
1

The Complexity of Approximately Counting Retractions to

Square-Free Graphs

JACOB FOCKE, LESLIE ANN GOLDBERG, and STANISLAV ŽIVNÝ, University of Oxford,
United Kingdom

A retraction is a homomorphism from a graph G to an induced subgraph H of G that is the identity on H . In a
long line of research, retractions have been studied under various algorithmic settings. Recently, the problem
of approximately counting retractions was considered. We give a complete trichotomy for the complexity of
approximately counting retractions to all square-free graphs (graphs that do not contain a cycle of length
4). It turns out there is a rich and interesting class of graphs for which this problem is complete in the class
#BIS. As retractions generalise homomorphisms, our easiness results extend to the important problem of
approximately counting homomorphisms. By giving new #BIS-easiness results we now settle the complexity
of approximately counting homomorphisms for a whole class of non-trivial graphs which were previously
unresolved.

CCS Concepts: • Theory of computation → Approximation algorithms analysis; Problems, reduc-

tions and completeness; • Mathematics of computing→ Combinatorics.

Additional Key Words and Phrases: approximate counting, counting complexity, graph homomorphisms,
retractions, square-free graphs

ACM Reference Format:

Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný. 2021. The Complexity of Approximately Counting
Retractions to Square-Free Graphs. ACM Trans. Algor. 1, 1, Article 1 (January 2021), 51 pages.

1 INTRODUCTION

A functionh that maps the vertices of a graphG to the vertices of a graphH is a homomorphism from
G to H if h preserves the edges of G, i.e. if for every pair of adjacent vertices u,v ∈ V (G) we have
{h(u),h(v)} ∈ E(H). It is well-known that homomorphisms represent graph-theoretic structures
including proper vertex colourings and independent sets. For example, consider the graphs I , K3
and C4 given in Figure 1. A homomorphism from a graph G to I corresponds to an independent set

In Out
b

r

д b

r y

д

Fig. 1. The graphs I (on the left), K3 (in the middle) and C4 (on the right).

Authors’ address: Jacob Focke, focke.jacob@cs.ox.ac.uk; Leslie Ann Goldberg, leslie.goldberg@cs.ox.ac.uk; Stanislav Živný,
standa.zivny@cs.ox.ac.uk, University of Oxford, Oxford, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1549-6325/2021/1-ART1 $15.00
https://doi.org/

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/

1:2 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

in G, whereas a homomorphism fromG to K3 corresponds to a proper 3-colouring of G. Finally, a
homomorphism from G to C4 corresponds to a 4-colouring of G that uses the colours red (r), blue
(b), green (д) and yellow (y), but for which {r ,д}- and {b,y}-coloured edges are forbidden.

If for each vertex v ∈ V (G) we specify a so-called “list” Sv ⊆ V (H) and set S = {Sv | v ∈ V (G)},
then h is a homomorphism from (G, S) to H if it is a homomorphism from G to H such that for
all v ∈ V (G) it holds that h(v) ∈ Sv . This generalisation of a homomorphism is known as a list
homomorphism. For example one could consider list homomorphisms from the Petersen graph (see
Figure 2 on the left) to the graphK3. These homomorphisms then correspond to proper 3-colourings
of the Petersen graph, where some vertices have pre-assigned colours.

{r }

{r ,b,д}
{r ,b,д}

{r ,b,д} {r }

{д}

{r ,b,д}

{r ,b,д}

{r ,b,д} {b}

r

д

b

{r ,b,д}

{b}

Fig. 2. Petersen graph with lists (on the left) and Petersen graph with vertices identified according to single-

vertex lists (on the right).

If every list contains either just a single vertex or all of the vertices of H , then such a list
homomorphism is called a retraction. This definition of a retraction is equivalent to the definition
from the abstract, where a retraction was defined as a homomorphism from a graph G to an
induced subgraph H of G that is the identity on H . The equivalence (in the sense of parsimonious
polynomial-time interreducibility) was shown by Feder and Hell [15, Theorem 4.1]. The intuition
behind the equivalence is that one can identify all of the vertices in G that have the same single-
vertex list {u} with the corresponding vertex u of H . Homomorphisms from this new graph to H
are retractions in the sense of the abstract. For the Petersen graph in our example, the modified
graph is displayed in Figure 2 on the right and contains K3 as an induced subgraph.
Retractions are also known under the names one-or-all list homomorphisms (e.g. [15, 16]) and

pre-colouring extensions (e.g. [3, 5, 17, 41, 44, 46, 52]). Related work on retractions is described in
Section 1.1.

In the study of approximate counting there are three important classes of problems [12]: (1) prob-
lems that have fully-polynomial-time randomised approximation schemes (FPRASes), (2) problems
that are approximation-equivalent to #BIS, the problem of counting independent sets in a bipartite
graph, and (3) problems that are approximation-equivalent to #SAT, the problem of counting satis-
fying assignments to a Boolean formula (these problems have no FPRAS, unless NP = RP). It is
believed that these three classes are disjoint, so there are no FPRASes for the #BIS-equivalent and
#SAT-equivalent problems. The problems that are interreducible with #BIS under approximation-
preserving (AP-)reductions are complete in a complexity class which is sometimes called #RHΠ1

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:3

and is sometimes just called #BIS. For convenience we say that a graph H is #BIS-easy or #BIS-hard
if the problem of approximately counting retractions to H is #BIS-easy or #BIS-hard, respectively.
We similarly use the terms #SAT-easy, and #SAT-hard.

In this work we give a complete complexity trichotomy for approximately counting retractions
to all square-free graphs (graphs that do not contain a 4-cycle) and we show that all of these
problems fall within the three given complexity classes. An interesting feature is that the class of
#BIS-equivalent graphs turns out to be surprising and rich.
First we give some illustrative examples. Afterwards we describe the class of #BIS-equivalent

graphs in detail. A key idea that emerges in the proofs is the role of triangles (3-cycles). It turns out
that triangles in graphs can induce hardness, but they can also “turn” #SAT-hard cases into #BIS-
easy ones. For example, consider Figure 3. The graph on the left was shown to be #SAT-hard [21,
Lemma 2.15]. In comparison, we will show that the graph on the right is actually #BIS-easy. Note
that this is not because a vertex was added: If one deletes any of the edges of the triangle, the
resulting graph is #SAT-hard again. To give an even more striking example, it seems surprising

Fig. 3. Triangles can induce #BIS-easiness: The graph on the left is #SAT-hard whereas the graph on the right

is #BIS-easy.

that the graph on the left in Figure 3 is #SAT-hard, but the graph depicted in Figure 4 turns out
to be #BIS-easy. There exists an interesting underlying balancing process between looped cliques

Fig. 4. Example graph which turns out to be #BIS-easy.

in the neighbourhood of a looped vertex and its number of unlooped neighbours, which decides
whether a graph is #BIS-easy or #SAT-hard.

We now informally define the #BIS-easy class HBIS (it is defined formally in Definition 10). This
class also contains graphs with squares and is more general than what we will need to classify all
square-free graphs. A graph inHBIS is a path P of looped vertices with some attached unlooped

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

degree-1 vertices (bristles, depicted below the path in Figure 4) and some attached looped vertices
forming cliques with two consecutive vertices of P (depicted above the path in Figure 4). For each
vertex p of the path P the number of attached bristles satisfies the following properties:

• If p is an endpoint of P then it does not have a bristle.
• If p is not an endpoint of P then it is part of exactly two reflexive cliques KL (“to the left” of
p) and KR (“to the right” of p). Then p has at most (|KL | − 1) · (|KR | − 1) bristles.

Consider again the graph in Figure 4. Note that the graph is not square-free as this is not required
by the definition ofHBIS. The third vertex from the right on the path is part of a reflexive 4-clique
to the left and a reflexive 2-clique to the right. Hence the vertex can have at most (4− 1) · (2− 1) = 3
bristles (and has in fact only 2 bristles).

Theorem1. LetH be a graph inHBIS. Then approximately counting retractions toH is #BIS-equivalent
under approximation-preserving reductions.

HBIS is a fairly broad class of graphs but it turns out that approximately counting retractions to
any member of HBIS is #BIS-easy. For the class of square-free graphs, HBIS completely captures
the truth — together with the class of non-trivial irreflexive caterpillars (defined momentarily)
they form precisely the class of #BIS-equivalent square-free graphs. Here (following a couple of
necessary definitions) is the full complexity classification.

A graphH is reflexive if every vertex ofH is looped and it is irreflexive if it contains only unlooped
vertices. A square is a cycle of length 4. A connected irreflexive graph is a star if it contains at most
one vertex of degree greater than 1, and it is a caterpillar if it contains a path P such that all vertices
outside of P have degree 1. A graph is trivial if it is a reflexive clique or an irreflexive complete
bipartite graph.

Theorem 2. Let H be a square-free graph.

i) If every connected component of H is trivial then approximately counting retractions to H is in

FP.

ii) Otherwise, if every connected component of H is

• trivial,

• in the classHBIS, or
• is an irreflexive caterpillar

then approximately counting retractions to H is #BIS-equivalent.
iii) Otherwise, approximately counting retractions to H is #SAT-equivalent.

As a second central contribution of this work we emphasise the implications of Theorem 1 on the
complexity of approximately counting homomorphisms. This problem has been studied intensively
in the past [12, 13, 21, 24, 25, 29, 31, 43], but despite these efforts its complexity is still mostly open.
For example, there are graphs with as few as four vertices for which its complexity is unresolved.
In a partial result, Galanis, Goldberg and Jerrum [24] proved that approximately counting homo-
morphisms to a connected graph H is #BIS-hard unless H is an irreflexive complete bipartite graph
or a reflexive clique. However, the knowledge about #BIS-easiness to complement this result is very
fragmented. Since approximately counting homomorphisms reduces to approximately counting
retractions ([21, Observation 1.2]), our #BIS-easiness results from Theorem 1 carry over to the
homomorphism-counting domain. Thus, we are able to resolve the complexity of approximately
counting homomorphisms to graphs in HBIS.

Corollary 3. Let H be a graph in HBIS. Then approximately counting homomorphisms to H is

#BIS-equivalent under approximation-preserving reductions.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:5

Remark 4. As a side note, the #BIS-easiness result given in Corollary 3 also extends to the problems
of approximately counting surjective homomorphisms and approximately counting compactions.
This follows from the reductions given in [21, Theorem 1.5].

1.1 Related Work

The concept of a retraction has been studied as early as the 1930’s and originates in work on
continuous functions from topological spaces into subspaces [7]. Subsequently, retractions between
discrete structures, and graphs in particular, have received a lot of research attention [19, 32, 33,
36, 47]. See [35] for an overview. The algorithmic problem of deciding whether a retraction exists
can be expressed naturally as a constraint satisfaction problem (CSP) and has been studied in
e.g., [18, 34, 53–55]. Retractions have also been studied in the context of directed graphs. A work
by Larose [45] surveys CSPs with a digraph as the fixed template. The survey has a special focus
on CSPs with additional unary constraints, such as the digraph retraction problem. Applications of
retractions reach from classical results such as Brouwer’s fixed-point theorem and its equivalent
no-retraction theorem [38, pp. 272-273] to specific problems such as solving Sudoku puzzles [37].

The complexity of deciding whether there is a retraction to a fixed graph H has been studied in
different contexts, such as CSPs and list homomorphisms [15, 16, 18, 34, 35], surjective homomor-
phisms [4, 53–55], as well as pre-colouring extensions and scheduling [3, 5, 17, 39–41, 44, 46, 52]. A
complete complexity dichotomy for the retraction decision problem is now known as a consequence
of the CSP dichotomy [8, 58] (assuming P , NP). However, a corresponding graph-theoretical
characterisation is not known. A characterisation is known [18] for pseudoforests, which are graphs
in which each connected component has at most one cycle.

The complexity of exactly counting retractions to a fixed graphH is also classified completely [14]
(assuming FP , #P). In this case, there is a characterisation – if every connected component of H is
trivial, then counting retractions is in FP. Otherwise, counting retractions is #P-complete.

The first result on approximately counting retractions is the following classification for graphs
which are both square-free and triangle-free.

Theorem 5 ([21, Theorem 1.1]). Let H be a graph of girth at least 5.
i) If every connected component of H is an irreflexive star, a single looped vertex, or an edge with

two loops, then approximately counting retractions to H is in FP.
ii) Otherwise, if every connected component of H is an irreflexive caterpillar or a partially bristled

reflexive path, then approximately counting retractions to H is approximation-equivalent to

#BIS.
iii) Otherwise, approximately counting retractions to H is approximation-equivalent to #SAT.

Counting homomorphisms to square-free graphs has been studied before [27, 42] though those
results apply to counting modulo a prime number, and so they cannot be applied here.

In the past, graphs without squares have been studied in various other combinatorial settings: For
example, [2] investigates the complexity of finding 101-colourings of square-free graphs. Polarity
graphs are another natural class of square-free graphs that have been studied, e.g. [1, 6]. Wrochna
showed that square-free graphs are multiplicative [56, 57], solving a problem related to Hedetniemi’s
conjecture1 [51, Problem 7.1] and improving earlier results about the multiplicativity of square-free
graphs that contain triangles [11]. Furthermore, square-free graphs play an important role in
extremal graph theory and the study of the Turán number, e.g. [10, 20, 22, 23, 26, 48]. Recently,
it has been shown that certain bounds on the chromatic number with respect to distance-two
colouring of planar graphs are unique to square-free graphs [9].
1This conjecture has been refuted lately [50].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

1.2 Preliminaries

For a non-negative integer k we use [k] to denote the set {1, . . . ,k}. For sets X and Y we define
X × Y = {{x,y} | x ∈ X ,y ∈ Y } as an unordered version of the Cartesian product. The elements
of X × Y are multisets of size exactly 2. Using this notation the set of edges E(H) of a graph
H = (V (H), E(H)) is a subset of V (H) × V (H). An edge with two identical elements is a loop.
Correspondingly, a vertex v ∈ V (H) is called looped if {v,v} ∈ E(H) and unlooped otherwise. The
girth of a graph H is the length of a shortest cycle in H . All cycles have length at least 3.

We have already defined reflexive and irreflexive graphs. A graphH is amixed graph if it contains
both looped and unlooped vertices, i.e. if it is neither reflexive nor irreflexive. Given a graph H and
a subsetU of V (H), H [U] is the subgraph of H induced byU .

Given graphsG andH ,H(G,H) is the set of homomorphisms fromG toH andN
(
G → H

)
denotes

its size. Analogously, given a corresponding set of lists S,H((G, S),H) is the set of homomorphisms
from (G, S) to H and N

(
(G, S) → H

)
denotes its size.

We use #Ret(H) to denote the problem of approximately counting retractions to H (for a fixed
graph H which may have loops but does not have multi-edges). We use #Hom(H) to denote the
problem of approximately counting homomorphisms to H . Formally, these problems are defined as
follows.

Name: #Ret(H).
Input: An irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) | v ∈ V (G)} such that,

for all v ∈ V (G), |Sv | ∈ {1, |V (H)|}.
Output: N

(
(G, S) → H

)
.

Name: #Hom(H).
Input: An irreflexive graph G.
Output: N

(
G → H

)
.

The list homomorphisms counting problem, defined as follows, is a generalisation of #Ret(H).
Name: #LHom(H).
Input: An irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) | v ∈ V (G)}.
Output: N

(
(G, S) → H

)
.

If there is an approximation-preserving reduction [12] from a problem A to a problem B, we
write A ≤AP B.

Observation 6 ([21, Observation 1.2]). Let H be a graph. Then #Hom(H) ≤AP #Ret(H) ≤AP
#LHom(H).

For approximately counting list homomorphisms Galanis, Goldberg and Jerrum [25] give the
following complete classification.

Theorem 7 ([25]). Let H be a connected graph.

i) If H is an irreflexive complete bipartite graph or a reflexive complete graph, then #LHom(H) is

in FP.
ii) Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval graph,

then #LHom(H) is approximation-equivalent to #BIS.
iii) Otherwise, #LHom(H) is approximation-equivalent to #SAT.

1.3 Paper Outline

Theorem 1 is proved in Section 2. Theorem 2 is proved in Section 4. The corresponding #BIS-
easiness follows mainly from Theorem 1. The corresponding #SAT-hardness results are collected in
Section 3. Proving #SAT-hardness is the bulk of this work because of the combinatorial complexity

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:7

of designing reductions which establish #SAT-hardness for all square-free graphs (apart from
reflexive cliques, irreflexive caterpillars and those in HBIS).

2 #BIS-EASINESS RESULTS

In this section we prove Theorem 1, which states that approximately counting retractions to any
graph from the class HBIS (Definition 10) is #BIS-equivalent. The proof is built on a method for
generating #BIS-easiness results from [21, Section 2.2.1] which uses the framework of constraint
satisfaction problems. Intuitively, the method takes as input two CSP instances, say Iv and Ie, and
produces a graphHIv,Ie for which #Ret(HIv,Ie) ≤AP #BIS. The challenge is to find the right instances
Iv and Ie and to identify and generate corresponding general classes of #BIS-easy graphs. For the
convenience of the reader we repeat some definitions introduced in [21]. Let L be a set of Boolean
relations.

Name: #CSP(L).
Input: A set of variables X and a set of constraints C , where each constraint applies a relation

from L to a list of variables from X .
Output: The number of assignments σ : X → {0, 1} that satisfy all constraints in C .
Imp = {(0, 0), (0, 1), (1, 1)} is an arity-two Boolean relation. The constraint Imp(x,y) ensures

that, in any satisfying assignment σ , we have σ (x) =⇒ σ (y).
Definition 8 ([21, Definition 2.6]). Let Iv = (X ,Cv) and Ie = (X ,Ce) be instances of #CSP({Imp}).
We define the undirected graphHIv,Ie as follows. The vertices ofHIv,Ie are the satisfying assignments
of Iv. Given any assignments σ and σ ′ inV (HIv,Ie), there is an edge {σ ,σ ′} inHIv,Ie if and only if the
following holds: For every constraint Imp(x,y) inCe, we have σ (x) =⇒ σ ′(y) and σ ′(x) =⇒ σ (y).
Lemma 9 ([21, Lemmas 2.5 and 2.8]). Let Iv = (X ,Cv) and Ie = (X ,Ce) be instances of #CSP({Imp}).
Then #Ret(HIv,Ie) ≤AP #BIS.
Definition 10. A graph H is inHBIS if it can be defined as follows. For some positive integer Q ,
the vertex set V (H) is of the form V (H) =

⋃Q
i=0 Ki ∪

⋃Q
i=1 Bi where K0, . . . ,KQ induce reflexive

cliques in H , and B1, . . . ,BQ are disjoint sets of unlooped degree-1 vertices (called bristles). There
are Q + 2 vertices p0, . . . ,pQ+1 in V (H) such that each clique Ki contains both pi and pi+1. The
intersection of the cliques is given as follows.

• For i ∈ [Q], Ki−1 ∩ Ki = {pi }.
• For i, j ∈ {0, . . . ,Q} with |j − i | > 1, Ki ∩ Kj = ∅.

The size of each set Bi of bristles satisfies 0 ≤ |Bi | ≤ (|Ki−1 | − 1) · (|Ki | − 1). Finally, the edge set of
H is given as follows.

E(H) =

Q⋃
i=0

(Ki × Ki) ∪

Q⋃
i=1

({pi } × Bi).

For an example graph from the classHBIS see Figure 5.
Let H ∈ HBIS be as defined in Definition 10. The high-level-structure of the proof of Theorem 1

is as follows. We first define two instances Iv and Ie of #CSP({Imp}), then we establish that H is
isomorphic to HIv,Ie (Lemma 21), which then allows us to apply Lemma 9.

To give more intuition we will use a running example where H is the graph depicted in Figure 5.
To separate this example from the rest of the proof we use text boxes.

Let V ∗ be the set of looped vertices in H , i.e. V ∗ =
⋃Q

i=0 Ki and let X = {xv | v ∈ V ∗ \ {p0}} be a
set of Boolean variables. We fix an ordering “<” on the vertices ofV ∗ with two properties: (1) In Ki ,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

p0 r1 p1 r2 p2 p3 p4

K0
K1

K2
K3

B1 B2 B3

Fig. 5. Example graph from HBIS for Q = 3. Note that |B1 | = 4 = (|K0 | − 1) · (|K1 | − 1), |B2 | = 2 =
(|K1 | − 1) · (|K2 | − 1) and |B3 | = 1 = (|K2 | − 1) · (|K3 | − 1).

pi is the smallest vertex and pi+1 is the largest; (2) The order of the Ki ’s is respected in the sense
that, for any pair of distinct vertices u,v ∈ V ∗, if there is an i < j such that u ∈ Ki and v ∈ Kj , then
u < v . We defineU = {Imp(xu , xv) | u > v}.

Consider I ∗v = (X ,U) and I ∗e = (X ,U). The graph HI ∗v ,I ∗e is simply a reflexive path on |V ∗ | vertices.
We will construct Iv from I ∗v by choosing a subset Cv of U — this allows the creation of bristles.
Similarly we will construct Ie from I ∗e by choosing a subset Ce ofU — this creates reflexive cliques
amongst the vertices of the reflexive path in HI ∗v ,I ∗e . In order to define Cv and Ce, for i ∈ {0, . . . ,Q},
we define the sets of constraints De (i) (the constraints that we will delete fromU to define Ce) as
follows.

De (i) = {Imp(xu , xv) ∈ U | u,v ∈ Ki \ {pi }}. (1)

For i ≥ 1 (i.e. for i ∈ [Q]), we define the sets of constraints Dv (i) (the constraints we will delete
fromU to define Cv). The definition of Dv (i) is a bit more involved and uses the following sets:

A(i) = {Imp(xu , xv) ∈ U | u ∈ Ki \ {pi }, v ∈ Ki−1 \ {pi−1}}. (2)

In order to model the set of bristles Bi we will “delete” exactly |Bi | constraints that belong to
A(i) from Cv. As a means to specify which constraints will be deleted we define an order on the
constraints inU (which uses the order < on the vertices in V ∗ which we fixed previously). There
are several orders which would work.

