
Hierarchies of Minion Tests for PCSPs through Tensors∗†

Lorenzo Ciardo‡ Stanislav Živný§

Abstract

We provide a unified framework to study hierarchies of relaxations for Constraint Satisfaction Problems
and their Promise variant. The idea is to split the description of a hierarchy into an algebraic part, depending
on a minion capturing the “base level” of the hierarchy, and a geometric part – which we call tensorisation –
inspired by multilinear algebra.

We show that the hierarchies of minion tests obtained in this way are general enough to capture the
(combinatorial) bounded width and also the Sherali-Adams LP, Sum-of-Squares SDP, and affine IP hierarchies.
We exploit the geometry of the tensor spaces arising from our construction to prove general properties of such
hierarchies. We identify certain classes of minions, which we call linear and conic, whose corresponding
hierarchies have particularly fine features. Finally, in order to analyse the Sum-of-Squares SDP hierarchy we
also characterise the solvability of the standard SDP relaxation through a new minion.

1 Introduction

What are the limits of efficient algorithms and where is the precise borderline of tractability? The constraint
satisfaction problem (CSP) offers a general framework for studying such fundamental questions for a large class
of computational problems [46, 47, 74] but yet for a class that is amenable to identifying the mathematical
structure governing tractability. Canonical examples of CSPs are satisfiability or “not-all-equal” satisfiability of
3-CNF formulas (called 3-Sat and 3-Nae-Sat, respectively), linear equations, several variants of (hyper)graph
colourings, and the graph clique problem. All CSPs can be seen as homomorphism problems between relational
structures [56]: Given two relational structures X and A, is there a homomorphism from X to A? Intuitively,
the structure X represents the variables of the CSP instance and their interactions, whereas the structure A
represents the constraint language; i.e., the alphabet and the allowed constraint relations.

The most studied types of CSPs are so-called non-uniform CSPs [65, 56, 71, 16], in which the target structure
A is fixed whereas the source structure X is given on input; this computational problem is denoted by CSP(A).
From the examples above, 3-Sat, 3-Nae-Sat, (hyper)graph colourings with constantly many colours, linear
equations of bounded width over finite fields, and linear equations of bounded width over the rationals are all
examples of non-uniform CSPs, all on finite domains except the last one [22, 18, 21]. For instance, in the graph
c-colouring problem the target structure A is a c-clique and the structure X is the input graph. The existence
of a homomorphism from a graph to a c-clique is equivalent to the existence of a colouring of the graph with c
colours. The graph clique problem is an example of a CSP with a fixed class of source structures [59, 84] but an
arbitrary target structure and, thus, it is not a non-uniform CSP.

We will be concerned with polynomial-time tractability of CSPs. Studied research directions include
investigating questions such as: Is there a solution [35, 91]? How many solutions are there, exactly [45, 34, 54] or
approximately [36, 39]? What is the maximum number of simultaneously satisfied constraints, exactly [44, 64, 88]
or approximately [51, 7, 86]? What is the minimum number of simultaneously unsatisfied constraints [67, 50]?
Given an almost satisfiable instance, can one find a somewhat satisfying solution [49, 14, 48]? In this paper, we
will focus on the following question:

Given a satisfiable instance, can one find a solution that is satisfying in a weaker sense [9, 12, 25]?

∗The research leading to these results has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). The paper reflects only the authors’ views

and not the views of the ERC or the European Commission. The European Union is not liable for any use that may be made of the
information contained therein. This work was also supported by UKRI EP/X024431/1.

†The full version of the paper can be accessed at https://arxiv.org/abs/2207.02277.
‡Department of Computer Science, University of Oxford, UK.
§Department of Computer Science, University of Oxford, UK.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2207.02277

This was formalised as promise constraint satisfaction problems (PCSPs) by Austrin, Guruswami and H̊astad [9]
and Brakensiek and Guruswami [25]. Let A and B be two fixed relational structures1 such that there is a
homomorphism from A to B, indicated by A → B. Intuitively, the structure A represents the allowed “strict”
constraints and the structure B represents the corresponding “weak” constraints. An instance of the PCSP over
the template (A,B), denoted by PCSP(A,B), is a relational structure X such that there is a homomorphism
from X to A. The task is to find a homomorphism from X to B, which exists by the composition of the two
promised homomorphisms. What we described above is the search variant of the PCSP. In the decision variant,
one is given a relational structure X and the task is to decide whether there is a homomorphism from X to A or
whether there is not a homomorphism from X to B. Note that since homomorphisms compose, if X → A then
also X → B. Thus, the two cases cannot happen simultaneously. It is known that the decision variant of the
PCSP reduces to the search variant [12], but it is not known whether there is a reduction in the other direction
for all PCSPs. In this paper, we shall use the decision variant.

PCSPs are a vast generalisation of CSPs including problems that cannot be expressed as CSPs. The work
of Barto, Buĺın, Krokhin, and Opršal [12] lifted and greatly extended the algebraic framework developed for
CSPs [65, 33, 17] to the realm of PCSPs. Subsequently, there has been a series of recent works on the
computational complexity of PCSPs building on [12], including applicability of local consistency and convex
relaxations [24, 28, 37, 41, 5] and complexity of fragments of PCSPs [61, 75, 2, 11, 29, 26, 15, 85]. Strong results
on PCSPs have also been established via other techniques than those in [12], mostly analytical methods, e.g.,
hardness of various (hyper)graph colourings [68, 53, 63, 8] and other PCSPs [19, 31, 27, 20].

An example of a PCSP, identified in [9], is (in the search variant) finding a satisfying assignment to a k-CNF
formula given that a g-satisfying assignment exists; i.e., an assignment that satisfies at least g literals in each
clause. Austrin et al. established that this problem is NP-hard if g/k < 1/2 and solvable via a constant level of
the Sherali-Adams linear programming relaxation otherwise [9]. This classification was later extended to problems
over arbitrary finite domains by Brandts et al. [29].

A second example of a PCSP, identified in [25], is (in the search variant) finding a “not-all-equal” assignment
to a monotone 3-CNF formula given that a “1-in-3” assignment is promised to exist; i.e., given a 3-CNF formula
with positive literals only and the promise that an assignment exists that satisfies exactly one literal in each
clause, the task is to find an assignment that satisfies one or two literals in each clause. This problem is solvable
in polynomial time via a constant level of the Sherali-Adams linear programming relaxation [25] but not via a
reduction to finite-domain CSPs [12].

A third example of a PCSP is the well-known approximate graph colouring problem: Given a c-colourable
graph, find a d-colouring of it, for constants c and d with c ≤ d. This corresponds to PCSP(Kc,Kd), where Kp

is the clique on p vertices. Despite a long history dating back to 1976 [57], the complexity of this problem is only
understood under stronger assumptions [52, 61, 30] and for special cases [66, 68, 60, 63, 23, 12, 75]. It is believed
that the problem is NP-hard already in the decision variant [57], i.e., deciding whether a graph is c-colourable or
not even d-colourable.

