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ABSTRACT
We introduce a relaxation for homomorphism problems that com-

bines semidefinite programming with linear Diophantine equations,

and propose a framework for the analysis of its power based on

the spectral theory of association schemes. We use this framework

to establish an unconditional lower bound against the semidefi-

nite programming + linear equations model, by showing that the

relaxation does not solve the approximate graph homomorphism

problem and thus, in particular, the approximate graph colouring

problem.
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1 INTRODUCTION
Semidefinite programming plays a central role in the design of

efficient algorithms and in dealing with NP-hardness. For many

fundamental problems, the best known (and sometimes provably

best possible) approximation algorithms are achieved via relax-

ations based on semidefinite programs [3, 48, 59, 62, 78]. In this

work, we focus on computational problems of the following general

form: Given two structures (say, two digraphs) X and A, is there a
homomorphism fromX to A? A plethora of different computational

problems – in particular, those involving satisfiability of constraints

– can be cast in this form. The semidefinite programming paradigm

is naturally applicable to this type of problems, and it yields relax-

ations that are robust to noise: They are able to find a near-satisfying
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assignment even when the instance is almost – but not perfectly

– satisfiable [8] (see also [17]). On the other hand, certain homo-

morphism problems can be solved exactly in polynomial time but

are inherently fragile to noise – the primary example being systems

of linear equations, which are tractable via Gaussian elimination

but whose noisy version is NP-hard [52]. Problems that behave like

linear equations are hopelessly stubborn against the semidefinite

programming model [23, 79, 84]. It is then natural, in the context

of homomorphism problems, to consider stronger versions of semi-

definite programming relaxations that are equipped with a built-in

linear-equation solver.

Consider a homomorphism
1 𝑓 : X → A. Letting |𝑉 (X) | = 𝑝 ,

|𝑉 (A) | = 𝑛, we can encode 𝑓 in a 𝑝𝑛 × 𝑝𝑛 matrix 𝑀𝑓 contain-

ing blocks of size 𝑛 × 𝑛, where the blocks are indexed by pairs of

vertices of X, and the entries in a block by pairs of vertices of A.
For 𝑥,𝑦 ∈ 𝑉 (X) and 𝑎, 𝑏 ∈ 𝑉 (A), the (𝑎, 𝑏)-th entry of the (𝑥,𝑦)-
th block is 1 if 𝑎 = 𝑓 (𝑥) and 𝑏 = 𝑓 (𝑦), and 0 otherwise. Let us

explore the structure of 𝑀𝑓 . Each block has nonnegative entries

summing up to 1, and diagonal blocks are diagonal matrices. Since

𝑓 is a homomorphism, the (𝑎, 𝑏)-th entry of the (𝑥,𝑦)-th block is

0 when (𝑥,𝑦) ∈ 𝐸 (X) and (𝑎, 𝑏) ∉ 𝐸 (A). Finally, 𝑀𝑓 is positive

semidefinite since it is symmetric and, for a 𝑝𝑛-vector v, it satisfies
v𝑇𝑀𝑓 v = (∑𝑥 𝑣𝑥,𝑓 (𝑥 ) )2 ≥ 0. The standard semidefinite program-

ming relaxation (SDP) of the homomorphism problem “X → A?”
consists in looking for a real matrix𝑀 with the properties described

above. We write SDP(X,A) = Yes if such a matrix𝑀 exists.

Any Constraint Satisfaction Problem (CSP) may be expressed

as the homomorphism problem of checking whether an instance

structure X homomorphically maps to a template structure A.2 The
power of semidefinite programming in the realm of CSPs is well

understood:
3
The CSPs solved by SDP are exactly those having

bounded width [8, 39]. Crucially, for CSPs, boosting SDP via the so

called lift-and-project technique [71] does not increase its power:

Any semidefinite programming relaxation of polynomial size – in

particular, any constant number of rounds of the Lasserre “Sum-

of-Squares” hierarchy [70] – solves precisely the same CSPs as

SDP [8, 83]. The positive resolution of Feder–Vardi CSP Dichotomy

Conjecture [39] by Bulatov [22] and Zhuk [85] implies that any

tractable CSP is a certain (nontrivial) combination of (𝑖) bounded-
width CSPs and (𝑖𝑖) CSPs that can simulate linear equations (which

1
Letting𝑉 (X) and 𝐸 (X) denote the vertex and edge sets of X, a map 𝑓 : 𝑉 (X) →
𝑉 (A) is a homomorphism if (𝑓 (𝑥 ), 𝑓 (𝑦) ) ∈ 𝐸 (A) whenever (𝑥, 𝑦) ∈ 𝐸 (X) . The
expression “X → A” denotes the existence of a homomorphism.

2
Up to polynomial-time equivalence, X and A can be assumed to be digraphs without

loss of generality [39]. As was shown in [15], a similar fact holds for the promise

version of CSP, which we shall encounter in a while.

3
In the CSP literature [8, 17, 29, 78, 83], the SDP relaxation is usually described in

terms of real vectors meeting orthogonality constraints; see the full version [30] for

the vector formulation of SDP.
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have unbounded width). The aim to find a universal solver for all

tractable CSPs has then driven a new generation of algorithms that

combine (𝑖) techniques suitable for exploiting bounded width with

(𝑖𝑖) variants of Gaussian elimination (which solves linear equations).

This line of work was pioneered by [14, 18], with the description of

the algorithm BA mixing a linear-programming-based relaxation

with Gaussian elimination. Variants of this algorithm were later

considered in [28, 31, 33].

The algorithm we propose in this work (which we call SDA) can

be described as follows. First, notice that the matrix𝑀𝑓 encoding

a homomorphism 𝑓 : X → A has entries in {0, 1}, and all of the

properties of𝑀𝑓 highlighted above are in fact linear equations, with

the exception of the nonnegativity of its entries and the positive

semidefiniteness. Hence, a different relaxation can be obtained by

looking for a matrix 𝑀′
that respects the linear conditions, and

whose entries are integers. We end up with a linear Diophantine

system, that can be solved efficiently through integer variants of

Gaussian elimination, see [80]. We write SDA(X,A) = Yes if both

𝑀 and𝑀′
exist.

4

The first main goal of our work is to introduce a technique based

on the spectral theory of association schemes for the analysis of this

relaxation model. Our approach aims to describe how the algorithm

exploits the symmetry of the problem under relaxation. To that end,

we gradually refine and abstract the way symmetry is expressed.

Starting from automorphisms, which capture symmetry of X and

A, we lift the analysis to the orbitals of X and A under the action

of the automorphism groups and, finally, we endow the orbitals

with the algebraic structure of association schemes. The progres-

sively more abstract language for expressing the symmetry of the

problem yields a progressively cleaner description of the impact of

symmetry on the relaxation. For the SDP part of SDA, the abstrac-

tion process “automorphisms→ orbitals→ association schemes”

may be viewed in purely linear-algebraic terms, as the quest for a

convenient (i.e., low-dimensional) vector space where the output of the

algorithm lives, and a suitable basis for this space. The last stage of

this metamorphosis of symmetry discloses a new algebraic perspec-

tive on the relaxation. In particular, for certain classes of digraphs,

association schemes allow turning SDP into a linear program.
5
The

non-convex nature of Diophantine equations makes the linear part

of SDA process the symmetry of the inputs in a quite different way.