Definition 11. We define an order “⪯” on U . Let Imp(xu , xv), Imp(xu′, xv ′) ∈ U . Then we have
Imp(xu , xv) ⪯ Imp(xu′, xv ′) if one of the following holds:

• u < u ′.
• u = u ′ and v ≥ v ′.

If Imp(xu , xv) ⪯ Imp(xu′, xv ′) and the ordered pair (u,v) is distinct from the ordered pair (u ′,v ′)

then Imp(xu , xv) ≺ Imp(xu′, xv ′).

Now let Dv (i) be the |Bi | smallest elements of A(i) with respect to ⪯ as given in Definition 11.
Note that by the definition of A(i) (Equation (2)) and the bound on |Bi | (Definition 10) this is
well-defined since

|Bi | ≤ (|Ki−1 | − 1) · (|Ki | − 1) = |A(i)|.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:9

Finally, we define Cv and Ce as follows.

Cv = U \

(Q⋃
i=1

Dv (i)

)
and Ce = U \

(Q⋃
i=0

De (i)

)
. (3)

In our running example, order the variables in V ∗ from left to right. We have X =

{xr1, xp1, xr2, xp2, xp3, xp4 } as the set of variables of Iv and Ie. Since |B1 | = 4 the set Dv (1) contains
the 4 smallest elements of A(1) = {Imp(xr2, xp1), Imp(xr2, xr1), Imp(xp2, xp1), Imp(xp2, xr1)}, which
means Dv (1) = A(1). Similarly, since |B2 | = 2, the set Dv (2) contains the 2 smallest elements of
A(2) = {Imp(xp3, xp2), Imp(xp3, xr2)}, which means Dv (2) = A(2). Finally, since |B3 | = 1, we have
Dv (3) = A(3) = {Imp(xp4, xp3)}. Thus,

Cv = {Imp(xp4, xp2), Imp(xp4, xr2), Imp(xp4, xp1), Imp(xp4, xr1),
Imp(xp3, xp1), Imp(xp3, xr1), Imp(xp2, xr2), Imp(xp1, xr1)}. (4)

Regarding the edge constraints we have De (0) = {Imp(xp1, xr1)}, De (1) = {Imp(xp2, xr2)}, De (2) =
∅ and De (3) = ∅ and hence

Ce = U \ {Imp(xp1, xr1), Imp(xp2, xr2)}. (5)

Recall that the satisfying assignments of Iv correspond to the vertices of HIv,Ie . For v ∈ V ∗ let
σv : X → {0, 1} be the assignment with

σv (xu) =

{
1, if u ≤ v

0, otherwise,

where u ∈ V ∗ \ {p0} (i.e. xu ∈ X). Note that σp0 is the all-zero assignment since p0 is the minimum
vertex in V ∗. The reason that we did not introduce a variable for p0 in the definition of X is that
its role is captured by the all-zero assignment to X . We will call assignments of the form σv path

assignments. The path assignments inherit an order from the order on the set V ∗ that we fixed,
i.e. σu < σv if and only if u < v .

Lemma 12. All path assignments satisfy Iv = (X ,Cv). If σp0, . . . ,σpQ+1 are the path assignments

ordered by <, then they form a reflexive path in HIv,Cv . The reflexive path is not necessarily induced

by its vertices.

Proof. This proof merely requires that Cv ⊆ U and Ce ⊆ U — it does not use the detailed
definitions of Cv and Ce.

First, note that the assignments σv satisfy the #CSP({Imp})-instance (X ,U). Thus, they will still
be satisfying assignments if we delete constraints fromU .
We now investigate the edges between the vertices σp0, . . . ,σpQ+1 of HIv,Ie . From Definition 8

recall that, given any satisfying assignments σ and σ ′ of Iv, there is an edge {σ ,σ ′} in HIv,Ie if and
only if the following holds:

For every constraint Imp(x,y) in Ce, we have σ (x) =⇒ σ ′(y) and σ ′(x) =⇒ σ (y). (6)

Using (6) it can easily be checked that for Ce = U (and therefore for all Ce ⊆ U), the vertices
σp0, . . . ,σpQ+1 form a reflexive path, i.e. these vertices are looped and for v ∈ V ∗ \ {p0} and
v ′ = max{u ∈ V ∗ | u < v} we have that {σv ′,σv } is an edge in HIv,Ie . □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Lemma 12 shows that even if we were to enforce all constraints in U both in the modelling
of vertices (I ∗v = (X ,U)) and of edges (I ∗e = (X ,U)), the graph HI ∗v ,I ∗e always contains a reflexive
path on |V ∗ | vertices. As noted earlier, HI ∗v ,I ∗e is precisely this reflexive path. Our definition of
Ce, given in (3), ensures that Ce ⊆ U so it uses a subset of the constraints, which leads to the
possibilitiy of more edges in HIv,Ie . The idea behind the construction is that a vertex v ∈ V ∗ will be
modelled by the satisfying assignment σv , which is a vertex in HIv,Ie . The previous lemma shows
that these assignments form a reflexive path. We now show how the clique structure is modelled.
Intuitively, the deleted constraints allow shortcuts that form cliques along the underlying path
of path assignments. The following observation follows immediately from the definition of De (i)
in (1).
Observation 13. For all i ∈ [Q], v ∈ V ∗

with pi < v and all k ∈ {0, . . . ,Q}, Imp(xv , xpi) < De (k)
and consequently Imp(xv , xpi) ∈ Ce (since Imp(xv , xpi) ∈ U).

Lemma 14. Two vertices u,v ∈ V ∗
are adjacent in H if and only if σu is adjacent to σv in HIv,Ie .

Proof. First we consider the case where u,v ∈ V ∗ are adjacent. Then there exists an index i
such that u,v ∈ Ki . Consequently pi ≤ u ≤ pi+1 and pi ≤ v ≤ pi+1. Therefore, forw ∈ V ∗, ifw ≤ pi
then σu (xw) = 1 and σv (xw) = 1, and ifw > pi+1 then σu (xw) = 0 and σv (xw) = 0. Let Imp(xt , xs)
be some constraint in Ce. Then Imp(xt , xs) < De (i) and, by the Definition of De (i) in (1), we have
at least one of s ≤ pi or t > pi+1. Using these facts, we can verify (6) for σ = σu and σ ′ = σv which
shows that σu is adjacent to σv in HIv,Ie .
Now assume that u and v are not adjacent. Then there exist indices i , j from {0, . . . ,Q} such

thatu ∈ Ki \{pi+1},v < Ki ,v ∈ Kj \{pj+1} andu < Kj . Without loss of generality assume i < j . Then
u < pi+1 < v so σv (xv) = 1 and σu (xpi+1) = 0. However, by Observation 13, Imp(xv , xpi+1) ∈ Ce and
consequently σu and σv are not adjacent in HIv,Ie . □

In our example, the vertices σp0,σr1,σp1,σr2,σp2,σp3,σp4 form a reflexive path (as guaranteed by
Lemma 12). Furthermore, {σp0,σp1 } is an edge since Imp(xp1, xr1) < Ce by (5), and {σp1,σp2 } is an
edge since Imp(xp2, xr2) < Ce by (5). The subgraph of HIv,Ie induced by the path assignments is as
depicted in Figure 6 and is isomorphic to H [V ∗] = H [{p0, r1,p1, r2,p2,p3,p4}] (as is guaranteed by
Lemma 14).

σp0 = (0, 0, 0, 0, 0, 0)

σr1 = (1, 0, 0, 0, 0, 0)

σp1 = (1, 1, 0, 0, 0, 0)

σr2 = (1, 1, 1, 0, 0, 0)

σp2 = (1, 1, 1, 1, 0, 0)

σp3 = (1, 1, 1, 1, 1, 0)

σp4 = (1, 1, 1, 1, 1, 1)

Fig. 6. The subgraph ofHIv,Ie induced by the path assignments. If a vertex corresponds to a path assignment

σv of Iv then its label is of the form σv = (σv (xr1),σv (xp1),σv (xr2),σv (xp2),σv (xp3),σv (xp4)).

With Lemma 14 we have established the clique structure of the looped vertices. Next we will
model the bristles that are attached to the vertices p1, . . . ,pQ . To do this, we consider satisfying
assignments of Iv that are not path assignments, i.e. that are not of the form σv . These assignments
are called bristle assignments.
Definition 15. An assignment β : X → {0, 1} is a bristle assignment if and only if there exist
u,v ∈ V ∗ \ {p0} with u < v such that β(xu) = 0 and β(xv) = 1.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:11

Definition 16. For i ∈ [Q], a ∈ Ki−1 \ {pi−1} and b ∈ Ki \ {pi } let βi [a,b] : X → {0, 1} be the
assignment with

βi [a,b](xu) =

1, if u < a

0, if a ≤ u ≤ pi

1, if pi < u ≤ b

0, otherwise (if b < u),

(7)

where u ∈ V ∗ \ {p0}. Hence βi [a,b] is of the following form.

xu . . . xa . . . xpi . . . xb . . . xpQ+1
βi [a,b](xu) 1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0

Note that a is the minimum index for which βi [a,b] takes value 0, and b is the maximum index for
which βi [a,b] takes value 1. We say that a bristle assignment is good if it is of the form βi [a,b].

Observation 17. Since Cv ⊆ U the following are equivalent:

(I) βi [a,b] is a satisfying assignment of Iv.
(II) For all s, t ∈ V ∗ \ {p0} with a ≤ s ≤ pi and pi < t ≤ b it holds that Imp(xt , xs) < Cv.

Lemma 18. Every bristle assignment that satisfies Iv = (X ,Cv) is good.

Proof. The property ofCv that is used in this proof is thatU \
⋃

i ∈[Q]A(i) ⊆ Cv and therefore if
a constraint fromU is not in Cv it has to be in one of the sets A(i).
Let β be a bristle assignment that satisfies Iv. Let a be the minimum index with β(xa) = 0 and

let b be the maximum index with β(xb) = 1. Since β is a bristle assignment, b > a. Then, since β
is a satisfying assignment, Imp(xb , xa) < Cv. Therefore Imp(xb , xa) ∈ A(i) for some i ∈ [Q], and
therefore (by the definition of A(i)), b ∈ Ki \ {pi } and a ∈ Ki−1 \ {pi−1}. This is consistent with
Definition 16. We will show that β = βi [a,b]. Let u ∈ V ∗ \ {p0}. We investigate the value of β(xu)
depending on u to show that β takes values as given in (7):

• If u < a, by the minimality of a we have β(xu) = 1.
• If u = a, then β(xu) = β(xa) = 0 by the choice of a.
• If a < u ≤ pi , then u < Ki \ {pi } which implies Imp(xu , xa) < A(i) and consequently, since
Imp(xu , xa) is in U , we have Imp(xu , xa) ∈ Cv (also using the fact that Imp(xu , xa) cannot be
in any of the other sets A(k) since a ∈ Ki−1 \ {pi−1}). Therefore it holds that β(xu) = 0.

• If pi < u < b, then u < Ki−1 which implies Imp(xb , xu) < A(i) and consequently, since
Imp(xb , xu) is inU , we have Imp(xb , xu) ∈ Cv (also using the fact that Imp(xb , xu) cannot be
in any of the other sets A(k) since b ∈ Ki \ {pi }). Therefore it holds that β(xu) = 1.

• If u = b, then β(xu) = β(xb) = 1 by the choice of b.
• If b < u, by the maximality of b we have β(xu) = 0.

□

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

We can now check which of the (good) bristle assignments satisfy Iv in the running example.
First, consider the set Dv (1). We already showed, in the text box containing (4), that Dv (1) =
{Imp(xr2, xp1), Imp(xr2, xr1), Imp(xp2, xp1), Imp(xp2, xr1)}. From the definition of Cv (Equation (3)),
(i) Imp(xr2, xp1) < Cv.
(ii) Imp(xr2, xr1) < Cv.
(iii) Imp(xp2, xp1) < Cv.
(iv) Imp(xp2, xr1) < Cv.

The good bristle assignments of the form β1[a,b] have a ∈ K0 \ {p0} = {r1,p1} and b ∈ K1 \ {p1} =
{r2,p2} so they are β1[p1, r2], β1[r1, r2], β1[p1,p2] and β1[r1,p2], which are as follows:

xu xr1 xp1 xr2 xp2 xp3 xp4
β1[p1, r2](xu) 1 0 1 0 0 0
β1[r1, r2](xu) 0 0 1 0 0 0
β1[p1,p2](xu) 1 0 1 1 0 0
β1[r1,p2](xu) 0 0 1 1 0 0

We now apply Observation 17. From (i) it follows that β1[p1, r2] satisfies Iv. Similarly, from (i)
and (ii) it follows that β1[r1, r2] satisfies Iv. From (i) and (iii) it follows that β1[p1,p2] satisfies Iv.
Finally, from (i), (ii), (iii) and (iv) it follows that β1[r1,p2] satisfies Iv. The four bristle assignments
that we have checked correspond to the four bristles in B1 in Figure 5. Similarly, one can check,
from the definitions of Dv (2) and Dv (3), that β2[p2,p3], β2[r2,p3] and β3[p3,p4] are the only other
satisfying bristle assignments.

Lemma 19. For every bristle assignment β that satisfies Iv = (X ,Cv) there exists i ∈ [Q] such that

σpi is the only neighbour of β in HIv,Ie .

Proof. Here wewill use the fact thatU \
⋃

i ∈[Q]A(i) ⊆ Cv and the fact thatCe = U \

(⋃Q
k=0 De (k)

)
.

Let β be a bristle assignment that satisfies Iv. By Lemma 18, β is good, i.e. there exist i ∈ [Q],
a ∈ Ki−1 \ {pi−1} and b ∈ Ki \ {pi } such that β = βi [a,b]. We will show that σpi is the only
neighbour of β = βi [a,b] in HIv,Ie .

Letψ be some satisfying assignment of Iv which is adjacent to βi [a,b]. Note that βi [a,b](xpi) = 0.
This fact together with Observation 13 (which states that for all u ∈ V ∗ with pi < u we have
Imp(xu , xpi) ∈ Ce) implies that, for all u > pi ,ψ (xu) = 0.
Let v be the minimum vertex with pi < v . Then pi < v ≤ b and therefore βi [a,b](xv) = 1.

The choice of v ensures that for all vertices u ∈ V ∗, u ≤ pi iff u < v . Therefore, if u ≤ pi we
have Imp(xv , xu) ∈ Ce (since v ∈ Ki \ {pi } but u < Ki \ {pi } and hence Imp(xv , xu) < De (i)) and
consequentlyψ (xu) = 1. Summarising, we obtain

for all u ≤ p,ψ (xu) = 1 and for all u > pi ,ψ (xu) = 0.

Thus,ψ = σpi .
It remains to check that βi [a,b] and σpi are in fact adjacent. To this end we verify (6):

Claim: If Imp(xt , xs) ∈ Ce then βi [a,b](xt) ⇒ σpi (xs).
Proof of the claim:We check for possible violations. The only relevant s and t are those for which
s < t , βi [a,b](xt) = 1 and σpi (xs) = 0, i.e., all s and t satisfying pi < s < t ≤ b ≤ pi+1. However,
constraints of this form are in De (i) and hence are not in Ce. (End of the proof of the claim.)

Claim: If Imp(xt , xs) ∈ Ce then σpi (xt) ⇒ βi [a,b](xs).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:13

Proof of the claim: Again we check for violations. The only relevant s and t are those for which
s < t , σpi (xt) = 1 and βi [a,b](xs) = 0, i.e., all s and t satisfying pi−1 < a ≤ s < t ≤ pi . However,
constraints of this form are in De (i − 1) and hence are not in Ce. (End of the proof of the claim.) □

Lemma 20. For each i ∈ [Q] there are exactly |Bi | good bristle assignments that satisfy Iv and are
adjacent to σpi in HIv,Ie .

Proof. Every good bristle assignment is of the form βi [a,b] for some i ∈ [Q], a ∈ Ki−1 \ {pi−1}
and b ∈ Ki \ {pi }. In the proof of Lemma 19 we have shown that the only neighbour of βi [a,b] is
σpi . Then the following claim completes the proof of the lemma:

Claim: βi [a,b] satisfies Iv if and only if Imp(xb , xa) is among the |Bi | smallest elements of

A(i).

Proof of the claim: Since a ∈ Ki−1 \ {pi−1} and b ∈ Ki \ {pi } we have Imp(xb , xa) ∈ A(i).
First consider the case where Imp(xb , xa) is one of the |Bi | smallest elements of A(i). From

Observation 17 we know that βi [b,a] satisfies Iv if and only if for all s, t ∈ V ∗ \ {p0} with a ≤ s ≤ pi
and pi < t ≤ b it holds that Imp(xt , xs) < Cv. Note that each such Imp(xt , xs) is in A(i) and by
Definition 11, Imp(xt , xs) ⪯ Imp(xb , xa). Thus, Imp(xt , xs) ∈ Dv (i) and we obtain Imp(xt , xs) < Cv
as required.

Now consider the remaining case where Imp(xb , xa) is not among the the |Bi | smallest elements
of A(i). Then, by our choice of Dv (i), Imp(xb , xa) < Dv (i). Moreover, for all k , i , Imp(xb , xa) <
Dv (k) since Imp(xb , xa) ∈ A(i), Dv (k) ⊆ A(k) and A(k) ∩ A(i) = ∅. Hence Imp(xb , xa) ∈ Cv and
consequently βi [b,a] does not satisfy Iv by Observation 17. (End of the proof of the claim.) □

Lemma 21. Let Iv = (X ,Cv) and Ie = (X ,Ce). Then HIv,Ie is isomorphic to H .

Proof. Here we collect the previous results. By Lemma 12 the path assignments satisfy Iv (and
hence are vertices of HIv,Ie). Lemma 14 shows that the subgraph of HIv,Ie induced by the path
assignments is isomorphic to H [V ∗]. By Lemma 18 all other satisfying assignments are good bristle
assignments and by Lemma 19 each of these good bristle assignments has a unique neighbour, which
is among σp1, . . . ,σpQ . Then Lemma 20 shows that there are exactly |Bi | good bristle assignments
adjacent to σpi . □

We can now prove Theorem 1, which we re-state at this point for the convenience of the reader.

Theorem1. LetH be a graph inHBIS. Then approximately counting retractions toH is #BIS-equivalent
under approximation-preserving reductions.

Proof. Let H ∈ HBIS. The #BIS-easiness part of Theorem 1 follows directly from Lemmas 21
and 9. The #BIS-hardness part follows from #Hom(H) ≤AP #Ret(H) (Observation 6) together
with the fact that #BIS ≤AP #Hom(H) for all connected graphs H other than reflexive cliques and
irreflexive stars [24, Theorem 1]. □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

In our running example we conclude by showing in Figure 7 how H is encoded as HIv,Ie . We have
already demonstrated which assignments are satisfying and thus are vertices of HIv,Ie . Using (5)
and (6) it is straightforward to verify (with some work) that each satisfying bristle assignment of
the form βi [a,b] is in fact adjacent only to σpi .

σp0 = (0, 0, 0, 0, 0, 0)
σr1 = (1, 0, 0, 0, 0, 0)

σp1 = (1, 1, 0, 0, 0, 0)
σr2 = (1, 1, 1, 0, 0, 0)

σp2 = (1, 1, 1, 1, 0, 0)
σp3 = (1, 1, 1, 1, 1, 0)

σp4 = (1, 1, 1, 1, 1, 1)

β1[p1, r2] = (1, 0, 1, 0, 0, 0)
β1[r1, r2] = (0, 0, 1, 0, 0, 0)
β1[p1, p2] = (1, 0, 1, 1, 0, 0)
β1[r1, p2] = (0, 0, 1, 1, 0, 0)

β2[p2, p3] = (1, 1, 1, 0, 1, 0)
β2[r2, p3] = (1, 1, 0, 0, 1, 0)

β3[p3, p4] = (1, 1, 1, 1, 0, 1)

Fig. 7. The graph HIv,Ie . If a vertex corresponds to a satisfying assignment ρ of Iv then its label is of the

form ρ = (ρ(xr1), ρ(xp1), ρ(xr2), ρ(xp2), ρ(xp3), ρ(xp4)).

3 #SAT-HARDNESS RESULTS

From previous results we already know the following:
• Theorem 5 classifies the complexity of approximately counting retractions to H for all graphs
H that are both square-free and triangle-free (i.e. have girth at least 5).

• For irreflexive H , the proof of Theorem 5 does not use triangle-freeness — [21, Theorem 2.3]
gives a trichotomy for approximately counting retractions to the class of irreflexive square-
free graphs.

Therefore, we investigate square-free graphs that contain at least one triangle and at least one
looped vertex. It turns out that we have to work through a number of technical cases to cover all
#SAT-hard graphs with these properties (and hence all #SAT-hard square-free graphs).

For a positive integer q the graphWRq is a looped star on q + 1 vertices (the underlying star has
q degree-1 vertices). The (reflexive) net is a looped triangle where each vertex of the triangle has
an additional looped neighbour, as shown in the following illustration:

Here is an overview of the cases that we consider:
• In Section 3.2 we show that mixed triangles induce #SAT-hardness.
• In Section 3.3 we show in which cases the neighbourhood of a looped vertex induces #SAT-
hardness.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:15

• In Sections 3.4, 3.5 and 3.6 we show #SAT-hardness for square-free graphs with an induced
WR3, with an induced net and with an induced reflexive cycle of length at least 5, respec-
tively. Essentially, these three sections deal with the graphs from the excluded subgraph
characterisation of reflexive proper interval graphs (see [25, Section 1 and Appendix A] for
the details about this characterisation).

3.1 Retractions and Neighbourhoods

Definition 22. For a graph H and a vertex v ∈ V (H) we define the (distance-1) neighbourhood
of v as ΓH (v) = {u ∈ V (H) | {u,v} ∈ E(H)}. (In particular, this might include v itself.) Then
degH (v) = |ΓH (v)| is the degree ofv . More generally, the distance-k neighbourhood ofv is defined as
ΓkH (v) = {u ∈ V (H) | There is a walkW = u,w1, . . . ,wk−1,v (on k edges) in H }. Let U be a subset
of V (H). Then ΓH (U) =

⋂
v ∈U ΓH (v) is the set of common neighbours of the vertices inU .

