisms ξD to some C{D′}, whose root is the empty mapping, and the par-
ent of a vertex corresponding to a function C{D′+1} →M is the vertex corresponding
to the restriction of the function to C{D′}. This is an infinite connected tree. More-

over, since M (L) is finite for each L ∈ N and since minion homomorphisms preserve
the arities, there exist only finitely many distinct restrictions of minion homomor-
phisms to C{D}; hence, the tree is locally finite. By Kőnig’s Lemma, it contains an
infinite path, which corresponds to an infinite chain of maps ζi : C{i} →M such that
ζi+1 extends ζi ∀i ∈ N. Their union ζ : C →M is then a minion homomorphism.

4.3. The CLAP condition. Given a finite set C, consider the set S(C) of the
rational stochastic vectors of size |C|. Let U ⊆ Ck. For i ∈ [k], consider the |C| × |U |
matrix E(U,i) such that, for c ∈ C and c = (c1, . . . , ck) ∈ U , the (c, c)-th entry of
E(U,i) is 1 if ci = c, and 0 otherwise. Given ξ ∈ S(U) and i ∈ [k], we define the i-th
marginal of ξ as

ξ(i) = E(U,i)ξ.

Observe that

ξ(i)T1|C| = ξTE(U,i)T1|C| = ξT1|U | = 1,

so that ξ(i) ∈ S(C). We also define the set Z(C) of the integer vectors of size |C|
whose entries sum up to 1. Given U ⊆ Ck, ζ ∈ Z(U), and i ∈ [k], we define

ζ(i) = E(U,i)ζ.

As before, observe that

ζ(i)T1|C| = ζTE(U,i)T1|C| = ζT1|U | = 1,

so ζ(i) ∈ Z(C).
Let A be a relational structure having domain A and signature σ. We define the

relational structures S(A) and Z(A) as follows:
• S(A) has domain S(A) and, for every symbol R ∈ σ of arity k,
RS(A) = {(ξ(1), . . . , ξ(k)) : ξ ∈ S(RA)};
• Z(A) has domain Z(A) and, for every symbol R ∈ σ of arity k,
RZ(A) = {(ζ(1), . . . , ζ(k)) : ζ ∈ Z(RA)}.

Remark 4.6. S(A) and Z(A) are denoted by LP(A) and IP(A) in [8], respectively.
As noted in [8, Remarks 7.11 and 7.21], S(A) coincides with the free structure of the
minion Qconv generated by A and, similarly, Z(A) is the free structure of the minion
Zaff generated by A. (See Appendices A.1 and A.2 for the definitions of Qconv and
Zaff , respectively.) In particular, given a relational structure X with signature σ,
BLP accepts X as an instance of CSP(A) if and only if X → S(A); similarly, AIP
accepts X as an instance of CSP(A) if and only if X→ Z(A).

Remark 4.7. The assignment f : a 7→ ea for each a ∈ A yields both a canonical
homomorphism from A to S(A) and a canonical homomorphism from A to Z(A).

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 17

Indeed, for R ∈ σ of arity k and a = (a1, . . . , ak) ∈ RA,

f(a) = (ea1 , . . . , eak) = (E(RA,1)ea, . . . , E
(RA,k)ea)

which belongs to both RS(A) and RZ(A) since ea ∈ S(RA) ∩ Z(RA).

In Proposition 4.9, we characterise the instances of a given PCSP template for
which the CLAP algorithm returns yes in terms of the condition described in the
following definition.

Definition 4.8. Let (A,B) be a PCSP template, where A and B have signature
σ. Given an instance X of PCSP(A,B), we say that X has the CLAP condition if
the following holds: ∀R ∈ σ of arity k ∃sR : RX → P(RA) \ {∅} such that

(I) ∀x = (x1, . . . , xk) ∈ RX,∀a = (a1, . . . , ak) ∈ sR(x) there is a homomorphism
hx,a : X→ S(A) that satisfies:

1. hx,a(xi) = eai ∀i ∈ [k];

2. ∀R̃ ∈ σ of arity k̃, ∀x̃ = (x̃1, . . . , x̃k̃) ∈ R̃X ∃ξ ∈ S(R̃A) such that

∗ hx,a(x̃i) = E(R̃A,i)ξ ∀i ∈ [k̃];

∗ supp(ξ) ⊆ sR̃(x̃).
(II) ∃R̄ ∈ σ, x̄ ∈ R̄X, ā ∈ sR̄(x̄) such that there is a homomorphism g : X→ Z(A)

that satisfies:
1′. ∀R̃ ∈ σ of arity k̃, ∀x̃ = (x̃1, . . . , x̃k̃) ∈ R̃X ∃ξ ∈ S(R̃A), ∃ζ ∈ Z(R̃A)

such that
∗ hx̄,ā(x̃i) = E(R̃A,i)ξ ∀i ∈ [k̃];

∗ g(x̃i) = E(R̃A,i)ζ ∀i ∈ [k̃];

∗ supp(ζ) ⊆ supp(ξ) ⊆ sR̃(x̃).

Proposition 4.9. Given an instance X of PCSP(A,B), CLAP accepts X if and
only if X has the CLAP condition.

Proof. Suppose that CLAP accepts X and let {Sx,R : R ∈ σ,x ∈ RX} be the
family of sets generated by the algorithm at termination. For each R ∈ σ, consider
the map sR : RX → P(RA) \ {∅} defined by sR(x) = Sx,R. For each x ∈ RX,a ∈
sR(x), consider the corresponding solution to BLP(X,A) generated by the algorithm.
Letting wx be the probability distribution on A associated with x ∈ X in the linear
program, we observe that the assignment x 7→ wx yields a homomorphism (call it
hx,a) from X to S(A) that satisfies the requirement 1. Moreover, letting ξ be the

probability distribution associated with a constraint x̃ ∈ R̃X for some R̃ ∈ σ, observe
that hx,a also satisfies the requirement 2. Finally, let R̄ ∈ σ, x̄ ∈ R̄X, ā ∈ Sx̄,R̄ be
such that the condition in the if statement of line 15 of Algorithm 3.1 is met. Then
1′ follows from the description of BLP + AIP.

The converse implication follows almost analogously, except for the following sub-
tlety. The BLP + AIP algorithm requires that the BLP solution should be picked from
the relative interior of the polytope of the feasible solutions (cf. Algorithm A.1 in Ap-
pendix A.3). However, the homomorphism hx̄,ā whose existence witnesses part (II) of
the CLAP condition may correspond to a BLP solution that is not in the relative in-
terior of the polytope P of the feasible solutions of BLP(X,A) satisfying λx̄,R̄(ā) = 1

and λx′,R′(a
′) = 0 for every R′ ∈ σ, x′ ∈ R′X, and a′ 6∈ Sx′,R′ . If that is the case, the

algorithm would not consider (hx̄,ā, g) as a solution for BLP + AIP. However, letting
h′ be a solution in the relative interior of P , the conditions (I) and (II) of CLAP are
still satisfied if we let h′ replace hx̄,ā; and, in this case, the homomorphisms witness-

18 L. CIARDO, S. ŽIVNÝ

ing the CLAP condition do correspond to solutions found by the CLAP algorithm.8

Hence, CLAP accepts X.

4.4. Proof of Theorem 3.3. Our first goal is to prove the following.

Theorem 4.10. If there is a minion homomorphism from C to Pol(A,B) then
CLAP solves PCSP(A,B).

Proof. Let X be an instance of PCSP(A,B).
First we show that if X→ A then CLAP accepts X, which is the easy direction.

Consider a homomorphism f : X→ A. Given R ∈ σ of arity k and x = (x1, . . . , xk) ∈
RX, let sR(x) = {f(x)}. For x ∈ RX and a = (a1, . . . , ak) = f(x) ∈ sR(x), let
hx,a : X→ S(A) be the homomorphism obtained by composing f with the canonical
homomorphism from A to S(A) of Remark 4.7 – i.e., hx,a(x) = ef(x) ∀x ∈ X.

Observe that hx,a(xi) = ef(xi) = eai for any i ∈ [k] and, given R̃ ∈ σ of arity k̃ and

x̃ = (x̃1, . . . , x̃k̃) ∈ R̃X, setting ξ = ef(x̃) yields hx,a(x̃i) = ef(x̃i) = E(R̃A,i)ef(x̃) =

E(R̃A,i)ξ for any i ∈ [k̃], and supp(ξ) = supp(ef(x̃)) = {f(x̃)} = sR̃(x̃). This shows
that part (I) of Definition 4.8 is satisfied. As for part (II), choose any R̄ ∈ σ and
x̄ ∈ R̄X, let ā = f(x̄), and consider the homomorphism g : X → Z(A) obtained by
composing f with the canonical homomorphism from A to Z(A) of Remark 4.7 – i.e.,
g(x) = ef(x) ∀x ∈ X. Given R̃ ∈ σ of arity k̃ and x̃ = (x̃1, . . . , x̃k̃) ∈ R̃X, setting

ξ = ζ = ef(x̃) yields g(x̃i) = hx̄,ā(x̃i) = ef(x̃i) = E(R̃A,i)ef(x̃) = E(R̃A,i)ξ = E(R̃A,i)ζ

for any i ∈ [k̃], and supp(ζ) = supp(ξ) = {f(x̃)} = sR̃(x̃). It follows that X has the
CLAP condition. By Proposition 4.9, CLAP accepts X.

Second we show that if X is accepted by CLAP then X → B. So, suppose that
X is accepted by CLAP. By Proposition 4.9, X has the CLAP condition. Using
the terminology of Definition 4.8, consider the set {h1, . . . , ht} = {hx,a : R ∈ σ,x ∈
RX,a ∈ sR(x)}, where each hx,a is a homomorphism from X to S(A) described in
part (I) of the definition. We also consider the homomorphism g : X→ Z(A) of part
(II) of the definition, corresponding to R̄ ∈ σ, x̄ ∈ R̄X, ā ∈ sR̄(x̄). Without loss of
generality, we set h1 = hx̄,ā.

Let n = |A|. Given x ∈ X, consider the matrix Mx ∈ Qn,ℵ0 and the vector
µx ∈ Zn defined by

Mxei = hi(x) ∀i ∈ [t],
Mxei = ht(x) ∀i ∈ N \ [t],
µx = g(x).