We exploit the dihedral structure of the automorphism group of

cycles to show that each associate in their scheme can be assigned

an integral matrix with a small support; this, in turn, can be used

to produce a solution𝑀′
to the linear system.

This approach allows for a direct transfer of the results available

in algebraic combinatorics on association schemes to the study of

relaxations of homomorphism problems. For example, the explicit

expression for the character table of a specific scheme known as

the Johnson scheme shall be crucial for establishing a lower bound

4
We also require that a technical refinement condition constraining the supports of𝑀

and𝑀 ′
should hold; see the full version [30] for the formal definition of the algorithm.

The “A” in SDA stands for “affine” integer programming, the name by which the

CSP relaxation based on linear Diophantine equations is sometimes referred to in the

literature [7].

5
On a high level, this is an instance of a general invariant-theoretic phenomenon:

The presence of a rich group of symmetries makes it possible to reduce the size of

semidefinite programs [34, 42, 58] and, in certain cases, to describe their feasible

regions in terms of linear inequalities [35, 47], see also [36, 81].

against the SDA model. One peculiarity of this framework is that

it is not forgetful of the structure of the instance X. This contrasts
with the techniques for describing relaxations of CSPs [8, 32, 67, 82]

based on the polymorphic approach [21, 56, 57], whose gist is that the

complexity of a CSP depends on the identities satisfied by the poly-

morphisms of the CSP template A [9]. The polymorphic approach

yields elegant characterisations of the power of some relaxations,

in the sense that a CSP is solved by a certain algorithm if and only

if its polymorphisms satisfy identities typical of the algorithm.
6

These “instance-free” characterisations rely on knowing both the

identities typical of the algorithm (not available in the case of SDP

and, thus, SDA) and a succinct description of the polymorphisms

of the template (which is missing in the case of the approximate

homomorphism problems we shall see next). In contrast, the de-

scription based on association schemes does take the structure of

the instance into account, which results in a higher control over the

behaviour of the algorithm on certain highly symmetric instances.

The second main goal of our work is to apply the association-

scheme framework to obtain an unconditional lower bound against

SDA (and, a fortiori, against SDP). We consider the Approximate

Graph Homomorphism problem (AGH): Given two (undirected)

graphs A and B such that A → B and an instance X, distinguish
between the cases (𝑖) X → A and (𝑖𝑖) X ̸→ B.7 This problem

is commonly studied in the context of Promise CSPs [5, 7, 15, 69],

and we shall thus denote it by PCSP(A,B). If we let A = K𝑛 (the

𝑛-clique) and B = K𝑛′ where 𝑛 ≤ 𝑛′, AGH specialises to the Approx-

imate Graph Colouring problem (AGC): Distinguish whether a given

graph is 𝑛-colourable or not even 𝑛′-colourable. The computational

complexity of these problems is a long-standing open question.
8
In

1976, Garey and Johnson conjectured that AGC is always NP-hard

if 3 ≤ 𝑛:9

Conjecture ([41]). Let 3 ≤ 𝑛 ≤ 𝑛′ be integers. Then PCSP(K𝑛,K𝑛′ )
is NP-hard.

More recently, Brakensiek and Guruswami proposed the stronger

conjecture that even AGH may always be NP-hard except in trivial

cases:
10

Conjecture ([15]). Let A,B be non-bipartite loopless undirected

graphs such that A → B. Then PCSP(A,B) is NP-hard.

Among the several papers making progress on the two conjec-

tures above, wemention [7, 13, 16, 19, 38, 50, 55, 63, 64, 69]. However,

they both remain wide open in their full generality. Given the appar-

ent “hardness of proving hardness” surrounding these problems, sig-

nificant efforts have been directed towards showing inapplicability

of specific algorithmic models, following an established line of work

on lower bounds against relaxations, e.g., [2, 10, 23, 24, 43, 68, 72, 84].

Non-solvability of AGC via sublinear levels of local consistency

6
As established in [7], a similar approach also works for the promise version of CSP

that we shall discuss shortly.

7
This is the decision version of the problem. In the search version, the goal is to find an

explicit homomorphism X → B assuming that X → A. The former version reduces

to the latter, so our non-solvability result applies to both.

8
In contrast, the complexity of the non-approximate versions of AGC and AGH (i.e.,

the cases 𝑛 = 𝑛′
and A = B, respectively) was already classified by Karp [61] and

Hell–Nešetřil [53], respectively.

9
The case 𝑛 = 2 reduces to 2-colouring and is thus tractable.

10
If either A or B has a loop or is bipartite, the problem is trivial or reduces to 2-

colouring.
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and via linear Diophantine equations was proved in [4] and [26],

respectively. It was shown in [59] that the technique of vector

colouring, based on a semidefinite program akin to Lovász’s or-

thonormal representation [74], is inapplicable to solving AGC. It

follows from [51, 66] that polynomial levels of the Sum-of-Squares

hierarchy (and, in particular, SDP) are also not powerful enough

to solve AGC. Very recently, [27] improved on the result in [26]

by proving non-solvability of AGC via constant levels of the BA

hierarchy, obtained by applying the lift-and-project technique to the

BA relaxation of [18]. By leveraging the framework of association

schemes, we establish that AGH is not solved by SDA:
11

Theorem 1. Let A,B be non-bipartite loopless undirected graphs

such that A → B. Then SDA does not solve PCSP(A,B).

The improvement on the state of the art is twofold: Theorem 1

yields (𝑖) the first non-solvability result for the whole class of prob-

lems AGH, as opposed to the subclass AGC, and (𝑖𝑖) the first lower
bound against the combined “SDP + linear equations” model (which

is strictly stronger than both models individually).
12

Via Raghaven-

dra’s framework [78], the (SDP part of the) integrality gap in The-

orem 1 directly yields a conditional hardness-of-approximation

result for AGH: Assuming Khot’s UGC [65] and P ≠ NP, AGH is

not solved by any polynomial-time robust algorithm.

Related work on association schemes. The Johnson scheme and

other association schemes such as the Hamming scheme have ap-

peared in the analysis of the performance ratio of the Goemans–

Williamson Max-Cut algorithm [48] based on semidefinite pro-

gramming, see [1, 47, 60]. In [75], certain spectral properties of the

Johnson scheme were used to obtain lower bounds against the Posi-

tivestellensatz proof system (and, thus, against the Sum-of-Squares

hierarchy) applied to the planted clique problem, see also [37].