The following well-known and simple observation shows that, for approximately counting
retractions, hardness carries over from subgraphs that are induced by the neighbourhood of a
vertex.

Observation 23. Let H be a graph and let u be a vertex of H . Then #Ret(H [ΓH (u)]) ≤AP #Ret(H).

Proof. Let (G, S) be an input to #Ret(H [ΓH (u)]), let v1, . . . ,vn be the vertices of G and S =
{Sv | v ∈ V (G)}. Let w be a vertex distinct from the vertices in G. Then we construct the graph
G ′ with vertices V (G ′) = V (G) ∪ {w} and edges E(G ′) = E(G) ∪ {{w,vi } | i ∈ [n]}. We set
S′ = {S ′v | v ∈ V (G ′)}, where

S ′v =

{u}, if v = w
Sv , if v ∈ V (G) and |Sv | = 1
V (H), otherwise.

Then N
(
(G, S) → H [ΓH (u)]

)
= N

(
(G ′, S′) → H

)
. □

3.2 Square-Free Graphs with Mixed Triangles

Lemma 24. Let H be a square-free graph which contains a triangle with exactly two looped and one

unlooped vertex. Then #SAT ≤AP #Ret(H).

Proof. Let b1,b2, r be a triangle inH , where b1 and b2 are looped and r is unlooped. Consider the
neighbourhood ΓH (b1)∩ΓH (b2) = ΓH ({b1,b2}). SinceH is square-free,H [ΓH (b1)∩ΓH (b2)] is precisely
the triangle b1,b2, r . The problem #Hom(H [{b1,b2, r }]) corresponds to counting independent sets
where vertices not in the independent set have a weight of 2 and vertices in the independent
set have weight 1. It is well-known that approximately counting weighted independent sets is
#SAT-hard, see for instance [30, Lemma 2]. This gives #SAT ≤AP #Hom(H [ΓH (b1) ∩ ΓH (b2)]). From
Observation 6 it follows immediately that #SAT ≤AP #Ret(H [ΓH (b1) ∩ ΓH (b2)]).
Finally, one can easily observe that #Ret(H [ΓH (b1) ∩ ΓH (b2)]) ≤AP #Ret(H): Let (G, S) be an

input to #Ret(H [ΓH (b1) ∩ ΓH (b2)]) and let S = {Sv | v ∈ V (G)}. Letw1 andw2 be vertices distinct
from the vertices inG . Then we construct the graphG ′ with vertices V (G ′) = V (G) ∪ {w1,w2} and
edges E(G ′) = E(G) ∪

(
V (G) × {w1,w2}

)
. We set S′ = {S ′v | v ∈ V (G ′)}, where

S ′v =

{b1}, if v = w1

{b2}, if v = w2

Sv , if v ∈ V (G) and |Sv | = 1
V (H), otherwise.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Then N
(
(G, S) → H [ΓH (b1) ∩ ΓH (b2)]

)
= N

(
(G ′, S′) → H

)
. □

Lemma 25. Let H be a square-free graph which contains a triangle with exactly two unlooped and

one looped vertex. Then #SAT ≤AP #Ret(H).

Proof. Let HT be a triangle in H with vertices b, r1 and r2, where b is looped and both r1 and r2
are unlooped. Let H ′ = H [ΓH (b)]. By Observation 23 it holds that #Ret(H ′) ≤AP #Ret(H). Suppose
we can show that #Ret(H ′[{b, r1}]) ≤AP #Ret(H ′). Then H ′[{b, r1}] is a single edge with one
looped (b) and one unlooped vertex (r1) and it is well-known that counting homomorphisms to
this graph corresponds to counting independent sets, which in turn is known to be #SAT-hard ([12,
Theorem 3]). Summarising we have

#SAT ≤AP #Hom(H ′[{b, r1}]) ≤AP #Ret(H ′[{b, r1}]) ≤AP #Ret(H ′) ≤AP #Ret(H),

where the second reduction is from Observation 6. This proves the lemma. It remains to prove the
following claim.

Claim: #Ret(H ′[{b, r1}]) ≤AP #Ret(H ′).
Proof of the claim: For u ∈ V (H ′) let w(u) be the number of common neighbours of r1 and u in
H ′. Thenw(b) = 2 since r1 and b have two common neighbours: r2 and b, and these are their only
common neighbours as H ′ is square-free. Similarly,w(r1) = 2 as the “common” neighbours in this
case are simply the neighbours of r1, which are only b and r2 (since H ′ is square-free). Now let
u ∈ V (H ′) \ {b, r1}. The vertex b is a common neighbour of u and r1 since every vertex in H ′ is a
neighbour of b. It turns out that b is the only common neighbour of u and r1: Suppose there exists
a vertex u ′ , b in H ′ which is a common neighbour of u and r1. If u ′ = u (see Figure 8 on the
left) then u is adjacent to r1. Additionally, u is then looped and hence u , r2. Then u, r1, r2,b is a

r1

b

r2

u = u ′

r1

b

r2

u

u ′

Fig. 8. Contradictions to the square-freeness of the graph H ′
.

square. If otherwise u ′ , u then u,u ′, r1,b is a square (see Figure 8 on the right), both cases give a
contradiction. So we have shown that, for u ∈ V (H ′),

w(u) = 2 if u ∈ {b, r1}, andw(u) = 1 otherwise. (8)
Intuitively, we will use this fact to “boost” the vertices b and r1 and make them exponentially more
likely to be used by a homomorphism to H ′.
Let q be the number of vertices of H ′. Now let (G, S) be an n-vertex input to #Ret(H ′[{b, r1}])

and let ε be the desired precision. As usual, from (G, S) we define an input (G ′, S′) to #Ret(H ′).
We introduce a vertex p distinct from the vertices of G that will serve as a pin to the vertex r1
in H ′. Then, for each v ∈ V (G) we introduce an independent set on s vertices all of which are
connected only to p and v . The parameter s will depend on the input size, specifically we set s = n2.
Intuitively it is clear that this gadget introduces a weight equal tow(u)s for each vertex u ∈ V (H ′).
For sufficiently large s , the image ofv is likely to be b or r1. This implies the statement of the lemma.
The reader that trusts this intuition can skip reading the following calculations.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:17

We give the full details for the sake of completeness: For each v ∈ V (G), let Iv be an independent
set of size s with vertices distinct from the remaining vertices of G ′. Then G ′ is the graph with
vertices V (G ′) = V (G) ∪ {p} ∪

⋃
v ∈V (G) Iv and edges E(G ′) = E(G) ∪

⋃
v ∈V (G)

(
{v,p} × Iv

)
. We set

S′ = {S ′v | v ∈ V (G ′)}, where

S ′v =

{r1}, if v = p
Sv , if v ∈ V (G) and |Sv | = 1
V (H ′), otherwise.

We say that a homomorphismh ∈ H((G ′, S′),H ′) is full ifh(V (G)) ⊆ {b, r1}. LetZ ∗ be the number
of full homomorphisms from (G ′, S′) to H ′. Let Z0 be the number of non-full homomorphisms from
(G ′, S′) to H ′. Then

N
(
(G ′, S′) → H ′

)
= Z ∗ + Z0. (9)

For h ∈ H((G, S),H ′), let Z (h) be the number of homomorphisms h′ ∈ H((G ′, S′),H ′) for which
h = h′ |V (G). By the construction of G ′, every vertex v ∈ V (G) with h(v) ∈ {b, r1} contributes a
factor of 2s to Z (h), whereas a vertex v ∈ V (G) with h(v) < {b, r1} contributes a factor of 1 to Z (h).
It follows that

Z ∗ =
∑

h∈H((G ,S),H ′), h full
Z (h) = 2sn · N

(
(G, S) → H ′[{b, r1}]

)
, (10)

and
Z0 =

∑
h∈H((G ,S),H ′), h non-full

Z (h) ≤ 2s(n−1) · N
(
(G, S) → H ′

)
≤ 2s(n−1) · qn .

Therefore,
Z0/2sn ≤ 2−s · qn ≤ 1/4, (11)

where the last inequality holds for sufficiently large n by the choice s = n2. Summarising, by (9)
and (10), we have

N
(
(G, S) → H ′[{b, r1}]

)
=

Z ∗

2sn ≤
N

(
(G ′, S′) → H ′

)
2sn

and, using (9), (10) as well as (11), we obtain
N

(
(G ′, S′) → H ′

)
2sn =

Z ∗

2sn +
Z0
2sn ≤ N

(
(G, S) → H ′[{b, r1}]

)
+ 1/4.

Hence N
(
(G ′, S′) → H ′

)
/2sn ∈

[
N

(
(G, S) → H ′[{b, r1}]

)
,N

(
(G, S) → H ′[{b, r1}]

)
+1/4

]
. LetQ be

the solution returned by an oracle call to #Ret(H ′) with input ((G ′, S′), ε/21), i.e. an approximation
of N

(
(G ′, S′) → H ′

)
. Then the output ⌊Q/2sn⌋ approximates N

(
(G, S) → H ′[{b, r1}]

)
with the

desired precision as was shown in [12, Proof of Theorem 3]. (End of the proof of the claim.) □

3.3 Square-Free Neighbourhoods of a Looped Vertex

Now we consider graphs of the form X (k1,k2,k3) (see Figure 9). Why are we interested in these
graphs? Let H be a square-free graph with a looped vertex b and let H not contain any mixed
triangle as a subgraph. Then consider H [ΓH (b)], the graph induced by the neighbourhood of b.
SinceH does not contain mixed triangles, the unlooped neighbours of b do not have any neighbours
in H [ΓH (b)] apart from b. Since H is square-free, H [ΓH (b)] is square-free as well and therefore
a looped neighbour u , b of b can have at most one additional neighbour apart from b and u
itself (within H [ΓH (b)]). It follows that H [ΓH (b)] is of the form X (k1,k2,k3). Note that X (k1,k2, 0)
does not contain any cycles. Therefore the hardness results for graphs of this form come from the
classification for graphs of girth at least 5 (Theorem 5). The remaining cases (k3 ≥ 1) are covered in
this work. As an overview in advance, we will obtain #SAT ≤AP #Ret(X (k1,k2,k3)) in the following

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

cases (where in most cases we actually show the stronger result #SAT ≤AP #Hom(X (k1,k2,k3)) —
#SAT-hardness for #Ret(X (k1,k2,k3)) then follows from Observation 6.):

• k3 = 0 and
– k2 = 0 and k1 ≥ 1 (Theorem 5)
– k2 = 1 and k1 ≥ 1 (Theorem 5)
– k2 = 2 and k1 ≥ 2 (Theorem 5)

• k3 = 1 and
– k2 = 0 and k1 ≥ 1 (Lemma 36)
– k2 = 1 and k1 ≥ 3 (Lemma 37)

• k3 = 2, k2 = 0 and k1 ≥ 5 (Lemma 38)
• k2 + k3 ≥ 3 (Lemma 40)

Following the classification for graphs of the formX (k1,k2,k3)we give a hardness result (Lemma 39)
which uses properties of the distance-2 neighbourhood of a looped vertex b in H .

1 k1 1 k2

b

1 k3

Fig. 9. The graph X (k1,k2,k3).

A useful and well-known tool for proving hardness results for approximate counting problems
are gadgets based on complete bipartite graphs where two states dominate (see, e.g., [12, Lemma
25], [31, Section 5], [43, Lemma 5.1] and [21, Lemma 2.30]). Let F (H) = {u ∈ V (H) | ΓH (u) = V (H)}.
One can use the described tool to show that, under certain conditions, a homomorphism from a
complete bipartite graph to H will typically map one side to F (H) and the other to V (H). In this
case it is then easy to reduce from counting independent sets to obtain #SAT-hardness. Formally,
we use the version stated by Kelk [43]:

Lemma 26 ([43, Lemma 5.1]). Let H be a graph with ∅ ⊊ F (H) ⊊ V (H). Suppose that, for every pair

(S,T) with ∅ ⊆ S,T ⊆ V (H) satisfying S ⊆ ΓH (T) and T ⊆ ΓH (S), at least one of the following holds:

(1) S = F (H).

(2) T = F (H).

(3) |S | · |T | < |F (H)| · |V (H)|.

Then #SAT ≤AP #Hom(H).

In order to prove Lemmas 36 and 37 we will use Lemma 26 and, in addition, a reduction from
the problem of counting large cuts, which is formally defined as follows: A cut of a graph G is a

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:19

partition of V (G) into two subsets (the order of this pair is ignored) and the size of a cut is the
number of edges that have exactly one endpoint in each of these two subsets.

Name: #LargeCut.
Input: An integer K ≥ 1 and a connected graph G in which every cut has size at most K .
Output: The number of size-K cuts in G.
The full details of the proof involve analysing different types of homomorphisms. The most

important part of the results leading up to the proof of Lemmas 36 and 37 are the Tables 1 and 2,
respectively. These tables show which types of homomorphisms represent a significant share of the
overall number of homomorphisms that we are interested in. The crucial question is whether we
can ensure that the right types of homomorphisms dominate this number. We desire two properties.
First, the number of homomorphisms should be dominated by homomorphisms of two distinct
types. Second, these two types should interact in an “anti-ferromagnetic” way.

The following definitions and preliminary technical results resemble the ones introduced in [21,
Section 2.2.2]. We are going to use the graph J (p,q, t) (see Figure 10) as a vertex gadget. This gadget
was originally introduced in [12]. In general it is a good candidate when looking for gadgets to
prove reductions from #LargeCut. Here is the formal definition.

q · t
p · t p · t

A B B′ A′

Fig. 10. The graph J (p,q, t).

Let p, q and t be positive integers. Let A and A′ be independent sets of size p · t and let B and B′

be independent sets of size q · t . The set of edgesM between B and B′ forms a perfect matching.
Then J (p,q, t) is the graph for which the vertex set is the union of A, B, B′ and A′. The edges are
(A × B) ∪M ∪ (B′ ×A′).

Let H be a graph and let h be a homomorphism from J (p,q, t) to H . Let h(B,B′) = {(h(u),h(v)) |
u ∈ B,v ∈ B′, {u,v} ∈ E(H)}. We say that h has type (h(A),h(B,B′),h(A′)). In general, a tuple
T = (T1,T2,T3) is an H -type if T1,T3 ⊆ V (H) and T2 ⊆ {(x,y) | {x,y} ∈ E(H)}. Let A(T) = T1,
B(T) = {x | ∃y (x,y) ∈ T2}, B′(T) = {y | ∃x (x,y) ∈ T2} and A′(T) = T3.

AnH -typeT is non-empty (with respect to J (p,q, t)) if there exists a homomorphism from J (p,q, t)
to H that has type T . Otherwise, T is called an empty H -type. From the definition of J (p,q, t) we
observe the following.

Observation 27. Let H be a graph. An H -type T is non-empty if and only if

(1) T1, T2 and T3 are non-empty,

(2) T1 × B(T) ⊆ E(H),

(3) B′(T) ×T3 ⊆ E(H).

Let T and T ′ be H -types. We write T ⊆ T ′ if, for i ∈ [3], we have Ti ⊆ T ′
i . An H -type T is

maximal if it is non-empty and every H -type T ′ with T ′ , T , T ⊆ T ′ is empty. The following
analysis (Lemma 28) is contained in the proof of [21, Lemma 2.25].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Lemma 28. Let H be a graph and let T = (T1,T2,T3) be a maximal H -type. Then T is completely

defined by B(T) and B′(T) since

(1) T1 = ΓH (B(T)), T2 = E(B(T),B′(T)) and T3 = ΓH (B
′(T)).

(2) B(T) = ΓH (ΓH (B(T))) and B
′(T) = ΓH (ΓH (B

′(T))).

Given an H -type T = (T1,T2,T3) we define N (T) to be the number of homomorphisms in
H(J (p,q, t),H) that have type T . We also set N̂ (T) = |T1 |

pt |T2 |
qt |T3 |

pt . For non-empty T , N̂ (T) is a
close approximation to N (T):

Lemma 29 ([21, Lemma 2.20]). Let H be a graph. Let p and q be positive integers. There exists a

positive integer t0 such that for all t ≥ t0 and allH -typesT that are non-empty with respect to J (p,q, t),
it holds that

N̂ (T)

2 ≤ N (T) ≤ N̂ (T).

Lemma 30 ([21, Lemma 2.23]). Let H be a connected graph with at least 2 vertices. Let T be a

non-empty H -type that is not maximal. Then there exists a non-empty H -type T ∗
such that N̂ (T) ≤(

2 |E(H) |−1
2 |E(H) |

)t
N̂ (T ∗).

r1 r2

b

д1 дk1

r1 r2

b

д1 дk1

c

Fig. 11. The graphs X (k1, 0, 1) (on the left) and X (k1, 1, 1) (on the right).

Table 1. Maximal types of the homomorphisms from J (p,q, t) to X (k1, 0, 1), where the vertices of X (k1, 0, 1)
are labelled as in Figure 11 (on the left). Each line i corresponds to a typeTi =

(
A(Ti), E

(
B(Ti),B

′(Ti)
)
,A′(Ti)

)
.

To shorten the notation we set G = {дj | j ∈ [k1]}.

A(T) B(T) B′(T) A′(T) N̂ (T)

T1 {r1, r2,b} ∪ G {b} {b} {r1, r2,b} ∪ G (3 + k1)pt · 1qt · (3 + k1)pt
T2 {r1, r2,b} ∪ G {b} {r1, r2,b} {r1, r2,b} (3 + k1)pt · 3qt · 3pt
T3 {r1, r2,b} ∪ G {b} {r1, r2,b} ∪ G {b} (3 + k1)pt · (3 + k1)qt · 1pt
T4 {r1, r2,b} {r1, r2,b} {r1, r2,b} {r1, r2,b} 3pt · 9qt · 3pt
T5 {r1, r2,b} {r1, r2,b} {r1, r2,b} ∪ G {b} 3pt · (9 + k1)qt · 1pt
T6 {b} {r1, r2,b} ∪ G {r1, r2,b} ∪ G {b} 1pt · (9 + 2k1)qt · 1pt

Let T =
(
A(T), E(B(T),B′(T)),A′(T)

)
be an H -type. Then we call T symmetric to the H -type

T ′ =
(
A′(T), E(B′(T),B(T)),A(T)

)
. Clearly, N̂ (T) = N̂ (T ′).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:21

Lemma 31. Let H = X (k1, 0, 1). Then all maximal H -types are listed in Table 1 (apart from those

that are symmetric to a listed H -type). For each listed H -type T the last column of the table gives the

corresponding value N̂ (T).

Proof. Let H = X (k1, 0, 1) and let T be a maximal H -type. We claim that

B(T),B′(T) ∈ {{b}, {r1, r2,b}, {r1, r2,b,д1, . . . ,дk1 }}

for the following reasons (we give the arguments for B(T), they are identical for B′(T)):
• Since b is a neighbour of every vertex in H , from item (2) of Lemma 28 we obtain b ∈ B(T).
• If, for some i ∈ [k1], we have дi ∈ B(T) then ΓH (B(T)) = {b} as b is the only neighbour of дi .
By item (2) of Lemma 28 it follows that B(T) = {r1, r2,b,д1, . . . ,дk1 }.

• If B(T) = {r1,b}, then ΓH (B(T)) = {r1, r2,b}. By item (2) of Lemma 28 this gives B(T) =
{r1, r2,b}, a contradiction.

• B(T) = {r2,b} gives a contradiction in the same way.
Table 1 then lists all possible combinations of sets B(T) and B′(T). From Lemma 28 it follows

that these sets determine T completely (and A(T),A′(T) are given accordingly). By definition,
T1 = A(T) and T3 = A′(T). From item (1) of Lemma 28 it has to hold that T2 = E(B(T),B′(T)). Then
N̂ (T) = |T1 |

pt |T2 |
qt |T3 |

pt can be computed from the given sets in each row. □

Table 2. Maximal types of the homomorphisms from J (p,q, t) toX (k1, 1, 1), where the vertices ofX (k1, 1, 1) are
labelled as in Figure 11 (on the right). Each line i corresponds to a type Ti =

(
A(Ti), E

(
B(Ti),B

′(Ti)
)
,A′(Ti)

)
.

To shorten the notation we set G = {дj | j ∈ [k1]}.

A(T) B(T) B′(T) A′(T) N̂ (T)

T1 {r1, r2,b, c} ∪ G {b} {b} {r1, r2,b, c} ∪ G (4 + k1)pt · 1qt · (4 + k1)pt
T2 {r1, r2,b, c} ∪ G {b} {b, c} {b, c} (4 + k1)pt · 2qt · 2pt
T3 {r1, r2,b, c} ∪ G {b} {r1, r2,b} {r1, r2,b} (4 + k1)pt · 3qt · 3pt
T4 {r1, r2,b, c} ∪ G {b} {r1, r2,b, c} ∪ G {b} (4 + k1)pt · (4 + k1)qt · 1pt
T5 {b, c} {b, c} {b, c} {b, c} 2pt · 4qt · 2pt
T6 {b, c} {b, c} {r1, r2,b} {r1, r2,b} 2pt · 4qt · 3pt
T7 {b, c} {b, c} {r1, r2,b, c} ∪ G {b} 2pt · (6 + k1)qt · 1pt
T8 {r1, r2,b} {r1, r2,b} {r1, r2,b} {r1, r2,b} 3pt · 9qt · 3pt
T9 {r1, r2,b} {r1, r2,b} {r1, r2,b, c} ∪ G {b} 3pt · (10 + k1)qt · 1pt
T10 {b} {r1, r2,b, c} ∪ G {r1, r2,b, c} ∪ G {b} 1pt · (12 + 2k1)qt · 1pt

Lemma 32. Let H = X (k1, 1, 1). Then all maximal H -types are listed in Table 2 (apart from those

that are symmetric to a listed H -type). For each listed H -type T the last column of the table gives the

corresponding value N̂ (T).