We claim that (Mx,µx) ∈ C (n). The requirements (c1), (c2), (c3), and (c5) in Defi-
nition 3.2 are easily seen to be satisfied. To check that Mx is skeletal, take a ∈ A
and suppose that eTaMx 6= 0Tℵ0 . This means that eTaMxed 6= 0 for some d ∈ [t].
Hence, a ∈ supp(Mxed) = supp(hd(x)). Recall that we are assuming (with no loss
of generality) that the signature σ of X, A, and B contains a unary symbol Ru such

that RX
u = X, RA

u = A , and RB
u = B. Notice that E(RA

u ,1) = In. From part
(I) of Definition 4.8, we deduce that supp(hd(x)) ⊆ sRu(x) and, hence, a ∈ sRu(x).
We can then take the homomorphism hi = hx,a, which satisfies hi(x) = ea, that is

8Another way to phrase this is by saying that the existence of a pair (h, g) of homomorphisms
such that each variable for g is zero whenever the corresponding variable for h is zero is equivalent to
the existence, for any h′ in the nonempty relative interior of the polytope of solutions of the BLP, of
a solution g′ of AIP that sets to zero any variable that is zero in h′. This is implicit in the analysis
in [22].

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 19

Mxei = ea. So, Mx is skeletal and (c6) is satisfied. Finally, to check (c4), choose
a ∈ A and suppose that eTaMxe1 = 0. Since Mxe1 = h1(x) = hx̄,ā(x), this implies

that a 6∈ supp(hx̄,ā(x)). Choosing Ru as R̃ and x as x̃ in 1′ of Definition 4.8, and using

again the fact that E(RA
u ,1) = In, we see that supp(g(x)) ⊆ supp(hx̄,ā(x)). Therefore,

a 6∈ supp(g(x)) = supp(µx). Hence, (c4) is satisfied, too, and the claim is proved.
Consider the map γ : X → C (n) defined by x 7→ (Mx,µx). We claim that γ is

a homomorphism from X to FC (A). With this claim, we can finish the proof. By
assumption, there is a minion homomorphism from C to Pol(A,B). By Lemma 4.2
applied to C , we have FC (A) → B. Composing γ with this homomorphism yields
X→ B, as required. It remains to establish the claim.

Claim: γ is a homomorphism from X to FC (A).

Take R ∈ σ of arity k, and let x = (x1, . . . , xk) ∈ RX. We need to show that
((Mx1

,µx1
), . . . , (Mxk ,µxk)) ∈ RFC (A). For each i ∈ [t] \ {1}, consider a probability

distribution ξi ∈ S(RA) corresponding to the homomorphism hi and witnessing part
2 in Definition 4.8. Also, consider the probability distribution ξ1 ∈ S(RA) and the
integer distribution ζ ∈ Z(RA) corresponding to h1 and g, respectively, and witnessing

1′. We introduce the matrix Q ∈ Q|RA|,ℵ0 and the vector δ ∈ Z|RA| defined by

Qei = ξi ∀i ∈ [t],
Qei = ξt ∀i ∈ N \ [t],
δ = ζ.

We claim that (Q, δ) ∈ C (|RA|). The requirements (c1), (c2), (c3), and (c5) in Defini-
tion 3.2 are easily seen to be satisfied. Suppose eTaQ 6= 0Tℵ0 for some a = (a1, . . . , ak) ∈
RA, so that there exists d ∈ [t] such that eTaQed 6= 0. Hence, a ∈ supp(Qed) =
supp(ξd) ⊆ sR(x). Pick hj = hx,a. We have that

E(RA,p)ξj = hj(xp) = hx,a(xp) = eap ∀p ∈ [k].

Suppose that ξj 6= ea. Then, ∃a′ = (a′1, . . . , a
′
k) ∈ RA such that a′ 6= a and eTa′ξj > 0.

Choose q ∈ [k] such that a′q 6= aq, and observe that

0 = eTa′qeaq = eTa′qE
(RA,q)ξj ≥ eTa′ξj > 0,

which is a contradiction. Hence, Qej = ξj = ea. We conclude that Q is skeletal and,
therefore, (c6) is satisfied. Finally, suppose that a 6∈ supp(Qe1) = supp(ξ1) for some
a ∈ RA. Recalling that ξ1 ∈ S(RA) corresponds to the homomorphism h1 = hx̄,ā, it
follows from 1′ that supp(ζ) ⊆ supp(ξ1). Hence, a 6∈ supp(ζ) = supp(δ), so that (c4)

is satisfied, too. As a consequence, (Q, δ) ∈ C (|RA|), as claimed.
Now, we need to show that (Mxα ,µxα) = (Q, δ)/πα for each α ∈ [k], where

πα : RA → A maps a ∈ RA to its α-th coordinate. Observe first that, by definition,

Pπα = E(RA,α) for each α ∈ [k]. We see that

Q/παei = PπαQei = E(RA,α)Qei = E(RA,α)ξi = hi(xα) = Mxαei for i ∈ [t]

Q/παei = PπαQei = PπαQet = Mxαet = Mxαei for i ∈ N \ [t],

which yields Q/πα = Mxα . Moreover,

δ/πα = Pπαδ = E(RA,α)δ = E(RA,α)ζ = g(xα) = µxα .

20 L. CIARDO, S. ŽIVNÝ

It follows that (Mxα ,µxα) = (Q/πα , δ/πα) = (Q, δ)/πα . By Definition 4.1,

((Mx1
,µx1

), . . . , (Mxk ,µxk)) ∈ RFC (A),

so γ : X→ FC (A) is a homomorphism.

Our second goal is to prove the following.

Theorem 4.11. If CLAP solves PCSP(A,B) then there is a minion homomor-
phism from C to Pol(A,B).

Remark 4.12. The proof of Theorem 4.11 proceeds essentially by establishing that
the free structure FC (A) has the CLAP condition as an instance of PCSP(A,B).
However, some care is needed when handling Proposition 4.9, which only applies to
finite structures, while FC (A) is not finite in general. To overcome this problem, we
use a compactness argument tailored to our minion C discussed in Section 4.2, which
follows the ideas of [8].

We remark that the compactness argument for relational structures in the form
stated in [22, Lemma A.6] does not entirely fit our proof structure, as the ele-
ment (e11

T
ℵ0 , e1) having the role of x̄ in Definition 4.8 does not belong to every

induced substructure of FC (A). A different option would have been to use the gen-
eral compactness argument known as the (uncountable version of the) compactness
theorem of logic [62], that applies to all minion tests9 as derived in [31, Proposition 6]
through [64].

Proof of Theorem 4.11. Let n = |A|. For D ∈ N, denote FCD (A) by F (where
CD is the sub-minion of C introduced in Section 4.2). Hence, the domain of F is

C
(n)
D , which is finite. We claim that F has the CLAP condition as an instance of

PCSP(A,B).
For each R ∈ σ of arity k and for each τ = ((M1,µ1), . . . , (Mk,µk)) ∈ RF, take

(Qτ , δτ) ∈ C
(|RA|)
D satisfying (Mj ,µj) = (Qτ , δτ)/πj ∀j ∈ [k], where πj : RA → A

maps a ∈ RA to its j-th coordinate; i.e., Mj = E(RA,j)Qτ and µj = E(RA,j)δτ
∀j ∈ [k]. Given R ∈ σ of arity k, consider the map

sR : RF → P(RA) \ {∅}

τ 7→
⋃
i∈N

supp(Qτei).

Let us first check part (I) of Definition 4.8. Pick τ = ((M1,µ1), . . . , (Mk,µk)) ∈ RF

and a = (a1, . . . , ak) ∈ sR(τ). We have that a ∈ supp(Qτeα) for some α ∈ N, i.e.,
eTaQτeα 6= 0. Since Qτ is skeletal, the set Lτ ,a = {` ∈ N : Qτe` = ea} is nonempty;
let `(τ ,a) := min(Lτ ,a). Consider the map

hτ ,a : C
(n)
D → S(A)

(M̂, µ̂) 7→ M̂e`(τ ,a).

We claim that hτ ,a is a homomorphism from F to S(A). Take R̃ ∈ σ of arity k̃, and

let τ̃ = ((M̃1, µ̃1), . . . , (M̃k̃, µ̃k̃)) ∈ R̃F. Consider the pair (Qτ̃ , δτ̃) ∈ C
(|R̃A|)
D . We

have that

hτ ,a(τ̃) = (M̃1e`(τ ,a), . . . , M̃k̃e`(τ ,a)) =
(
E(R̃A,1)Qτ̃e`(τ ,a), . . . , E

(R̃A,k̃)Qτ̃e`(τ ,a)

)
.

9Cf. Remark 4.13.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 21

Since Qτ̃e`(τ ,a) ∈ S(R̃A), we deduce that hτ ,a(τ̃) ∈ R̃S(A), as wanted. Therefore,
hτ ,a is a homomorphism from F to S(A). We now check that the requirements 1 and
2 in Definition 4.8 are met. The former follows from

hτ ,a((Mi,µi)) = Mie`(τ ,a) = E(RA,i)Qτe`(τ ,a) = E(RA,i)ea = eai ∀i ∈ [k].

To check the latter requirement, take R̃ ∈ σ of arity k̃ and

τ̃ = ((M̃1, µ̃1), . . . , (M̃k̃, µ̃k̃)) ∈ R̃F,

and consider ξ := Qτ̃e`(τ ,a). Observe that

• hτ ,a((M̃i, µ̃i)) = M̃ie`(τ ,a) = E(R̃A,i)Qτ̃e`(τ ,a) = E(R̃A,i)ξ ∀i ∈ [k̃]

• supp(ξ) = supp(Qτ̃e`(τ ,a)) ⊆
⋃
i∈N

supp(Qτ̃ei) = sR̃(τ̃).

We now check part (II) of Definition 4.8. Take Ru as R̄, and observe that

RF
u = {(M,µ) ∈ C

(n)
D : ∃(Q, δ) ∈ C

(n)
D such that M = E(RA

u ,1)Q,

µ = E(RA
u ,1)δ} = C

(n)
D ,

where we have used that E(RA
u ,1) = In. Consider the element τ̄ = (e11

T
ℵ0 , e1) ∈

C
(n)
D = RF

u . Using again that E(RA
u ,1) = In, we see that (Qτ̄ , δτ̄) = τ̄ . We obtain

sRu(τ̄) =
⋃
i∈N

supp(e11
T
ℵ0ei) =

⋃
i∈N

supp(e1) = {1}.

Hence, we pick ā = 1. Notice that

`(τ̄ , ā) = min{` ∈ N : e11
T
ℵ0e` = e1} = min{` ∈ N : e1 = e1} = minN = 1.

Consider the function

g : C
(n)
D → Z(A)

(M̂, µ̂) 7→ µ̂.