Notation. We let N be the set of positive integers, while N0 =

N ∪ {0}. For 𝑡 ∈ N, we let [𝑡] = {1, . . . , 𝑡}. We view vectors in R𝑡

as column vectors, but sometimes write them as tuples for typo-

graphical convenience. We denote by 𝐼𝑡 and 𝐽𝑡 the 𝑡 × 𝑡 identity
and all-one matrices, by 𝑂𝑡,𝑡 ′ the 𝑡 × 𝑡 ′ all-zero matrix, and by 1𝑡
and 0𝑡 the all-one and all-zero vectors of length 𝑡 . (Indices shall

sometimes be omitted when clear from the context.) We denote by

e𝑖 the 𝑖-th standard unit vector of length 𝑡 (which shall be clear from
the context); i.e., the vector in R𝑡 all of whose entries are 0 except
the 𝑖-th entry that is 1. Given a field F and a set V of vectors in F𝑡 ,
spanF (V ) is the set of linear combinations over F of the vectors in
V . We write span(V ) for spanR (V ).

A matrix is Boolean if its entries are in {0, 1}. Given a real matrix

𝑀 , we write 𝑀 ≥ 0 if 𝑀 is entrywise nonnegative, and we write

𝑀 ≽ 0 if𝑀 is positive semidefinite (i.e., if𝑀 is symmetric and has a

nonnegative spectrum). For two matrices𝑀 and𝑀′
, we let𝑀 ⊗𝑀′

denote their Kronecker product; if 𝑀 and 𝑀′
have equal size, we

let𝑀 ◦𝑀′
denote their Schur product (i.e., their entrywise product,

also known as Hadamard product). We shall often use the fact that

(𝑀 ⊗𝑀′) (𝑁 ⊗ 𝑁 ′) = 𝑀𝑁 ⊗𝑀′𝑁 ′
, provided that the products are

11
As we have seen, our framework requires a certain amount of symmetry in the

inputs when applied to a specific problem. We manage to avoid a loss of generality by

reducing to the general case of AGH from a more symmetric case.

12
Very recently — and independently of our work — Chan, Ng, and Peng described a

hierarchy based on SDP + linear equations for CSPs, and proved that linear levels do

not solve random instances of a certain natural class of CSPs including 𝑘-SAT [25].

well defined (see [54]). The support of𝑀 , denoted by supp(𝑀), is
the set of indices of nonzero entries of𝑀 ; for two matrices𝑀,𝑀′

of equal size, we write 𝑀 ⊳𝑀′
for supp(𝑀) ⊆ supp(𝑀′). Given a

digraph X, we let A (X) and Aut(X) denote the adjacency matrix

and the automorphism group of X, respectively. We view undirected

graphs as digraphs, by turning each undirected edge {𝑥,𝑦} into a
pair of directed edges (𝑥,𝑦) and (𝑦, 𝑥). For 𝑛 ≥ 3, C𝑛 denotes the

undirected cycle on 𝑛 vertices.

Given two digraphsA,B such thatA → B, we say that SDP (resp.,
SDA) solves PCSP(A,B) if, for any digraph X, SDP(X,A) = Yes

(resp., SDA(X,A) = Yes) implies X → B. It follows from the defini-

tions of the algorithms that X → A always implies SDP(X,A) =
SDA(X,A) = Yes.

2 OVERVIEW OF RESULTS AND TECHNIQUES
In this section, we give an overview of our results and techniques.

All details and proofs can be found in the full version of this pa-

per [30].

First of all, it will be convenient to encode the output of the

algorithms into a matrix. Henceforth, we shall label the vertex sets

of X and A as 𝑉 (X) = [𝑝] and 𝑉 (A) = [𝑛]. We say that a real

𝑝𝑛 × 𝑝𝑛 matrix𝑀 is a relaxation matrix for X,A if𝑀 satisfies the

following requirements:
13

(𝑟1) (e𝑥 ⊗ 𝐼𝑛)𝑇𝑀 (e𝑥 ⊗ 𝐼𝑛) is a diagonal matrix for each 𝑥 ∈ 𝑉 (X);
(𝑟2) (e𝑥 ⊗ e𝑎)𝑇𝑀 (e𝑦 ⊗ e𝑏 ) = 0 whenever (𝑥,𝑦) ∈ 𝐸 (X) and

(𝑎, 𝑏) ∈ 𝑉 (A)2 \ 𝐸 (A);
(𝑟3) 𝑀 (e𝑥 ⊗ 1𝑛) = 𝑀 (e𝑦 ⊗ 1𝑛) for each (𝑥,𝑦) ∈ 𝑉 (X)2;
(𝑟4) 𝑀

𝑇 (e𝑥 ⊗ 1𝑛) = 𝑀𝑇 (e𝑦 ⊗ 1𝑛) for each (𝑥,𝑦) ∈ 𝑉 (X)2;
(𝑟5) 1𝑇𝑝𝑛𝑀1𝑝𝑛 = 𝑝2.

Given a relaxation matrix𝑀 , we say that𝑀 is an SDP-matrix for

X,A if𝑀 ≽ 0 and𝑀 ≥ 0, and we say that𝑀 is an AIP-matrix for

X,A if all of its entries are integral.

2.1 Automorphisms
If 𝜉 and 𝛼 are automorphisms of X and A, respectively, we may

permute the rows and columns of a relaxation matrix𝑀 according

to 𝜉 and 𝛼 and the result would still be a relaxation matrix. By

averaging over all pairs of automorphisms (𝜉, 𝛼), we end up with

a relaxation matrix that is invariant under automorphisms of X
and A. More formally, given two finite sets 𝑅 and 𝑆 and a function

𝑓 : 𝑅 → 𝑆 , we let 𝑄 𝑓 be the |𝑅 | × |𝑆 | matrix whose (𝑟, 𝑠)-th entry

is 1 if 𝑓 (𝑟 ) = 𝑠 , 0 otherwise. We say that a real 𝑝𝑛 × 𝑝𝑛 matrix𝑀 is

balanced for X,A if

(𝑄𝜉 ⊗ 𝑄𝛼 )𝑀 (𝑄𝑇
𝜉
⊗ 𝑄𝑇

𝛼 ) = 𝑀 for each 𝜉 ∈ Aut(X), 𝛼 ∈ Aut(A).
(1)

The set of positive semidefinite, entrywise-nonnegative matrices

is closed under simultaneous permutations of rows and columns

and under convex combinations. It follows that we may always

13
Viewing𝑀 as a block matrix whose 𝑛 × 𝑛 blocks are indexed by pairs in𝑉 (X)2 ,

(𝑟1) states that diagonal blocks are diagonal matrices, (𝑟2) states that the supports of

blocks corresponding to edges of X are included in 𝐸 (A) , (𝑟3) and (𝑟4) state that the

row-sum (resp. column-sum) vectors of blocks aligned horizontally (resp. vertically)

are equal, and (𝑟5) is a normalisation condition. (Cf. the properties of the matrix𝑀𝑓

described in the Introduction.)
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assume that SDP-matrices are balanced.
14

This yields the following

characterisation.