Like all decision problems, PCSPs can be solved by designing tests. If a test, applied to a given instance of
the problem, is positive then the answer is Yes; if it is negative then the answer is No. The challenge is then to
find tests that are able to guarantee a low number – ideally, zero – of false positives and false negatives. Clearly,
a test is itself a decision problem. However, its nature may be substantially different, and less complicated, than
the nature of the original problem.

Given a PCSP template (A,B), we may use any (potentially infinite) structure T to make a test for
PCSP(A,B): We simply let the outcome of the test on an instance structure X be Yes if X → T, and No
if X ̸→ T. In other words, CSP(T) is a test for PCSP(A,B). Let X be an instance of PCSP(A,B). If
X → T whenever X → A, the test is guaranteed not to generate false negatives, and we call it complete. Since
homomorphisms compose, if A → T the test is automatically complete. If X → B whenever X → T, the
test is guaranteed not to generate false positives, and we call it sound. If both of these conditions hold, we say
that the test solves PCSP(A,B). Notice that, in this case, one obtains a reduction of PCSP(A,B) to CSP(T).
The nature of such a test could be substantially different from that of the original problem. The reason of this
difference is, ultimately, algebraic. The complexity of both CSPs and PCSPs was shown to be determined by

1Unless otherwise stated, we shall use the word “structure” to mean finite-domain structures; if the domain is allowed to be infinite,
we shall say it explicitly.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

higher-order symmetries of the solution sets of the problems, known as polymorphisms, denoted by Pol(A) for
CSP(A) [33] and by Pol(A,B) for PCSP(A,B) [12]. For CSPs, polymorphisms form clones; in particular, they
are closed under composition. This means that some symmetries may be obtainable through compositions of other
symmetries, so that one can hope to capture properties of entire families of CSPs (e.g., bounded width, tractability,
etc.) through the presence of a certain polymorphism and, more generally, to describe their complexity through
universal-algebraic tools. A chief example of this approach is the positive resolution of the dichotomy conjecture
for CSPs by Bulatov [35] and Zhuk [91], establishing that finite-domain non-uniform CSPs are either in P or are
NP-complete. For PCSPs, however, polymorphisms are not closed under composition, and the algebraic structure
they are endowed with – known as minion – is much less rich and, apparently, harder to understand through the
lens of universal algebra.

To make a test T useful as a polynomial-time algorithm to solve a PCSP, one requires that CSP(T) should
be tractable. It was conjectured in [24] that every tractable (finite-domain) PCSP is solved by a tractable test.
In other words, if the conjecture is true, tests are the sole source of tractability for PCSPs. For the conjecture to
be true, one needs to admit tests on infinite domains: As shown in [12], the PCSP template (1-in-3,NAE) does
not admit a finite-domain tractable test; i.e., there is no (finite) structure T such that 1-in-3 → T → NAE and
CSP(T) is tractable.

For a PCSP template (A,B), one would ideally aim to build tests for PCSP(A,B) in a systematic way.
One method to do so is by considering tests associated with minions and, in particular, their free structures.
The free structure FM (A) of a minion M generated by a structure A [12] is a (potentially infinite) structure
obtained, essentially, by simulating the relations in A on a domain consisting of elements of M . Then, we define
TestM (X,A) = Yes if X → FM (A), and No otherwise. (Note that X is the input to the problem; the minion
M and the relational structure A, coming from a PCSP template, are (fixed) parameters of the test.)

For certain choices of M , TestM is a tractable test; i.e., CSP(FM (A)) is tractable for any A. This is the
case for the minions H = Pol(Horn-3-Sat) (whose elements are nonempty subsets of a given set), Qconv (whose
elements are stochastic vectors), and Zaff (whose elements are affine integers vectors). As it was shown in [12],
these three minions correspond to three well-studied algorithmic relaxations: TestH is Arc Consistency (AC) [82],
TestQconv

is the Basic Linear Programming relaxation (BLP) [76], and TestZaff
is the Affine Integer Programming

relaxation (Zaff) [24]. In [28], the algorithm BLP+AIP corresponding to a combination of linear and affine
programming was shown to consist in TestMBA , where the minion MBA is given essentially as the direct sum of
Qconv and Zaff . In summary, several widely used algorithms for (P)CSPs are minion tests; in particular, Arc
Consistency, which is the simplest example of consistency algorithms, and algorithms based on relaxations.

Convex relaxations have been instrumental in the understanding of the complexity of many variants of
CSPs, including constant approximability of Min-CSPs [55, 50] and Max-CSPs [69, 86], robust satisfiability
of CSPs [92, 76, 14], and exact solvability of optimisation CSPs [72, 89]. An important line of work focused on
making convex relaxations stronger and stronger via the so-called “lift-and-project” method, which includes the
Sherali-Adams LP hierarchy [87], the SDP hierarchy of Lovász and Schrijver [81], and the (stronger) SDP hierarchy
of Lasserre [77], also known as the Sum-of-Squares hierarchy (see [78] for a comparison of these hierarchies). The
study of the power of various hierarchies has led to several breakthroughs, e.g., [1, 38, 73, 58, 90, 79, 79].

In the same spirit as hierarchies of relaxations, the (combinatorial) k-consistency algorithm has been
studied [56, 3], where k is an integer bounding the number of variables considered in reasoning about partial
solutions; the case k = 1 corresponds to Arc Consistency mentioned above. The notion of local consistency, in
addition to being one of the central concepts in constraint satisfaction, has also emerged independently in finite
model theory [70], graph theory [62], and proof complexity [4]. The power of local consistency for CSPs is now
fully understood [32, 13, 10]. Recent work identified a necessary condition on local consistency to solve PCSPs [5].

Contributions The main contribution of this work is the introduction of a general framework for refining
algorithmic relaxations of (P)CSPs. Given a minion M , we present a technique to systematically turn TestM
into the corresponding hierarchy of minion tests: a sequence of increasingly tighter relaxations TestkM for k ∈ N.
Letting M be H (resp., Qconv, Zaff), we shall retrieve in this way the bounded width hierarchy [56, 13] (resp.,
the Sherali-Adams LP hierarchy [87], the affine integer programming hierarchy). Additionally, we describe a
new minion S capturing the power of the basic semidefinite programming relaxation (SDP) [86], and we show
that TestkS coincides with the Sum-of-Squares hierarchy [77]. It follows that this framework is able to provide
a unified algebraic description of all these four well-known hierarchies of algorithmic relaxations. We point out
that, in addition to casting known hierarchies of relaxations as hierarchies of minion tests, this approach can

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

be straightforwardly used to design new hierarchies by considering different minions, such as MBA (capturing
BLP+AIP), see the full version [42].