Following the same procedure as for hτ ,a, we easily check that g is a homomorphism
from F to Z(A). We now verify that condition 1′ of Definition 4.8 is satisfied. Given
R̃ ∈ σ of arity k̃ and τ̃ = ((M̃1, µ̃1), . . . , (M̃k̃, µ̃k̃)) ∈ R̃F, let ξ := Qτ̃e1 ∈ S(R̃A) and

ζ := δτ̃ ∈ Z(R̃A). Then, given i ∈ [k̃],

∗ hτ̄ ,ā((M̃i, µ̃i)) = M̃ie`(τ̄ ,ā) = M̃ie1 = E(R̃A,i)Qτ̃e1 = E(R̃A,i)ξ;

∗ g((M̃i, µ̃i)) = µ̃i = E(R̃A,i)δτ̃ = E(R̃A,i)ζ;

∗ supp(ζ) = supp(δτ̃) ⊆ supp(Qτ̃e1) = supp(ξ) ⊆
⋃
i∈N

supp(Qτ̃ei) = sR̃(τ̃)

where, for the first inclusion in the third line, we have used (c4) in Definition 3.2.
It follows that F has the CLAP condition as an instance of PCSP(A,B), as

claimed. Then, Proposition 4.9 implies that CLAP accepts F. Since, by hypothesis,
CLAP solves PCSP(A,B), we deduce that FCD (A) = F → B. By Lemma 4.2,
there exists a minion homomorphism from CD to Pol(A,B). Finally, since the set of
polymorphisms of (A,B) of arity L is finite for every L ∈ N, Proposition 4.5 allows
us to conclude that there exists a minion homomorphism from C to Pol(A,B).

22 L. CIARDO, S. ŽIVNÝ

Remark 4.13. It follows from the proofs of Theorems 4.10 and 4.11 that CLAP
fits within the framework of minion tests recently introduced in [31]. More precisely,
CLAP = TestC , which means that, for two σ-structures X and A, CLAP(X,A)
accepts if and only if X → FC (A). Additionally, it follows from [31] that CLAP
is a conic minion test, which essentially means that one can build a progressively
tighter hierarchy of relaxations based on CLAP whose k-th level correctly classifies
all instances of size k.

5. H-symmetric polymorphisms. This section contains the proof of Theo-
rem 3.5. We remark that the machinery developed here can be extended to the more
general setting of H-block-symmetric polymorphisms, at the only cost of dealing with
a more cumbersome notation. This is done in Appendix C and results in Theorem C.3
– a slightly stronger version of Theorem 3.5.

We shall need two helpful lemmas. The first lemma shows a property of H-
symmetric functions that will be useful in the proof of Theorem 3.5. Throughout this
section, without loss of generality, we consider A = [n].

Lemma 5.1. Let f : AL → B be H-symmetric for some m×n tie matrix H, with
m ∈ N. Consider two maps π, π̃ : [L] → [n] such that Pπ1L = Pπ̃1L and the vector
Pπ1L is H-tieless. Then

f/π(1, . . . , n) = f/π̃(1, . . . , n).

Proof. For a ∈ [n], we have

|π−1(a)| =
∑
i∈[L]

(Pπ)ai =
∑
i∈[L]

eTa Pπei = eTa Pπ1L = eTa Pπ̃1L = |π̃−1(a)|.

Hence, we can consider bijections ϕa : π−1(a) → π̃−1(a) for each a ∈ [n]. Clearly,
their union

ϕ =
⋃
a∈[n]

ϕa : [L]→ [L]

is also a bijection. For each i ∈ [L], we have

(π̃ ◦ ϕ)(i) = π̃(ϕ(i)) = π̃(ϕπ(i)(i)) = π(i)

and, hence, π̃ ◦ ϕ = π. Let ã = (π̃(1), . . . , π̃(L)). Notice that, for each a ∈ [n],

eTa ã
= |{i ∈ [L] : π̃(i) = a}| = eTa Pπ̃1L

and, therefore, ã# = Pπ̃1L = Pπ1L, which is H-tieless. Using that f is H-symmetric,
we find

f/π̃(1, . . . , n) = f(ã) = f/ϕ(ã) = (f/ϕ)/π̃(1, . . . , n) = f/π̃◦ϕ(1, . . . , n) = f/π(1, . . . , n),

as required.

One intriguing property of skeletal matrices is that they can be simultaneously
reduced to H-tieless vectors, in the sense of the next lemma. We say that a vector is
finitely supported if it only has a finite number of nonzero entries.

Lemma 5.2 (Tiebreak Lemma). For k, p,m ∈ N, let M1, . . . ,Mk ∈ Qp,ℵ0 be
skeletal matrices, and let H be an m × p tie matrix. Then there exists a stochastic
finitely supported vector v ∈ Qℵ0 with eT1 v > 0 such that Mjv is H-tieless for any
j ∈ [k].

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 23

Proof. Let Ω be the set of rational stochastic finitely supported vectors of size ℵ0

whose first entry is nonzero, and consider the map

f : Ω→ N0

v̂ 7→
∑
j∈[k]

|{(i, i′) ∈ [m]2 : i 6= i′ and eTi HMjv̂ = eTi′HMjv̂ 6= 0}|.

In other words, f(v̂) counts the total number of ties in the set of vectors {HMjv̂ :
j ∈ [k]}. Let v attain the minimum of f over Ω. If f(v) = 0, we are done. Otherwise,
let j ∈ [k], i, i′ ∈ [m] be such that i 6= i′ and eTi HMjv = eTi′HMjv 6= 0. From
eTi HMjv 6= 0, we see that ∃β ∈ [p] such that eTi Heβ 6= 0 and eTβMjv 6= 0. In

particular, we have eTβMj 6= 0Tℵ0 ; since Mj is skeletal, this implies that Mjeα = eβ for
some α ∈ N. For ε ∈ Q, 0 < ε < 1, consider the vector vε = (1− ε)v + εeα. Observe
that vε ∈ Ω. For g ∈ [k], we have HMgvε = (1 − ε)HMgv + εHMgeα. By choosing
ε sufficiently small, we can assume that, for each g ∈ [k], HMgvε does not have new
ties other than those in HMgv. Moreover,

HMjvε = (1− ε)HMjv + εHMjeα = (1− ε)HMjv + εHeβ

and, hence,

eTi HMjvε = (1− ε)eTi HMjv + εeTi Heβ = (1− ε)eTi′HMjv + εeTi Heβ

6= (1− ε)eTi′HMjv + εeTi′Heβ = eTi′HMjvε,

where the disequality follows from eTi Heβ 6= 0 and from the fact that Heβ is a
tieless vector by the definition of tie matrix. We conclude that f(vε) < f(v), which
contradicts our assumption.

Theorem 5.3 (Theorem 3.5 restated). Let (A,B) be a PCSP template and sup-
pose Pol(A,B) contains H-symmetric operations of arbitrarily large arity for some
m× |A| tie matrix H, m ∈ N. Then there exists a minion homomorphism from C to
Pol(A,B).

Remark 5.4. Before proving Theorem 3.5, we provide some intuition on the con-
struction of the minion homomorphism whose existence shall establish the result.
First, one fixes an H-symmetric polymorphism f . Then, the image of an L-ary el-
ement (M,µ) of C under the homomorphism is the function that (i) takes a tuple
(a1, . . . , aL) of variables in A as input, (ii) deforms the tuple by changing the fre-
quency of each variable according to the information carried by M and µ, and (iii)
returns as output the evaluation of f on the deformed tuple. The deformation in step
(ii) is encoded by the map ϕ defined in (5.1). Essentially, ϕ decides what frequency
to assign to a variable ai on the basis of the weight of i in the probability distribution
Mv – where v is the tie-breaking vector from Lemma 5.2. The integer distribution
µ is also taken into account by ϕ, and its role is essentially to fill the gap between
the size of the deformed tuple obtained above and the arity of f . If Pol(A,B) is
rich enough to provide H-symmetric polymorphisms of whichever arity we need, µ is
inessential (cf. Remark 5.5).

Proof of Theorem 3.5. For D ∈ N, consider the subminion CD of C described

in Section 4.2. Observe that S = {M : (M,µ) ∈ C
(n)
D } is a finite set of skeletal

matrices. Therefore, we can apply the Tiebreak Lemma 5.2 to find a stochastic
finitely supported vector v ∈ Qℵ0 with eT1 v > 0 such that Mv is H-tieless for any

24 L. CIARDO, S. ŽIVNÝ

M ∈ S. Since v is finitely supported, we can find N ′ ∈ N such that N ′v has integer
entries. Let σH1 denote the largest singular value of H – i.e., the square root of the
largest eigenvalue of HTH. Set N = 2dσH1 + 1eD2N ′, and let f be an H-symmetric
polymorphism of arity c ≥ N2. Write c = Nα + β with α, β ∈ N0, β ≤ N − 1. Note
that N2 ≤ c = Nα+ β ≤ Nα+N − 1 < N(α+ 1), so N < α+ 1 and, hence, β < α.

Consider the function

ξD : CD → Pol(A,B)

defined as follows. Given L ∈ N and (M,µ) ∈ C
(L)
D , take the map ϕ : [c] → [L] such

that the corresponding L× c matrix Pϕ is

Pϕ =

1T
eT1 (αNMv+βµ)

0T . . . 0T

0T 1T
eT2 (αNMv+βµ)

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eTL(αNMv+βµ)

 .(5.1)

To verify that (5.1) is well defined, observe first that

L∑
i=1

eTi (αNMv + βµ) = 1TL(αNMv + βµ) =

αN1TLMv + β1TLµ = αN1Tℵ0v + β = αN + β = c.

Moreover, for each i ∈ [L], eTi (αNMv+βµ) = eTi (2αdσH1 + 1eD(DM)(N ′v) +βµ) is
an integer. If eTi (αNMv+βµ) was negative, then eTi µ < 0. By the requirement (c4)
in Definition 3.2, this would imply that eTi Me1 > 0 and, hence, 0 < eTi Me1e

T
1 v ≤

eTi Mv. As a consequence, eTi (DM)(N ′v) ≥ 1 so that

eTi (αNMv + βµ) = 2αdσH1 + 1eDeTi (DM)(N ′v) + βeTi µ ≥
2αdσH1 + 1eD + βeTi µ ≥ αD − βD > 0,

which is a contradiction. In conclusion, the numbers eTi (αNMv+βµ) are nonnegative
integers summing up to c, so (5.1) is well defined.