Proposition 2. Let X,A be digraphs. Then

(𝑖) SDP(X,A) = Yes if and only if there exists a balanced SDP-

matrix for X,A;
(𝑖𝑖) if X is loopless, SDA(X,A) = Yes if and only if there exist a

balanced SDP-matrix𝑀 and an AIP-matrix 𝑁 for X,A such

that 𝑁 ◦ ((𝐼𝑝 + A (X)) ⊗ 𝐽𝑛) ⊳ 𝑀 .

It follows that, instead of studying the outputs of SDP in R𝑝𝑛×𝑝𝑛

with the basis of standard unit matrices e𝑖e𝑇𝑗 – as we have implicitly

done so far – we may work without loss of generality in the real

vector space L of balanced matrices for X,A.15 As we see next, the
concept of orbitals provides a natural basis for the space L .

2.2 Orbitals
For a digraphX, consider the action of the groupAut(X) onto the set
𝑉 (X)2 given by (𝑥,𝑦)𝜉 = (𝜉 (𝑥), 𝜉 (𝑦)) for 𝜉 ∈ Aut(X), 𝑥,𝑦 ∈ 𝑉 (X).
An orbital ofX is an orbit of𝑉 (X)2 with respect to this action; i.e., it
is a minimal subset of 𝑉 (X)2 that is invariant under the action. We

let O (X) be the set of orbitals of X. Given an orbital 𝜔 ∈ O (X), we
let 𝑅𝜔 be the 𝑝×𝑝 matrix whose (𝑥,𝑦)-th entry is 1 if (𝑥,𝑦) ∈ 𝜔 and

0 otherwise. Orbitals provide an alternative description of balanced

matrices: A block matrix𝑀 is balanced for X,A if and only if the

block structure of 𝑀 is constant over the orbitals of X, and each

block is constant over the orbitals of A. As stated next, it follows

that we can find a basis for L by taking Kronecker products of the

matrices 𝑅𝜔 .

Proposition 3. Let X,A be digraphs, and let L be the real vector

space of balanced matrices for X,A. Then the set R = {𝑅𝜔 ⊗ 𝑅�̃� :

𝜔 ∈ O (X), �̃� ∈ O (A)} forms a basis for L .

As a consequence, given a balanced matrix𝑀 , there is a unique list

of coefficients 𝑣𝜔�̃� such that

𝑀 =
∑︁

𝜔∈O (X), �̃�∈O (A)
𝑣𝜔�̃� 𝑅𝜔 ⊗ 𝑅�̃� . (2)

We shall refer to the |O (X) | × |O (A) | matrix 𝑉 = (𝑣𝜔�̃� ) as the
orbital matrix of 𝑀 . Expressing a balanced matrix 𝑀 in the new

basis R rather than in the standard basis for R𝑝𝑛×𝑝𝑛 is especially

convenient when X and A are highly symmetric. Indeed, if Aut(X)
and Aut(A) are large, O (X) and O (A) are small. Working with R
allows then compressing the information of the 𝑝𝑛 × 𝑝𝑛 matrix

𝑀 in the smaller |O (X) | × |O (A) | orbital matrix 𝑉 . However, if

we want to make use of 𝑉 to certify acceptance of SDP, we need

to be able to check if 𝑀 is an SDP-matrix by only looking at 𝑉 .

While lifting the requirements defining an SDP-matrix to the orbital

matrix, it should come with little surprise that the crucial one is

positive semidefiniteness: How to translate the fact that 𝑀 ≽ 0

into a condition on 𝑉 ? We shall see that the key for recovering the

spectral properties of𝑀 from the orbital matrix is to endow the set

of orbitals with a certain algebraic structure.

14
Observe that the same is not true for AIP-matrices, as integral matrices are not

closed under convex combinations.

15
The fact that L is a real vector space easily follows from (1).

2.3 Association Schemes
An association scheme

16
is a set S = {𝑆0, 𝑆1, . . . , 𝑆𝑑 } of 𝑝 × 𝑝

Boolean matrices satisfying

(𝑠1) 𝑆0 = 𝐼𝑝 ;

(𝑠2)
∑𝑑
𝑖=0 𝑆𝑖 = 𝐽𝑝 ;

(𝑠3) 𝑆
𝑇
𝑖
∈ S ∀𝑖;

(𝑠4) 𝑆𝑖𝑆 𝑗 ∈ spanC (S ) ∀𝑖, 𝑗 ;
(𝑠5) 𝑆𝑖𝑆 𝑗 = 𝑆 𝑗𝑆𝑖 ∀𝑖, 𝑗 .

Observe that, if all 𝑆𝑖 are permutation matrices, S is a finite group.

Indeed, using association schemes one can develop a theory of sym-

metry that generalises character theory for group representations.

The Bose–Mesner algebra 𝔅 of S is the vector space spanC (S ),
which consists of all complex linear combinations of the matrices

in S (see [12]). Since the matrices in S are Boolean and satisfy

(𝑠2), they form a basis for𝔅. Notice also that the set S ∪ {𝑂𝑝,𝑝 } is
closed under the Schur product, and so is𝔅. Moreover, the matrices

in S are Schur-orthogonal and Schur-idempotent, in that 𝑆𝑖 ◦ 𝑆 𝑗
equals 𝑆𝑖 when 𝑖 = 𝑗 , and equals 𝑂𝑝,𝑝 otherwise. Hence, we have

the following.

Fact 4. Let S be an association scheme. Then S forms a Schur-

orthogonal basis of Schur-idempotents for its Bose–Mesner algebra

𝔅.

Now, by (𝑠4),𝔅 is also closed under the standard matrix product; in

other words, it is a matrix algebra, thus justifying the name. It turns

out that a different basis exists for𝔅, whose members enjoy similar

properties to those for the basis S , but with a different product

being involved.

Fact 5. Let S be an association scheme. Then there exists an orthog-

onal basis E = {𝐸0, 𝐸1, . . . , 𝐸𝑑 } of Hermitian idempotents
17

for its

Bose–Mesner algebra 𝔅.

The interaction between the two bases S and E allows deriving

several interesting features of association schemes. The change-of-

basis matrix shall be particularly important for our purposes. More

precisely, we can (uniquely) express the elements of S as

𝑆 𝑗 =

𝑑∑︁
𝑖=0

𝑝𝑖 𝑗𝐸𝑖 (3)

for some numbers 𝑝𝑖 𝑗 . The (𝑑+1)×(𝑑+1) matrix 𝑃 = (𝑝𝑖 𝑗 ) is known
as the character table of the association scheme [6]. It turns out that

the sets of orbitals for a certain class of digraphs form association

schemes. We say that a digraph X is generously transitive if for

any 𝑥,𝑦 ∈ 𝑉 (X) there exists 𝜉 ∈ Aut(X) such that 𝜉 (𝑥) = 𝑦 and

𝜉 (𝑦) = 𝑥 .