Proof. Let H = X (k1, 1, 1) and let T be a maximal H -type. We claim that

B(T),B′(T) ∈ {{b}, {b, c}, {r1, r2,b}, {r1, r2,b, c,д1, . . . ,дk1 }}.

The remainder of the proof is analogous to that of Lemma 31 with only one additional argument:
• If r1 ∈ B(T) and c ∈ B(T), then ΓH (B(T)) = {b}. By item (2) of Lemma 28 it follows that
B(T) = {r1, r2,b, c,д1, . . . ,дk1 }. The same is true if both r2 ∈ B(T) and c ∈ B(T).

□

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Lemma 33. Let k1 ∈ [7]. Consider the types Ti , i ∈ [6] given by Table 1. Then there is a γ ∈ (0, 1)
and positive integers p and q such that, for all i ∈ [6], i , 5 and all positive integers t , we have

N̂ (Ti) ≤ γ t N̂ (T5).

Proof. Let

L =

log

(
(3+k1)2

3

)
log(9 + k1)

,
log(3 + k1)

log
(
9+k1
3

) , log
(
3+k1
3

)
log

(
9+k1
3+k1

) , log 3

log
(
9+k1
9

)
and

R =
log 3

log
(
9+2k1
9+k1

) .
For each of the seven possible values of k1 we can check (for example by computer) that every
member of L is less than R. Thus, we can choose p and q so that

∀L ∈ L, L <
q

p
< R. (12)

We check the sought-for bound for each i ∈ [6], i , 5:

T1: N̂ (T1)
N̂ (T5)

= ((3 + k1)2/3)pt (1/(9 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if and
only if ((3 + k1)2/3)p < (9 + k1)q which is equivalent to log

(
(3 + k1)2/3

)
/log(9 + k1) < q/p.

This is true by (12).
T2: N̂ (T2)

N̂ (T5)
= (3 + k1)pt (3/(9 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if and only

if (3 + k1)p < ((9 + k1)/3)q . This is true by (12).
T3: N̂ (T3)

N̂ (T5)
= ((3 + k1)/3)pt ((3 + k1)/(9 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1

if and only if ((3 + k1)/3)p < ((9 + k1)/(3 + k1))q . This is true by (12).
T4: N̂ (T4)

N̂ (T5)
= 3pt (9/(9 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if and only if

3p < ((9 + k1)/9)q . This is true by (12).
T6: N̂ (T6)

N̂ (T5)
= (1/3)pt ((9 + 2k1)/(9 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if and

only if ((9 + 2k1)/(9 + k1))q < 3p . This is true by (12).
□

Lemma 34. Let k1 ∈ {3, 4, 5, 6}. Consider the types Ti , i ∈ [10] given by Table 2. Then there is a

γ ∈ (0, 1) and positive integers p and q such that, for all i ∈ [10], i , 9 and all positive integers t , we
have N̂ (Ti) ≤ γ t N̂ (T9).

Proof. Let

L =

log

(
(4+k1)2

3

)
log(10 + k1)

,
log(4 + k1)

log
(
10+k1

3

) , log
(
4+k1
3

)
log

(
10+k1
4+k1

) , log 3

log
(
10+k1

9

)
and

R =
log 3

log
(
12+2k1
10+k1

) .
For each of the four possible values of k1 we can check (for example by computer) that every
member of L is less than R. Thus, we can choose p and q so that

∀L ∈ L, L <
q

p
< R. (13)

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:23

Suppose thatT andT ′ are types listed in Table 2 which are distinct fromT9 and have the property
that N̂ (T ′) ≤ N̂ (T) for all k1 ∈ {3, 4, 5, 6}. Then the sought-for bound automatically holds for T ′ if
it holds for T .

We check the sought-for bound for each i ∈ [10], i , 9:

T1: N̂ (T1)
N̂ (T9)

= ((4+k1)2/3)pt (1/(10+k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if and
only if ((4 + k1)2/3)p < (10 + k1)q . This is true by (13).

T2: N̂ (T2) ≤ N̂ (T3).
T3: N̂ (T3)

N̂ (T9)
= (4+k1)pt (3/(10+k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if and only

if (4 + k1)p < ((10 + k1)/3)q . This is true by (13).
T4: N̂ (T4)

N̂ (T9)
= ((4 + k1)/3)pt ((4 + k1)/(10 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1

if and only if ((4 + k1)/3)p < ((10 + k1)/(4 + k1))q . This is true by (13).
T5: N̂ (T5) ≤ N̂ (T8).
T6: N̂ (T6) ≤ N̂ (T8), for all k ∈ {3, 4, 5, 6}.
T7: N̂ (T7)

N̂ (T9)
= (2/3)pt ((6 + k1)/(10 + k1))qt < γ t is fulfilled for 2/3 · (6 + k1)/(10 + k1) < γ < 1.

T8: N̂ (T8)
N̂ (T9)

= 3pt (9/(10 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if and only if
3p < ((10 + k1)/9)q . This is true by (13).

T10: N̂ (T10)
N̂ (T9)

= (1/3)pt ((12 + 2k1)/(10 + k1))qt < γ t is fulfilled for some sufficiently large γ < 1 if
and only if ((12 + 2k1)/(10 + k1))q < 3p . This is true by (13).

□

Remark 35. We point out that the proofs of Lemmas 33 and 34 break for larger k1. (For larger k1
there exists some lower bound on p/q which exceeds some upper bound on that ratio.) Lemma 34
also breaks for k1 = 1 and k1 = 2. This matches the results from Section 2 which show that
approximately counting retractions to X (k1, 1, 1) is actually #BIS-easy for these values of k1.

Lemma 36. If k1 ≥ 1, then #SAT ≤AP #Hom(X (k1, 0, 1)).

Proof. We make a case distinction depending on k1. The first case is the main work of the proof
and we use the dominance of the type T5 from Table 1 for k1 ≤ 6 as shown in Lemma 33. The
second case (k1 ≥ 7) then follows from Lemma 26.

Case 1: k1 ∈ [6].We use a reduction from #LargeCut, which is known to be #SAT-hard (see [12]).
Let G and K be an input to #LargeCut, n be the number of vertices of G and ε ∈ (0, 1) be the
parameter of the desired precision. To shorten notation let H = X (k1, 0, 1). FromG we construct an
input G ′ to #Hom(H) by introducing vertex and edge gadgets. We assume that the vertices of H
are labelled as in Figure 11 (on the left).
Let p, q be positive integers that fulfil (12). Note that p and q only depend on k1 which is a

parameter of H and therefore does not depend on the input G. We define the parameter t of the
gadget graph J (p,q, t) to be t = n4. We also define a new parameter s = n + 2.

For each vertex v ∈ V (G) we introduce a vertex gadget G ′
v which is a graph J (p,q, t) as given in

Figure 10. We denote the corresponding sets A,B,B′,A′ by Av ,Bv ,B
′
v and A′

v , respectively. We say
that two gadgets G ′

u and G ′
v are adjacent if u and v are adjacent in G.

For every edge e = {u,v} ∈ E(G) we introduce an edge gadget as follows. We introduce two
size-s independent sets, denoted by Se and S ′e . As shown in Figure 12 we construct the set of edges

E ′
e = (Bu × Se) ∪ (B′

u × S ′e) ∪ (Bv × S ′e) ∪ (B′
v × Se).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Bu Se B′
v

B′
u S ′e Bv

Fig. 12. The edge gadget for the edge e = {u,v}.

Putting the pieces together, G ′ is the graph with

V (G ′) =
⋃

v ∈V (G)

V (G ′
v) ∪

⋃
e ∈E(G)

(
Se ∪ S ′e

)
and E(G ′) =

⋃
v ∈V (G)

E(G ′
v) ∪

⋃
e ∈E(G)

E ′
e .

Let h be a homomorphism from G to H , v be some vertex of G and G ′
v be the corresponding

vertex gadget. Then h |V (G′
v) corresponds to a homomorphism from J (p,q, t) to H and therefore has

an H -type.
We say that a homomorphism from G ′ to H is full if its restriction to each vertex gadget is

either of type T5 (from Table 1) or of its symmetric type (let us call it T ′
5). The cut corresponding

to a full homomorphism h partitions V (G) into those vertices v for which h |G′
v has type T5 and

those for which h |G′
v has type T ′

5 . We say that a full homomorphism is K-large if the size of the
corresponding cut is equal to K , otherwise we say that the homomorphism is K-small. Consider a
full homomorphism h from G ′ to H .

• For an edge e = {u,v} of G suppose h |G′
u has type T5 and h |G′

v has type T ′
5 . Note that by the

definition of the edge gadget, we have h(Se) ⊆ ΓH (h(Bu)) ∩ ΓH (h(B
′
v)). Then the vertices in

Se can be mapped to any of {r1, r2,b}, whereas all vertices in S ′e have to be mapped to b (the
sole common neighbour of r1, r2, b and the vertices in G).

• Suppose instead that h |G′
u and h |G′

v have the same type T5 or T ′
5 . Then the homomorphism h

has to map the vertices in both Se and S ′e to b.
Thus, every pair of adjacent gadgets of different types contributes a factor of 3s to the number of
full homomorphisms, whereas every pair of adjacent gadgets of the same type only contributes
a factor of 1. Recall the definition of N (T) as the number of homomorphisms from J (p,q, t) to
H that have type T . Then for ℓ ≥ 1 every size-ℓ cut of G arises in 2 · N (T5)

n · 3sℓ ways as a full
homomorphism from G ′ to H .

Let L be the number of solutions to #LargeCut with input G and K (our goal is to approximate
this number). We partition the homomorphisms from G ′ to H into three different sets. Z ∗ is the
number of K-large (full) homomorphisms, Z1 is the number of homomorphisms that are full but
K-small and Z2 is the number of non-full homomorphisms. Then we have L = Z ∗/(2N (T5)

n3sK)

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:25

and N
(
G ′ → H

)
= Z ∗+Z1+Z2. Thus it remains to show that (Z1+Z2)/(2N (T5)

n3sK) ≤ 1/4 for our
choice of p, q, t and s . Under this assumption we then have N

(
G ′ → H

)
/(2N (T5)

n3sK) ∈ [L, L+1/4]
and a single oracle call to determine N

(
G ′ → H

)
with precision δ = ε/21 suffices to determine L

with the sought-for precision as demonstrated in [12].
Now we prove (Z1 + Z2)/(2N (T5)

n3sK) ≤ 1/4. As there are at most 2n ways to assign a type T5
orT ′

5 to the n vertex gadgets inG ′ we have Z1 ≤ 2n ·N (T5)
n · 3s(K−1). Then we obtain the following

bound since s = n + 2:
Z1

2N (T5)n3sK
≤

2nN (T5)
n3s(K−1)

2N (T5)n3sK
=

2n
2 · 3s ≤

1
8 .

We obtain a similar bound for Z2: From Lemmas 30, 31 and 33 we know that for our choice of p and
q there exists γ ∈ (0, 1) such that for every H -type T that is not T5 or T ′

5 we have N̂ (T) ≤ γ t N̂ (T5).
Using Lemma 29 this gives N (T) ≤ 2γ tN (T5) for sufficiently large t with respect to p, q and k1
(which do not depend on the inputG). Since t = n4 we can assume that t is sufficiently large with
respect to p and q as otherwise the input size is bounded by a constant (in which case we can solve
#LargeCut in constant time).
For each H -type T = (T1,T2,T3), the cardinality of each set Ti is bounded from above by

max{|V (H)|, 2|E(H)|} = 12+2k1 and hence there are at most
(
212+2k1

)3 different types. Furthermore,
as H has 3 + k1 vertices, there are at most (3 + k1)2sn

2 possible functions from the at most 2sn2
vertices in

⋃
e ∈E(G)(Se ∪ S ′e) to vertices in H . Since t = n4 and s = n + 2 we obtain

Z2
2N (T5)n3sK

≤

(
212+2k1

)3n
· N (T5)

n−1 · 2γ tN (T5) · (3 + k1)2sn
2

2N (T5)n3sK

= γ t ·

(
212+2k1

)3n
(3 + k1)2sn

2

3sK
≤

1
8 .

The last inequality holds for sufficiently large n as(
212+2k1

)3n
(3 + k1)2sn

2

3sK
≤ Cn3

for some constantC that only depends on H , but not on the inputG , whereas t = n4. (End of Case

1)

Case 2:k1 ≥ 7.Wewill show that in this case we can apply Lemma 26 to obtain #SAT ≤AP #Hom(H).
We have F (H) = {b}. Therefore, |F (H)| · |V (H)| = |V (H)| = 3 + k1 ≥ 10. Let (S,T) be a pair with
∅ ⊆ S,T ⊆ V (H) satisfying S ⊆ ΓH (T), T ⊆ ΓH (S) and both S , {b} and T , {b} to meet the
requirements of Lemma 26. We have to show that |S | · |T | < |F (H)| · |V (H)| = 3 + k1. Note that for
every vertex u , b of H = X (k1, 0, 1) it holds that |ΓH (u)| ≤ 3. Therefore, |S | ≤ |ΓH (T)| ≤ 3 and
analogously |T | ≤ |ΓH (S)| ≤ 3. Hence

|S | · |T | ≤ 9 < 10 ≤ 3 + k1.

(End of Case 2) □

Lemma 37. If k1 ≥ 3, then #SAT ≤AP #Hom(X (k1, 1, 1)).

Proof. This proof is very similar to the proof of Lemma 36. We give the details for the sake of
completeness. As before, we make a case distinction depending on k1. The first case is about the
dominance of the type T9 from Table 2 for k1 ∈ {3, 4, 5, 6} as shown in Lemma 34. Otherwise, we
use Lemma 26.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Case 1: k1 ∈ {3, 4, 5, 6}. We use a reduction from #LargeCut (#SAT-hard by [12]). Let G and K
be an input to #LargeCut, n be the number of vertices of G and ε ∈ (0, 1) be the parameter of the
desired precision. To shorten notation let H = X (k1, 1, 1). We assume that the vertices of H are
labelled as in Figure 11 (on the right).
Let p, q be positive integers that fulfil (13). Note that p and q only depend on k1 which is a

parameter of H and therefore does not depend on the input G. We will define the parameter t of
the gadget graph J to be t = n4. We also define a new parameter s = n + 2.
For each vertex v ∈ V (G) we introduce a vertex gadget G ′

v which is a graph J (p,q, t) as given
in Figure 10. We denote the corresponding sets A,B,B′,A′ by Av ,Bv ,B

′
v and A′

v , respectively.
We say that two gadgets G ′

u and G ′
v are adjacent if u and v are adjacent in G. For every edge

e = {u,v} ∈ E(G) we use exactly the same edge gadget as in the proof of Lemma 36 (see Figure 12).
G ′ is the graph with

V (G ′) =
⋃

v ∈V (G)

V (G ′
v) ∪

⋃
e ∈E(G)

(
Se ∪ S ′e

)
and E(G ′) =

⋃
v ∈V (G)

E(G ′
v) ∪

⋃
e ∈E(G)

E ′
e .

Let h be a homomorphism from G to H , v be some vertex of G and G ′
v be the corresponding

vertex gadget. Then h |V (G′
v) corresponds to a homomorphism from J (p,q, t) to H and therefore has

an H -type.
We say that a homomorphism from G ′ to H is full if its restriction to each vertex gadget is

either of type T9 (from Table 2) or of its symmetric type (let us call it T ′
9). The cut corresponding

to a full homomorphism h partitions V (G) into those vertices v for which h |G′
v has type T9 and

those for which h |G′
v has type T ′

9 . We say that a full homomorphism is K-large if the size of the
corresponding cut is equal to K , otherwise we say that the homomorphism is K-small. Consider a
full homomorphism h from G ′ to H .

• For an edge e = {u,v} of G suppose h |G′
u has type T9 and h |G′

v has type T ′
9 . Note that by the

definition of the edge gadget, we have h(Se) ⊆ ΓH (h(Bu)) ∩ ΓH (h(B
′
v)). Then the vertices in

Se can be mapped to any of {r1, r2,b}, whereas all vertices in S ′e have to be mapped to b (the
sole common neighbour of r1, r2, b, c and the vertices in G).

• Suppose instead that h |G′
u and h |G′

v have the same type T9 or T ′
9 . Then the homomorphism h

has to map the vertices in both Se and S ′e to b.

Thus, every pair of adjacent gadgets of different types contributes a factor of 3s to the number of
full homomorphisms, whereas every pair of adjacent gadgets of the same type only contributes
a factor of 1. Recall the definition of N (T) as the number of homomorphisms from J (p,q, t) to
H that have type T . Then for ℓ ≥ 1 every size-ℓ cut of G arises in 2 · N (T9)

n · 3sℓ ways as a full
homomorphism from G ′ to H .

Let L be the number of solutions to #LargeCut with input G and K (our goal is to approximate
this number). We partition the homomorphisms from G ′ to H into three different sets. Z ∗ is the
number of K-large (full) homomorphisms, Z1 is the number of homomorphisms that are full but
K-small and Z2 is the number of non-full homomorphisms. Then we have L = Z ∗/(2N (T9)

n3sK)
and N

(
G ′ → H

)
= Z ∗+Z1+Z2. Thus it remains to show that (Z1+Z2)/(2N (T9)

n3sK) ≤ 1/4 for our
choice of p, q, t and s . Under this assumption we then have N

(
G ′ → H

)
/(2N (T9)

n3sK) ∈ [L, L+1/4]
and a single oracle call to determine N

(
G ′ → H

)
with precision δ = ε/21 suffices to determine L

with the sought-for precision as demonstrated in [12].
Now we prove (Z1 + Z2)/(2N (T9)

n3sK) ≤ 1/4. As there are at most 2n ways to assign a type T9
orT ′

9 to the n vertex gadgets inG ′ we have Z1 ≤ 2n ·N (T9)
n · 3s(K−1). Then we obtain the following

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:27

bound since s = n + 2:
Z1

2N (T9)n3sK
≤

2nN (T9)
n3s(K−1)

2N (T9)n3sK
=

2n
2 · 3s ≤

1
8 .

We obtain a similar bound for Z2: From Lemmas 30, 32 and 34 we know that for our choice of p and
q there exists γ ∈ (0, 1) such that for every H -type T that is not T9 or T ′

9 we have N̂ (T) ≤ γ t N̂ (T9).
Using Lemma 29 this gives N (T) ≤ 2γ tN (T9) for sufficiently large t with respect to p, q and k1.
Since t = n4 we can assume that t is sufficiently large with respect to p and q as otherwise the
input size is bounded by a constant (in which case we can solve #LargeCut in constant time).
For each H -type T = (T1,T2,T3), the cardinality of each set Ti is bounded from above by

max{|V (H)|, 2|E(H)|} = 16+2k1 and hence there are at most
(
216+2k1

)3 different types. Furthermore,
as H has 4 + k1 vertices, there are at most (4 + k1)2sn

2 possible functions from the at most 2sn2
vertices in

⋃
e ∈E(G)(Se ∪ S ′e) to vertices in H . Since t = n4 and s = n + 2 we obtain

Z2
2N (T9)n3sK

≤

(
216+2k1

)3n
· N (T9)

n−1 · 2γ tN (T9) · (4 + k1)2sn
2

2N (T9)n3sK

= γ t ·

(
216+2k1

)3n
(4 + k1)2sn

2

3sK
≤

1
8 .

The last inequality holds for sufficiently large n as(
216+2k1

)3n
(4 + k1)2sn

2

3sK
≤ Cn3

for some constantC that only depends on H , but not on the inputG , whereas t = n4. (End of Case

1)

Case 2:k1 ≥ 6.Wewill show that in this case we can apply Lemma 26 to obtain #SAT ≤AP #Hom(H).
We have F (H) = {b}. Therefore, |F (H)| · |V (H)| = |V (H)| = 4 + k1 ≥ 10. Let (S,T) be a pair with
∅ ⊆ S,T ⊆ V (H) satisfying S ⊆ ΓH (T), T ⊆ ΓH (S) and both S , {b} and T , {b} to meet the
requirements of Lemma 26. We have to show that |S | · |T | < |F (H)| · |V (H)| = 4 + k1. Note that for
every vertex u , b of H = X (k1, 1, 1) it holds that |ΓH (u)| ≤ 3. Therefore, |S | ≤ |ΓH (T)| ≤ 3 and
analogously |T | ≤ |ΓH (S)| ≤ 3. Hence

|S | · |T | ≤ 9 < 10 ≤ 4 + k1.
(End of Case 2) □

Lemma 38. If k1 ≥ 5, then #SAT ≤AP #Hom(X (k1, 0, 2)).

Proof. Let k1 ≥ 5. To shorten notation let H = X (k1, 0, 2). Again we use Lemma 26 to obtain
#SAT ≤AP #Hom(H). We have F (H) = {b} and |F (H)| · |V (H)| = |V (H)| = 5 + k1 ≥ 10. The
remainder of the proof is identical to Case 2 in the proof of Lemma 37. □

Lemma 39. LetH be a graph and b ∈ V (H) be a looped vertex with an unlooped neighbour д ∈ V (H).

If |ΓH (д)| ≥ 2 (д has at least 2 neighbours inH) and for allu ∈ ΓH (b)\{д} we have |ΓH (u) ∩ ΓH (д)| = 1
(b is the only common neighbour of д and u), then #SAT ≤AP #Ret(H).

Proof. Let H ′ be the graph obtained by replacing the vertex д in H [ΓH (b)] by an independent
set I of size |ΓH (д)|s , where s = 2

⌈
log |ΓH (д) |(|ΓH (b)|)

⌉
. This is well-defined as |ΓH (д)| > 1. The choice

of s will become clear in a moment. Within the graph H [ΓH (b)], д is adjacent only to b by the
assumption that |ΓH (b) ∩ ΓH (д)| = 1. Therefore, each vertex in I shares an edge only with b. The
transformation is depicted in Figure 13.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

ΓH (b) \ {д}

b

д

ΓH (b) \ {д}

b

I : 1 |ΓH (д)|
s

Fig. 13. H [ΓH (b)] on the left and H ′
on the right.