We define ξD((M,µ)) := f/ϕ. Clearly, ξD((M,µ)) ∈ Pol(A,B). We claim that
the map ξD is a minion homomorphism. It is straightforward to check that ξD pre-
serves arities so, to conclude, we need to show that it also preserves minors. Take
L′ ∈ N and choose a map π : [L] → [L′]. Letting ϕ̃ : [c] → [L′] be the map corre-
sponding to the matrix

Pϕ̃ =

1T
eT1 (αNPπMv+βPπµ)

0T . . . 0T

0T 1T
eT2 (αNPπMv+βPπµ)

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eT
L′ (αNPπMv+βPπµ)

 ,

we see that ξD((M,µ)/π) = f/ϕ̃. Moreover, ξD((M,µ))/π = (f/ϕ)/π = f/π◦ϕ, where

ϕ corresponds to the matrix Pϕ in (5.1). Take a = (a1, . . . , aL′) ∈ AL
′
, and consider

the map

πa : [L′]→ [n]

i 7→ ai.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 25

Observe that

f/ϕ̃(a) = (f/ϕ̃)/πa
(1, . . . , n) = f/πa◦ϕ̃(1, . . . , n) and, similarly,

f/π◦ϕ(a) = (f/π◦ϕ)/πa
(1, . . . , n) = f/πa◦π◦ϕ(1, . . . , n).(5.2)

Notice that

Pπa◦ϕ̃1c = PπaPϕ̃1c = Pπa(αNPπMv + βPπµ)

= PπaPπ(αNMv + βµ) = PπaPπPϕ1c = Pπa◦π◦ϕ1c.

We claim that the vector Pπa◦ϕ̃1c is H-tieless. Let u = (ui) = HPπa◦ϕ̃1c; the claim
is equivalent to u being tieless. Let w = (wi) = αNHPπa◦πMv and z = (zi) =
βHPπa◦πµ, so that u = w + z. Choose i, i′ ∈ [m] such that i 6= i′ and ui 6= 0. We
need to show that ui 6= ui′ . Suppose wi = 0. We can write HTei =

∑
g∈G λgeg

for G = supp(HTei), where each λg is a positive integer (note that G 6= ∅ since,
otherwise, HTei = 0n, which would imply ui = 0). Let F = (πa ◦ π)−1(G). From
wi = 0, we obtain

0 = eTi HPπa◦πMv = (HTei)
TPπa◦πMv =∑

g∈G
λge

T
g Pπa◦πMv =

∑
g∈G

λg
∑

j∈(πa◦π)−1(g)

eTj Mv

and, hence, the following chain of implications holds:

0 =
∑
g∈G

∑
j∈(πa◦π)−1(g)

eTj Mv =
∑
j∈F

eTj Mv ⇒ eTj Mv = 0 ∀j ∈ F

⇒ eTj Me1 = 0 ∀j ∈ F ⇒ eTj µ = 0 ∀j ∈ F

(where the second implication follows from eT1 v > 0, and the third follows from (c4)
in Definition 3.2). Hence,

zi = βeTi HPπa◦πµ = β
∑
g∈G

λge
T
g Pπa◦πµ = β

∑
g∈G

λg
∑

j∈(πa◦π)−1(g)

eTj µ = 0,

so that ui = wi + zi = 0, a contradiction. Hence, wi > 0. Observe that

(M/πa◦π,µ/πa◦π) ∈ C
(n)
D

and, hence, M/πa◦π ∈ S. By the choice of v, this implies that the vector Pπa◦πMv =
M/πa◦πv is H-tieless; i.e., HPπa◦πMv is tieless. It follows that the vector

HPπa◦π(DM)(N ′v) =
1

2αdσH1 + 1eD
w

is also tieless; being it entrywise integer, and since 1
2αdσH1 +1eDwi > 0, we obtain∣∣∣∣ 1

2αdσH1 + 1eD
wi −

1

2αdσH1 + 1eD
wi′

∣∣∣∣ ≥ 1 that yields |wi − wi′ | ≥ 2αdσH1 + 1eD.

Denote the `1-norm and the `2-norm of a vector by ‖ · ‖1 and ‖ · ‖2, respectively.
Recall that the largest singular value of a matrix is its spectral operator norm – i.e.,

26 L. CIARDO, S. ŽIVNÝ

σH1 = max0 6=x∈Rn
‖Hx‖2
‖x‖2 (see [47]). In particular, ‖Hx‖2 ≤ σH1 ‖x‖2 for each vector

x of size n. Using the Cauchy-Schwarz inequality and the fact that the `1-norm of a
vector is greater than or equal to its `2-norm, we find

|zi − zi′ | = β|(ei − ei′)
THPπa◦πµ| ≤ β‖ei − ei′‖2‖HPπa◦πµ‖2

≤ β‖ei − ei′‖2σH1 ‖Pπa◦πµ‖2
≤ β‖ei − ei′‖1dσH1 + 1e‖Pπa◦πµ‖1
= 2βdσH1 + 1e1Tn |Pπa◦πµ| ≤ 2βdσH1 + 1e1TnPπa◦π|µ|
= 2βdσH1 + 1e1TL|µ| ≤ 2βdσH1 + 1eD < 2αdσH1 + 1eD.

We conclude the proof of the claim by noting that

|ui − ui′ | = |(wi − wi′)− (zi′ − zi)| ≥ |wi − wi′ | − |zi − zi′ | >
2αdσH1 + 1eD − 2αdσH1 + 1eD = 0,

which implies ui 6= ui′ . As a consequence, the vector Pπa◦ϕ̃1c is H-tieless. We can
then apply Lemma 5.1 to conclude that f/πa◦ϕ̃(1, . . . , n) = f/πa◦π◦ϕ(1, . . . , n). Hence,
by (5.2), f/ϕ̃ = f/π◦ϕ. Therefore, ξD((M,µ)/π) = ξD((M,µ))/π, as required. It
follows that ξD is a minion homomorphism.

Since the set of polymorphisms of (A,B) of arity L is finite for every L ∈ N,
we can apply Proposition 4.5 to conclude that there exists a minion homomorphism
ζ : C → Pol(A,B).

Remark 5.5. If Pol(A,B) contains H-symmetric operations of all arities – as it
happens for the PCSP template (A,B) from Example 2.10, cf. Example 3.6 – the
AIP part of CLAP is not required. Indeed, in that case, we can choose f in the proof
of Theorem 3.5 to be an H-symmetric polymorphism of arity c = N2, which implies
β = 0. Therefore, the affine vector µ does not have any role in the definition of
Pϕ in (5.1), nor in the definition of the minion homomorphism ξD. It follows that,
under this stronger hypothesis, Pol(A,B) admits a minion homomorphism from a

minion Ĉ whose L-ary elements are matrices in QL,ℵ0 satisfying the requirements
(c1), (c2), (c5), (c6) of Definition 3.2; notice that the projection (M,µ) 7→ M yields a

natural minion homomorphism from C to Ĉ . The proofs of Theorems 4.10 and 4.11
can be straightforwardly modified to show that Ĉ captures the power of the algorithm
CBLP – i.e., the simplified version of CLAP that does not run BLP + AIP at the end
(cf. the discussion in Section 3).

Acknowledgements. We would like to thank the anonymous referees of both
the conference [32] and this full version of the paper.

Appendix A. Existing relaxations for PCSPs.
Every CSP can be equivalently expressed as a 0–1 integer program in a standard

way.
If the variables are allowed to take values in [0, 1], we obtain the so-called basic

linear programming relaxation (BLP) [59]. This naturally extends to PCSPs [8], as
we describe in Appendix A.1.

If the variables are allowed to take integer values, we obtain the so-called basic
affine integer programming relaxation (AIP) [20], studied in detail in [8], as we describe
in Appendix A.2.

A combination of the two relaxations, called the BLP + AIP relaxation, was pro-
posed in [22] and its power characterised in [22], as we describe in Appendix A.3.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 27

Let (A,B) be a PCSP template with signature σ and let X be an instance of
PCSP(A,B). In all three relaxations described below, we assume without loss of
generality that σ contains a unary symbol Ru such that RX

u = X, RA
u = A, and

RB
u = B. If this is not the case, the signature and the instance can be extended

without changing the set of solutions.

A.1. BLP. The basic linear programming relaxation (BLP) of X, denoted by
BLP(X,A), is defined as follows.10 The variables are λx,R(a) for every R ∈ σ,
x ∈ RX, and a ∈ RA, and the constraints are given in Figure A.1.

0 ≤ λx,R(a) ≤ 1 ∀R ∈ σ, ∀x ∈ RX,∀a ∈ RA∑
a∈RA

λx,R(a) = 1 ∀R ∈ σ, ∀x ∈ RX

∑
a∈RA,ai=a

λx,R(a) = λxi,Ru
(a) ∀R ∈ σ, ∀x ∈ RX,∀a ∈ A,∀i ∈ [ar(R)]

Figure A.1. Definition of BLP(X,A).

We say that BLP(X,A) accepts if the LP in Figure A.1 is feasible, and rejects other-
wise. By construction, if X → A then BLP(X,A) accepts. We say that BLP solves
PCSP(A,B) if for every instance X accepted by BLP(X,A) we have X→ B.

We denote by Qconv the minion of stochastic vectors on Q with the minor oper-

ation defined as in Section 4.1; i.e., if q ∈ Q
(L)
conv and π : [L]→ [L′], then q/π = Pπq,

where Pπ is the L′ × L matrix whose (i, j)-th entry is 1 if π(j) = i, and 0 otherwise.
An L-ary operation f : AL → B is called symmetric if

f(a1, . . . , aL) = f(aπ(1), . . . , aπ(L))

for every a1, . . . , aL ∈ A and every permutation π : [L]→ [L].
The power of BLP for PCSPs is characterised in the following result.

Theorem A.1 ([8]). Let (A,B) be a PCSP template. The following are equiva-
lent:

(1) BLP solves PCSP(A,B).
(2) Pol(A,B) admits a minion homomorphism from Qconv.
(3) Pol(A,B) contains symmetric operations of all arities.

A.2. AIP. The basic affine integer programming relaxation (AIP) of X, denoted
by AIP(X,A), is defined as follows. The variables are τx,R(a) for every R ∈ σ,
x ∈ RX, and a ∈ RA, and the constraints are given in Figure A.2.
We say that AIP(X,A) accepts if the affine program in Figure A.2 is feasible, and
rejects otherwise. By construction, if X → A then AIP(X,A) accepts. We say
that AIP solves PCSP(A,B) if for every instance X accepted by AIP(X,A) we have
X→ B.

We denote by Zaff the minion of affine vectors on Z with the minor operation

defined as in Section 4.1; i.e., if z ∈ Z
(L)

aff and π : [L] → [L′], then z/π = Pπz, where
Pπ is the L′ × L matrix whose (i, j)-th entry is 1 if π(j) = i, and 0 otherwise.

10The definition does not depend on B and is the same as the BLP of an instance X of CSP(A);
the same holds for AIP and BLP + AIP.

28 L. CIARDO, S. ŽIVNÝ

τx,R(a) ∈ Z ∀R ∈ σ, ∀x ∈ RX,∀a ∈ RA∑
a∈RA

τx,R(a) = 1 ∀R ∈ σ, ∀x ∈ RX

∑
a∈RA,ai=a

τx,R(a) = τxi,Ru(a) ∀R ∈ σ, ∀x ∈ RX,∀a ∈ A,∀i ∈ [ar(R)]

Figure A.2. Definition of AIP(X,A).