Theorem 6 ([6]). Let X be a generously transitive digraph. Then the

set {𝑅𝜔 : 𝜔 ∈ O (X)} is a symmetric
18

association scheme.

We shall refer to the character table of the association scheme

{𝑅𝜔 : 𝜔 ∈ O (X)} as the character table of X. Note that this is

a |O (X) | × |O (X) | matrix. Recall that our current objective is to

16
The results on association schemes presented in this section can be found in any of

the references [6, 20, 44, 45].

17
I.e., the matrices in E are Hermitian, and 𝐸𝑖𝐸 𝑗 equals 𝐸𝑖 when 𝑖 = 𝑗 , and equals

𝑂𝑝,𝑝 otherwise.

18
An association scheme S is symmetric if S consists of symmetric matrices.
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decipher the spectral properties of a balanced matrix𝑀 from the

corresponding orbital matrix 𝑉 . The next result shows that the

character table is precisely the dictionary we need to make the

translation.

Theorem 7. Let X and A be generously transitive digraphs, let𝑀

be a balanced matrix for X,A, let 𝑉 be the orbital matrix of𝑀 , and

let 𝑃 and 𝑃 be the character tables of X and A, respectively. Then the

spectrum of𝑀 consists of the entries of the matrix 𝑃𝑉𝑃𝑇 .

Theorem 7 is proved by expressing a balanced matrix in a new,

third basis given by the Kronecker product of the bases for O (X)
and O (A) coming from Fact 5. One consequence of this result is

that the semidefinite program applied to two generously transitive

digraphs X and A can be turned into a linear program, whose

constraints are in terms of the character tables of X and A. This
is made explicit in the next corollary. For a digraph X, we let 𝝁X

be the vector, indexed by the elements of O (X), whose 𝜔-th entry

is |𝜔 |. We say that an orbital 𝜔 is the diagonal orbital if 𝑅𝜔 is the

identity matrix, and we say that 𝜔 is an edge orbital if 𝜔 ⊆ 𝐸 (X);
non-diagonal and non-edge orbitals are defined in the obvious way.

Notice that the edge orbitals of X partition 𝐸 (X).

Corollary 8. Let X and A be generously transitive digraphs. Fur-

thermore, let 𝑃 and 𝑃 be the character tables of X and A, respectively.
Then SDP(X,A) = Yes if and only if there exists a real entrywise-

nonnegative |O (X) | × |O (A) | matrix 𝑉 such that

(𝑐1) 𝑃𝑉𝑃𝑇 ≥ 0;

(𝑐2) 𝑉 𝝁A = 1;
(𝑐3) 𝑣𝜔�̃� = 0 if 𝜔 is the diagonal orbital of X and �̃� is a non-

diagonal orbital of A;
(𝑐4) 𝑣𝜔�̃� = 0 if𝜔 is an edge orbital ofX and �̃� is a non-edge orbital

of A.

In order to prove that SDA does not solve PCSP(A,B) for any
pair of non-bipartite loopless undirected graphs such that A → B,
thus establishing Theorem 1, we seek a fooling instance: a digraph

X such that SDA(X,A) = Yes but X ̸→ B. If we wish to apply

Corollary 8 and take advantage of the machinery developed so

far for describing the output of SDP, we need both X and A to

be generously transitive digraphs. Regarding A, this requirement

does not create problems. Indeed, it is not hard to check that it is

enough to establish the result in the case thatA is an odd undirected

cycle and B is a clique. Since odd cycles happen to be generously

transitive, Theorem 6 does apply.
19

The more challenging part

is to come up with a digraph X that (𝑖) is generously transitive,

(𝑖𝑖) is not homomorphic to B (i.e., has high chromatic number),

and (𝑖𝑖𝑖) is accepted by SDA. A promising candidate is the class

of Kneser graphs, as they (𝑖) are generously transitive and (𝑖𝑖)
have unbounded chromatic number (that is easily derived from the

parameters of the graphs through a classic result by Lovász [73]).

Next, we look at the association schemes for Kneser graphs and

odd cycles. The task is to collect the right amount of information on

their character tables that will allow us to design an orbital matrix

witnessing the fact that (𝑖𝑖𝑖) SDA(X,A) = Yes.

19
As we shall see, the structure of the scheme for odd cycles also allows dealing with

the linear part of SDA.

The Johnson scheme. Given 𝑠, 𝑡 ∈ N such that 𝑠 > 2𝑡 , the Kneser

graph G𝑠,𝑡 is the undirected graph whose vertices are all subsets of

[𝑠] of size 𝑡 , and whose edges are all disjoint pairs of such subsets.

The automorphism group of G𝑠,𝑡 is isomorphic to the symmetric

group Sym𝑠 [46], as a consequence of the Erdős–Ko–Rado theo-

rem [11, 45]. It is not hard to check that Kneser graphs are gener-

ously transitive. The association scheme corresponding to O (G𝑠,𝑡 )
consists of the adjacency matrices of the generalised Johnson graphs

J𝑠,𝑡,𝑞 for 𝑞 = 0, . . . , 𝑡 , where J𝑠,𝑡,𝑞 is the graph having the same

vertex set as G𝑠,𝑡 , with two vertices being adjacent if and only if

their intersection has size 𝑡 − 𝑞. This association scheme is known

as the Johnson scheme.
20

In order to design an orbital matrix witnessing that G𝑠,𝑡 is ac-

cepted by SDP (and, as we will see, SDA), it shall be useful to gain

some insight into the behaviour of the character table of G𝑠,𝑡 when

it is multiplied by column vectors (which, ultimately, will be the

columns of the orbital matrix, cf. Corollary 8). We shall see that,

if a column vector is interpolated by a polynomial of low degree,

multiplying it by the character table yields a vector living in a fixed,

low-dimensional subspace of R𝑡+1. This observation leads us to

choose an orbital matrix whose nonzero columns are polynomials

of degree one, cf. the proof of Theorem 1. More precisely,
21

let h be

the vector (0, 1, . . . , 𝑡) and, given a univariate polynomial 𝑓 ∈ R[𝑥],
let h𝑓 be the vector (𝑓 (0), 𝑓 (1), . . . , 𝑓 (𝑡)).

Theorem 9. Let 𝑠, 𝑡 ∈ N with 𝑠 > 2𝑡 , and let 𝑃 be the character

table of G𝑠,𝑡 . Then

(i) 𝑃h𝑓 ∈ span(e0, . . . , e𝑑 ) for any univariate polynomial 𝑓 of

degree 𝑑 ≤ 𝑡 ;
(ii) 𝑃1 =

(𝑠
𝑡

)
e0;

(iii) 𝑃h =
(𝑠
𝑡

)
( 𝑠𝑡−𝑡2𝑠 e0 − 𝑠𝑡−𝑡2

𝑠2−𝑠 e1).