The technique we adopt to build hierarchies of minion tests is inspired by multilinear algebra. We describe
a tensorisation construction that turns a given structure X into a structure X

k○
on a different signature, where

both the domain and the relations are multidimensional objects living in tensor spaces. Essentially, TestkM works
by applying TestM to tensorised versions of the structures X and A rather than to X and A themselves. This
allows us to describe the functioning of the algorithms in the hierarchy by describing the geometry of a space
of tensors – which can be accomplished by using multilinear algebra. As far as we know, this approach has not
appeared in the literature on Sherali-Adams, bounded width, Sum-of-Squares, hierarchies of integer programming,
and related algorithmic techniques such as the high-dimensional Weisfeiler-Leman algorithm [6, 37].2

One interesting feature of our framework is that it is modular, in that it allows splitting the description
of a hierarchy of minion tests into an algebraic part, corresponding to the minion M , and a geometric part,
entirely dependent on the tensorisation construction and hence common to any hierarchy. By considering certain
well-behaved families of minions, which we call linear and conic, we can then deduce general properties of the
corresponding hierarchies by only focussing on the geometry of spaces of tensors.

Finally, we observe that the scope of this idea is potentially not limited to CSPs: The multilinear pattern
that we found at the core of the bounded width, Sherali-Adams, affine integer programming, and Sum-of-Squares
hierarchies appears to be transversal to the CSP framework and, instead, inherently connected to the algorithmic
techniques themselves, which can be applied to classes of computational problems living beyond the realms of
(P)CSPs.

Subsequent work The authors have used the tensorisation methodology introduced in this paper in follow-
up work that studied hierarchies of relaxations for PCSPs. In particular, they have shown that the approximate
graph colouring problem is not solved by the affine integer programming hierarchy [43] and not even by the (much
stronger) lift-and-project hierarchy for the combined basic linear programming and affine integer programming
relaxation [40].

2 Background

Notation We denote by N the set of positive integers. For k ∈ N, we denote by [k] the set {1, . . . , k}. We
indicate by ei the i-th standard unit vector of the appropriate size (which will be clear from the context); i.e.,
the i-th entry of ei is 1, and all other entries are 0. 0p and 1p denote the all-zero and all-one vector of size p,
respectively, while Ip and Op,q denote the p×p identity matrix and the p×q all-zero matrix, respectively. Given a
matrix M , we let tr(M) and csupp(M) be the trace and the set of indices of nonzero columns of M , respectively.
The symbol ℵ0 denotes the cardinality of N.

Promise CSPs A signature σ is a finite set of relation symbols R, each with arity ar(R) ∈ N. A σ-structure
A consists of a domain (universe) A and, for each R ∈ σ, a relation RA ⊆ Aar(R). A σ-structure A is finite if the
size |A| of its domain A is finite. In this case, we often assume that the domain of A is A = [n].

Let A and B be σ-structures. A homomorphism from A to B is a map h : A → B such that, for each R ∈ σ
with r = ar(R) and for each a = (a1, . . . , ar) ∈ Ar, if a ∈ RA then h(a) = (h(a1), . . . , h(ar)) ∈ RB. We denote
the existence of a homomorphism from A to B by A → B. A pair of σ-structures (A,B) with A → B is called
a promise constraint satisfaction problem (PCSP) template. The PCSP problem parameterised by the template
(A,B), denoted by PCSP(A,B), is the following computational problem: The input is a σ-structure X and the
goal is to answer Yes if X → A and No if X ̸→ B. The promise is that it is not the case that X ̸→ A and
X → B. We write CSP(A) for PCSP(A,A), the classic (non-promise) constraint satisfaction problem.

Relaxations and hierarchies The following relaxations of (P)CSPs shall be mentioned in this paper:
Arc Consistency (AC) is a propagation algorithm that checks for the existence of assignments satisfying the
local constraints of the given (P)CSP instance [82]; the basic linear programming (BLP) relaxation looks
for compatible probability distributions on assignments [76]; the affine integer programming (AIP) relaxation
turns the constraints into linear equations, that can be solved over the integers using (a variant of) Gaussian
elimination [24]; the basic semidefinite programming (SDP) relaxation is essentially a strengthening of BLP,

2Butti and Dalmau [37] recently characterised for CSPs when the k-th level of the Sherali-Adams LP programming hierarchy accepts

in terms of a construction different from the one introduced in this work. Unlike the tensorisation, the construction considered in [37]
yields a relational structure whose domain includes the set of constraints of the original structure.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

where probabilities are replaced by vectors satisfying orthogonality requirements [86]; BLP+AIP is a hybrid
relaxation combining BLP and AIP [28].

Hierarchies of refinements of some of these relaxations have been used in the literature on (P)CSP. In
particular, the bounded width (BWk) hierarchy (also known as local consistency checking algorithm) refines
AC by propagating local solutions over bigger and bigger portions of the instance, while the Sherali-Adams
(SAk), affine integer programming (AIPk), and Sum-of-Squares hierarchies strengthen the BLP, AIP, and SDP
relaxations, respectively, by looking for compatible distributions over bigger and bigger assignments.

The SDP relaxation, as well as the four hierarchies mentioned above, are described in the full version [42].
The other relaxations are not presented in detail in this work. We refer to [12] for AC, BLP, and AIP, and to [28]
for BLP+AIP.

Algebraic approach to PCSPs The algebraic theory of PCSPs developed in [12] relies on the notions of
polymorphism and minion. Let A be a σ-structure. For L ∈ N, the L-th power of A is the σ-structure AL with
domain AL whose relations are defined as follows: Given R ∈ σ and an L×ar(R) matrix M such that all rows of M

are tuples in RA, the columns of M form a tuple in RAL

. An L-ary polymorphism of a PCSP template (A,B) is a
homomorphism from AL to B. Minions were defined in [12] as sets of functions with certain properties. We shall
use here the abstract definition of minions, as first done in [28], cf. also [41]. A minion M consists in the disjoint
union of nonempty sets M (L) for L ∈ N equipped with (so-called minor) operations (·)/π : M (L) → M (L′) for
all functions π : [L] → [L′], which satisfy M/ id = M and, for π : [L] → [L′] and π̃ : [L′] → [L′′], (M/π)/π̃ = M/π̃◦π
for all M ∈ M (L).

Example 2.1. The set Pol(A,B) of all polymorphisms of a PCSP template (A,B) is a minion with the minor
operations defined by f/π(a1, . . . , aL′) = f(aπ(1), . . . , aπ(L)) for f : AL → B and π : [L] → [L′]. In this minion, the
minor operations correspond to identifying coordinates, permuting coordinates, and introducing dummy coordinates
(of polymorphisms).