A (2L+1)-ary operation f : A2L+1 → B is called alternating if f(a1, . . . , a2L+1) =
f(aπ(1), . . . , aπ(2L+1)) for every a1, . . . , a2L+1 ∈ A and every permutation π : [2L +
1]→ [2L+1] that preserves parity, and f(a1, . . . , a2L−1, a, a) = f(a1, . . . , a2L−1, a

′, a′)
for every a1, . . . , a2L−1, a, a

′ ∈ A. Intuitively, an alternating operation is invariant
under permutations of its odd and even coordinates and has the property that adjacent
coordinates cancel each other out.

The power of AIP for PCSPs is characterised in the following result.

Theorem A.2 ([8]). Let (A,B) be a PCSP template. The following are equiva-
lent:

(1) AIP solves PCSP(A,B).
(2) Pol(A,B) admits a minion homomorphism from Zaff .
(3) Pol(A,B) contains alternating operations of all odd arities.

A.3. BLP+AIP. The combined basic LP and affine IP algorithm (BLP + AIP)
is presented in Algorithm A.1.

Algorithm A.1 The BLP + AIP algorithm

Require: an instance X of PCSP(A,B) of signature σ
Ensure: yes if X → A and no if X 6→ B find a relative interior point

(λx,R(a))R∈σ,x∈RX,a∈RA of BLP(X,A)
1: if no relative interior point exists then
2: return no
3: end if
4: refine AIP(X,A) by setting τx,R(a) = 0 if λx,R(a) = 0
5: if the refined AIP(X,A) accepts then
6: return yes
7: else
8: return no
9: end if

If X → A then BLP + AIP accepts X [22]. We say that BLP + AIP solves
PCSP(A,B) if for every instance X accepted by BLP + AIP we have X→ B.

We denote by MBLP + AIP the minion whose L-ary objects are pairs (q, z), where
q ∈ QL is a stochastic vector and z ∈ ZL is an affine vector, with the property that,
for every i ∈ [L], qi = 0 implies zi = 0. As before, the minor operation is defined as in

Section 4.1; i.e., if (q, z) ∈M
(L)
BLP + AIP and π : [L]→ [L′], then (q, z)/π = (Pπq, Pπz),

where Pπ is the L′ × L matrix whose (i, j)-th entry is 1 if π(j) = i, and 0 otherwise.

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 29

A (2L+ 1)-ary operation f : A2L+1 → B is called 2-block symmetric if

f(a1, . . . , a2L+1) = f(aπ(1), . . . , aπ(2L+1))

for every a1, . . . , a2L+1 ∈ A and every permutation π : [2L + 1] → [2L + 1] that
preserves parity.

The power of BLP + AIP for PCSPs is characterised in the following result.

Theorem A.3 ([22]). Let (A,B) be a PCSP template. The following are equiv-
alent:

(1) BLP + AIP solves PCSP(A,B).
(2) Pol(A,B) admits a minion homomorphism from MBLP + AIP.
(3) Pol(A,B) contains 2-block-symmetric operations of all odd arities.

Appendix B. Proof of Lemma 4.2.
In this section, we shall prove Lemma 4.2, which we restate below. The proof is

based on that of [8, Lemma 4.4], which concerns minions of functions.

Lemma B.1 (Lemma 4.2 restated). Let M be a minion and let (A,B) be a PCSP
template. Then there is a minion homomorphism from M to Pol(A,B) if and only
if FM (A)→ B.

Proof. Let A = [n], and let σ be the signature of A and B. Suppose ξ : M →
Pol(A,B) is a minion homomorphism, and consider the function

f : M (n) → B

M 7→ ξ(M)(1, . . . , n).

For R ∈ σ of arity k, consider a tuple (M1, . . . ,Mk) ∈ RFM (A). List the elements of
RA as a(1), . . . ,a(m). From Definition 4.1, ∃Q ∈M (m) such that Mi = Q/πi for each

i ∈ [k], where πi : [m]→ A maps j to the i-th coordinate of a(j). It follows that, for
each i ∈ [k],

f(Mi) = f(Q/πi) = ξ(Q/πi)(1, . . . , n) = ξ(Q)/πi(1, . . . , n) = ξ(Q)(πi(1), . . . , πi(m)).

Hence,

f(M1, . . . ,Mk) = (ξ(Q)(π1(1), . . . , π1(m)), . . . , ξ(Q)(πk(1), . . . , πk(m))) =

ξ(Q)(a(1), . . . ,a(m)) ∈ RB

since ξ(Q) is a polymorphism of (A,B). Therefore, f is a homomorphism from FM (A)
to B.

Conversely, let f : FM (A) → B be a homomorphism, and consider the function
ξ : M → Pol(A,B) defined by ξ(M)(a1, . . . , aL) = f(M/ρ) for each L ∈ N, M ∈
M (L), (a1, . . . , aL) ∈ AL, where

ρ : [L]→ [n]

i 7→ ai.

Let us first check that ξ is well defined – i.e., that ξ(M) ∈ Pol(A,B). For R ∈ σ of
arity k, consider a matrix Z ∈ AL,k such that each row of Z corresponds to a tuple
in RA. We need to show that ξ(M)(Z) ∈ RB. Consider the maps

τ : [L]→ RA ρj : [L]→ [n] πj : RA → [n]

i 7→ ZTei, i 7→ eTi Zej , a 7→ eTj a,

30 L. CIARDO, S. ŽIVNÝ

for j ∈ [k]. Observe that ρj = πj ◦ τ , and set Q = M/τ ∈M (|RA|). We obtain

ξ(M)(Z) = f(M/ρ1 , . . . ,M/ρk) = f(M/π1◦τ , . . . ,M/πk◦τ) = f(Q/π1
, . . . , Q/πk) ∈ RB

since (Q/π1
, . . . , Q/πk) ∈ RFM (A) and f is a homomorphism. Finally, we show that

ξ is a minion homomorphism. Clearly, ξ preserves arities. To check that it preserves
minors, let M ∈ M (L) and take a map π : [L] → [L′]. Given (a1, . . . , aL′) ∈ AL

′
,

consider the maps

ρ′ : [L′]→ [n] ρ′′ : [L]→ [n]

i 7→ ai, i 7→ aπ(i),

and observe that ρ′′ = ρ′ ◦ π. We obtain

ξ(M/π)(a1, . . . , aL′) = f((M/π)/ρ′) = f(M/ρ′◦π) = f(M/ρ′′) = ξ(M)(aπ(1), . . . , aπ(L))

= ξ(M)/π(a1, . . . , aL′),

which yields ξ(M/π) = ξ(M)/π, as desired.

Appendix C. H-block-symmetric polymorphisms. Let C = (C1, . . . , C`)
be a partition of c ∈ N; i.e., the sets Ci are pairwise disjoint and their union is [c]. Let
ci = |Ci|, so that c =

∑
i∈[`] ci. For each i ∈ [`], we consider the unique monotonically

increasing function ϑi : [ci]→ [c] such that ϑi([ci]) = Ci. We also consider the function
χi : Ci → [ci] such that ϑi ◦ χi is the inclusion map of Ci in [c]. Given c′ ∈ N and a
map π : [c]→ [c′], we let π(i) = π ◦ ϑi.

Definition C.1. Let A,B be finite sets, and consider a function f : Ac → B for
some c ∈ N. Given an m× |A| tie matrix H and a partition C = (C1, . . . , C`) of c, we
say that f is H- C-block-symmetric if

f/π(a) = f(a) ∀π : [c]→ [c] permutation such that π(Ci) = Ci ∀i ∈ [`],

∀a ∈ Ac such that (PTϑia)# is H-tieless ∀i ∈ [`].

We say that f is H-block-symmetric with width W if W is the largest integer for
which there is a partition C of c such that each part of C has size at least W and f is
H- C-block-symmetric.11 Without loss of generality, we consider A = [n].

Lemma C.2. Let f : Ac → B be H- C-block-symmetric for some m×n tie matrix
H (m ∈ N) and some partition C = (C1, . . . , C`) of c. Consider two maps π, π̃ : [c]→
[n] such that, for each i ∈ [`], Pπ(i)

1ci = Pπ̃(i)
1ci and the vector Pπ(i)

1ci is H-tieless.
Then

f/π(1, . . . , n) = f/π̃(1, . . . , n).

Proof. For i ∈ [`] and a ∈ [n], we have

|π−1
(i) (a)| = eTa Pπ(i)

1ci = eTa Pπ̃(i)
1ci = |π̃−1

(i) (a)|.

Hence, we can consider bijections ϕi,a : π−1
(i) (a)→ π̃−1

(i) (a) for each i ∈ [`], a ∈ [n]. The
union

ϕi =
⋃
a∈[n]

ϕi,a : [ci]→ [ci]

11The notion of H-block-symmetric operation is the H-analogue of that of block-symmetric op-
eration in [22] (cf. Theorem A.3).

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 31

is also a bijection. Define ϕ : [c] → [c] by letting ϕ
∣∣
Ci

= ϑi ◦ ϕi ◦ χi for each i ∈ [`].

Notice that ϕ(Ci) = Ci for each i ∈ [`], so ϕ is a bijection. Take j ∈ [c] and suppose
that j ∈ Ci. We have

(π̃ ◦ ϕ)(j) = π̃(ϕ(j)) = π̃(ϑi(ϕi(χi(j)))) = π̃(i)(ϕi,π(i)(χi(j))(χi(j))) =

π(i)(χi(j)) = (π ◦ ϑi ◦ χi)(j) = π(j)

and, hence, π̃ ◦ ϕ = π. Let ã = (π̃(1), . . . , π̃(c)). Notice that, for each i ∈ [`] and
a ∈ [n],

eTa (PTϑi ã)# = |{j ∈ [ci] : eTj P
T
ϑi ã = a}| = |{j ∈ [ci] : eTϑi(j)ã = a}|

= |{j ∈ [ci] : π̃(ϑi(j)) = a}|
= |{j ∈ [ci] : π̃(i)(j) = a}| = eTa Pπ̃(i)

1ci

and, therefore, (PTϑi ã)# = Pπ̃(i)
1ci = Pπ(i)

1ci , which is H-tieless. Using that f is
H- C-block-symmetric, we find

f/π̃(1, . . . , n) = f(ã) = f/ϕ(ã) = (f/ϕ)/π̃(1, . . . , n) = f/π̃◦ϕ(1, . . . , n) = f/π(1, . . . , n),

as required.

Theorem C.3. Let (A,B) be a PCSP template and suppose Pol(A,B) contains
H-block-symmetric operations of arbitrarily large width for some m × |A| tie matrix
H, m ∈ N. Then there exists a minion homomorphism from C to Pol(A,B).