First, we will show #SAT-hardness for #Ret(H ′) and we will apply Lemma 26 to achieve this.
Let us check that the requirements are met. First note that F (H ′) = {b}. Now we have to show that,
for every pair (S,T) with ∅ ⊆ S,T ⊆ V (H ′) satisfying S ⊆ ΓH ′(T), T ⊆ ΓH ′(S) and both S , {b}
and T , {b} it holds that |S | · |T | < |F (H ′)| · |V (H ′)| = |V (H ′)|. First note that if there exists a
vertex u ∈ I ∩ S then T = {b} as b is the only neighbour of u in H ′. Hence I ∩ S = ∅. By the
same reasoning it holds that I ∩ T = ∅. Then |S |, |T | ≤ |ΓH ′(b) \ I | ≤ |ΓH (b)| and, by our choice
s = 2

⌈
log |ΓH (д) |(|ΓH (b)|)

⌉
, we can conclude that

|S | · |T | ≤ |ΓH (b)|
2 ≤ |ΓH (д)|

s < |V (H ′)| = |F (H ′)| · |V (H ′)|.

This proves #SAT ≤AP #Ret(H ′).
To complete the proof of the lemma we show the following claim.

Claim: #Ret(H ′) ≤AP #Ret(H).
Proof of the claim:

Let (G, S) be an input to #Ret(H ′). Let w be a weight function on the vertices in ΓH (b) with
w(д) = |ΓH (д)|

s andw(u) = 1 for all u ∈ ΓH (b) \ {д}. By the construction of H ′ it is standard that

N
(
(G, S) → H ′

)
=

∑
h∈H((G ,S),H [ΓH (b)])

∏
v ∈V (G)

w(h(v)). (14)

Now consider the vertices in ΓH (b). Foru ∈ ΓH (b), letw ′(u) be the number of common neighbours
ofu andд inH . (It is essential that we regard all neighbours inH , not just the neighbours in ΓH (b).) By
definitionw ′(u) = |ΓH (д)| ifu = д and, by the assumptions of this lemma,w(u) = 1 ifu ∈ ΓH (b)\{д}.
Hence, for all u ∈ ΓH (b) we have

w(u) = w ′(u)s . (15)
Intuitively, we will use the fact that д has larger “weight” w ′ compared to the other vertices

in ΓH (b) to “boost” the vertex д and make it more likely (by a factor of |ΓH (д)|s) to be used in a
homomorphism to H [ΓH (b)].
Here are the details: Let (G, S) be an input to #Ret(H ′). We construct a graph G ′ from G in the

following way. Let β andγ be vertices that are distinct from the vertices inG . Intuitively, β andγ will
serve as “pins” to b and д, respectively. In addition, for each v ∈ V (G), we introduce a independent
set Iv of size s , see Figure 14. ThenG ′ is the graph with verticesV (G ′) = V (G)∪ {β,γ }∪

⋃
v ∈V (G) Iv

and edges E(G ′) = E(G) ∪
(
V (G) × {β}

)
∪

⋃
v ∈V (G)

(
Iv × {v,γ }

)
.

Consider a homomorphismh from (G ′, S′) toH . Then, since every vertex inV (G) is a neighbour of
β andh(β) = b,h |V (G) is a homomorphism from (G, S) toH [ΓH (b)]. Furthermore, by the construction

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:29

G

Iv s

v

β → b

γ → д

Fig. 14. The vertex gadget used in the construction of G ′
.

ofG ′, for each v ∈ V (G) and each u ∈ Iv , it holds that h(u) is a common neighbour of h(v) and д in
H . Recall that there arew ′(h(v)) such common neighbours. Thus, using (14) and (15), we conclude

N
(
(G ′, S′) → H

)
=

∑
h∈H((G ,S),H [ΓH (b)])

∏
v ∈V (G)

w ′(h(v))s

=
∑

h∈H(G ,H [ΓH (b)])

∏
v ∈V (G)

w(h(v))

= N
(
(G, S) → H ′

)
.

□

3.4 Square-Free Graphs with an Induced WR3

This section can be seen as an extension of Section 3.3 as it essentially shows #SAT-hardness
for graphs of the form X (k1,k2,k3) where k2 + k3 ≥ 3. Consider a square-free graph H with an
inducedWR3. Suppose that there is an inducedWR3 such that the neighbourhood of its center b
does not contain any triangles. Then H [ΓH (b)] is subject to Theorem 5 which shows #SAT ≤AP
#Ret(H [ΓH (b)]). Then, #SAT ≤AP #Ret(H) by Observation 23.

However, when considering square-free graphs as opposed to graphs of girth at least 5, H [ΓH (b)]
might contain triangles. The smallest open case is displayed in Figure 15.

b

Fig. 15. Smallest square-free graph with inducedWR3 for which it remains to prove hardness.

The goal of this section is to prove Lemma 40.

Lemma 40. LetH be a square-free graph. IfH contains aWR3 as an induced subgraph then #SAT ≤AP
#Ret(H).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

First we will introduce some preliminary results.

Definition 41. Let
{a
b

}
be the Stirling number of the second kind, i.e. the number of surjective

functions from a set of a elements to a set of b elements.

Lemma 42 ([12, Lemma 18]). If a and b are positive integers and a ≥ 2b lnb, then

ba
(
1 − exp

(
−
a

2b

))
≤

{
a

b

}
≤ ba .

Corollary 43. If a and b are positive integers with a ≥ 2b ln 2b and b ≥ 1, then
ba

2 ≤

{
a

b

}
≤ ba .

The proof of Lemma 40 uses the same general idea as the proof of [28, Theorem 2] — namely that
approximating the partition function of the q-state ferromagnetic Potts model is #SAT-equivalent
if q ≥ 3 and, in addition, we are allowed to specify that certain vertices have to have a specific spin.
Crucially, #SAT-hardness is known only if this single-vertex “pinning” is allowed. In general, the
complexity of approximating the partition function of the Potts model is still unresolved and an
important open problem. The approach of simulating ferromagnetic Potts with “pinning” to obtain
hardness results has been used before, for instance in the proofs of [29, Lemma 3.6] and [21, Lemma
2.2]. The gadgets we use here to accomplish the reduction are tailored to the specific problem and
different from the gadgets used in similar reductions.
As in the proof of [28, Theorem 2] we use a reduction from the problem of counting so-called

multiterminal cuts. We introduce the corresponding definitions from [28]. A multiterminal cut of
a graphG with distinguished vertices τ1, . . . , τq (called terminals) is a set of edges E ′ ⊆ E(G) that
disconnects the terminals (i.e. ensures that there is no path in (V (G), E(G) \ E ′) that connects any
two distinct terminals). The size of a multiterminal cut is its cardinality. We consider the following
computational problem.

Name: #MultiterminalCut(q).
Input: A connected irreflexive graph G with q distinct terminals τ1, . . . , τq ∈ V (G) and a

positive integer K . The input has the property that every multiterminal cut has size at least
K .

Output: The number of size-K multiterminal cuts of G with terminals τ1, . . . , τq .

Lemma 44 ([28, Section 4]). Let q ≥ 3. Then #MultiterminalCut(q) ≡AP #SAT.

Definition 45. Let I = (G, τ1, . . . , τq,K) be an instance of #MultiterminalCut(q). Φ(I) =
{ϕ : V (G) → [q] | ϕ(τi) = i, i ∈ [q]} is the set of separating functions from V (G) to [q]. For
ϕ ∈ Φ(I) let Cut(ϕ) = {{u,v} ∈ E(G) | ϕ(u) , ϕ(v)} and, for i ∈ [q], letMoni (ϕ) = {{u,v} ∈ E(G) |
ϕ(u) = ϕ(v) = i}. Finally, let Φ∗(I) = {ϕ ∈ Φ(I) | |Cut(ϕ)| = K}.

Observation 46. Let I = (G, τ1, . . . , τq,K) be an instance of #MultiterminalCut(q). For each
ϕ ∈ Φ(I), Cut(ϕ) is a multiterminal cut of I . On the other hand, each size-K multiterminal cut splits

the graphG into exactly q connected components (as otherwise there would exist a multiterminal cut

of size less than K). Hence each size-K multiterminal cut corresponds exactly to the function ϕ ∈ Φ(I)
for which ϕ(v) = i if v is in the same connected component as τi . Thus, Φ

∗(I) is the subset of functions
in Φ(I) that correspond to size-K multiterminal cuts. Let T (I) be the number of size-K multiterminal

cuts of the instance I . Then T (I) = |Φ∗(I)|.

Now we have all the tools at hand to prove the main lemma of this section.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:31

Lemma 40. Let H be a square-free graph. If H contains a WR3 as an induced subgraph then
#SAT ≤AP #Ret(H).

Proof. Suppose that H contains a mixed triangle as an induced subgraph, then the statement
of this lemma follows from Lemmas 24 and 25. Hence, for the remainder of this proof let H be
a square-free graph with an induced WR3 without any induced mixed triangle subgraphs. We
choose a vertex b such that b is the center of an induced WR3. We consider the graph H [ΓH (b)]
which is the subgraph of H that is induced by the neighbourhood of b. For ease of notation we
set Hb = H [ΓH (b)]. Let U be the set of unlooped neighbours of b. Since H does not contain any
mixed triangles, for each u ∈ U , b is the only neighbour of u in Hb . Since H is square-free, so is Hb .
Therefore every looped neighbourw , b of b has degree degHb

(w) ∈ {2, 3}. By the choice of b, b
has at least 4 neighbours including itself, i.e. we have degHb

(b) = degH (b) ≥ 4. Let x1, . . . , xk be
the looped neighbours of degree 2 and xk+1,yk+1, . . . , xq,yq be the looped neighbours of degree
3, where for each i ∈ {k + 1, . . . ,q} we have {xi ,yi } ∈ E(Hb) (where we use that looped vertices
can only have looped neighbours since b is the sole neighbour of vertices in U). The graph Hb is
depicted in Figure 16.

U

x1 xk

b

xk+1 yk+1 xq yq

Fig. 16. The graph Hb .

We will give a reduction from #MultiterminalCut(q) to #Ret(Hb). By the choice of b we have
q ≥ 3. This gives the desired reduction since

#SAT ≤AP #MultiterminalCut(q) ≤AP #Ret(Hb) ≤AP #Ret(H),

where the first reduction is from Lemma 44 and the last reduction is from Observation 23.
Let I = (G, τ1, . . . , τq,K) be an instance of #MultiterminalCut(q) and let ε ∈ (0, 1) be the

desired precision bound. Let n = |V (G)| and m = |E(G)|. From the instance I we construct an
instance (J , S) of #Ret(Hb). We will need some parameters whose relevance will become clear later
in the proof. Let s = n5 and t = n2.

The intuition behind the gadgets that will be used in this proof is the following. For every vertex
v in G we introduce a huge clique Cv . The image of such a clique under a homomorphism to Hb
tends to be a reflexive clique, i.e. tends to be of the form ΓHb (xi). There are q such neighbourhoods.
These will correspond to the q different states that a vertex v ∈ V (G) can be in. We will have to
add some attachments to the clique Cv to balance out the fact that ΓHb (xi) is a clique on 2 vertices
if i ≤ k , whereas it is a clique on 3 vertices if i > k . For each edge {u,v} ∈ E(G) we introduce a

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

gadget that favours the case where u and v have identical states (i.e. the corresponding cliques
have the same image under homomorphisms to Hb).

Here are the details. First we define the graph J . We introduce q distinct vertices p1, . . . ,pq which
will serve as “pins” to the vertices x1, . . . , xq . In the first part of the construction we will only use
the vertices p1, . . . ,pk . For every vertex v ∈ V (G) we introduce a graph Jv (the “vertex gadget”) as
follows. Let Cv be a clique on s vertices. For each vertexw in this clique we introduce k distinct
vertices {w1, . . . ,wk }. Then Jv is the graph with vertices

V (Jv) = {p1, . . . ,pk } ∪V (Cv) ∪
⋃

w ∈V (Cv)

{w1, . . . ,wk }

and edges
E(Jv) = E(Cv) ∪

⋃
w ∈V (Cv)

⋃
i ∈[k]

{{w,wi }, {wi ,pi }}.

The graph Jv is depicted in Figure 17. Note that the vertices p1, . . .pk are identical over all vertex
gadgets whereas the remaining vertices are distinct for each v .

Cv of size s

p1 pk

w1 wkw ′
1 w ′

k

w w ′

Fig. 17. The graph Jv for a vertex v .

For every edge e = {u,v} ∈ E(G) we introduce a graph Je together with a set of edges Ee (the
“edge gadget”). The graph Je is defined in precisely the same way as Jv but uses the parameter t
instead of s .We denote the corresponding clique byCe . Further, we set Ee = (V (Cu) ∪V (Cv))×V (Ce).
The edge gadget is depicted in Figure 18.

Cu

s

Cv

s

Ce

t

Fig. 18. The edge gadget for an edge e = {u,v}. The edges to the vertices {w1, . . . ,wk | w ∈ Cu ∪Ce ∪Cv }
and {p1, . . . ,pk } are omitted.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:33

Finally, J is the graph with vertices

V (J) = {pk+1, . . . ,pq} ∪
⋃

v ∈V (G)

V (Jv) ∪
⋃

e ∈E(G)

V (Je)

and edges
E(J) =

⋃
i ∈[q]

(
V (Cτi) × {pi }

)
∪

⋃
v ∈V (G)

E(Jv) ∪
⋃

e ∈E(G)

(
E(Je) ∪ Ee

)
.

Note that the first set in the union is a set of edges for each terminal τi . The purpose of these edges
will be to ensure that the corresponding graph Jτi is in the right “state” (the one corresponding to
i). Here we now use all of the pi , not just the first k as we did in the construction of Jv and Je .

Next we define the lists S = {Sv ⊆ V (Hb) | v ∈ V (J)}. We set

Sv =

{
{xi }, if v = pi , i ∈ [q]

V (Hb), otherwise.

For a homomorphism h ∈ H((J , S),Hb) and a vertex v ∈ V (G) we say that the image h(V (Cv)) is
the state of v (under h).

A pinned configuration is a tuple (z, z1, . . . , zk) of vertices of Hb such that, for each i ∈ [k], {z, zi }
and {zi , xi } are edges of Hb . Note that the vertices (w,w1, . . . ,wk) of Cv (see Figure 17) have to
map to a pinned configuration under a homomorphism from (J , S) to Hb . For z ∈ V (Hb) let f (z) be
the number of pinned configurations (z, z1, . . . , zk). We have

f (b) = 2k (All zj can be either x j or b.) (16)
f (xi) = 2 (∀i ∈ [k]) (zi can be either xi or b, all other zj have to be b.) (17)

f (xi) = f (yi) = 1 (∀i ∈ {k + 1, . . . ,q}) (All zj have to be b.) (18)
f (u) = 1 (∀u ∈ U) (All zj have to be b.) (19)

We say that a vertex v ∈ V (G) is full (under h) if the following conditions are met:
• There exists i ∈ [q] such that h(V (Cv)) = ΓHb (xi).
• For every element z ∈ h(V (Cv)) and every pinned configuration (z, z1, . . . , zk) there exists a
vertexw in the clique Cv such that h(w,w1, . . . ,wk) = (z, z1, . . . , zk) (elementwise).

We call an edge e = {u,v} ∈ E(G)monochromatic (underh) ifu andv have the same state. Otherwise,
we say that e is dichromatic. We say that the homomorphism h is full if every vertex v ∈ V (G) is
full under h. We say that a full homomorphism h is K-small if there are at most K dichromatic
edges under h, otherwise we say that it is K-large.

Let Z ∗ be the number of full homomorphisms that are K-small. Further, let Z1 be the number of
full homomorphisms that are K-large and let Z2 be the number of non-full homomorphisms. Then

N
(
(J , S) → Hb

)
= Z ∗ + Z1 + Z2.

LetT be the sought-for number of size-K multiterminal cuts of the instance I = (G, τ1, . . . , τq,K).
We will now investigate the way in which the number Z ∗ relates to T . Recall the definitions about
separating functions from Definition 45. In particular, we will use the sets Φ(I), Φ∗(I) and Cut(ϕ).
To shorten notation within the scope of this proof, we write Φ when we mean Φ(I) and Φ∗ when
we mean Φ∗(I). From Observation 46 we know that T = |Φ∗ |.

For a function ϕ ∈ Φ we say that a homomorphism h ∈ H((J , S),Hb) agrees with ϕ if, for each
vertex v of G, the state of v under h is h(V (Cv)) = ΓHb (xϕ(v)). Note that, by the construction of J ,
under a full homomorphism a terminal τi has state ΓHb (xi). Therefore, each full homomorphism h
agrees with exactly one ϕ ∈ Φ.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:34 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

If h agrees with ϕ, then it follows that Cut(ϕ) is exactly the set of dichromatic edges under h.
Hence, each K-small full homomorphism agrees with exactly one function ϕ ∈ Φ∗ and each K-large
full homomorphism agrees with exactly one function ϕ ∈ Φ \ Φ∗. Let Zϕ be the number of full
homomorphisms that agree with ϕ ∈ Φ. Then

Z ∗ =
∑
ϕ∈Φ∗

Zϕ and Z1 =
∑

ϕ∈Φ\Φ∗

Zϕ . (20)

Let ϕ ∈ Φ. We are interested in the number Zϕ . What are the possible full homomorphisms h
that agree with ϕ?

Observation A Let v ∈ V (G). We consider possible images of the vertices of Jv . For h to agree
with ϕ, the state of v is fixed to be ΓHb (xϕ(v)), where this set can be either of the form {b, xi }

or of the form {b, xi ,yi }. From Equations (16) and (17) it follows that there are a total of 2k +2
pinned configurations (z, z1, . . . , zk) with z ∈ {b, xi }. Similarly, from Equations (16) and (18)
it follows that there are a total of 2k + 1+ 1 pinned configurations with z ∈ {b, xi ,yi }. As h is
full, each possible pinned configuration has to be used at least once by the s vertices in Cv .
As a consequence each vertex v ∈ V (G) contributes a factor of

{ s
2k+2

}
to Zϕ .

Observation B Let e = {u,v}. What are the possible images of the vertices of Je? We make a
case distinction depending on e .
• Let e = {u,v} ∈ Cut(ϕ). Then, as h is full, h(V (Cu)) and h(V (Cv)) are different states from
the set {ΓHb (xi) | i ∈ [q]}. By the definition of J we have that h(V (Ce)) ⊆ h(V (Cu)) ∩

h(V (Cv)). It follows that h(V (Ce)) = {b}. There are 2k pinned configurations with z = b.
Each of the t vertices of Ce can have any of these 2k pinned configurations. Therefore, e
contributes a factor of 2kt to Zϕ .

• Let e = {u,v} < Cut(ϕ). Then, as h is full, h(V (Cu)) = h(V (Cv)) = ΓHb (xi) for some i ∈ [q].
Then h(Ce) ⊆ ΓHb (xi), where ΓHb (xi) is of the form {b, xi } or of the form {b, xi ,yi }. As
before there are 2k + 2 corresponding pinned configurations. Therefore, e contributes a
factor of (2k + 2)t to Zϕ .

Summarising, we obtain

Zϕ =

{
s

2k + 2

}n
(2k)t |Cut(ϕ) |(2k + 2)t (m−|Cut(ϕ) |). (21)

For each ϕ ∈ Φ∗ we have |Cut(ϕ)| = K . Then, using the fact that |Φ∗ | = T , we obtain

Z ∗ =
∑
ϕ∈Φ∗

Zϕ

=
∑
ϕ∈Φ∗

{
s

2k + 2

}n
(2k)tK (2k + 2)t (m−K)

=

{
s

2k + 2

}n
(2k)tK (2k + 2)t (m−K) ·T .

To shorten the notation let

L =

{
s

2k + 2

}n
(2k)tK (2k + 2)t (m−K).

We want to approximately compute the value T , where we have shown that T = Z ∗/L. Assume for
now that we have

N
(
(J , S) → Hb

)
/L ∈ [Z ∗/L,Z ∗/L + 1/4] = [T ,T + 1/4].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:35

Then consider the algorithm which makes a #Ret(Hb) oracle call with input ((J , S), ε/21) to obtain
a value Q and returns ⌊Q/L⌋. This algorithm approximates T with the desired error bound ε as is
shown in [12, Proof of Theorem 3]. It remains to show the following claim.
Claim: N

(

(J , S) → Hb

)

/L ∈ [Z ∗/L,Z ∗/L + 1/4].
Proof of the claim: Recall thatN

(
(J , S) → Hb

)
= Z ∗+Z1+Z2. Clearly, we haveN

(
(J , S) → Hb

)
/L ≥

Z ∗/L. We will show Z1/L ≤ 1/8 and Z2/L ≤ 1/8 to prove N
(
(J , S) → Hb

)
/L ≤ Z ∗/L + 1/4.

Recall that Z1 is the number of K-large full homomorphisms. Using (20) and (21) and the fact
that for each ϕ ∈ Φ \ Φ∗ we have |Cut(ϕ)| ≥ K + 1 we obtain

Z1 ≤
∑

ϕ∈Φ\Φ∗

{
s

2k + 2

}n
(2k)t (K+1)(2k + 2)t (m−K−1)

≤ qn
{

s

2k + 2

}n
(2k)t (K+1)(2k + 2)t (m−K−1)

where the last inequality follows from the fact that there are qn functions in Φ. Then

Z1
L

≤

(
2k

(2k + 2)

)t
qn ≤ 1/8,

where the last inequality holds for sufficiently large n by our choice of t = n2 and the fact that
2k/(2k + 2) < 1.