Example 2.2. Other examples of minions that shall appear frequently in this work are Qconv, Zaff , and H ,
capturing the power of the algorithms BLP, AIP, and AC, respectively. The L-ary elements of Qconv are rational
vectors of size L that are stochastic (i.e., whose entries are nonnegative and sum up to 1), with the minor

operations defined as follows: For q ∈ Qconv
(L) and π : [L] → [L′], q/π = Pq, where P is the L′×L matrix whose

(i, j)-th entry is 1 if π(j) = i, and 0 otherwise. Zaff is defined similarly to Qconv, the only difference being that
its L-ary elements are affine integer vectors (i.e., their entries are integer – possibly negative – numbers and sum
up to 1). H is the minion of polymorphisms of the CSP template Horn-3-Sat, i.e., the Boolean structure whose
four relations are “x∧y ⇒ z”, “x∧y ⇒ ¬z”, {0}, and {1}. Equivalently (cf. [12]), H can be described as follows:
For any L ∈ N, the L-ary elements of H are Boolean functions of the form fZ(x1, . . . , xL) =

∧
z∈Z xz for any

Z ⊆ [L], Z ̸= ∅; the minor operations are defined as in Example 2.1. We shall also mention the minion MBA

capturing BLP+AIP. Its L-ary elements are L× 2 matrices whose first column u belongs to Qconv
(L) and whose

second column v belongs to Zaff
(L), and such that if the i-th entry of u is zero then the i-th entry of v is also zero,

for each i ∈ [L]. The minor operation is defined on each column individually; i.e., [u v]/π = [u/π v/π].

For two minions M and N , a minion homomorphism ξ : M → N is a map that preserves arities and minors:
Given M ∈ M (L) and π : [L] → [L′], ξ(M) ∈ N (L) and ξ(M/π) = ξ(M)/π. We denote the existence of a minion
homomorphism from M to N by M → N .

We will also need the concept of free structure from [12]. Let M be a minion and let A be a (finite) σ-
structure. The free structure of M generated by A is a σ-structure FM (A) with domain M (|A|) (potentially
infinite). Given a relation symbol R ∈ σ of arity r, a tuple (M1, . . . ,Mr) of elements of M (|A|) belongs to RFM (A)

if and only if there is some Q ∈ M (|RA|) such that Mi = Q/πi
for each i ∈ [r], where πi : R

A → A maps a ∈ RA

to its i-th coordinate ai. The definition of free structure may at this point strike the reader as rather abstract.
We shall see that if we consider certain quite general classes of minions then this object unveils an interesting
geometric description of linear and multilinear nature.

3 Overview of results and techniques

This section contains statements of the main results. The full version of the paper contains all details and
proofs [42].

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Let (A,B) be a PCSP template. As discussed in Section 1, any (potentially infinite) structure T on the same
signature as A and B can be viewed as a test for the computational problem PCSP(A,B): Given an instance X,
the test returns Yes if X → T, and No otherwise. As the next definition illustrates, minions provide a systematic
method to build tests for PCSPs.

Definition 3.1. Let M be a minion. The minion test TestM is the computational problem defined as follows:
Given two σ-structures X and A, return Yes if X → FM (A), and No otherwise.

If X is an instance of PCSP(A,B) for some template (A,B), we write TestM (X,A) = Yes if TestM applied
to X and A returns Yes (i.e., if X → FM (A)), and we write TestM (X,A) = No otherwise. Note that, in the
expression “TestM (X,A)”, X is the input structure of the PCSP, while A is the fixed structure from the PCSP
template.

Excluding SDP for the moment, it turns out that the algebraic structure lying at the core of all relaxations
mentioned in Section 2, of seemingly different nature, is the same, as all of them are minion tests for specific
minions.

Theorem 3.1. ([12, 28, 41]) AC = TestH , BLP = TestQconv
, AIP = TestZaff

, BLP+AIP = TestMBA
.

One reason why minion tests are interesting types of tests is that they are always complete.

Proposition 3.1. TestM is complete for any minion M ; i.e., for any X and A with X → A, we have
X → FM (A).

A second quality of minion tests is that their soundness can be checked algebraically, as stated in the next
proposition and shown easily using a compactness argument from [83], cf. [12].

Proposition 3.2. Let M be a minion and let (A,B) be a PCSP template. Then, TestM solves PCSP(A,B) if
and only if M → Pol(A,B).

3.1 A minion for SDP The first contribution of this work is to design a minion S capturing the power of
SDP, thus showing that, similarly to AC, BLP, AIP, and BLP+AIP, also SDP is a minion test.

Definition 3.2. For L ∈ N, let S (L) be the set of real L× ℵ0 matrices M such that

(C1) csupp(M) is finite (C2) MMT is a diagonal matrix (C3) tr(MMT) = 1.(3.1)

Given a function π : [L] → [L′] and a matrix M ∈ S (L), we let M/π = PM , where P is the L′ ×L matrix whose

(i, j)-th entry is 1 if π(j) = i, and 0 otherwise. We set S =
⊔

L∈N S (L).

In the full version [42], we prove that the object defined above is indeed a minion and that it captures the power
of the SDP relaxation, as stated below.

Proposition 3.3. SDP = TestS . In other words, given two σ-structures X and A, SDP(X,A) = Yes if and
only if X → FS (A).

Using Proposition 3.2, we obtain a characterisation of the power of the SDP relaxation.

Theorem 3.2. Let (A,B) be a PCSP template. Then, SDP solves PCSP(A,B) if and only if S → Pol(A,B).

3.2 Tensorisation As discussed earlier, minions give a systematic method for designing tests for (P)CSPs.
We now describe a construction, which we call tensorisation, that provides a technique to systematically refine
minion tests, thus creating hierarchies of progressively stronger algorithms.

Let S be a set and let k ∈ N. For n = (n1, . . . , nk) ∈ Nk, T n(S) denotes the set of all functions from
[n1]×· · ·× [nk] to S, which we visualise as hypermatrices or tensors. Many of the tensors appearing in this paper
are cubical, which means that n = n · 1k = (n, . . . , n) is a constant tuple.3

3See the full version [42] for further details on the terminology for tensors.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

For k ∈ N and a signature σ, σ
k○

is the signature consisting of the same symbols as σ such that each symbol
R of arity r in σ has arity rk in σ

k○
.

Definition 3.3. The k-th tensor power of a σ-structure A is the σ
k○
-structure A

k○
having domain Ak and

relations defined as follows: For each symbol R ∈ σ of arity r in σ, we set RA
k○

=
{
a

k○
: a ∈ RA

}
, where, for

a ∈ RA, a
k○

is the tensor in T r·1k(Ak) defined as follows: For any (i1, i2, . . . , ik) ∈ [r]k, the (i1, i2, . . . , ik)-th

element of a
k○

is (ai1 , ai2 , . . . , aik).
4,5

Notice that A
1○

= A. Also, the function RA → RA
k○

given by a 7→ a
k○

is a bijection, so the cardinality of

RA
k○

equals the cardinality of RA.