Proof. For D ∈ N, consider the subminion CD of C described in Section 4.2.

Observe that S = {M : (M,µ) ∈ C
(n)
D } is a finite set of skeletal matrices. Therefore,

we can apply the Tiebreak Lemma 5.2 to find a stochastic finitely supported vector
v ∈ Qℵ0 with eT1 v > 0 such that Mv is H-tieless for any M ∈ S. Since v is finitely
supported, we can find N ′ ∈ N such that N ′v has integer entries. Let σH1 denote the
largest singular value of H – i.e., the square root of the largest eigenvalue of HTH.
Set N = 2dσH1 + 1eD2N ′, and let f be an H-block-symmetric polymorphism of width
W ≥ N2. Letting c be the arity of f , consider a partition C = (C1, . . . , C`) of c such
that ci = |Ci| ≥W for each i ∈ [`] and f is H- C-block-symmetric. Write ci = Nαi+βi
with αi, βi ∈ N0, βi ≤ N − 1. Note that N2 ≤W ≤ ci = Nαi + βi ≤ Nαi +N − 1 <
N(αi + 1), so N < αi + 1 and, hence, βi < αi.

Consider the function

ξD : CD → Pol(A,B)

defined as follows. Given L ∈ N and (M,µ) ∈ C
(L)
D , for each i ∈ [`] take the map

ϕi : [ci]→ [L] such that the corresponding L× ci matrix Pϕi is

Pϕi =

1T
eT1 (αiNMv+βiµ)

0T . . . 0T

0T 1T
eT2 (αiNMv+βiµ)

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eTL(αiNMv+βiµ)

 .(C.1)

32 L. CIARDO, S. ŽIVNÝ

To verify that (C.1) is well defined, observe first that

L∑
j=1

eTj (αiNMv + βiµ) = 1TL(αiNMv + βiµ) = αiN1TLMv + βi1
T
Lµ =

αiN1Tℵ0v + βi = αiN + βi = ci.

Moreover, for each j ∈ [L], eTj (αiNMv+βiµ) = eTj (2αidσH1 +1eD(DM)(N ′v)+βiµ)

is an integer. If eTj (αiNMv + βiµ) was negative, then eTj µ < 0. By the requirement

(c4) in Definition 3.2, this would imply that eTj Me1 > 0 and, hence, 0 < eTj Me1e
T
1 v ≤

eTj Mv. As a consequence, eTj (DM)(N ′v) ≥ 1 so that

eTj (αiNMv + βiµ) = 2αidσH1 + 1eDeTj (DM)(N ′v) + βie
T
j µ ≥

2αidσH1 + 1eD + βie
T
j µ ≥ αiD − βiD > 0,

which is a contradiction. In conclusion, the numbers eTj (αiNMv + βiµ) are nonneg-
ative integers summing up to ci, so (C.1) is well defined.

Consider the function ϕ : [c] → [L] defined by ϕ
∣∣
Ci

= ϕi ◦ χi ∀i ∈ [`], and let

ξD((M,µ)) := f/ϕ. Clearly, ξD((M,µ)) ∈ Pol(A,B). We claim that the map ξD is a
minion homomorphism. It is straightforward to check that ξD preserves arities so, to
conclude, we need to show that it also preserves minors. Take L′ ∈ N and choose a
map π : [L]→ [L′]. Letting ϕ̃i : [ci]→ [L′] be the map corresponding to the matrix

Pϕ̃i =

1T
eT1 (αiNPπMv+βiPπµ)

0T . . . 0T

0T 1T
eT2 (αiNPπMv+βiPπµ)

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eT
L′ (αiNPπMv+βiPπµ)

for each i ∈ [`], and considering ϕ̃ : [c]→ [L′] such that ϕ̃

∣∣
Ci

= ϕ̃i ◦ χi ∀i ∈ [`], we see

that ξD((M,µ)/π) = f/ϕ̃. Moreover, ξD((M,µ))/π = (f/ϕ)/π = f/π◦ϕ, where ϕ is the

map defined above. Take a = (a1, . . . , aL′) ∈ AL
′
, and consider the map

πa : [L′]→ [n]

i 7→ ai.

Observe that

f/ϕ̃(a) = (f/ϕ̃)/πa
(1, . . . , n) = f/πa◦ϕ̃(1, . . . , n) and, similarly,

f/π◦ϕ(a) = (f/π◦ϕ)/πa
(1, . . . , n) = f/πa◦π◦ϕ(1, . . . , n).(C.2)

Notice that, for each i ∈ [`], ϕ ◦ ϑi = ϕi and ϕ̃ ◦ ϑi = ϕ̃i. Hence,

P(πa◦ϕ̃)(i)1ci = Pπa◦ϕ̃◦ϑi1ci = PπaPϕ̃◦ϑi1ci = PπaPϕ̃i1ci = Pπa(αiNPπMv + βiPπµ)

= PπaPπ(αiNMv + βiµ) = PπaPπPϕi1ci

= Pπa◦π◦ϕ◦ϑi1ci = P(πa◦π◦ϕ)(i)1ci .

We claim that the vector P(πa◦ϕ̃)(i)1ci = Pπa◦ϕ̃i1ci is H-tieless. Let u = (ut) =
HPπa◦ϕ̃i1ci ; the claim is equivalent to u being tieless. Let

w = (wt) = αiNHPπa◦πMv

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 33

and z = (zt) = βiHPπa◦πµ, so that u = w + z. Choose t, t′ ∈ [m] such that
t 6= t′ and ut 6= 0. We need to show that ut 6= ut′ . Suppose wt = 0. We can
write HTet =

∑
g∈G λgeg for G = supp(HTet), where each λg is a positive integer

(note that G 6= ∅ since, otherwise, HTet = 0n, which would imply ut = 0). Let
F = (πa ◦ π)−1(G). From wt = 0, we obtain

0 = eTt HPπa◦πMv = (HTet)
TPπa◦πMv =

∑
g∈G

λge
T
g Pπa◦πMv

=
∑
g∈G

λg
∑

j∈(πa◦π)−1(g)

eTj Mv

and, hence, the following chain of implications holds:

0 =
∑
g∈G

∑
j∈(πa◦π)−1(g)

eTj Mv =
∑
j∈F

eTj Mv ⇒ eTj Mv = 0 ∀j ∈ F

⇒ eTj Me1 = 0 ∀j ∈ F ⇒ eTj µ = 0 ∀j ∈ F

(where the second implication follows from eT1 v > 0, and the third follows from (c4)
in Definition 3.2). Hence,

zt = βie
T
t HPπa◦πµ = βi

∑
g∈G

λge
T
g Pπa◦πµ = βi

∑
g∈G

λg
∑

j∈(πa◦π)−1(g)

eTj µ = 0,

so that ut = wt + zt = 0, a contradiction. Hence, wt > 0. Observe that

(M/πa◦π,µ/πa◦π) ∈ C
(n)
D

and, hence, M/πa◦π ∈ S. By the choice of v, this implies that the vector Pπa◦πMv =
M/πa◦πv is H-tieless; i.e., HPπa◦πMv is tieless. It follows that the vector

HPπa◦π(DM)(N ′v) =
1

2αidσH1 + 1eD
w

is also tieless; being it entrywise integer, and since 1
2αidσH1 +1eDwt > 0, we obtain∣∣∣∣ 1

2αidσH1 + 1eD
wt −

1

2αidσH1 + 1eD
wt′

∣∣∣∣ ≥ 1

that yields

|wt − wt′ | ≥ 2αidσH1 + 1eD.

Denote the `1-norm and the `2-norm of a vector by ‖ · ‖1 and ‖ · ‖2, respectively.
Recall that the largest singular value of a matrix is its spectral operator norm – i.e.,

σH1 = max0 6=x∈Rn
‖Hx‖2
‖x‖2 (see [47]). In particular, ‖Hx‖2 ≤ σH1 ‖x‖2 for each vector

x of size n. Using the Cauchy-Schwarz inequality and the fact that the `1-norm of a
vector is greater than or equal to its `2-norm, we find

|zt − zt′ | = βi|(et − et′)
THPπa◦πµ| ≤ βi‖et − et′‖2‖HPπa◦πµ‖2

≤ βi‖et − et′‖2σH1 ‖Pπa◦πµ‖2 ≤ βi‖et − et′‖1dσH1 + 1e‖Pπa◦πµ‖1
= 2βidσH1 + 1e1Tn |Pπa◦πµ ≤ 2βidσH1 + 1e1TnPπa◦π|µ|
= 2βidσH1 + 1e1TL|µ| ≤ 2βidσH1 + 1eD < 2αidσH1 + 1eD.

34 L. CIARDO, S. ŽIVNÝ

We conclude the proof of the claim by noting that

|ut − ut′ | = |(wt − wt′)− (zt′ − zt)| ≥ |wt − wt′ | − |zt − zt′ | >
2αidσH1 + 1eD − 2αidσH1 + 1eD = 0,

which implies ut 6= ut′ . As a consequence, the vector P(πa◦ϕ̃)(i)1ci is H-tieless. We
can then apply Lemma C.2 to conclude that f/πa◦ϕ̃(1, . . . , n) = f/πa◦π◦ϕ(1, . . . , n).
Hence, by (C.2), f/ϕ̃ = f/π◦ϕ. Therefore, ξD((M,µ)/π) = ξD((M,µ))/π, as required.
It follows that ξD is a minion homomorphism.

Since the set of polymorphisms of (A,B) of arity L is finite for every L ∈ N,
we can apply Proposition 4.5 to conclude that there exists a minion homomorphism
ζ : C → Pol(A,B).

REFERENCES

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555, https://doi.org/10.
1145/278298.278306.

[2] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70–122, https://doi.org/10.1145/273865.273901.

[3] A. Atserias and V. Dalmau, Promise Constraint Satisfaction and Width, in Proc. 2022
ACM-SIAM Symposium on Discrete Algorithms (SODA’22), 2022, pp. 1129–1153, https:
//doi.org/10.1137/1.9781611977073.48, https://arxiv.org/abs/2107.05886.

[4] P. Austrin, A. Bhangale, and A. Potukuchi, Improved inapproximability of rainbow col-
oring, in Proc. 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA’20), 2020,
pp. 1479–1495, https://doi.org/10.1137/1.9781611975994.90, https://arxiv.org/abs/1810.
02784.

[5] P. Austrin, V. Guruswami, and J. Håstad, (2+ε)-Sat is NP-hard, SIAM J. Comput., 46
(2017), pp. 1554–1573, https://doi.org/10.1137/15M1006507, https://arxiv.org/abs/2013/
159.

[6] L. Barto, The collapse of the bounded width hierarchy, J. Log. Comput., 26 (2016), pp. 923–
943, https://doi.org/10.1093/logcom/exu070.