Recall that Z2 is the number of homomorphisms that are not full. How many non-full homomor-
phisms h are there? In general, there are at most 2 |V (Hb) | possible states h(V (Cv)) for any vertex
v ∈ V (G). By the same arguments as given in Observation A, each full vertex under h contributes a
factor of

{ s
2k+2

}
to Z2. Since s = n5 the requirements of Corollary 43 are met for sufficiently large n

and we obtain
(2k + 2)s/2 ≤

{
s

2k + 2

}
. (22)

We will use this bound shortly. If h is not full, there has to exist at least one vertex v ∈ V (G) which
is not full under h, and consequently there are at most n − 1 full vertices under h.
Now assume that v ∈ V (G) is not full under h. Then either v has state h(V (Cv)) = ΓHb (xi)

for some i ∈ [q] but not all of the 2k + 2 possible pinned configurations are used, or h(V (Cv)) <
{ΓHb (xi) | i ∈ [q]} (which means that either h(V (Cv)) ⊊ ΓHb (xi) or h(V (Cv)) = {b,u} for some
u ∈ U , by the fact that Cv is a large clique). In both cases the s vertices in Cv can each use at most
2k + 1 different pinned configurations. Hence, each non-full vertex contributes a factor of at most
(2k +1)s to Z2. In particular this factor is smaller (for sufficiently large n) than the factor contributed
by full vertices (see (22)). Finally, for each edge e there are at most |V (Hb)|

(k+1)t mappings from the
(k + 1) · t vertices in V (Je) \ {p1, . . . ,pk } to V (Hb). Therefore,

Z2 ≤ 2 |V (Hb) |n ·

{
s

2k + 2

}n−1
· (2k + 1)s · |V (Hb)|

(k+1)tm .

Recall that L =
{ s
2k+2

}n
(2k)tK (2k + 2)t (m−K) ≥

{ s
2k+2

}n . Then
Z2
L

≤
2 |V (Hb) |n · (2k + 1)s · |V (Hb)|

(k+1)tm{ s
2k+2

} ≤

(
2k + 1
2k + 2

)s
· 2 · 2 |V (Hb) |n · |V (Hb)|

(k+1)n4
≤ 1/8,

where the second inequality follows from (22) and the last inequality holds for sufficiently large
n by our choice of s = n5. This proves the claim and completes the proof. (End of the proof of the
claim.) □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:36 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

3.5 Square-Free Graphs with an Induced Net

The goal of this section is to prove #SAT-hardness for square-free graphs with an induced net (see
Figure 19). Note that the subgraphs of the net that are induced by a distance-1 neighbourhood of
some vertex u of the net are of two forms. Either the corresponding subgraph is a looped edge (if
u < {wi | i ∈ [3]}) or it is isomorphic to a looped triangle where one vertex in the triangle has a
single additional looped neighbour (if u ∈ {wi | i ∈ [3]}). Approximately counting retractions to
either of these two graphs is #BIS-easy (see Theorem 1). Therefore we cannot use these subgraphs
in our hardness proof, so we need to work harder.

w1

w2

w3

Fig. 19. The net.

In our proof (Lemma 48) we use the same general approach that we used to prove Lemma 40.
To make the approach work we have to find new gadgets tailored to the net. In one part of the
reduction we will need to approximate real values by integers. To achieve this we use Dirichlet’s
approximation lemma, which has been used frequently in this line of research (see for instance [24]).

Lemma 47 (see e.g. [49, p. 34]). Let λ1, . . . , λd > 0 be real numbers and N be a natural number. Then

there exist positive integers t1, . . . , td , r with r ≤ N such that |rλi − ti | ≤ 1/N 1/d
for every i ∈ [d].

Lemma 48. Let H be a square-free graph that has the net (as displayed in Figure 19) as an induced

subgraph. Then #SAT ≤AP #Ret(H).

Proof. LetH be a square-free graph with an induced net that is labelled as in Figure 19. Note that
each of the verticesw1,w2 andw3 might have additional neighbours inH . However, they cannot have
further common neighbours as H is square-free. We use a reduction from #MultiterminalCut(3)
which is #SAT-hard under AP-reductions by Lemma 44. Let I = (G, τ1, τ2, τ3,K) be an instance of
#MultiterminalCut(3) and ε ∈ (0, 1) the desired precision bound. Let n = |V (G)| andm = |E(G)|.
We will construct an instance (J , S) of #Ret(H).

To construct this instance we will use a number of parameters which we introduce at this point.
Let s = n2. For i ∈ [3] let si = s · log |ΓH (wi) |/3 2. For i ∈ [3], the value si is chosen such that(

|ΓH (wi)|

3

)si
= 2s . (23)

It will become clear later in the proof why this is useful. (The important part is that the values(
|ΓH (wi) |

3

)si
, for i ∈ [3], are identical and that the base of the exponent on the right-hand side is

greater than 1.) We will now determine integers that approximate s1, s2 and s3 using Dirichlet’s
approximation lemma. Let δ = ε/2 and δ ′ = log |V (H) | e

δ (the choices will become clear later in the
proof). By Lemma 47 we obtain integers r , t1, t2 and t3 of value at most (m/δ ′)3 ∈ poly(n, ε−1) such
that |rsi − ti | ≤ δ ′/m for i ∈ [3].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:37

We go on to define the graph J . Intuitively, for i ∈ [3], the terminal τi will serve as a “pin” to
the vertex wi . For each vertex v ∈ V (G) we introduce a graph Jv which is simply a star with
center v and leaves {τ1, τ2, τ3}. Formally, the vertices of Jv are V (Jv) = {v, τ1, τ2, τ3}. and the edges
are E(Jv) = {v} × {τ1, τ2, τ3}. For each edge e = {u,v} ∈ E(G) we introduce a graph Je which is
defined as follows. For i ∈ [3], let I ie be disjoint independent sets of size ti . Let t =

∑
i ∈[3] ti and

let Ie =
⋃

i ∈[3] I
i
e (Ie is an independent set of size t). Then Je is depicted in Figure 20 and formally

defined as the graph with vertices
V (Je) = Ie ∪ {u,v, τ1, τ2, τ3}

and edges

E(Je) = ({u,v} × Ie) ∪
3⋃
i=1

(
I ie × {τi }

)
.

u

τ1 τ2 τ3

v

τ1τ2τ3

I 1e

I 2e

I 3e

t1

t2

t3

τ1

τ2

τ3

Fig. 20. The graph Je for an edge e = {u,v} is depicted in black. Ju and Jv are depicted in blue. Note that τ1,
τ2 and τ3 are global vertices. That is, τi is the same vertex in all of the different gadgets.

Then J is the graph with vertices

V (J) =
⋃

v ∈V (G)

V (Jv) ∪
⋃

e ∈E(G)

V (Je)

and edges
E(J) =

⋃
v ∈V (G)

E(Jv) ∪
⋃

e ∈E(G)

E(Je).

The corresponding set of lists S = {Sv ⊆ V (H) | v ∈ V (J)} is defined by

Sv =

{
{wi }, if v = τi , i ∈ [3]
V (H), otherwise.

Let h be a homomorphism from (J , S) to H . By the definition of Jv every vertex v ∈ V (G) is also
a vertex of J . An edge e = {u,v} ∈ E(G) is called monochromatic under h if h(u) = h(v). Otherwise,
it is called dichromatic under h. We say that h is K-small if the number of dichromatic edges under
h is at most K . Otherwise, h is called K-large. Let Z ∗ be the number of K-small homomorphisms
from (J , S) to H and let Z1 be the number of K-large homomorphisms. Clearly,

N
(
(J , S) → H

)
= Z ∗ + Z1.

Recall the definitions of separating functions from Definition 45 and, to shorten notation, define
the sets Φ = Φ(I) and Φ∗ = Φ∗(I). T is the number of size-K multiterminal cuts of the instance
I = (G, τ1, τ2, τ3,K). Our goal is to approximate T . From Observation 46 we know that T = |Φ∗ |.

We say that a homomorphism h ∈ H((J , S),H) agrees with ϕ ∈ Φ if, for each v ∈ V (G), we have
h(v) = wϕ(v). By definition of the lists S, for each i ∈ [3], a homomorphism h from (J , S) to H has

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:38 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

to map τi towi . Furthermore, as v is adjacent to all three terminals and H is square-free we have
h(v) ∈ {w1,w2,w3}.

At this point we have introduced the gadget Je and the graph J and have defined what it means
for a homomorphism from J to H to agree with a function in Φ (which in turn corresponds to a
multiterminal cut). All these definitions are heavily tailored to the graph H . The following steps,
however, are very similar to those in the proof of Lemma 40. What complicates this proof in
comparison to that of Lemma 40 is the fact that we need to use Dirichlet’s approximation lemma to
balance out the edge interactions. Here are the details.

Every homomorphism h ∈ H((J , S),H) agrees with exactly one function ϕ ∈ Φ. In particular, if h
agrees with ϕ, then the dichromatic edges of h are exactly the multiterminal cut Cut(ϕ). It follows
that every K-small homomorphism agrees with exactly one function ϕ ∈ Φ∗ and every K-large
homomorphism agrees with exactly one function ϕ ∈ Φ \ Φ∗. For ϕ ∈ Φ let Zϕ be the number of
homomorphisms from (J , S) to H that agree with ϕ. Then

Z ∗ =
∑
ϕ∈Φ∗

Zϕ and Z1 =
∑

ϕ∈Φ\Φ∗

Zϕ . (24)

Let ϕ ∈ Φ. We are interested in the number Zϕ and investigate which homomorphisms h agree
with ϕ. For each v ∈ V (G) the image of Jv under h is fixed by the lists in S and the fact that
h(v) = ϕ(v). Therefore, we only need to consider possible images of the graphs Je . We make a case
distinction depending on e .

• Let e = {u,v} ∈ Cut(ϕ). (This means that e is dichromatic under h.) By the definition of Je it
follows that the image h(Ie) is a subset of ΓH (h(u)) ∩ ΓH (h(v)). The vertices h(u) and h(v) are
distinct and are from {w1,w2,w3}. As H is square-free it follows that ΓH (h(u)) ∩ ΓH (h(v)) =
{w1,w2,w3}. In addition, each vertex of Ie is adjacent to one of the terminals. Since the
images of these vertices are also in {w1,w2,w3} this does not bring any additional constraints.
Summarising, since Ie has size t the edge e contributes a factor of 3t to Zϕ .

• Let e = {u,v} ∈ Moni (ϕ) for some i ∈ [3]. (This means that e is a monochromatic edge under
h with h(u) = h(v) = wi .) Then, for j ∈ [3] with j , i , by the same arguments as before we
have h(I je) ⊆ {w1,w2,w3}. However the vertices in I ie can be mapped to any neighbour ofwi .
Therefore, each edge in Moni (ϕ) contributes a factor of |ΓH (wi)|

ti · 3t−ti to Zϕ .
Using this knowledge, for ϕ ∈ Φ, we have

Zϕ = 3t |Cut(ϕ) | ·
∏
i ∈[3]

(
|ΓH (wi)|

ti · 3t−ti
) |Moni (ϕ) | .

Sincem = |Cut(ϕ)| +
∑

i ∈[3] |Moni (ϕ)| we can simplify this expression to

Zϕ = 3tm
∏
i ∈[3]

(|ΓH (wi)|/3)ti |Moni (ϕ) | .

For i ∈ [3], recall the fact that |rsi − ti | ≤ δ ′/m, where si = s · log |ΓH (wi) |/3 2. For an upper bound
onZϕ we use the fact that ti ≤ rsi+δ

′/m. Also note that |ΓH (wi)| is bounded above by |V (H)| (which
we use in the second inequality of the following expression). Furthermore,

∑
i ∈[3] |Moni (ϕ)| ≤ m

and δ ′ = log |V (H) | e
δ (which we use in the third inequality of the following expression). Then

Zϕ ≤ 3tm
∏
i ∈[3]

(|ΓH (wi)|/3)(r si+δ
′/m)· |Moni (ϕ) |

≤ 3tm · 2(
∑
i∈[3] |Moni (ϕ) |)·r s · |V (H)|(

∑
i∈[3] |Moni (ϕ) |)·δ ′/m

≤ 3tm · 2(
∑
i∈[3] |Moni (ϕ) |)·r s · eδ .

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:39

Analogously, for a lower bound on Zϕ we use the fact that ti ≥ rsi − δ ′/m. We obtain 3tm ·

2(
∑
i∈[3] |Moni (ϕ) |)·r s · e−δ ≤ Zϕ . Summarising, we have

3tm · 2(
∑
i∈[3] |Moni (ϕ) |)·r s · e−δ ≤ Zϕ ≤ 3tm · 2(

∑
i∈[3] |Moni (ϕ) |)·r s · eδ . (25)

Putting these bounds on Zϕ into the expression for Z ∗ in (24) gives∑
ϕ∈Φ∗

3tm · 2(
∑
i∈[3] |Moni (ϕ) |)·r s · e−δ ≤ Z ∗ ≤

∑
ϕ∈Φ∗

3tm · 2(
∑
i∈[3] |Moni (ϕ) |)·r s · eδ .

Since
∑

i ∈[3] |Moni (ϕ)| =m − K for each ϕ ∈ Φ∗ and |Φ∗ | = T we obtain

T · 3tm · 2(m−K)·r s · e−δ ≤ Z ∗ ≤ T · 3tm · 2(m−K)·r s · eδ .

We set L = 3tm2(m−K)r s to obtain

T · e−δ ≤ Z ∗/L ≤ T · eδ . (26)

Assume for now that N
(
(J , S) → H

)
/L ∈ [Z ∗/L,Z ∗/L + 1/4]. Then the algorithm that makes a

#Ret(H) oracle call with input ((J , S), ε/42) returns a solution Q such that Z ∗/L · e−ε/2 ≤ ⌊Q/L⌋ ≤
Z ∗/L · eε/2 as was shown in [12, Proof of Theorem 3]. Using (26) and our choice of δ = ε/2 this
gives

T · e−ε ≤ ⌊Q/L⌋ ≤ T · eε .

Therefore the output ⌊Q/L⌋ approximates T with the desired precision. It remains to show the
following claim.

Claim: N
(

(J , S) → H
)

/L ∈ [Z ∗/L,Z ∗/L + 1/4].

Proof of the claim: Recall that N
(
(J , S) → H

)
= Z ∗ + Z1. It is immediate that N

(
(J , S) → H

)
/L ≥

Z ∗/L. It remains to show that Z1/L ≤ 1/4.
To obtain the following expression we first use (24) and (25). The third inequality then uses the

fact that, for every ϕ ∈ Φ \ Φ∗, we have |Cut(ϕ)| ≥ K + 1 and hence
∑

i ∈[3] |Moni (ϕ)| ≤ m − (K + 1).
Finally, in the fourth inequality we use the fact that |Φ \ Φ∗ | ≤ |V (H)|n

Z1 =
∑

ϕ∈Φ\Φ∗

Zϕ

≤
∑

ϕ∈Φ\Φ∗

3tm · 2(
∑
i∈[3] |Moni (ϕ) |)·r s · eδ

≤
∑

ϕ∈Φ\Φ∗

3tm · 2(m−K−1)·r s · eδ

≤ |V (H)|n · 3tm · 2(m−K−1)·r s · eδ

Recall the definition L = 3tm · 2(m−K)·r s . It follows that

Z1/L ≤
|V (H)|n · eδ

2r s ≤ 1/4,

where the last inequality holds for sufficiently large n by our choice of s = n2 and the fact that
r ≥ 1. This proves the claim and completes the proof. (End of the proof of the claim.) □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:40 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

3.6 Square-Free Graphs with an Induced Reflexive Cycle of Length at least 5
The goal of this section is to show the following lemma. We build up to its proof, which is given at
the end of this section.

Lemma 49. Let H be a square-free graph. If H contains a reflexive cycle of length at least 5 as an
induced subgraph then #SAT ≤AP #Ret(H).

Let H be a connected square-free graph with an induced reflexive cycle of length at least 5. If
all cycles in H have length at least 5, then H has girth at least 5 and the complexity of #Ret(H) is
classified by Theorem 5. In the special case whereH is reflexive this classification is straightforward
to see: Either there is just a single cycle in H , then H is a pseudotree and #SAT-hardness follows
from NP-hardness for the decision problem [18, Corollary 4.2, Theorem 5.1] together with [12,
Theorem 1] — or there are multiple cycles (all of which have length at least 5), then there exists an
induced WR3 (as H is connected) and hardness follows from Lemma 40.

Thus, it remains to show hardness if H contains both a cycle of length at least 5 as well as a cycle
of length at most 5, i.e. (since H is square-free) it contains a triangle. The hardness proof we give in
this section will handle the case where H includes triangles but will not rely on this fact (i.e. it will
also cover the before-mentioned case where all cycles have length at least 5 without relying on
hardness results for the decision problem).

As mentioned before, it is known that approximately counting list homomorphisms to reflexive
graphs with an induced cycle of length at least 4 is #SAT-hard [25, Lemma 3.4]. That proof makes
use of a certain set of two-vertex lists. In the proof of Lemma 49 we will use single-vertex lists to
simulate these two-vertex lists.

As we have already shown #SAT-hardness results for square-free graphs with an inducedWR3 or
an induced net in Sections 3.4 and 3.5 we now focus on graphs that do not contain such subgraphs.
When considering reflexive graphs it turns out that this leaves a class of graphs which we call
reflexive triangle-extended cycles. We will also make use of these reflexive triangle-extended cycles
when considering square-free graphs H that are not necessarily reflexive. When we do this we will
restrict to the (reflexive) subgraph induced by the looped vertices of H .

Definition 50. A reflexive triangle-extended cycle of lengthq consists of a reflexive cycle c0, . . . , cq−1
together with a set I ⊆ {0, . . . ,q − 1}, and a reflexive triangle di , ci , ci+1 mod q for each i ∈ I. An
example of a reflexive triangle-extended cycle is depicted in Figure 21.

c0c1

c2
c3

c4

d1

d3

d4

Fig. 21. Reflexive triangle-extended cycle with q = 5 and I = {1, 3, 4}.

Definition 51. Analogously to Definition 50, a reflexive triangle-extended path is a reflexive path
c0, . . . , cq−1 together with a set I ⊆ {0, . . . ,q − 2}, and a reflexive triangle di , ci , ci+1 for each i ∈ I.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:41

Lemma 52. Let H be a connected reflexive square-free graph that does not contain an inducedWR3
and also does not contain an induced net. If H contains an induced cycle of length at least 5 then H is a

reflexive triangle-extended cycle of length at least 5. Otherwise it is a reflexive triangle-extended path.

Proof. Case 1: H contains an induced cycle C = c0, . . . , cq−1 with q ≥ 5. If H is just the
cycle C , then the statement of the lemma is true (I = ∅). Otherwise, consider any d ∈ V (H) \V (C)
with a neighbour c ∈ V (C) (has to exist since H is connected).

Since H does not contain an induced WR3 the vertex d is adjacent to a neighbour c ′ ∈ V (C)
of c . Let c0 and c ′′ be the other neighbours of c and c ′ in C , respectively, i.e. ΓC (c) = {c0, c ′}
and ΓC (c

′) = {c, c ′′}. The vertices {c0, c, c ′, c ′′} are all distinct as C has length at least 5. As H is
square-free we observe

{d, c0} < E(H) and {d, c ′′} < E(H). (27)
The proof of the following claim directly proves that H is a reflexive triangle-extended cycle.

Claim: ΓH (d) = {c, c ′}.
Proof of the claim: Assume there exists a neighbour d ′ < {c, c ′} of d in H . By (27) we have d ′ <
{c0, c ′′}. Furthermore, since H is square-free, we obtain the following.

There is no u , d with u ∈ ΓH (c) ∩ ΓH (d
′) or u ∈ ΓH (c

′) ∩ ΓH (d
′). (28)

Let H ′ be the subgraph of H induced by the vertices {c0, c, c ′, c ′′,d,d ′}, see Figure 22. Then H ′ is a
net (cf. Figure 19 where c = w1, d = w2 and c ′ = w3).

c0

c

d

d ′

c ′

c ′′

Fig. 22. The graph H ′
induced by {c0, c, c ′, c ′′,d,d ′}. Loops are omitted. Dashed lines show edges that cannot

exist by the fact that H is square-free.

Because of (28) we have ΓH ′(d ′) = {d}. (The dashed edges incident to d ′ in Figure 22 cannot exist.)
Because of (27) we have ΓH ′(d) = {d ′, c, c ′}. (The dashed edges incident to d in Figure 22 cannot
exist.) Finally, since C is an induced cycle, there are no edges between the vertices {c0, c, c ′, c ′′}
outside of C . Therefore, H ′ is an induced net in H , which gives a contradiction. This proves the
claim in Case 1. (End of Case 1)

Case 2: All induced cycles inH are triangles. This case is handled very similarly to the previous
one: Let P = c0, . . . , cq−1 be a maximal induced path in H . If H is just the path P , then the statement
of the lemma is true (I = ∅). Otherwise, let d ∈ V (H) \V (P) be a neighbour of c ∈ V (P). We show
that d is adjacent to a neighbour c ′ ∈ V (P) of c:

• If c is an inner vertex of P then, since H does not contain an induced WR3, d is also adjacent
to a neighbour of c in P .

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:42 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

• If c is an endpoint of P , then d has to be adjacent to a vertex c ′ ∈ V (P) with c ′ , c as P is
maximal induced. Without loss of generality assume that c ′ is the neighbour of d which is
closest to c in P . Then c ′, c,d has to be a triangle (c ′ has to be a neighbour of c) as P is induced
and all induced cycles in H are triangles.

Then the proof of the following claim shows that H is a reflexive triangle-extended path.

Claim: ΓH (d) = {c, c ′}.
Proof of the claim: Assume there exists a neighbour d ′ < {c, c ′} of d in H . We observe the following
properties:

• The vertex d ′ does not have a neighbour in P : Assume the opposite and let u ∈ P be a
neighbour of d ′. Without loss of generality let u be closer to c ′ than c in P . Furthermore, let u
be the neighbour of d ′ in P which is closest to c ′. Then the edge {d ′,u} and the path d ′,d, c ′

close an induced cycle with P . If u , c ′ this cycle has length greater than 3, a contradiction.
If u = c ′ we obtain a contradiction to the fact that H is square-free (see Figure 22).

• Both c and c ′ are inner points of P : Suppose, for contradiction, that c ′ is an end point of P .
Since d ′ does not have a neighbour in P , replacing c ′ by d,d ′ in P gives an induced path P ′.
Moreover, P ′ is longer than P which is a contradiction to the maximality of P . This shows
that c ′ cannot be an end point of P . Analogously c cannot be an end point of P .