Example 3.1. Let us describe the third tensor power of the 3-clique – i.e., the structure K
3○
3 . The domain of

K
3○
3 is [3]3, i.e., the set of tuples of elements in [3] having length 3. Let R be the symbol corresponding to the

binary edge relation in K3, so that RK3 = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 1), (1, 3)}. Then, RK
3○

3 has arity 23 = 8

and it is a subset of T 2·13([3]3). Specifically, RK
3○

3 = {(1, 2) 3○
, (2, 1)

3○
, (2, 3)

3○
, (3, 2)

3○
, (3, 1)

3○
, (1, 3)

3○} where,

e.g., (2, 3)
3○
=

[
(2, 2, 2) (2, 2, 3) (3, 2, 2) (3, 2, 3)
(2, 3, 2) (2, 3, 3) (3, 3, 2) (3, 3, 3)

]
.6

We say that a σ-structure A is k-enhanced if σ contains a k-ary symbol Rk such that RA
k = Ak. Observe that

any two σ-structures A and B are homomorphic if and only if the structures Ã and B̃ obtained by adding Rk to
their signatures are homomorphic. Hence, PCSP(A,B) is equivalent to PCSP(Ã, B̃), and considering k-enhanced
structures results in no loss of generality. We now give the main definition of this work.

Definition 3.4. For a minion M and an integer k ∈ N, the k-th level of the minion test TestM , denoted by
TestkM , is the computational problem defined as follows: Given two k-enhanced σ-structures X and A, return

Yes if X
k○ → FM (A

k○
), and No otherwise.

Comparing Definition 3.4 with Definition 3.1, we see that TestkM (X,A) = TestM (X
k○
,A

k○
). In other words,

the k-th level of a minion test is just the minion test applied to the tensor power of the structures. We have seen
(cf. Proposition 3.1) that a minion test is always complete. It turns out that this property keeps holding for any
level of a minion test.

Proposition 3.4. TestkM is complete for any minion M and any integer k ∈ N.

The proof of Proposition 3.4 relies on the fact that homomorphisms between structures are in some sense invariant
under the tensorisation construction.

It is well known that each of the hierarchies of relaxations mentioned in Section 2 has the property that higher
levels are at least as powerful as lower levels. As the next result shows, this is in fact a property of all hierarchies
of minion tests.

Proposition 3.5. Let M be a minion, let k, p ∈ N be such that k > p, and let X,A be two k- and p-enhanced
σ-structures. If TestkM (X,A) = Yes then TestpM (X,A) = Yes.

It follows from Proposition 3.5 that, if some level of a minion test is sound for a template (A,B) (equivalently, if
it solves PCSP(A,B)), then any higher level is sound for (A,B) (equivalently, solves PCSP(A,B)).

The next theorem is the second main result of this paper. It shows that the framework defined above is
general enough to capture four well-studied hierarchies of relaxations for (P)CSPs.

4Using the terminology for tensors from the full version [42], a
k○

can be more compactly defined as follows: Ei ∗ a
k○

= ai for any

i ∈ [r]k.
5We can visualise a

k○
as the formal Segre outer product of k copies of a (cf. [80]).

6The vertical line separates the two 2× 2 layers of the 2× 2× 2 tensor.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 3.3. (Informal) If k ∈ N is at least the maximum arity of the template,

• BWk = TestkH • SAk = TestkQconv
• AIPk = TestkZaff

• SoSk = TestkS .

3.3 Linear minions Certain features of the hierarchies of minion tests from Definition 3.4 – in particular, the
fact that they are complete (Proposition 3.4) and progressively stronger (Proposition 3.5) – hold true for any
minion, as they only depend on basic properties of the tensorisation construction. In order to prove Theorem 3.3,
however, it is necessary to dig deeper by investigating how the tensorisation construction interacts with the free
structure. In other words, we need to understand the object FM (A

k○
). To that end, we isolate a property shared

by all minions mentioned in this work: Their objects can be interpreted as matrices, and their minor operations
can be expressed as matrix multiplications. We call such minions linear.

Definition 3.5. A minion M is linear if there exists a semiring S with additive identity 0S and multiplicative
identity 1S and a number d ∈ N ∪ {ℵ0} (called depth) such that

1. the elements of M (L) are L× d matrices whose entries belong to S, for each L ∈ N;

2. given L,L′ ∈ N, π : [L] → [L′], and M ∈ M (L), M/π = PM , where P is the L′ × L matrix such that, for
i ∈ [L′] and j ∈ [L], the (i, j)-th entry of P is 1S if π(j) = i, and 0S otherwise.

As illustrated in the next proposition, the family of linear minions is rich enough to include the minions associated
with all minion tests studied in the literature of PCSPs, including SDP.

Proposition 3.6. The following minions are linear:7

• Qconv, with S = Q and d = 1 • Zaff , with S = Z and d = 1

• H , with S = ({0, 1},∨,∧) and d = 1 • MBA, with S = Q and d = 2

• S , with S = R and d = ℵ0.

Recall that, as per Definition 3.1, the minion test associated with a minion M works by checking whether
a given instance is homomorphic to the free structure of M ; in other words, TestM for a template (A,B) is
essentially CSP(FM (A)). It is then worth checking what the latter object looks like in the case that M is linear.
The next remark shows that, in this case, FM (A) has a simple matrix-theoretic description.

Remark 3.1. Given a linear minion M with semiring S and depth d, and a σ-structure A, the free structure
FM (A) of M generated by A has the following description:

• The elements of its domain M (|A|) are |A| × d matrices having entries in S.

• For R ∈ σ of arity r, the elements of RFM (A) are tuples of the form (P1Q, . . . , PrQ), where Q ∈ M (|RA|) is
a |RA| × d matrix having entries in S and, for i ∈ [r], Pi is the |A| × |RA| matrix whose (a,a)-th entry is
1S if ai = a, and 0S otherwise.8

3.4 Multilinear tests We say that a test is multilinear if it can be expressed as TestkM for some linear minion
M and some integer k. In the same way as, for a template (A,B), TestM is essentially CSP(FM (A)), it follows

from Definition 3.4 that TestkM is essentially CSP(FM (A
k○
)), as it checks for the existence of a homomorphism

between the tensor power of the instance and the free structure of M generated by the tensor power of A.
In the full version [42], we show that, if M is linear, FM (A

k○
) is a space of tensors endowed with relations

that can be described through a tensor operation called contraction. Hence, the matrix-theoretic description
in Remark 3.1 is naturally extended to a tensor-theoretic description. To give a first glance of this object, we
illustrate below the structure of FM (A

k○
) in the case that M = Qconv, k = 3, and A = K3.