[7] L. Barto, D. Battistelli, and K. M. Berg, Symmetric Promise Constraint Satisfaction
Problems: Beyond the Boolean Case, in Proc. 38th International Symposium on Theo-
retical Aspects of Computer Science (STACS’21), vol. 187 of LIPIcs, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021, pp. 10:1–10:16, https://doi.org/10.4230/LIPIcs.
STACS.2021.10, https://arxiv.org/abs/2010.04623.

[8] L. Barto, J. Buĺın, A. A. Krokhin, and J. Opršal, Algebraic approach to promise constraint
satisfaction, J. ACM, 68 (2021), pp. 28:1–28:66, https://doi.org/10.1145/3457606, https:
//arxiv.org/abs/1811.00970.

[9] L. Barto and M. Kozik, Constraint Satisfaction Problems Solvable by Local Consistency
Methods, J. ACM, 61 (2014), https://doi.org/10.1145/2556646. Article No. 3.

[10] L. Barto and M. Kozik, Robustly solvable constraint satisfaction problems, SIAM J. Comput.,
45 (2016), pp. 1646–1669, https://doi.org/10.1137/130915479, https://arxiv.org/abs/1512.
01157.

[11] L. Barto, A. Krokhin, and R. Willard, Polymorphisms, and how to use them, in The Con-
straint Satisfaction Problem: Complexity and Approximability, A. Krokhin and S. Živný,
eds., vol. 7 of Dagstuhl Follow-Ups, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 2017, pp. 1–44, https://doi.org/10.4230/DFU.Vol7.15301.1.

[12] L. Barto, J. Opršal, and M. Pinsker, The wonderland of reflections, Isr. J. Math, 223
(2018), pp. 363–398, https://doi.org/10.1007/s11856-017-1621-9, https://arxiv.org/abs/
1510.04521.

[13] L. Barto and M. Pinsker, Topology is irrelevant (in a dichotomy conjecture for infinite
domain constraint satisfaction problems), SIAM J. Comput., 49 (2020), pp. 365–393, https:
//doi.org/10.1137/18M1216213.

[14] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard, Vari-
eties with few subalgebras of powers, Trans. Am. Math. Soc., 362 (2010), pp. 1445–1473.

[15] C. Bessiere and R. Debruyne, Theoretical analysis of singleton arc consistency and its ex-
tensions, Artif. Intell., 172 (2008), pp. 29–41, https://doi.org/10.1016/j.artint.2007.09.001.

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1137/1.9781611977073.48
https://doi.org/10.1137/1.9781611977073.48
https://arxiv.org/abs/2107.05886
https://doi.org/10.1137/1.9781611975994.90
https://arxiv.org/abs/1810.02784
https://arxiv.org/abs/1810.02784
https://doi.org/10.1137/15M1006507
https://arxiv.org/abs/2013/159
https://arxiv.org/abs/2013/159
https://doi.org/10.1093/logcom/exu070
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://arxiv.org/abs/2010.04623
https://doi.org/10.1145/3457606
https://arxiv.org/abs/1811.00970
https://arxiv.org/abs/1811.00970
https://doi.org/10.1145/2556646
https://doi.org/10.1137/130915479
https://arxiv.org/abs/1512.01157
https://arxiv.org/abs/1512.01157
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/s11856-017-1621-9
https://arxiv.org/abs/1510.04521
https://arxiv.org/abs/1510.04521
https://doi.org/10.1137/18M1216213
https://doi.org/10.1137/18M1216213
https://doi.org/10.1016/j.artint.2007.09.001

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 35

[16] A. Blum, New approximation algorithms for graph coloring, J. ACM, 41 (1994), pp. 470–516,
https://doi.org/10.1145/176584.176586.

[17] M. Bodirsky, B. Martin, and A. Mottet, Discrete temporal constraint satisfaction problems,
J. ACM, 65 (2018), pp. 9:1–9:41, https://doi.org/10.1145/3154832, https://arxiv.org/abs/
1503.08572.

[18] M. Bodirsky, A. Mottet, M. Olšák, J. Opršal, M. Pinsker, and R. Willard, ω-categorical
structures avoiding height 1 identities, Trans. Am. Math. Soc., 374 (2021), pp. 327–350,
https://doi.org/10.1090/tran/8179, https://arxiv.org/abs/2006.12254.

[19] J. Brakensiek and V. Guruswami, An algorithmic blend of LPs and ring equations for
promise CSPs, in Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’19), 2019, pp. 436–455, https://doi.org/10.1137/1.9781611975482.28, https://
arxiv.org/abs/1807.05194.

[20] J. Brakensiek and V. Guruswami, Promise Constraint Satisfaction: Algebraic Structure and
a Symmetric Boolean Dichotomy, SIAM J. Comput., 50 (2021), pp. 1663–1700, https:
//doi.org/10.1137/19M128212X, https://arxiv.org/abs/1704.01937.

[21] J. Brakensiek, V. Guruswami, and S. Sandeep, Conditional Dichotomy of Boolean Ordered
Promise CSPs, in Proc. 48th International Colloquium on Automata, Languages, and
Programming (ICALP’21), vol. 198 of LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, pp. 37:1–37:15, https://doi.org/10.4230/LIPIcs.ICALP.2021.37, https:
//arxiv.org/abs/2102.11854.

[22] J. Brakensiek, V. Guruswami, M. Wrochna, and S. Živný, The power of the combined basic
LP and affine relaxation for promise CSPs, SIAM J. Comput., 49 (2020), pp. 1232–1248,
https://doi.org/10.1137/20M1312745, https://arxiv.org/abs/1907.04383.

[23] A. Brandts, M. Wrochna, and S. Živný, The complexity of promise SAT on non-Boolean
domains, ACM Trans. Comput. Theory, 13 (2021), pp. 26:1–26:20, https://doi.org/10.
1145/3470867, https://arxiv.org/abs/1911.09065.

[24] A. Brandts and S. Živný, Beyond PCSP(1-in-3,NAE), Information and Computation, (2022),
https://doi.org/10.1016/j.ic.2022.104954, https://arxiv.org/abs/2104.12800.

[25] A. Bulatov, Bounded relational width. Unpublished manuscript, 2009, https://www2.cs.sfu.
ca/∼abulatov/papers/relwidth.pdf.

[26] A. Bulatov, P. Jeavons, and A. Krokhin, Classifying the complexity of constraints us-
ing finite algebras, SIAM J. Comput., 34 (2005), pp. 720–742, https://doi.org/10.1137/
S0097539700376676.

[27] A. A. Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-element set,
J. ACM, 53 (2006), pp. 66–120, https://doi.org/10.1145/1120582.1120584.

[28] A. A. Bulatov, A dichotomy theorem for nonuniform CSPs, in Proc. 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’17), 2017, pp. 319–330, https:
//doi.org/10.1109/FOCS.2017.37, https://arxiv.org/abs/1703.03021.

[29] A. A. Bulatov and V. Dalmau, A Simple Algorithm for Mal’tsev Constraints, SIAM J.
Comput., 36 (2006), pp. 16–27, https://doi.org/10.1137/050628957.

[30] H. Chen, V. Dalmau, and B. Grußien, Arc consistency and friends, J. Log. Comput., 23
(2013), pp. 87–108, https://doi.org/10.1093/logcom/exr039.

[31] L. Ciardo and S. Živný, Hierarchies of minion tests for PCSPs through tensors, in Proc. 2023
ACM-SIAM Symposium on Discrete Algorithms (SODA’23), 2023, https://arxiv.org/abs/
2207.02277. To appear.

[32] L. Ciardo and S. Živný, CLAP: A New Algorithm for Promise CSPs, in Proc. 2022 ACM-
SIAM Symposium on Discrete Algorithms (SODA’22), 2022, pp. 1057–1068, https://doi.
org/10.1137/1.9781611977073.46, https://arxiv.org/abs/2107.05018.

[33] D. A. Cohen, Tractable decision for a constraint language implies tractable search, Constraints,
9 (2004), pp. 219–229, https://doi.org/10.1023/B:CONS.0000036045.82829.94.

[34] V. Dalmau, There are no pure relational width 2 constraint satisfaction problems, Inf. Process.
Lett., 109 (2009), pp. 213–218, https://doi.org/10.1016/j.ipl.2008.10.005.

[35] V. Dalmau, M. Kozik, A. A. Krokhin, K. Makarychev, Y. Makarychev, and J. Opršal,
Robust algorithms with polynomial loss for near-unanimity CSPs, SIAM J. Comput., 48
(2019), pp. 1763–1795, https://doi.org/10.1137/18M1163932, https://arxiv.org/abs/1607.
04787.

[36] V. Dalmau and A. A. Krokhin, Robust Satisfiability for CSPs: Hardness and Algorithmic
Results, ACM Trans. Comput. Theory, 5 (2013), pp. 15:1–15:25, https://doi.org/10.1145/
2540090.

[37] V. Dalmau and J. Pearson, Closure functions and width 1 problems, in Proc. 4th International
Conference on Principles and Practice of Constraint Programming (CP’99), vol. 1713 of
Lecture Notes in Computer Science, Springer, 1999, pp. 159–173, https://doi.org/10.1007/

https://doi.org/10.1145/176584.176586
https://doi.org/10.1145/3154832
https://arxiv.org/abs/1503.08572
https://arxiv.org/abs/1503.08572
https://doi.org/10.1090/tran/8179
https://arxiv.org/abs/2006.12254
https://doi.org/10.1137/1.9781611975482.28
https://arxiv.org/abs/1807.05194
https://arxiv.org/abs/1807.05194
https://doi.org/10.1137/19M128212X
https://doi.org/10.1137/19M128212X
https://arxiv.org/abs/1704.01937
https://doi.org/10.4230/LIPIcs.ICALP.2021.37
https://arxiv.org/abs/2102.11854
https://arxiv.org/abs/2102.11854
https://doi.org/10.1137/20M1312745
https://arxiv.org/abs/1907.04383
https://doi.org/10.1145/3470867
https://doi.org/10.1145/3470867
https://arxiv.org/abs/1911.09065
https://doi.org/10.1016/j.ic.2022.104954
https://arxiv.org/abs/2104.12800
https://www2.cs.sfu.ca/~abulatov/papers/relwidth.pdf
https://www2.cs.sfu.ca/~abulatov/papers/relwidth.pdf
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1145/1120582.1120584
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://arxiv.org/abs/1703.03021
https://doi.org/10.1137/050628957
https://doi.org/10.1093/logcom/exr039
https://arxiv.org/abs/2207.02277
https://arxiv.org/abs/2207.02277
https://doi.org/10.1137/1.9781611977073.46
https://doi.org/10.1137/1.9781611977073.46
https://arxiv.org/abs/2107.05018
https://doi.org/10.1023/B:CONS.0000036045.82829.94
https://doi.org/10.1016/j.ipl.2008.10.005
https://doi.org/10.1137/18M1163932
https://arxiv.org/abs/1607.04787
https://arxiv.org/abs/1607.04787
https://doi.org/10.1145/2540090
https://doi.org/10.1145/2540090
https://doi.org/10.1007/978-3-540-48085-3_12
https://doi.org/10.1007/978-3-540-48085-3_12

36 L. CIARDO, S. ŽIVNÝ

978-3-540-48085-3 12.
[38] R. Debruyne and C. Bessière, Some Practicable Filtering Techniques for the Constraint

Satisfaction Problem, in Proc. 15th International Joint Conference on Artificial Intelligence
(IJCAI’97), Morgan Kaufmann, 1997, pp. 412–417.