To prove Theorem 9, we can take advantage of the explicit ex-

pression for the character table of the Johnson scheme obtained by

Delsarte [35] (see also [45, § 6.5]) in terms of Eberlein polynomials.

Theorem 10 ([35]). Let 𝑠, 𝑡 ∈ N be such that 𝑠 > 2𝑡 . Then the

character table of the Kneser graph G𝑠,𝑡 is the (𝑡 + 1) × (𝑡 + 1) matrix

whose ( 𝑗, 𝑞)-th entry, for 𝑗, 𝑞 ∈ {0, . . . , 𝑡}, is22

𝛽 (𝑠, 𝑡, 𝑞, 𝑗) =
∞∑︁
𝑖=0

(−1)𝑖−𝑞+𝑗
(
𝑖

𝑞

) (
𝑡 − 𝑗

𝑖 − 𝑗

) (
𝑠 − 𝑖 − 𝑗

𝑡 − 𝑗

)
.

Our strategy consists in associating with the entries of the char-

acter table a family of bivariate generating functions (parameterised

by 𝑡 and 𝑗 ) defined by

𝛾𝑡, 𝑗 (𝑥,𝑦) =
∑︁

𝑠,𝑞∈N0

𝛽 (𝑠, 𝑡, 𝑞, 𝑗)𝑥𝑠𝑦𝑞 . (4)

We find a closed formula for these generating functions.

20
Note that J𝑠,𝑡,𝑡 = G𝑠,𝑡 , while J𝑠,𝑡,0 consists of

(𝑠
𝑡

)
loops. Hence, the diagonal orbital

corresponds to 𝑞 = 0, while the (unique) edge orbital corresponds to 𝑞 = 𝑡 .
21
As we have seen, the members of the Johnson scheme are naturally labelled by

0, 1, . . . , 𝑡 , where the 𝑞-th member is A (J𝑠,𝑡,𝑞 ) . Hence, we label the entries of the
character table ofG𝑠,𝑡 and the standard unit vectors e𝑖 in Theorem 9 accordingly, with

indices ranging over {0, . . . , 𝑡 } rather than {1, . . . , 𝑡 + 1}. A similar labelling shall

also be used for the cycle scheme, cf. Propositions 12 and 13.

22
We use the conventions that

(𝑥
𝑦

)
= 0 unless 0 ≤ 𝑦 ≤ 𝑥 , and

(
0

0

)
= 1.
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Proposition 11. The identity

𝛾𝑡, 𝑗 (𝑥,𝑦) = 𝑥𝑡+𝑗 (1 − 𝑥) 𝑗−𝑡−1 (1 − 𝑦) 𝑗 (1 − 𝑥 + 𝑥𝑦)𝑡− 𝑗

holds for each 𝑡, 𝑗 ∈ N0 and 𝑥,𝑦 ∈ R such that 𝑗 ≤ 𝑡 and −1 < 𝑥 < 1.

Theorem 9 is then proved by expressing the entries of the vector

𝑃h𝑓 in terms of partial derivatives of the generating functions 𝛾𝑡, 𝑗 ,

and by finding analytic expressions for these partial derivatives

through Proposition 11.

The cycle scheme. The automorphism group of the undirected

cycle C𝑛 is the dihedral group of order 2𝑛, and it is not hard to

check that C𝑛 is generously transitive. If 𝑛 = 2𝑚 + 1 is odd, O (C𝑛)
contains𝑚+1 orbitals𝜔0, . . . , 𝜔𝑚 , where𝜔0 and𝜔1 are the diagonal

orbital and the (unique) edge orbital, respectively. Each orbital

has size 2𝑛 except 𝜔0, which has size 𝑛. The Perron–Frobenius

theorem for primitive matrices [40, 77] yields the next property of

the corresponding character table.

Proposition 12. Let 𝑛 ≥ 3 be an odd integer, and let 𝑃 be the

character table of C𝑛 . Then 𝑃e0 = 1, while 𝑃e1 contains exactly one

entry equal to 2, and all other entries are strictly smaller than 2 in

absolute value.

The next proposition shall be crucial for taking care of the linear

Diophantine part of the algorithm SDA when showing that Kneser

graphs are fooling instances.

Proposition 13. For any odd integer 𝑛 ≥ 3 there exists a function

𝑓 : O (C𝑛) → Z𝑛×𝑛 such that supp(𝑓 (𝜔)) ⊆ 𝜔 and 𝑓 (𝜔)1 =

𝑓 (𝜔)𝑇 1 = e0 for each 𝜔 ∈ O (C𝑛).

2.4 A Lower Bound Against SDA
We now have all the ingredients for proving Theorem 1.

Proof of Theorem 1. Let A,B be non-bipartite loopless undi-

rected graphs such that A → B, and notice that there exist 𝑛, 𝑛′ ≥ 3

with 𝑛 odd such that C𝑛 → A and B → K𝑛′ . (For example, we may

choose 𝑛 and 𝑛′ as the odd girth of A and the chromatic number

of B, respectively.) Let𝑚 = 𝑛−1
2

, and let 𝑃 be the character table of

the association scheme corresponding to O (C𝑛). By Proposition 12,

there exists 0 < 𝛿 < 2 such that, up to a permutation of the rows,

𝑃e0 = 1 and 𝑃e1 =

[
2

z

]
for some vector z ∈ R𝑚 all of whose en-

tries have absolute value strictly smaller than 𝛿 . Without loss of

generality, we can assume that 𝛿 is rational. Let 𝑡 ∈ N be such that

𝑡 ≥ 2𝑛′

2−𝛿 and
𝑡
𝛿
∈ N, and let 𝑠 = 2𝑡

𝛿
+𝑡 . Observe that 𝑠 > 2𝑡 . We claim

that SDA(G𝑠,𝑡 ,C𝑛) = Yes. Since SDA is monotone with respect to

the homomorphism preorder of the arguments, this would imply

that SDA(G𝑠,𝑡 ,A) = Yes. However, using Lovász’s formula for the

chromatic number of Kneser graphs [73], we find

𝜒 (G𝑠,𝑡 ) = 𝑠 − 2𝑡 + 2 =
2𝑡

𝛿
+ 𝑡 − 2𝑡 + 2 =

𝑡 (2 − 𝛿)
𝛿

+ 2

≥ 2𝑛′

𝛿
+ 2 > 𝑛′ + 2.

This means that G𝑠,𝑡 ̸→ K𝑛′ and, hence, G𝑠,𝑡 ̸→ B. As a conse-

quence, the truth of the claim would establish that SDA does not

solve PCSP(A,B), thus concluding the proof of the theorem.

Let 𝑃 be the character table of G𝑠,𝑡 , and recall that h denotes the

vector (0, 1, . . . , 𝑡) (which, as usual, we view as a column vector).