7It is not hard to verify that also the minion C capturing the power of the CLAP algorithm from [41] is linear, with S = Q and

d = ℵ0.
8We shall often write 0 and 1 for 0S and 1S to avoid cumbersome notation. The relevant semiring S will always be clear from the

context.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Example 3.2. Let us denote FQconv
(K

3○
3) by F. The domain of F is the set of nonnegative tensors in T 3·13(Q)

whose entries sum up to 1. The relation RF is the set of those tensors M ∈ T 2·13(T 3·13(Q)) = T 6·13(Q) such that

there exists a stochastic vector q = (q1, . . . , q6) ∈ Qconv
(6) (which should be interpreted as a probability distribution

over the elements of RK3 , i.e., over the directed edges in K3) for which the i-th block Mi of M satisfies Mi = q/πi

for each i ∈ [2]3. It will follow from the results in the full version [42] that, for example,

M(1,1,1) =

q1 + q6 0 0 0 0 0 0 0 0
0 0 0 0 q2 + q3 0 0 0 0
0 0 0 0 0 0 0 0 q4 + q5

,
M(2,1,2) =

 0 0 0 0 q1 0 0 0 q6
q2 0 0 0 0 0 0 0 q3
q5 0 0 0 q4 0 0 0 0

.
Figure 1 illustrates the tensor M ∈ RF corresponding to the uniform distribution q = 1

6 · 16.

Figure 1: A tensor M ∈ RF from Exam-
ple 3.2, corresponding to the uniform dis-
tribution on the set of edges of K3. The
opacity of a cell is proportional to the value
of the corresponding entry:

= 1
3 , = 1

6 , = 0.

In the full version [42], we investigate the geometry of FM (A)
for a linear minion M . As hinted by Example 3.2, we shall see
that this object is a space of sparse tensors, whose nonzero entries
form regular patterns (cf. the full version [42]). This feature becomes
more evident for higher values of the level k. In turn, the geometry
of FM (A

k○
) is reflected in the properties of the homomorphisms ξ

from X
k○

to it – which, by virtue of Definition 3.4, are precisely the
solutions sought by TestkM . For instance, the full version [42] distils
the “consistency requirements” of the BWk, SAk, AIPk, and SoSk

hierarchies – that enforce compatibility between partial assignments9

from X to A – into the single tensor equation ξ(xi) = Πi
k∗ ξ(x). For

k = 1, the equation is vacuous, since in this case Πi is the identity
matrix and xi = x (cf. the full version [42] for the notation). As
k increases, it produces a progressively richer system of symmetries
that must be satisfied by ξ, which corresponds to a progressively
stronger relaxation. Concretely, we shall use results on the geometry
of FM (A

k○
) to prove Theorem 3.3.

3.5 Conic minions A primary message of this work is that
the tensorisation construction gives a correspondence between the
algebraic properties of a minion and the algorithmic properties of the
hierarchy of tests built on the minion. For example, we have seen
that if the minion is linear some general properties of the solutions of
the hierarchy can be deduced by studying the geometry of FM (A

k○
).

Now, the bounded width hierarchy has the property that it only seeks
assignments that are partial homomorphisms; similarly, the Sherali-
Adams and Sum-of-Squares hierarchies only assign a positive weight to solutions satisfying local constraints. The
next definition identifies the minion property guaranteeing this algorithmic feature.

Definition 3.6. A linear minion M of depth d is conic if, for any L ∈ N and for any M ∈ M (L), (i) M ̸= OL,d,
and (ii) for any V ⊆ [L], the following implication is true:10∑

i∈V MTei = 0d ⇒ MTei = 0d ∀i ∈ V.

Paraphrasing Definition 3.6, a linear minion M is conic if any matrix in M is nonzero and has the property that,
whenever some of its rows sum up to the zero vector, each of those rows is the zero vector. All minions appearing
in Proposition 3.6 are conic, with the exception of Zaff .

9Cf. the “closure under restriction” property of BWk and the requirements ♣2 and ♠3 in the full version [42].
10As usual, the sum, product, 0, and 1 operations appearing in this definition are to be meant in the semiring S associated with

the linear minion M .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proposition 3.7. H , Qconv, MBA, and S are conic minions11, while Zaff is not.

It turns out that this simple property guarantees that the hierarchies of tests built on conic minions only look
at assignments yielding partial homomorphisms. It also follows that conic hierarchies are not fooled by small
instances: The full version [42] establishes that the k-th level of such hierarchies is able to correctly classify
instances on k (or fewer) elements12 – as it is well known for the bounded width, Sherali-Adams, and Sum-of-
Squares hierarchies.

References

[1] S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and graph partitioning. Journal of the
ACM, 56(2), 2009.

[2] K. Asimi and L. Barto. Finitely tractable promise constraint satisfaction problems. In Proc. 46th International
Symposium on Mathematical Foundations of Computer Science (MFCS’21), volume 202 of LIPIcs, pages 11:1–11:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[3] A. Atserias, A. A. Bulatov, and V. Dalmau. On the Power of k -Consistency. In Proc. 34th International Colloquium
on Automata, Languages and Programming (ICALP’07), volume 4596 of Lecture Notes in Computer Science, pages
279–290. Springer, 2007.

[4] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. J. Comput. Syst. Sci., 74(3):323–
334, 2008.

[5] A. Atserias and V. Dalmau. Promise Constraint Satisfaction and Width. In Proc. 2022 ACM-SIAM Symposium on
Discrete Algorithms (SODA’22), pages 1129–1153, 2022, arXiv:2107.05886.

[6] A. Atserias and E. N. Maneva. Sherali-Adams Relaxations and Indistinguishability in Counting Logics. SIAM J.
Comput., 42(1):112–137, 2013.

[7] P. Austrin. Towards Sharp Inapproximability for Any 2-CSP. SIAM J. Comput., 39(6):2430–2463, 2010.
[8] P. Austrin, A. Bhangale, and A. Potukuchi. Improved inapproximability of rainbow coloring. In Proc. 2020 ACM-

SIAM Symposium on Discrete Algorithms (SODA’20), pages 1479–1495, 2020, arXiv:1810.02784.
[9] P. Austrin, V. Guruswami, and J. H̊astad. (2+ϵ)-Sat is NP-hard. SIAM J. Comput., 46(5):1554–1573, 2017,

eccc:2013/159.
[10] L. Barto. The collapse of the bounded width hierarchy. J. Log. Comput., 26(3):923–943, 2016.
[11] L. Barto, D. Battistelli, and K. M. Berg. Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean

Case. In Proc. 38th International Symposium on Theoretical Aspects of Computer Science (STACS’21), volume 187
of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, arXiv:2010.04623.

[12] L. Barto, J. Buĺın, A. A. Krokhin, and J. Opršal. Algebraic approach to promise constraint satisfaction. J. ACM,
68(4):28:1–28:66, 2021, arXiv:1811.00970.

[13] L. Barto and M. Kozik. Constraint Satisfaction Problems Solvable by Local Consistency Methods. J. ACM, 61(1),
2014. Article No. 3.

[14] L. Barto and M. Kozik. Robustly solvable constraint satisfaction problems. SIAM J. Comput., 45(4):1646–1669,
2016, arXiv:1512.01157.

[15] L. Barto and M. Kozik. Combinatorial Gap Theorem and Reductions between Promise CSPs. In Proc. 2022 ACM-
SIAM Symposium on Discrete Algorithms (SODA’22), pages 1204–1220, 2022, arXiv:2107.09423.