[39] I. Dinur, The PCP theorem by gap amplification, J. ACM, 54 (2007), p. 12, https://doi.org/
10.1145/1236457.1236459.

[40] I. Dinur, O. Regev, and C. Smyth, The hardness of 3-uniform hypergraph coloring, Comb.,
25 (2005), pp. 519–535, https://doi.org/10.1007/s00493-005-0032-4.

[41] T. Feder and M. Y. Vardi, The Computational Structure of Monotone Monadic SNP and
Constraint Satisfaction: A Study through Datalog and Group Theory, SIAM J. Comput.,
28 (1998), pp. 57–104, https://doi.org/10.1137/S0097539794266766.

[42] M. Ficak, M. Kozik, M. Olšák, and S. Stankiewicz, Dichotomy for Symmetric Boolean PC-
SPs, in Proc. 46th International Colloquium on Automata, Languages, and Programming
(ICALP’19), vol. 132, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, pp. 57:1–
57:12, https://doi.org/10.4230/LIPIcs.ICALP.2019.57, https://arxiv.org/abs/1904.12424.

[43] M. R. Garey and D. S. Johnson, The complexity of near-optimal graph coloring, J. ACM,
23 (1976), pp. 43–49, https://doi.org/10.1145/321921.321926.

[44] V. Guruswami and S. Khanna, On the hardness of 4-coloring a 3-colorable graph, SIAM J.
Discret. Math., 18 (2004), pp. 30–40, https://doi.org/10.1137/S0895480100376794.

[45] V. Guruswami and S. Sandeep, d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1)
Colors, in Proc. 47th International Colloquium on Automata, Languages, and Program-
ming (ICALP’20), vol. 168 of LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020, pp. 62:1–62:12, https://doi.org/10.4230/LIPIcs.ICALP.2020.62.

[46] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Comb. Theory, Ser. B, 48 (1990),
pp. 92–110, https://doi.org/10.1016/0095-8956(90)90132-J.

[47] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge university press, 2012.
[48] P. M. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard, Tractability

and learnability arising from algebras with few subpowers, SIAM J. Comput., 39 (2010),
pp. 3023–3037, https://doi.org/10.1137/090775646.

[49] P. G. Jeavons, On the Algebraic Structure of Combinatorial Problems, Theor. Comput. Sci.,
200 (1998), pp. 185–204, https://doi.org/10.1016/S0304-3975(97)00230-2.

[50] P. G. Jeavons, D. A. Cohen, and M. Gyssens, Closure Properties of Constraints, J. ACM,
44 (1997), pp. 527–548, https://doi.org/10.1145/263867.263489.

[51] S. Khanna, N. Linial, and S. Safra, On the hardness of approximating the chromatic number,
Comb., 20 (2000), pp. 393–415, https://doi.org/10.1007/s004930070013.

[52] S. Khot, Improved Inaproximability Results for MaxClique, Chromatic Number and Approxi-
mate Graph Coloring, in Proc. 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS’01), IEEE Computer Society, 2001, pp. 600–609, https://doi.org/10.1109/
SFCS.2001.959936.

[53] S. Khot, On the power of unique 2-prover 1-round games, in Proc. 34th Annual ACM Sym-
posium on Theory of Computing (STOC’02), ACM, 2002, pp. 767–775, https://doi.org/
10.1145/509907.510017.

[54] V. Kolmogorov, A. A. Krokhin, and M. Roĺınek, The complexity of general-valued CSPs,
SIAM J. Comput., 46 (2017), pp. 1087–1110, https://doi.org/10.1137/16M1091836, https:
//arxiv.org/abs/1502.07327.

[55] V. Kolmogorov, J. Thapper, and S. Živný, The power of linear programming for general-
valued CSPs, SIAM J. Comput., 44 (2015), pp. 1–36, https://doi.org/10.1137/130945648,
https://arxiv.org/abs/1311.4219.

[56] M. Kozik, Solving CSPs Using Weak Local Consistency, SIAM J. Comput., 50 (2021),
pp. 1263–1286, https://doi.org/10.1137/18M117577X, https://arxiv.org/abs/1605.00565.

[57] M. Kozik and J. Ochremiak, Algebraic properties of valued constraint satisfaction prob-
lem, in Proc. 42nd International Colloquium on Automata, Languages, and Programming
(ICALP’15), vol. 9134 of Lecture Notes in Computer Science, Springer, 2015, pp. 846–858,
https://doi.org/10.1007/978-3-662-47672-7 69, https://arxiv.org/abs/1403.0476.

[58] A. Krokhin and J. Opršal, The complexity of 3-colouring H-colourable graphs, in Proc. 60th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’19), 2019, pp. 1227–
1239, https://doi.org/10.1109/FOCS.2019.00076, https://arxiv.org/abs/1904.03214.

[59] G. Kun, R. O’Donnell, S. Tamaki, Y. Yoshida, and Y. Zhou, Linear programming, width-1
CSPs, and robust satisfaction, in Proc. 3rd Innovations in Theoretical Computer Science
(ITCS’12), ACM, 2012, pp. 484–495, https://doi.org/10.1145/2090236.2090274.

[60] G. Kun and M. Szegedy, A new line of attack on the dichotomy conjecture, Eur. J. Comb.,
52 (2016), pp. 338–367, https://doi.org/10.1016/j.ejc.2015.07.011.

https://doi.org/10.1007/978-3-540-48085-3_12
https://doi.org/10.1007/978-3-540-48085-3_12
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://arxiv.org/abs/1904.12424
https://doi.org/10.1145/321921.321926
https://doi.org/10.1137/S0895480100376794
https://doi.org/10.4230/LIPIcs.ICALP.2020.62
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1137/090775646
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1145/263867.263489
https://doi.org/10.1007/s004930070013
https://doi.org/10.1109/SFCS.2001.959936
https://doi.org/10.1109/SFCS.2001.959936
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/16M1091836
https://arxiv.org/abs/1502.07327
https://arxiv.org/abs/1502.07327
https://doi.org/10.1137/130945648
https://arxiv.org/abs/1311.4219
https://doi.org/10.1137/18M117577X
https://arxiv.org/abs/1605.00565
https://doi.org/10.1007/978-3-662-47672-7_69
https://arxiv.org/abs/1403.0476
https://doi.org/10.1109/FOCS.2019.00076
https://arxiv.org/abs/1904.03214
https://doi.org/10.1145/2090236.2090274
https://doi.org/10.1016/j.ejc.2015.07.011

CLAP: A NEW ALGORITHM FOR PROMISE CSPS 37

[61] A. K. Mackworth, Consistency in networks of relations, Artif. Intell., 8 (1977), pp. 99–118,
https://doi.org/10.1016/0004-3702(77)90007-8.

[62] A. Malcev, Untersuchungen aus dem gebiete der mathematischen logik, Journal of Symbolic
Logic, 2 (1937).

[63] P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in Proc.
40th Annual ACM Symposium on Theory of Computing (STOC’08), 2008, pp. 245–254,
https://doi.org/10.1145/1374376.1374414.

[64] D. Rorabaugh, C. Tardif, and D. L. Wehlau, Logical compactness and constraint sat-
isfaction problems, Log. Methods Comput. Sci., 13 (2017), https://doi.org/10.23638/
LMCS-13(1:1)2017.

[65] T. Schaefer, The complexity of satisfiability problems, in Proc. 10th Annual ACM Symposium
on the Theory of Computing (STOC’78), 1978, pp. 216–226, https://doi.org/10.1145/
800133.804350.

[66] J. Thapper and S. Živný, The complexity of finite-valued CSPs, J. ACM, 63 (2016), pp. 37:1–
37:33, https://doi.org/10.1145/2974019, https://arxiv.org/abs/1210.2987.

[67] J. Thapper and S. Živný, The power of Sherali-Adams relaxations for general-valued CSPs,
SIAM J. Comput., 46 (2017), pp. 1241–1279, https://doi.org/10.1137/16M1079245, https:
//arxiv.org/abs/1606.02577.

[68] J. Thapper and S. Živný, The limits of SDP relaxations for general-valued CSPs, ACM
Trans. Comput. Theory, 10 (2018), pp. 12:1–12:22, https://doi.org/10.1145/3201777, https:
//arxiv.org/abs/1612.01147.

[69] A. Wigderson, Improving the performance guarantee for approximate graph coloring, J. ACM,
30 (1983), pp. 729–735, https://doi.org/10.1145/2157.2158.

[70] M. Wrochna and S. Živný, Improved hardness for H-colourings of G-colourable graphs, in
Proc. 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA’20), 2020, pp. 1426–
1435, https://doi.org/10.1137/1.9781611975994.86, https://arxiv.org/abs/1907.00872.

[71] D. Zhuk, A proof of the CSP dichotomy conjecture, J. ACM, 67 (2020), pp. 30:1–30:78, https:
//doi.org/10.1145/3402029, https://arxiv.org/abs/1704.01914.

https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.23638/LMCS-13(1:1)2017
https://doi.org/10.23638/LMCS-13(1:1)2017
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/2974019
https://arxiv.org/abs/1210.2987
https://doi.org/10.1137/16M1079245
https://arxiv.org/abs/1606.02577
https://arxiv.org/abs/1606.02577
https://doi.org/10.1145/3201777
https://arxiv.org/abs/1612.01147
https://arxiv.org/abs/1612.01147
https://doi.org/10.1145/2157.2158
https://doi.org/10.1137/1.9781611975994.86
https://arxiv.org/abs/1907.00872
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029
https://arxiv.org/abs/1704.01914

	Introduction
	Preliminaries
	The CLAP algorithm
	The power of the CLAP algorithm
	C is a minion
	A compactness argument for C
	The CLAP condition
	Proof of Theorem 3.3

	H-symmetric polymorphisms
	Appendix A. Existing relaxations for PCSPs
	BLP
	AIP
	BLP+AIP

	Appendix B. Proof of Lemma 4.2
	Appendix C. H-block-symmetric polymorphisms
	References