Then let c0 and c ′′ be the other neighbours of c and c ′ in P (they have to exist since c and c ′ are
inner points of P). The remainder of the argument is analogous to the proof of the claim in Case 1.
(End of Case 2) □

The goal of the remainder of this section is to prove Lemma 49. In order to prove Lemma 49 we
work with the following parameterised version of the list homomorphism counting problem. Let H
be a graph and L be a set of subsets of V (H).

Name: #Hom(H ,L).
Input: An irreflexive graph G and a collection of lists S = {Sv ∈ L | v ∈ V (G)}.
Output: N

(
(G, S) → H

)
.

We also use the following lemma.

Lemma 53 ([25, Proof of Lemma 3.4]). Let H be a graph that contains an induced reflexive cycle

C = c0, . . . , cq−1 on q ≥ 4 vertices. Let L = {{c0, c1}, {c0, c2}, . . . , {c0, cq−1}}. Then #Hom(H ,L) ≡AP
#SAT.

The key to proving Lemma 49 is the following result. It states that for certain graphs that contain
a reflexive triangle-extended cycle we can simulate each size-2 list of vertices in the corresponding
cycle C by gadgets using only single-vertex lists.

Lemma 54. Let H be a square-free graph that does not contain any mixed triangle as an induced

subgraph and let H ∗
be the graph induced by the looped vertices of H . Suppose that H ∗

contains a

connected component H ∗∗
that is a reflexive triangle-extended cycle, where C = c0, . . . , cq−1 is the

corresponding reflexive cycle as given by Definition 50 and the length of C is q ≥ 5. Let L and L ′
be

sets with

L ′ ⊊ L ⊆ {{c0, c1}, {c0, c2}, . . . , {c0, cq−1}} such that |L ′ | = |L| − 1.

Let L ′′ = L ′ ∪
{
S ⊆ V (H) | |S | ∈ {1, |V (H)|}

}
. Then

#Hom(H ,L) ≤AP #Hom(H ,L ′′).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:43

Proof. For the reflexive triangle-extended cycle H ∗∗ we use the notation (C , I and di for
i ∈ I) as given by Definition 50. Let L, L ′ and L ′′ be as given in the statement of the lemma.
We have L ′ = L \ {{c0, cℓ}} for some ℓ ∈ [q − 1]. Let (G, SG) be an input to #Hom(H ,L). Let
U = {u ∈ V (G) | SGu = {c0, cℓ}}. Since {c0, cℓ} is not part of L ′′ the goal is to simulate {c0, cℓ}
using gadgetry and lists from L ′′.

From (G, SG) we define an instance (J , SJ) of #Hom(H ,L ′′). To this end we will define, for each
u ∈ U , a vertex gadget Ju and a corresponding set of lists Su = {Suv ∈ L ′′ | v ∈ V (Ju)}. There
are two distinct paths in C that connect c0 and cℓ : P1 = c0, c1, . . . , cℓ and P2 = cℓ, . . . , cq−1, c0. The
graph Ju has two parts: a graph JP1 and a graph JP2 , which depend on the paths P1 and P2. We
first define JP1 and JP2 (and the corresponding sets of lists S1 = {S1v ∈ L ′′ | v ∈ V (JP1)} and
S2 = {S2v ∈ L ′′ | v ∈ V (JP2)}) and then we describe the way in which they are connected to form
Ju . The definition of JP1 depends on ℓ, the number of edges of P1:

• If ℓ is even, think of a path on ℓ/2 edges. Let v∗ be one of the end points of this path. We
pin v∗ to cℓ/2 (the vertex in the “middle” of P1). This graph is depicted in Figure 23 on the
left. The graph JP1 is then a modification of this graph where each vertex of the path is
replaced by a clique of size 2 (apart from v∗ which will be pinned to cℓ/2 anyway). This
modification will ensure that only looped vertices can be in the image of JP1 . The graph JP1
is depicted in Figure 23 (on the right) and is formally defined as follows: V (JP1) = {vi ,v

′
i |

i ∈ {0, . . . , ℓ/2 − 1}} ∪ {v∗}, where all these vertices are distinct from the vertices of G (and
distinct from the vertices used in other gadgets). E(JP1) =

{
{vi ,v

′
i } | i ∈ {0, . . . , ℓ/2 − 1}

}
∪{

{vi−1,v
′
i−1} × {vi ,v

′
i } | i ∈ [ℓ/2− 1]

}
∪

{
{vℓ/2−1,v

∗}, {v ′
ℓ/2−1,v

∗}
}
. We set S1v∗ = {cℓ/2} and

S1v = V (H) for all v ∈ V (JP1) \ {v
∗}

• If ℓ is odd, then JP1 is defined very similarly to the previous case, see Figure 24. Formally,
V (JP1) = {vi ,v

′
i | i ∈ {0, . . . , ⌊ℓ/2⌋}} ∪ {v∗

1,v
∗
2}, where all these vertices are distinct from the

vertices of G (and distinct from the vertices used in other gadgets). E(JP1) =
{
{vi ,v

′
i } | i ∈

{0, . . . , ⌊ℓ/2⌋}
}
∪

{
{vi−1,v

′
i−1} × {vi ,v

′
i } | i ∈ [⌊ℓ/2⌋]

}
∪

{
{v ⌊ℓ/2⌋,v

′
⌊ℓ/2⌋} × {v∗

1,v
∗
2}

}
. We

set S1v∗
1
= {c ⌈ℓ/2⌉}, S1v∗

2
= {c ⌊ℓ/2⌋} and S1v = V (H) for all v ∈ V (JP1) \ {v

∗
1,v

∗
2}.

ℓ/2 edges

v∗ → cℓ/2

ℓ/2 edges

v0

v ′
0

v∗ → cℓ/2

Fig. 23. Construction of the graph JP1 for even ℓ. The label of the form v∗ → cℓ/2 means that the vertex

v∗ ∈ V (JP1) is “pinned” to cℓ/2 ∈ V (H) since S1v∗ = {cℓ/2}.

This completes the definition of JP1 . JP2 is defined analogously. However, the length of P2 is q − ℓ
instead of ℓ. Furthermore, if q− ℓ is even, note that the vertex in the “middle” of P2 = cℓ, . . . , cq−1, c0
is c(q+ℓ)/2 rather than cℓ/2. (Accordingly, if q − ℓ is odd, we use c ⌈(q+ℓ)/2⌉ and c ⌊(q+ℓ)/2⌋ to “pin” to.)
Formally, JP2 is defined as follows:

• If q − ℓ is even, we have V (JP2) = {wi ,w
′
i | i ∈ {0, . . . , (q − ℓ)/2 − 1}} ∪ {w∗} and E(JP2) ={

{wi ,w
′
i } | i ∈ {0, . . . , (q − ℓ)/2 − 1}

}
∪

{
{wi−1,w

′
i−1} × {wi ,w

′
i } | i ∈ [(q − ℓ)/2 − 1]

}
∪{

{w(q−ℓ)/2−1,w
∗}, {w ′

(q−ℓ)/2−1,w
∗}

}
. We set S2w∗ = {c(q+ℓ)/2} and S2w = V (H) for all w ∈

V (JP2) \ {w
∗}

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:44 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

⌈ℓ/2⌉ edges

v0

v ′
0

v∗
1 → c ⌈ℓ/2⌉

v∗
2 → c ⌊ℓ/2⌋

Fig. 24. The graph JP1 for odd ℓ. A label of the form a → b means that the vertex a ∈ V (JP1) is “pinned” to

b ∈ V (H) since S1a = {b}.

• If q − ℓ is odd, we have V (JP2) = {wi ,w
′
i | i ∈ {0, . . . , ⌊(q − ℓ)/2⌋}} ∪ {w∗

1,w
∗
2} and E(JP2) ={

{wi ,w
′
i } | i ∈ {0, . . . , ⌊(q − ℓ)/2⌋}

}
∪

{
{wi−1,w

′
i−1} × {wi ,w

′
i } | i ∈ [⌊(q − ℓ)/2⌋]

}
∪{

{w ⌊(q−ℓ)/2⌋,w
′
⌊(q−ℓ)/2⌋} × {w∗

1,w
∗
2}

}
. We set S2w∗

1
= {c ⌈(q+ℓ)/2⌉}, S2w∗

2
= {c ⌊(q+ℓ)/2⌋} and S2w =

V (H) for allw ∈ V (JP2) \ {w
∗
1,w

∗
2}.

We can now define the graph Ju (for u ∈ U): Ju is the graph obtained from JP1 and JP2 by
identifying v0 withw0 and v ′

0 withw ′
0. As an example, if P1 has even length and P2 has odd length,

the graph Ju is depicted in Figure 25. Let A(u) denote the set that contains the two vertices
v0 = w0 and v ′

0 = w
′
0. The lists Su of the vertices in Ju are the union of S1 and S2. (Note that this is

well-defined as S1v0 = S1v ′
0
= S2w0 = S2w ′

0
= V (H).) This completes the definition of Ju and Su .

We can finally define the instance (J , SJ): J is the graph with vertices V (Ju) = V (G) \ U ∪⋃
u ∈U V (Ju) and edges

E(J) =
{
{v,v ′} | {v,v ′} ∈ E(G) and v,v ′ ∈ V (G) \U

}
∪

{
{v} × A(v ′) | {v,v ′} ∈ E(G) and v ∈ V (G) \U ,v ′ ∈ U

}
∪

{
A(v) × A(v ′) | {v,v ′} ∈ E(G) and v,v ′ ∈ U

}
∪

⋃
u ∈U

E(Ju).

Finally, SJ = {S Jv ⊆ V (H) | v ∈ V (J)} with

S Jv =

{
SGv , if v ∈ V (G) \U

Suv if otherwise v ∈ V (Ju) for some u ∈ U .

Note that for each v ∈ V (J) we have S Jv ∈ L ′′ and therefore (J , SJ) is a valid input to #Hom(H ,L ′′).
To show how homomorphisms from (J , SJ) to H relate to homomorphisms from (G, SG) to H we

determine some properties of the gadget Ju . Consider the case where ℓ, the number of edges of P1,
is even, and q − ℓ, the number of edges of P2, is odd. (The other cases of ℓ and q − ℓ even or odd
will be analogous.) Then Ju is the gadget depicted in Figure 25. Let the vertices of Ju be labelled
accordingly. Now let h be a homomorphism from (J , SJ) to H .

Claim 1: For all i ∈ {0, . . . , ℓ/2 − 1}, the image h({vi ,v
′
i }) contains at least one looped

vertex. For all j ∈ {0, . . . , ⌊(q − ℓ)/2⌋}, the image h({wj,w ′
j}) contains at least one looped

vertex.

Proof of Claim 1: First consider h({vℓ/2−1,v ′
ℓ/2−1}). Assume that both h(vℓ/2−1) and h(v ′

ℓ/2−1) are
unlooped vertices of H . Since {vℓ/2−1,v

′
ℓ/2−1} is an edge in J , h(vℓ/2−1) and h(v ′

ℓ/2−1) have to be
connected by an edge in H and therefore have to be different unlooped vertices. However, the
vertices vℓ/2−1 and v ′

ℓ/2−1 are also neighbours of v∗ which is pinned to the looped vertex cℓ/2. It

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:45

JP1 JP2

v0 = w0

v ′
0 = w

′
0

(replaces u in G)
A(u)

v1

v ′
1

v2

v ′
2

vℓ/2−1

v ′
ℓ/2−1

v∗ → cℓ/2

w1

w ′
1

w2

w ′
2

w ⌊
q−ℓ
2

⌋

w ′⌊
q−ℓ
2

⌋

w∗
1 → c⌈ q+ℓ

2

⌉

w∗
2 → c ⌊

q+ℓ
2

⌋

Fig. 25. The graph Ju if ℓ (the number of edges of P1) is even and q − ℓ (the number of edges of P2) is odd.

follows that h(vℓ/2−1),h(v ′
ℓ/2−1), cℓ/2 form a mixed triangle in H , a contradiction. This argument

can be repeated iteratively for each i = ℓ/2 − 2, . . . , 0 (using the fact that h({vi+1,v ′
i+1}) contains a

looped vertex). The argument for h({w j ,w
′
j }) (j ∈ {0, . . . , ⌊(q − ℓ)/2⌋}) is analogous.

Claim 2: There exists a vertexv ∈ A(u) with h(v) ∈ {c0, cℓ}.
Proof of Claim 2: Let A(u) = {v,v ′} where h(v) is looped (this can be assumed without loss of
generality by Claim 1). We will show that h(v) ∈ {c0, cℓ}: By Claim 1 and the construction of JP1
there exists a walk on ℓ/2 edges in H which uses looped vertices only and goes from cℓ/2 to h(v),
which by assumption is looped itself. As this walk is looped it is in H ∗, and as it contains cℓ/2 it is
in H ∗∗. Hence,

h(v) ∈ Γℓ/2H ∗∗ (cℓ/2). (29)
Similarly, by the construction of JP2 we obtain

h(v) ∈ Γ
⌈(q−ℓ)/2⌉
H ∗∗ (c ⌊(q+ℓ)/2⌋) ∩ Γ

⌈(q−ℓ)/2⌉
H ∗∗ (c ⌈(q+ℓ)/2⌉). (30)

Since H ∗∗ is a reflexive triangle-extended cycle we have

Γℓ/2H ∗∗ (cℓ/2) = {c0, . . . , cℓ} ∪ {di | i ∈ I ∩ {0, . . . , ℓ − 1}}
and
Γ
⌈(q−ℓ)/2⌉
H ∗∗ (c ⌊(q+ℓ)/2⌋) ∩ Γ

⌈(q−ℓ)/2⌉
H ∗∗ (c ⌈(q+ℓ)/2⌉) = {cℓ, . . . , cq−1, c0} ∪ {di | i ∈ I ∩ {ℓ, . . . ,q − 1}}.

Therefore, from Equations (29) and (30) it follows that h(v) ∈ {c0, cℓ}.

Claim 3: Letv ∈ A(u) and h(v) ∈ {c0, cℓ}. Then the image of the remaining vertices of Ju
under h is determined completely. In particular, h(A(u)) = {h(v)}.
Proof of Claim 3: Consider the case where h(v) = c0 (the case h(v) = cℓ can be treated analogously).
Since H ∗∗ is a reflexive triangle-extended cycle and a connected component of H ∗, the walk
cℓ/2, cℓ/2−1, . . . , c0 is the only ℓ/2-edge walk on looped vertices in H that leads from cℓ/2 to c0
(since there are no reflexive shortcuts in C). Thus, by Claim 1 and the construction of JP1 , we have
∀i ∈ {0, . . . , ℓ/2 − 1}, ci ∈ h({vi ,v

′
i }). We assume without loss of generality (by renaming) that for

each i ∈ {0, . . . , ℓ/2 − 1} we have h(vi) = ci .
Now consider the image h(v ′

i) for some i ∈ [ℓ/2 − 1]. The vertex v ′
i is a neighbour of vi−1, vi and

vi+1 (or alternatively v∗ if i = ℓ/2 − 1) in J . Therefore, by the fact that for each i ∈ {0, . . . , ℓ/2 − 1}
we have h(vi) = ci and by the pinning that ensures h(v∗) = cℓ/2, we know that h(v ′

i) has to
be a neighbour of ci−1, ci and ci+1 in H . Since there is no edge between ci−1 and ci+1 we have

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:46 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

h(v ′
i) < {ci−1, ci+1}. Then h(v ′

i) = ci as otherwise ci−1, ci , ci+1,h(v ′
i)would form a square inH which

is a contradiction to the fact that H is square-free. So we have established that for each i ∈ [ℓ/2− 1]
it holds that h(vi) = h(v ′

i) = ci .
Similarly one establishes that for each i ∈ [⌊(q − ℓ)/2⌋] it holds that h({wi ,w

′
i }) = cq−i : Note

that by the construction of JP2 the homomorphism h has to map w ⌊(q−ℓ)/2⌋ and w ′
⌊(q−ℓ)/2⌋ to

common neighbours of c ⌊(q+ℓ)/2⌋ and c ⌈(q+ℓ)/2⌉ . Since H ∗∗ is a reflexive triangle-extended cycle and
a connected component of H ∗, the walk c ⌈(q+ℓ)/2⌉ . . . , cq−1, c0 is the only ⌊(q − ℓ)/2⌋-edge walk on
looped vertices inH that leads from a common neighbour of c ⌊(q+ℓ)/2⌋ and c ⌈(q+ℓ)/2⌉ to c0. Therefore,
we have c0 ∈ h({w0,w

′
0}) and ∀i ∈ [⌊(q − ℓ)/2⌋], cq−i ∈ h({wi ,w

′
i }). Then by the same arguments

as before we establish that for each i ∈ [⌊(q − ℓ)/2⌋] it holds that h(wi) = h(w
′
i) = cq−i .

Finally, v ′
0 is a neighbour of w1, v0(= w0) and v1. Hence, h(v ′

0) is a neighbour of h(w1) = cq−1,
h(v0) = c0 and h(v1) = c1. Since there is no edge between cq−1 and c1 we have h(v ′

i) < {cq−1, c1}.
Then h(v ′

0) = c0 as otherwise cq−1, c0, c1,h(v ′
0) would form a square in H which is a contradiction

to the fact that H is square-free. We obtain h(v ′
0) = h(v0) = c0. This proves Claim 3.

From the construction of J together with Claim 2 and Claim 3 we obtain that N
(
(G, SG) → H

)
=

N
(
(J , SJ) → H

)
, which gives the sought-for reduction in the case where ℓ is even and q − ℓ is odd.

All other cases of ℓ even or odd and q − ℓ even or odd can be treated analogously. □

Now we can prove Lemma 49.

Lemma 49. Let H be a square-free graph. If H contains a reflexive cycle of length at least 5 as an
induced subgraph then #SAT ≤AP #Ret(H).

Proof. Suppose that H contains a mixed triangle as an induced subgraph, then the statement
of this lemma follows from Lemmas 24 and 25. We can now assume that H does not contain any
mixed triangle as an induced subgraph.
Let C = c0, . . . , cq−1 be the reflexive cycle of length q ≥ 5 in H . Let H ∗ be the graph induced by

the looped vertices in H . If H (and hence H ∗) contains an induced WR3 or an induced net then
#SAT ≤AP #Ret(H) by Lemmas 40 and 48, respectively. Otherwise, the connected component of H ∗

that contains the cycle C has to be a reflexive triangle-extended cycle by Lemma 52 and therefore
H fulfills the requirements of Lemma 54.
Let L = {{c0, c1}, {c0, c2}, . . . , {c0, cq−1}}. Then #Hom(H ,L) ≡AP #SAT by Lemma 53. We can

use Lemma 54 iteratively to obtain #Hom(H ,L) ≤AP #Hom
(
H ,

{
S ⊆ V (H) | |S | ∈ {1, |V (H)|}

})
.

Note that by the problem definitions we have #Hom
(
H ,

{
S ⊆ V (H) | |S | ∈ {1, |V (H)|}

})
= #Ret(H).

Summarising,
#SAT ≡AP #Hom(H ,L) ≤AP #Hom

(
H ,

{
S ⊆ V (H) | |S | ∈ {1, |V (H)|}

})
= #Ret(H).

□

4 PUTTING THE PIECES TOGETHER

This section contains the proof of Theorem 2 (we restate it here for convenience). We will use the
following theorem, which is a consequence of the classification in [21] for approximately counting
retractions to graphs of girth at least 5, since that proof does not use the fact that H is triangle-free
for irreflexive H .

Theorem 55 ([21, Theorem 2.3]). Let H be an irreflexive square-free graph.

i) If every connected component of H is a star, then #Ret(H) is in FP.
ii) Otherwise, if every connected component of H is a caterpillar, then #Ret(H) is approximation-

equivalent to #BIS.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:47

iii) Otherwise, #Ret(H) is approximation-equivalent to #SAT.

In the following lemma we collect the #SAT-hardness results which we use to prove Theorem 2.

Lemma 56. Let H be a connected square-free graph other than a reflexive clique, a member of HBIS,
or an irreflexive caterpillar. Then #Ret(H) is approximation-equivalent to #SAT.

Proof. IfH is irreflexive then by assumption it is not a caterpillar. Thus #Ret(H) is approximation-
equivalent to #SAT by Theorem 55.
If H is not irreflexive, i.e. if H has at least one loop, then we collect different #SAT-hardness

results proved throughout this work to show hardness. If H contains a mixed triangle as induced
subgraph, then #SAT ≤AP #Ret(H) by Lemmas 24 and 25. If H does not contain a mixed triangle
as an induced subgraph but contains a WR3, a net or a reflexive cycle of length at least 5 as an
induced subgraph, then #SAT ≤AP #Ret(H) by Lemmas 40, 48 and 49, respectively. It remains to
show #SAT ≤AP #Ret(H) if H is a graph with the following properties:

• H is connected and square-free.
• H has at least one looped vertex.
• H is not a reflexive clique.
• H < HBIS.
• H does not contain any of the following as an induced subgraph: a mixed triangle, a WR3, a
net, a reflexive cycle of length at least 5.

Let H ∗ be a connected component in the graph induced by the looped vertices in H . (It will turn
out that H ∗ is actually the only connected component in this graph.) Then by the properties of H
and Lemma 52 we know that H ∗ is a reflexive triangle-extended path. We recall the definition of
a reflexive triangle-extended path from Definition 51: H ∗ is a reflexive path c0, . . . , cq−1 together
with a set I ⊆ {0, . . . ,q − 2}, and a reflexive triangle di , ci , ci+1 for each i ∈ I. Since H ∗ is not a
reflexive clique it holds that q − 1 ≥ 2.
Note that H ∗ ∈ HBIS (where the set of bristles is empty and ci corresponds to pi). For all i ∈ I

the clique Ki has size 3, for i < I it has size 2. Since H < HBIS and H is connected, there exists a
vertex u outside of H ∗ with a neighbour v in H ∗. The vertex u has to be unlooped as otherwise it
would be part of the reflexive connected component H ∗. We consider four disjoint cases.