Consider the matrices

𝑊 =
[
1 − 1

𝑡 h
1

𝑡 h 𝑂𝑡+1,𝑚−1
]
∈ R(𝑡+1)×(𝑚+1) ,

and

𝐾 =
1

2𝑛
diag(2, 1, . . . , 1) ∈ R(𝑚+1)×(𝑚+1) ,

and 𝑉 =𝑊𝐾 . We now show that 𝑉 meets the conditions in Corol-

lary 8 and, thus, it is the orbital matrix for a balanced SDP-matrix.

Recall that the diagonal orbitals of G𝑠,𝑡 and C𝑛 are those having in-

dex 0, while the (unique) edge orbitals of G𝑠,𝑡 and C𝑛 are those hav-

ing index 𝑡 and 1, respectively. Since 𝑣𝑖, 𝑗 = 0 whenever 𝑖 = 0, 𝑗 ≠ 0

or 𝑖 = 𝑡, 𝑗 ≠ 1, the conditions (𝑐3) and (𝑐4) are satisfied. Observe that

𝝁C𝑛
is the vector 2𝑛1−𝑛e0. Therefore,𝑉 𝝁C𝑛 =𝑊𝐾𝝁C𝑛 =𝑊 1 = 1,

so (𝑐2) holds, too. Theorem 9 yields

𝑃𝑊 =
[
𝑃1 − 1

𝑡 𝑃h
1

𝑡 𝑃h 𝑂𝑡+1,𝑚−1
]

=

(
𝑠

𝑡

) [
e0 − (1 − 𝑡

𝑠 )e0 +
𝑠−𝑡
𝑠2−𝑠 e1 (1 − 𝑡

𝑠 )e0 −
𝑠−𝑡
𝑠2−𝑠 e1 𝑂𝑡+1,𝑚−1

]

=

(
𝑠

𝑡

) 

𝑡
𝑠 1 − 𝑡

𝑠 0 . . . 0

𝑠−𝑡
𝑠2−𝑠

𝑡−𝑠
𝑠2−𝑠 0 . . . 0

0 0 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 . . . 0


.

It follows that

𝑃𝑉𝑃𝑇 = 𝑃𝑊𝐾𝑃𝑇 =

(𝑠
𝑡

)
2𝑛



2𝑡
𝑠 1 − 𝑡

𝑠
2(𝑠−𝑡 )
𝑠2−𝑠

𝑡−𝑠
𝑠2−𝑠

0 0

.

.

.
.
.
.

0 0


[
1 1𝑇𝑚
2 z𝑇

]

=

(𝑠
𝑡

)
2𝑛

[
2

2𝑡
𝑠 1

𝑇
𝑚 + (1 − 𝑡

𝑠 )z
𝑇

0
𝑠−𝑡
𝑠2−𝑠 (2 · 1𝑚 − z)𝑇

]
.

We have 2 · 1𝑚 − z > 0. Using that
𝑡
𝑠 = 𝛿

2+𝛿 and 𝑧𝑖 > −𝛿 for each
𝑖 ∈ [𝑚], we find that

2𝑡

𝑠
+
(
1 − 𝑡

𝑠

)
𝑧𝑖 =

2𝛿

2 + 𝛿 +
(
1 − 𝛿

2 + 𝛿

)
𝑧𝑖 >

2𝛿

2 + 𝛿 +
(
1 − 𝛿

2 + 𝛿

)
(−𝛿) = 0,

thus showing that
2𝑡
𝑠 1𝑚 + (1 − 𝑡

𝑠 )z > 0. It follows that 𝑃𝑉𝑃𝑇 ≥ 0,

which means that (𝑐1) is met. Applying Corollary 8, we deduce

that SDP(G𝑠,𝑡 ,C𝑛) = Yes and that the matrix𝑀 =
∑
𝜔,�̃� 𝑣𝜔�̃� 𝑅𝜔 ⊗

𝑅�̃� (where 𝜔 ranges over O (G𝑠,𝑡 ) and �̃� ranges over O (C𝑛)) is a
balanced SDP-matrix for G𝑠,𝑡 , C𝑛 , cf. Proposition 3.

The next step is to add AIP. For each x ∈ 𝑉 (G𝑠,𝑡 )2, let 𝜔 (x)
be

the orbital of G𝑠,𝑡 containing x, and choose an orbital �̃� (x)
of C𝑛

satisfying 𝑣𝜔 (x) �̃� (x) ≠ 0. Letting 𝑓 : O (C𝑛) → Z𝑛×𝑛 be the function

from Proposition 13, we consider the

(𝑠
𝑡

)
𝑛 ×

(𝑠
𝑡

)
𝑛 matrix 𝑁 defined

by 𝑁x = 𝑓 (�̃� (x) ) for each x (where 𝑁x = (e𝑥1 ⊗ 𝐼𝑛)𝑇𝑁 (e𝑥2 ⊗
𝐼𝑛) is the x-th block of 𝑁 ). We claim that 𝑁 is an AIP-matrix for

G𝑠,𝑡 ,C𝑛 . Note that, if x = (𝑥, 𝑥) ∈ 𝑉 (G𝑠,𝑡 )2, we have 𝜔 (x) = 𝜔0

and, thus, �̃� (x) = �̃�0, which gives supp(𝑁x) = supp(𝑓 (�̃�0)) ⊆ �̃�0.
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Similarly, if x ∈ 𝐸 (G𝑠,𝑡 ), then 𝜔 (x) = 𝜔𝑡 and, thus, �̃� (x) = �̃�1,

which gives supp(𝑁x) = supp(𝑓 (�̃�1)) ⊆ �̃�1 = 𝐸 (C𝑛). This yields
the conditions (𝑟1) and (𝑟2). Moreover, for x = (𝑥1, 𝑥2) ∈ 𝑉 (G𝑠,𝑡 )2,
we find

(e𝑥1 ⊗ 𝐼𝑛)𝑇𝑁 (e𝑥2 ⊗ 1𝑛) = (e𝑥1 ⊗ 𝐼𝑛)𝑇𝑁 (e𝑥2 ⊗ 𝐼𝑛) (1 ⊗ 1𝑛)

= 𝑁x1𝑛 = 𝑓 (�̃� (x) )1𝑛
which, by the properties of 𝑓 , is constant over the orbitals of C𝑛 ;

this gives (𝑟3). Similarly, using that 𝑓 (�̃� (x) )𝑇 1𝑛 is constant over

the orbitals, we obtain (𝑟4). Finally, (𝑟5) follows by observing that

1𝑇𝑛𝑁x1𝑛 = 1𝑇𝑛 𝑓 (�̃� (x) )1𝑛 = 1𝑇𝑛 e0 = 1 for any x. As a consequence,
𝑁 is a relaxation matrix; since its entries are integral, it is an AIP-

matrix. For any x ∈ 𝑉 (G𝑠,𝑡 )2, the x-th block of𝑀 satisfies

𝑀x = (e𝑥1 ⊗ 𝐼𝑛)𝑇𝑀 (e𝑥2 ⊗ 𝐼𝑛)

=
∑︁

𝜔∈O (G𝑠,𝑡 )
�̃�∈O (C𝑛 )

𝑣𝜔�̃� (e𝑥1 ⊗ 𝐼𝑛)𝑇 (𝑅𝜔 ⊗ 𝑅�̃� ) (e𝑥2 ⊗ 𝐼𝑛)

=
∑︁

𝜔∈O (G𝑠,𝑡 )
�̃�∈O (C𝑛 )

𝑣𝜔�̃� (e𝑇𝑥1𝑅𝜔e𝑥2 )𝑅�̃� =
∑︁

�̃�∈O (C𝑛 )
𝑣𝜔 (x) �̃�𝑅�̃� .