[16] L. Barto, A. Krokhin, and R. Willard. Polymorphisms, and how to use them. In A. Krokhin and S. Živný, editors,
The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2017.

[17] L. Barto, J. Opršal, and M. Pinsker. The wonderland of reflections. Isr. J. Math, 223(1):363–398, Feb 2018,
arXiv:1510.04521.

[18] L. Barto and M. Pinsker. Topology is irrelevant (in a dichotomy conjecture for infinite domain constraint satisfaction
problems). SIAM J. Comput., 49(2):365–393, 2020.

[19] A. Bhangale and S. Khot. Optimal Inapproximability of Satisfiable k-LIN over Non-Abelian Groups. In Proc. 53rd
Annual ACM Symposium on Theory of Computing (STOC’21), pages 1615–1628. ACM, 2021, arXiv:2009.02815.

[20] A. Bhangale, S. Khot, and D. Minzer. On Inapproximability of Satisfiable k-CSPs: I. In Proc. 54th Annual ACM
Symposium on Theory of Computing (STOC’22), pages 976–988. ACM, 2022.

[21] M. Bodirsky, F. R. Madelaine, and A. Mottet. A proof of the algebraic tractability conjecture for monotone monadic
SNP. SIAM J. Comput., 50(4):1359–1409, 2021.

11The minion C associated with the CLAP algorithm from [41] can be easily shown to be conic as well.
12We may informally express this fact by saying that conic hierarchies are “sound in the limit”.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[22] M. Bodirsky, B. Martin, M. Pinsker, and A. Pongrácz. Constraint satisfaction problems for reducts of homogeneous
graphs. SIAM J. Comput., 48(4):1224–1264, 2019.

[23] J. Brakensiek and V. Guruswami. New hardness results for graph and hypergraph colorings. In Proc. 31st Conference
on Computational Complexity (CCC’16), volume 50 of LIPIcs, pages 14:1–14:27. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[24] J. Brakensiek and V. Guruswami. An algorithmic blend of LPs and ring equations for promise CSPs. In Proc. 30th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19), pages 436–455, 2019, arXiv:1807.05194.

[25] J. Brakensiek and V. Guruswami. Promise Constraint Satisfaction: Algebraic Structure and a Symmetric Boolean
Dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021, arXiv:1704.01937.

[26] J. Brakensiek and V. Guruswami. The quest for strong inapproximability results with perfect completeness. ACM
Trans. Algorithms, 17(3):27:1–27:35, 2021.

[27] J. Brakensiek, V. Guruswami, and S. Sandeep. Conditional Dichotomy of Boolean Ordered Promise CSPs. In Proc.
48th International Colloquium on Automata, Languages, and Programming (ICALP’21), volume 198 of LIPIcs, pages
37:1–37:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, arXiv:2102.11854.

[28] J. Brakensiek, V. Guruswami, M. Wrochna, and S. Živný. The power of the combined basic LP and affine relaxation
for promise CSPs. SIAM J. Comput., 49:1232–1248, 2020, arXiv:1907.04383.

[29] A. Brandts, M. Wrochna, and S. Živný. The complexity of promise SAT on non-Boolean domains. ACM Trans.
Comput. Theory, 13(4):26:1–26:20, 2021, arXiv:1911.09065.

[30] M. Braverman, S. Khot, N. Lifshitz, and D. Minzer. An Invariance Principle for the Multi-slice, with Applications. In
Proc. 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS’21), pages 228–236. IEEE, 2021.

[31] M. Braverman, S. Khot, and D. Minzer. On rich 2-to-1 games. In Proc. 12th Innovations in Theoretical Computer
Science Conference (ITCS’21), volume 185 of LIPIcs, pages 27:1–27:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[32] A. Bulatov. Bounded relational width. Unpublished manuscript, 2009.
[33] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite algebras. SIAM J.

Comput., 34(3):720–742, 2005.
[34] A. A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM, 60(5):34, 2013.
[35] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th Annual IEEE Symposium on Foundations

of Computer Science (FOCS’17), pages 319–330, 2017, arXiv:1703.03021.
[36] A. A. Bulatov, M. E. Dyer, L. A. Goldberg, M. Jerrum, and C. McQuillan. The expressibility of functions on the

Boolean domain, with applications to Counting CSPs. J. ACM, 60(5):32, 2013.
[37] S. Butti and V. Dalmau. Fractional Homomorphism, Weisfeiler-Leman Invariance, and the Sherali-Adams Hierarchy

for the Constraint Satisfaction Problem. In Proc. 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS’21), volume 202 of LIPIcs, pages 27:1–27:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, arXiv:2107.02956.

[38] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. Approximate Constraint Satisfaction Requires Large LP
Relaxations. J. ACM, 63(4):34:1–34:22, 2016.

[39] X. Chen, M. E. Dyer, L. A. Goldberg, M. Jerrum, P. Lu, C. McQuillan, and D. Richerby. The complexity of
approximating conservative counting CSPs. J. Comput. Syst. Sci., 81(1):311–329, 2015.

[40] L. Ciardo and S. Živný. Approximate graph colouring and the hollow shadow. Technical report, 2022,
arXiv:2211.03168.

[41] L. Ciardo and S. Živný. CLAP: A New Algorithm for Promise CSPs. SIAM Journal on Computing, 2022,
arXiv:2107.05018.

[42] L. Ciardo and S. Živný. Hierarchies of minion tests for PCSPs through tensors. Technical report, 2022,
arXiv:2207.02277.

[43] L. Ciardo and S. Živný. Approximate graph colouring and crystals. In Proc. 2023 ACM-SIAM Symposium on Discrete
Algorithms (SODA’23), 2023, arXiv:2210.08293. To appear.

[44] N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems. J. Comput. Syst. Sci., 51(3):511–
522, 1995.

[45] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems. Inf. Comput., 125(1):1–12,
1996.

[46] N. Creignou, S. Khanna, and M. Sudan. Complexity Classification of Boolean Constraint Satisfaction Problems,
volume 7 of SIAM Monographs on Discrete Mathematics and Applications. SIAM, 2001.

[47] N. Creignou, P. G. Kolaitis, and H. Vollmer, editors. Complexity of Constraints - An Overview of Current Research
Themes, volume 5250 of Lecture Notes in Computer Science. Springer, 2008.

[48] V. Dalmau, M. Kozik, A. A. Krokhin, K. Makarychev, Y. Makarychev, and J. Opršal. Robust algorithms with
polynomial loss for near-unanimity CSPs. SIAM J. Comput., 48(6):1763–1795, 2019, arXiv:1607.04787.