• If there exists a vertex u < V (H ∗) (u is unlooped) which is adjacent to a vertex v ∈ V (H ∗) and
degH (u) ≥ 2, then consider two different cases:
– If u is adjacent to a vertex w ∈ ΓH (v) with w , v , then w , u since u is unlooped and
u,v,w is a mixed triangle, a contradiction.

– If v is the only neighbour of u in ΓH (v), then the requirements of Lemma 39 are met (with
b = v and д = u) and hence #SAT ≤AP #Ret(H).

• If there exists a vertex u < V (H ∗) which is adjacent to a vertex v ∈ V (H ∗), degH (u) = 1 and
v ∈ {di | i ∈ I}, then H [ΓH (v)] is a graph of the form X (k1, 0, 1) where k1 ≥ 1 (cf. Figure 9)
and therefore
#SAT ≤AP #Hom(X (k1, 0, 1)) ≤AP #Ret(X (k1, 0, 1)) = #Ret(H [ΓH (v)]) ≤AP #Ret(H),

by Lemma 36, Observation 6 and Observation 23 (in the order of the reductions used).
• Suppose there exists a vertex u < V (H ∗) with degH (u) = 1 that is adjacent to a vertex
v ∈ {c0, cq−1}. Without loss of generality (by renaming the vertices of H ∗) let v = c0. If
0 ∈ I then c0 is part of a reflexive triangle d0, c0, c1 in H ∗ and H [ΓH (v)] is a graph of the
form X (k1, 0, 1) where k1 ≥ 1. Then we have #SAT ≤AP #Ret(H) by the same arguments
used in the previous case. If otherwise 0 < I then c1 is the only neighbour of c0 in H ∗ and
H [ΓH (v)] is a graph of the form X (k1, 1, 0) where k1 ≥ 1. Then we use Theorem 5 to infer

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:48 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

that #SAT ≤AP #Ret(X (k1, 1, 0)) (since X (k1, 1, 0) has girth at least 5 and therefore is subject
to Theorem 5). It follows that #SAT ≤AP #Ret(H) by the same arguments as in the previous
case.

• If for every pair u,v of adjacent vertices with u < V (H ∗) and v ∈ V (H ∗) we have degH (u) = 1
(u is a so-called bristle) and v ∈ {c1, . . . , cq−2}, then H is the triangle-extended path H ∗

together with a number of bristles (all of which are attached to a vertex in {c1, . . . , cq−2}). To
match the notation ofHBIS in Definition 10 we set Q = q − 2 and, for all i ∈ {0, . . . ,Q + 1},
we set pi = ci . Further, if i ∈ I then Ki = {pi ,di ,pi+1} and otherwise Ki = {pi ,pi+1}. Note
that |Ki | ∈ {2, 3} which we will use in a moment. For each i ∈ [Q] let Bi be the set of
unlooped neighbours (bristles) of pi . By the fact that all unlooped vertices of H have degree
1 and a neighbour in {c1, . . . , cq−2} = {p1, . . . ,pQ } we have V (H) =

⋃Q
i=0 Ki ∪

⋃Q
i=1 Bi and

E(H) =
⋃Q

i=0(Ki × Ki) ∪
⋃Q

i=1({pi } × Bi). Since H ∗ is a triangle-extended path we can also
verify the properties Ki−1 ∩Ki = {pi } (for i ∈ [Q]) and Ki ∩Kj = ∅ (for i, j ∈ {0, . . . ,Q} with
|j − i | > 1).
Therefore, since H < HBIS, there exists i ∈ [Q] such that at least one of the following holds:
(i) |Ki−1 | = |Ki | = 2 and |Bi | ≥ 2.
(ii) |Ki−1 | = 2 and |Ki | = 3 (or |Ki−1 | = 3 and |Ki | = 2) and |Bi | ≥ 3.
(iii) |Ki−1 | = |Ki | = 3 and |Bi | ≥ 5.
In all three cases we will show that the neighbourhood of pi induces a #SAT-hard subgraph,
i.e. that #SAT ≤AP #Ret(H [ΓH (pi)]). Then, by Observation 23, we obtain #SAT ≤AP #Ret(H)

which completes the proof of this case and with it the proof of the theorem.
– If item (i) holds, thenH [ΓH (pi)] is of the formX (k1, 2, 0)where k1 ≥ 2. The graphX (k1, 2, 0)
has girth at least 5 and therefore is subject to Theorem 5. Since X (k1, 2, 0) with k1 ≥ 2 is a
mixed graph but not a partially bristled reflexive path we obtain #SAT ≤AP #Ret(H [ΓH (pi)])
by Theorem 5.

– If item (ii) holds, then H [ΓH (pi)] is of the form X (k1, 1, 1) where k1 ≥ 3. Then #SAT ≤AP
#Ret(H [ΓH (pi)]) by Lemma 37.

– If item (iii) holds, then H [ΓH (pi)] is of the form X (k1, 0, 2) where k1 ≥ 5. Then #SAT ≤AP
#Ret(H [ΓH (pi)]) by Lemma 38.

□

We will use the following remark to deal with graphs that have multiple connected components.

Remark 57 ([21, Remark 1.15]). Let H be a graph with connected components H1, . . . ,Hk . On
the one hand it holds that ∀j ∈ [k], #Ret(Hj) ≤AP #Ret(H). On the other hand, given an oracle for
each #Ret(Hj), we can construct a polynomial-time algorithm for #Ret(H).

Theorem 2. Let H be a square-free graph.

i) If every connected component of H is trivial then approximately counting retractions to H is in

FP.

ii) Otherwise, if every connected component of H is

• trivial,

• in the classHBIS, or
• is an irreflexive caterpillar

then approximately counting retractions to H is #BIS-equivalent.
iii) Otherwise, approximately counting retractions to H is #SAT-equivalent.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:49

Proof. If H is a trivial graph then #LHom(H) ∈ FP by the result of Dyer and Greenhill [14]
(see Theorem 7). From #Ret(H) ≤AP #LHom(H) (Observation 6) it also follows that #Ret(H) ∈ FP.
Then item i) follows from Remark 57.

If H is a graph for which item i) does not hold, then H has a connected component H ′ that is
not a trivial graph. By Remark 57 we have #Ret(H ′) ≤AP #Ret(H). Then #BIS-hardness in item ii)

follows from the reduction #Hom(H ′) ≤AP #Ret(H ′) (Observation 6) together with the fact that
#BIS ≤AP #Hom(H ′) since H ′ is a non-trivial connected graph [24, Theorem 1].

We will now prove #BIS-easiness in item ii). If H ′ is a trivial graph we have already pointed out
that #Ret(H ′) ∈ FP and hence #Ret(H ′) is trivially #BIS-easy. IfH ′ ∈ HBIS then #Ret(H ′) ≤AP #BIS
by Theorem 1. If H ′ is an irreflexive caterpillar then #Ret(H ′) ≤AP #BIS by Theorem 55. Hence,
#BIS-easiness in item ii) follows from Remark 57.

If H is a graph for which item ii) does not hold, then H has a connected component H ′ that is not
trivial, not a member ofHBIS and not an irreflexive caterpillar. Then #Ret(H ′) is approximation-
equivalent to #SAT by Lemma 56 and #Ret(H ′) ≤AP #Ret(H) by Remark 57. This proves item iii).

□

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement
no. 334828 and under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 714532). Jacob Focke has received funding from the Engineering and Physical
Sciences Research Council (grant ref: EP/M508111/1). Stanislav Živný was supported by a Royal
Society University Research Fellowship. The paper reflects only the authors’ views and not the
views of the ERC or the European Commission. The European Union is not liable for any use that
may be made of the information contained therein.

REFERENCES

[1] Marien Abreu, Camino Balbuena, and Domenico Labbate. 2010. Adjacency matrices of polarity graphs and of other
C4-free graphs of large size. Designs, Codes and Cryptography 55, 2-3 (2010), 221–233.

[2] Felix Arends, Joël Ouaknine, and Charles W Wampler. 2011. On searching for small Kochen-Specker vector systems.
In International Workshop on Graph-Theoretic Concepts in Computer Science. Springer, 23–34.

[3] M. Bíró, M. Hujter, and Zs. Tuza. 1992. Precoloring extension. I. Interval graphs. Discrete Math. 100, 1-3 (1992), 267–279.
https://doi.org/10.1016/0012-365X(92)90646-W Special volume to mark the centennial of Julius Petersen’s “Die Theorie
der regulären Graphs”, Part I.

[4] Manuel Bodirsky, Jan Kára, and Barnaby Martin. 2012. The complexity of surjective homomorphism problems—a
survey. Discrete Appl. Math. 160, 12 (2012), 1680–1690. https://doi.org/10.1016/j.dam.2012.03.029

[5] Hans L. Bodlaender, Klaus Jansen, and Gerhard J. Woeginger. 1994. Scheduling with incompatible jobs. Discrete Appl.
Math. 55, 3 (1994), 219–232. https://doi.org/10.1016/0166-218X(94)90009-4

[6] John Adrian Bondy, Paul Erdös, and Siemion Fajtlowicz. 1999. Graphs of diameter two with no 4-circuits. Discrete
mathematics 200, 1-3 (1999), 21–25.

[7] Karol Borsuk. 1931. Sur les rétractes. Fundamenta Mathematicae 17, 1 (1931), 152–170.
[8] Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In 58th Annual IEEE Symposium on Foundations

of Computer Science—FOCS 2017. IEEE Computer Soc., Los Alamitos, CA, 319–330.
[9] Ilkyoo Choi, Daniel W Cranston, and Théo Pierron. 2018. Degeneracy and Colorings of Squares of Planar Graphs

without 4-Cycles. arXiv preprint arXiv:1806.07204 (2018).
[10] C.R.J. Clapham, A. Flockhart, and J. Sheehan. 1989. Graphs without four-cycles. Journal of Graph theory 13, 1 (1989),

29–47.
[11] Christian Delhommé and Norbert Sauer. 2002. Homomorphisms of products of graphs into graphs without four cycles.

Combinatorica 22, 1 (2002), 35–46.
[12] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. 2004. The Relative Complexity of Approxi-

mate Counting Problems. Algorithmica 38, 3 (2004), 471–500. https://doi.org/10.1007/s00453-003-1073-y Approxima-
tion algorithms.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1016/0012-365X(92)90646-W
https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1016/0166-218X(94)90009-4
https://doi.org/10.1007/s00453-003-1073-y

1:50 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

[13] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. 2004. Counting and sampling H -colourings. Inform. and Comput.

189, 1 (2004), 1–16. https://doi.org/10.1016/j.ic.2003.09.001
[14] Martin Dyer and Catherine Greenhill. 2000. The complexity of counting graph homomorphisms. Random Structures &

Algorithms 17, 3-4 (2000), 260–289. https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
[15] Tomas Feder and Pavol Hell. 1998. List homomorphisms to reflexive graphs. J. Combin. Theory Ser. B 72, 2 (1998),

236–250. https://doi.org/10.1006/jctb.1997.1812
[16] Tomas Feder, Pavol Hell, and Jing Huang. 1999. List Homomorphisms and Circular Arc Graphs. Combinatorica 19, 4

(1999), 487–505. https://doi.org/10.1007/s004939970003
[17] Tomas Feder, Pavol Hell, and Jing Huang. 2009. Extension problems with degree bounds. Discrete Appl. Math. 157, 7

(2009), 1592–1599. https://doi.org/10.1016/j.dam.2008.04.006
[18] Tomás Feder, Pavol Hell, Peter Jonsson, Andrei Krokhin, and Gustav Nordh. 2010. Retractions to Pseudoforests. SIAM

J. Discrete Math. 24, 1 (2010), 101–112. https://doi.org/10.1137/080738866
[19] Tomás Feder and Moshe Y. Vardi. 1999. The computational structure of monotone monadic SNP and constraint

satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28, 1 (1999), 57–104. https://doi.org/10.1137/
S0097539794266766

[20] Frank A Firke, Peter M Kosek, Evan D Nash, and Jason Williford. 2013. Extremal graphs without 4-cycles. Journal of
Combinatorial Theory, Series B 103, 3 (2013), 327–336.

[21] Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný. 2020. The Complexity of Approximately Counting Retractions.
ACM Trans. Comput. Theory 12, 3 (2020), 15:1–15:43. https://doi.org/10.1145/3397472

[22] Zoltán Füredi. 1983. Graphs without quadrilaterals. Journal of Combinatorial Theory, Series B 34, 2 (1983), 187–190.
[23] Zoltán Füredi and Miklós Simonovits. 2013. The history of degenerate (bipartite) extremal graph problems. In Erdős

Centennial. Springer, 169–264.
[24] Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. 2016. Approximately counting H -colorings is #BIS-hard.

SIAM J. Comput. 45, 3 (2016), 680–711. https://doi.org/10.1137/15M1020551
[25] Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. 2017. A Complexity Trichotomy for Approximately Counting

List H -Colorings. ACM Trans. Comput. Theory 9, 2 (2017), Art. 9, 22. https://doi.org/10.1145/3037381
[26] David K Garnick, YH Harris Kwong, and Felix Lazebnik. 1993. Extremal graphs without three-cycles or four-cycles.

Journal of Graph Theory 17, 5 (1993), 633–645.
[27] Andreas Göbel, Leslie Ann Goldberg, and David Richerby. 2016. Counting Homomorphisms to Square-Free Graphs,

Modulo 2. ACM Trans. Comput. Theory 8, 3 (2016), Art. 12, 29. https://doi.org/10.1145/2898441
[28] Leslie Ann Goldberg and Mark Jerrum. 2007. The Complexity of Ferromagnetic Ising with Local Fields. Combin.

Probab. Comput. 16, 1 (2007), 43–61. https://doi.org/10.1017/S096354830600767X
[29] Leslie Ann Goldberg and Mark Jerrum. 2014. The Complexity of Approximately Counting Tree Homomorphisms.

ACM Trans. Comput. Theory 6, 2 (2014), Art. 8, 31. https://doi.org/10.1145/2600917
[30] Leslie Ann Goldberg, Mark Jerrum, and Mike Paterson. 2003. The Computational Complexity of Two-State Spin

Systems. Random Structures Algorithms 23, 2 (2003), 133–154. https://doi.org/10.1002/rsa.10090
[31] Leslie Ann Goldberg, Steven Kelk, and Mike Paterson. 2004. The Complexity of Choosing an H -Coloring (Nearly)

Uniformly at Random. SIAM J. Comput. 33, 2 (2004), 416–432. https://doi.org/10.1137/S0097539702408363
[32] Pavol Hell. 1973. Retractions des graphes. ProQuest LLC, Ann Arbor, MI. (no paging) pages.

http://ezproxy-prd.bodleian.ox.ac.uk:2175/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:
dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0289365 Thesis (Ph.D.)–Université de Montréal (Canada).

[33] Pavol Hell. 1974. Absolute retracts in graphs. (1974), 291–301. Lecture Notes in Math., Vol. 406.
[34] Pavol Hell and Jaroslav Nešetřil. 2004. Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its

Applications, Vol. 28. Oxford University Press, Oxford. xii+244 pages. https://doi.org/10.1093/acprof:oso/9780198528173.
001.0001

[35] Pavol Hell and Jaroslav Nešetřil. 2008. Colouring, constraint satisfaction, and complexity. Computer Science Review 2,
3 (2008), 143–163. https://doi.org/10.1016/j.cosrev.2008.10.003

[36] Pavol Hell and Ivan Rival. 1987. Absolute retracts and varieties of reflexive graphs. Canad. J. Math. 39, 3 (1987),
544–567. https://doi.org/10.4153/CJM-1987-025-1

[37] Agnes M. Herzberg and M. Ram Murty. 2007. Sudoku Squares and Chromatic Polynomials. Notices Amer. Math. Soc. 54,
6 (2007), 708–717.

[38] John G. Hocking and Gail S. Young. 1961. Topology. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London.
ix+374 pages.

[39] M. Hujter and Zs. Tuza. 1993. Precoloring extension. II. Graphs classes related to bipartite graphs. Acta Math. Univ.

Comenian. (N.S.) 62, 1 (1993), 1–11.
[40] M. Hujter and Zs. Tuza. 1996. Precoloring extension. III. Classes of perfect graphs. Combin. Probab. Comput. 5, 1 (1996),

35–56. https://doi.org/10.1017/S0963548300001826

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1016/j.ic.2003.09.001
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s004939970003
https://doi.org/10.1016/j.dam.2008.04.006
https://doi.org/10.1137/080738866
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1145/3397472
https://doi.org/10.1137/15M1020551
https://doi.org/10.1145/3037381
https://doi.org/10.1145/2898441
https://doi.org/10.1017/S096354830600767X
https://doi.org/10.1145/2600917
https://doi.org/10.1002/rsa.10090
https://doi.org/10.1137/S0097539702408363
http://ezproxy-prd.bodleian.ox.ac.uk:2175/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0289365
http://ezproxy-prd.bodleian.ox.ac.uk:2175/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0289365
https://doi.org/10.1093/acprof:oso/9780198528173.001.0001
https://doi.org/10.1093/acprof:oso/9780198528173.001.0001
https://doi.org/10.1016/j.cosrev.2008.10.003
https://doi.org/10.4153/CJM-1987-025-1
https://doi.org/10.1017/S0963548300001826

The Complexity of Approximately Counting Retractions to Square-Free Graphs 1:51

[41] Klaus Jansen and Petra Scheffler. 1997. Generalized coloring for tree-like graphs. Discrete Appl. Math. 75, 2 (1997),
135–155. https://doi.org/10.1016/S0166-218X(96)00085-6

[42] Amirhossein Kazeminia and Andrei A. Bulatov. 2019. Counting Homomorphisms Modulo a Prime Number. In 44th

International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,

Germany (LIPIcs, Vol. 138). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 59:1–59:13. https://doi.org/10.4230/
LIPIcs.MFCS.2019.59

[43] Steven Kelk. 2003. On the relative complexity of approximately counting H -colourings. Ph.D. Dissertation. Warwick
University.

[44] Jan Kratochvíl and András Sebő. 1997. Coloring precolored perfect graphs. J. Graph Theory 25, 3 (1997), 207–215.
https://doi.org/10.1002/(SICI)1097-0118(199707)25:3<207::AID-JGT4>3.0.CO;2-P

[45] Benoît Larose. 2017. Algebra and the Complexity of Digraph CSPs: a Survey. In The constraint satisfaction problem:

complexity and approximability. Dagstuhl Follow-Ups, Vol. 7. Schloss Dagstuhl. Leibniz-Zent. Inform.,Wadern, 267–285.
[46] Dániel Marx. 2006. Parameterized coloring problems on chordal graphs. Theoret. Comput. Sci. 351, 3 (2006), 407–424.

https://doi.org/10.1016/j.tcs.2005.10.008
[47] Erwin Pesch. 1988. Retracts of graphs. Mathematical Systems in Economics, Vol. 110. Athenäum Verlag GmbH,

Frankfurt am Main. xii+220 pages.
[48] Oleg Pikhurko. 2012. A note on the Turán function of even cycles. Proc. Amer. Math. Soc. 140, 11 (2012), 3687–3692.
[49] Wolfgang M. Schmidt. 1991. Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics,

Vol. 1467. Springer-Verlag, Berlin. viii+217 pages. https://doi.org/10.1007/BFb0098246
[50] Yaroslav Shitov. 2019. Counterexamples to Hedetniemi’s conjecture. Annals of Mathematics 190, 2 (2019), 663–667.
[51] Claude Tardif. 2008. Hedetniemi’s conjecture, 40 years later. Graph Theory Notes NY 54, 46-57 (2008), 2.
[52] Zsolt Tuza. 1997. Graph colorings with local constraints—a survey. Discuss. Math. Graph Theory 17, 2 (1997), 161–228.

https://doi.org/10.7151/dmgt.1049
[53] Narayan Vikas. 2004. Compaction, Retraction, and Constraint Satisfaction. SIAM J. Comput. 33, 4 (2004), 761–782.

https://doi.org/10.1137/S0097539701397801
[54] Narayan Vikas. 2005. A complete and equal computational complexity classification of compaction and retraction

to all graphs with at most four vertices and some general results. J. Comput. System Sci. 71, 4 (2005), 406–439.
https://doi.org/10.1016/j.jcss.2004.07.003

[55] Narayan Vikas. 2018. Computational Complexity Relationship between Compaction, Vertex-Compaction, and Retrac-
tion. In Combinatorial algorithms. Lecture Notes in Comput. Sci., Vol. 10765. Springer, Cham, 154–166.

[56] Marcin Wrochna. 2017. Square-free graphs are multiplicative. Journal of Combinatorial Theory, Series B 122 (2017),
479–507.

[57] Marcin Wrochna. 2018. The topology of solution spaces of combinatorial problems. Ph.D. Dissertation. University of
Warsaw.

[58] Dmitriy Zhuk. 2017. A Proof of CSP Dichotomy Conjecture. In 58th Annual IEEE Symposium on Foundations of

Computer Science—FOCS 2017. IEEE Computer Soc., Los Alamitos, CA, 331–342.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1016/S0166-218X(96)00085-6
https://doi.org/10.4230/LIPIcs.MFCS.2019.59
https://doi.org/10.4230/LIPIcs.MFCS.2019.59
https://doi.org/10.1002/(SICI)1097-0118(199707)25:3<207::AID-JGT4>3.0.CO;2-P
https://doi.org/10.1016/j.tcs.2005.10.008
https://doi.org/10.1007/BFb0098246
https://doi.org/10.7151/dmgt.1049
https://doi.org/10.1137/S0097539701397801
https://doi.org/10.1016/j.jcss.2004.07.003

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Preliminaries
	1.3 Paper Outline

	2 #BIS-Easiness Results
	3 #SAT-Hardness Results
	3.1 Retractions and Neighbourhoods
	3.2 Square-Free Graphs with Mixed Triangles
	3.3 Square-Free Neighbourhoods of a Looped Vertex
	3.4 Square-Free Graphs with an Induced normalnormalWR3
	3.5 Square-Free Graphs with an Induced Net
	3.6 Square-Free Graphs with an Induced Reflexive Cycle of Length at least 5

	4 Putting the Pieces together
	Acknowledgments
	References