Since 𝑣𝜔 (x) �̃� (x) ≠ 0, using that the orbitals of a graph are disjoint, we

deduce that 𝑅�̃� (x) ⊳ 𝑀x. On the other hand, we have supp(𝑁x) =
supp(𝑓 (�̃� (x) )) ⊆ �̃� (x) = supp(𝑅�̃� (x) ), which means that 𝑁x ⊳

𝑅�̃� (x) . It follows that 𝑁 ◦ ((𝐼(𝑠𝑡) + A (G𝑠,𝑡 )) ⊗ 𝐽𝑛) ⊳ 𝑁 ⊳ 𝑀 .

Applying Proposition 2, we conclude that SDA(G𝑠,𝑡 ,C𝑛) = Yes, as

required. □

We note that the SDP part of the integrality gap in Theorem 1

may be directly converted into Unique-Games approximation hard-

ness of AGH through Raghavendra’s framework [78]. Indeed, as

observed in [17], it follows from [78] that any PCSP admitting a

polynomial-time robust algorithm
23

is solved by SDP, assuming the

Unique Games Conjecture (UGC) of [65]. Thus, Theorem 1 implies

the following conditional hardness result for AGH.

Corollary 14. Let A,B be non-bipartite loopless undirected graphs

such that A → B. Then, assuming the UGC and P ≠ NP, PCSP(A,B)
does not admit a polynomial-time robust algorithm.

2.5 Incomparability to the BA Hierarchy
It was shown in [27] that no constant level of the BA hierarchy –

obtained by combining the Sherali–Adams LP hierarchy with linear

Diophantine equations
24

– solves approximate graph colouring.

It is then natural to ask how SDA compares to such hierarchy. In

particular, we investigate whether SDA is “dominated” by some

level BA
𝑘
of the BA hierarchy, in the sense that, for any instance

on which the former algorithm gives the correct answer, the latter

also does.
25

If this were the case, non-solvability of approximate

23
Given two digraphs X,X′

and a real number 0 ≤ 𝜖 ≤ 1, an 𝜖-homomorphism

from X to X′
is a map 𝑓 : 𝑉 (X) → 𝑉 (X′ ) that preserves at least (1 − 𝜖 ) fraction

of the edges of X. A robust algorithm for PCSP(A,B) is an algorithm that finds a

𝑔 (𝜖 )-homomorphism from X to B whenever the instance X is such that there exists

an 𝜖-homomorphism from X to A, where 𝑔 is some monotone, nonnegative function

satisfying 𝑔 (𝜖 ) → 0 as 𝜖 → 0.

24
The BA hierarchy may alternatively be described as the result of applying the

lift-and-project technique to the algorithm introduced in [18], see also [29].

25
For two algorithms𝑇1,𝑇2 , we write𝑇1 ⪯ 𝑇2 to mean that𝑇2 dominates𝑇1 ; see the

formal definition in the full version [30]

graph colouring via SDA would be a corollary of the result in [27].

We give a negative answer to the above question by showing that

not even SDP (in fact, not even a weaker version SDP
𝜖
of SDP

that can be implemented in polynomial time, see the paragraph

below) is dominated by the BA hierarchy. Formally, we establish

the following result.

Theorem 15. For each 𝑘 ∈ N there exists 𝜖 > 0 such that SDP
𝜖 ⪯̸

BA
𝑘
.
26

In order to prove Theorem 15, we use cliques as the separating

instances. Indeed, a result in [27] implies that the BA hierarchy is

not sound on cliques; the situation is different for SDP
𝜖
, which, as

stated next and proved via the framework of association schemes,

is able to correctly classify cliques provided that 𝜖 is small enough.

(Of course, it follows that the same result holds for the stronger

relaxations SDP and SDA.)

Proposition 16. Let𝑝, 𝑛 ≥ 2 and 0 < 𝜖 < 1

𝑛3
. Then SDP

𝜖 (K𝑝 ,K𝑛) =
Yes if and only if 𝑝 ≤ 𝑛.

A tale of two polytopes. A few years ago, O’Donnell noted that

polynomial-time solvability of certain semidefinite programming

relaxations, assumed in several papers in the context of the Sum-of-

Squares proof system, is in fact not true in general [76]. To the best

of the authors’ knowledge, details of how the semidefinite program

SDP can be solved in polynomial time to near-optimality (if at all)

have not been made explicit in the literature. This motivates us to

give a formal argument showing that this is indeed possible. As

we shall discuss in detail in the full version [30], the issue is rather

subtle and requires unexpected matrix-theoretic considerations.

For 𝜖 > 0, we define SDP
𝜖
by turning SDP into an optimisation

problem, and then solving it up to precision 𝜖 via the semidefinite

program solver of [49] based on the ellipsoid method. The optimi-

sation problem consists in minimising a linear objective function

(given by the sum of the inner products in (SDP3), see the SDP

formulation in the full version [30]) over the intersection of a poly-

tope with the cone of positive semidefinite matrices. There are two

natural candidates for choosing such a polytope. The first, W , is

obtained by discarding (SDP3) and positive semidefiniteness from

the constraints describing the feasible region of the system (SDP);

the second, U , is obtained by discarding (𝑟2) – which is the matrix-

analogue of (SDP3) – and positive semidefiniteness from the con-

ditions defining SDP-matrices. The intersections of either of these

two polytopes with the cone of positive semidefinite matrices co-

incide, so if we were able to solve the corresponding programs to

optimality we would obtain the same output using either formula-

tion. However, the two polytopes are different, and we prove that

U (and not W !) meets Slater condition, which ensures that the cor-

responding semidefinite program can be solved in polynomial time

to near-optimality in the Turing model of computation. Thus, we

formulate SDP
𝜖
using the polytope U , and we obtain the following

result.

Theorem 17. For each 𝜖 > 0, SDP
𝜖
is a complete, polynomial-time

test. Moreover, SDP
𝜖 ⪯ SDP.

26
Since SDP

𝜖 ⪯ SDP ⪯ SDA, it follows that SDP ⪯̸ BA
𝑘
and SDA ⪯̸ BA

𝑘
. It is,

however, an open question how the algorithms compare in terms of solvability of

PCSPs, see the full version [30].
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