[49] V. Dalmau and A. A. Krokhin. Robust Satisfiability for CSPs: Hardness and Algorithmic Results. ACM Trans.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Comput. Theory, 5(4):15:1–15:25, 2013.
[50] V. Dalmau, A. A. Krokhin, and R. Manokaran. Towards a characterization of constant-factor approximable finite-

valued CSPs. J. Comput. Syst. Sci., 97:14–27, 2018.
[51] V. G. Deineko, P. Jonsson, M. Klasson, and A. A. Krokhin. The approximability of MAX CSP with fixed-value

constraints. J. ACM, 55(4):16:1–16:37, 2008.
[52] I. Dinur, E. Mossel, and O. Regev. Conditional Hardness for Approximate Coloring. SIAM J. Comput., 39(3):843–

873, 2009.
[53] I. Dinur, O. Regev, and C. Smyth. The hardness of 3-uniform hypergraph coloring. Comb., 25(5):519–535, Sept.

2005.
[54] M. E. Dyer and D. Richerby. An Effective Dichotomy for the Counting Constraint Satisfaction Problem. SIAM J.

Comput., 42(3):1245–1274, 2013.
[55] A. Ene, J. Vondrák, and Y. Wu. Local Distribution and the Symmetry Gap: Approximability of Multiway Partitioning

Problems. In Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13), pages 306–325. SIAM,
2013.

[56] T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A
Study through Datalog and Group Theory. SIAM J. Comput., 28(1):57–104, 1998.

[57] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring. J. ACM, 23(1):43–49, 1976.
[58] M. Ghosh and M. Tulsiani. From Weak to Strong Linear Programming Gaps for All Constraint Satisfaction Problems.

Theory Comput., 14(1):1–33, 2018.
[59] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM,

54(1):1–24, 2007.
[60] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM Journal on Discrete

Mathematics, 18(1):30–40, 2004.
[61] V. Guruswami and S. Sandeep. d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1) Colors. In Proc. 47th

International Colloquium on Automata, Languages, and Programming (ICALP’20), volume 168 of LIPIcs, pages
62:1–62:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

[62] P. Hell, J. Nešetřil, and X. Zhu. Duality and polynomial testing of tree homomorphisms. Transactions of the American
Mathematical Society, 348(4):1281–1297, 1996.

[63] S. Huang. Improved hardness of approximating chromatic number. In Proc. 16th International Workshop
on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques and the 17th
International Workshop on Randomization and Computation (APPROX-RANDOM’13), pages 233–243. Springer,
2013, arXiv:1301.5216.

[64] A. Huber, A. A. Krokhin, and R. Powell. Skew Bisubmodularity and Valued CSPs. SIAM J. Comput., 43(3):1064–
1084, 2014.

[65] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure Properties of Constraints. J. ACM, 44(4):527–548, 1997.
[66] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. Comb., 20(3):393–415,

2000.
[67] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of constraint satisfaction problems.

SIAM J. Comput., 30(6):1863–1920, 2000.
[68] S. Khot. Improved Inaproximability Results for MaxClique, Chromatic Number and Approximate Graph Coloring.

In Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pages 600–609. IEEE
Computer Society, 2001.

[69] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal Inapproximability Results for MAX-CUT and Other
2-Variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.

[70] P. G. Kolaitis and M. Y. Vardi. On the expressive power of datalog: Tools and a case study. J. Comput. Syst. Sci.,
51(1):110–134, 1995.

[71] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci.,
61(2):302–332, 2000.

[72] V. Kolmogorov, J. Thapper, and S. Živný. The power of linear programming for general-valued CSPs. SIAM J.
Comput., 44(1):1–36, 2015, arXiv:1311.4219.

[73] P. K. Kothari, R. Meka, and P. Raghavendra. Approximating rectangles by juntas and weakly-exponential lower
bounds for LP relaxations of CSPs. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC’17), pages 590–603. ACM, 2017.

[74] A. Krokhin and S. Živný, editors. The Constraint Satisfaction Problem: Complexity and Approximability, volume 7
of Dagstuhl Follow-Ups. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[75] A. A. Krokhin, J. Opršal, M. Wrochna, and S. Živný. Topology and adjunction in promise constraint satisfaction.
SIAM Journal on Computing, 2022, arXiv:2003.11351.

[76] G. Kun, R. O’Donnell, S. Tamaki, Y. Yoshida, and Y. Zhou. Linear programming, width-1 CSPs, and robust

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

satisfaction. In Proc. 3rd Innovations in Theoretical Computer Science (ITCS’12), pages 484–495. ACM, 2012.
[77] J. B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J. Optim.,

12(3):756–769, 2002.
[78] M. Laurent. A comparison of the sherali-adams, lovász-schrijver, and lasserre relaxations for 0-1 programming. Math.

Oper. Res., 28(3):470–496, 2003.
[79] J. R. Lee, P. Raghavendra, and D. Steurer. Lower Bounds on the Size of Semidefinite Programming Relaxations. In

Proc. 47th Annual ACM on Symposium on Theory of Computing (STOC’15), pages 567–576. ACM, 2015.
[80] L.-H. Lim. Tensors and hypermatrices. In L. Hogben, editor, Handbook of Linear Algebra, pages 231–260. CRC Press

Boca Raton, 2nd edition, 2014.
[81] L. Lovász and A. Schrijver. Cones of Matrices and Set-Functions and 0-1 Optimization. SIAM Journal on

Optimization, 1(2):166–190, 1991.
[82] A. K. Mackworth. Consistency in networks of relations. Artif. Intell., 8(1):99–118, 1977.
[83] A. Malcev. Untersuchungen aus dem gebiete der mathematischen logik. Journal of Symbolic Logic, 2(2), 1937.
[84] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM, 60(6), 2013.

Article No. 42.
[85] T. Nakajima and S. Živný. Linearly ordered colourings of hypergraphs. In Proc. 49th International Colloquium on

Automata, Languages, and Programming (ICALP’22), volume 229 of LIPIcs, pages 128:1–128:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022, arXiv:2204.05628.

[86] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proc. 40th Annual ACM
Symposium on Theory of Computing (STOC’08), pages 245–254, 2008.

[87] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations
for zero-one programming problems. SIAM J. Discret. Math., 3(3):411–430, 1990.

[88] J. Thapper and S. Živný. The complexity of finite-valued CSPs. J. ACM, 63(4):37:1–37:33, 2016, arXiv:1210.2987.
[89] J. Thapper and S. Živný. The power of Sherali-Adams relaxations for general-valued CSPs. SIAM J. Comput.,

46(4):1241–1279, 2017, arXiv:1606.02577.
[90] M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proc. 41st Annual ACM Symposium on Theory

of Computing (STOC’09), pages 303–312. ACM, 2009.
[91] D. Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020, arXiv:1704.01914.
[92] U. Zwick. Finding almost-satisfying assignments. In Proc. 13th Annual ACM Symposium on the Theory of Computing

(STOC’98), pages 551–560. ACM, 1998.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Background
	Overview of results and techniques
	A minion for SDP
	Tensorisation
	Linear minions
	Multilinear tests
	Conic minions

