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Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with a (Q ∪ {∞})-valued
objective function given as a sum of fixed-arity functions. In Boolean surjective VCSPs, variables take on

labels from D = {0, 1} and an optimal assignment is required to use both labels from D. Examples include the

classical global Min-Cut problem in graphs and the Minimum Distance problem studied in coding theory.

We establish a dichotomy theorem and thus give a complete complexity classification of Boolean surjective

VCSPs with respect to exact solvability. Our work generalises the dichotomy for {0,∞}-valued constraint

languages (corresponding to surjective decision CSPs) obtained by Creignou and Hébrard. For the maximi-

sation problem of Q≥0-valued surjective VCSPs, we also establish a dichotomy theorem with respect to

approximability.

Unlike in the case of Boolean surjective (decision) CSPs, there appears a novel tractable class of languages

that is trivial in the non-surjective setting. This newly discovered tractable class has an interestingmathematical

structure related to downsets and upsets. Our main contribution is identifying this class and proving that it lies

on the borderline of tractability. A crucial part of our proof is a polynomial-time algorithm for enumerating

all near-optimal solutions to a generalised Min-Cut problem, which might be of independent interest.
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1 INTRODUCTION
The framework of valued constraint satisfaction problems (VCSPs) captures many fundamental

discrete optimisation problems. A VCSP instance I = (V ,D,ϕI ) is given by a finite set of variables

V = {x1, . . . ,xn }, a finite set of labels D called the domain, and an objective function ϕI : D
n → Q,

where Q = Q ∪ {∞} denotes the set of extended rationals. The objective function is expressed by a

weighted sum of valued constraints

ϕI (x1, . . . ,xn ) =

q∑
i=1

wi · γi (xi ) , (1)

where γi : Dar(γi ) → Q is a weighted relation of arity ar(γi ) ∈ Z≥1, wi ∈ Q≥0 is the weight
and xi ∈ V ar(γi )

the scope of the ith valued constraint. (Note that zero weights are allowed; we
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define 0 · ∞ = ∞.) The value of an assignment of domain labels to variables s : V → D equals

ϕI (s ) = ϕI (s (x1), . . . , s (xn )). An assignment s is feasible if ϕI (s ) < ∞, and it is optimal if it is
feasible and ϕI (s ) ≤ ϕI (s

′) for all assignments s ′. Given an instance I , the goal is to find an optimal

assignment, i.e. one that minimises ϕI . A valued constraint language (or just a language) Γ is set of

weighted relations over a domain D. We denote by VCSP(Γ) the class of all VCSP instances that

use only weighted relations from a language Γ in their objective function. VCSPs are also called

general-valued CSPs [31] to emphasise the fact that (decision) CSPs are a special case of VCSPs

in which weighted relations only assign values 0 and∞. (However, Q-valued VCSPs [42] do not
include CSPs as a special case.)

For an example of a VCSP, consider the (s, t )-Min-Cut problem [40]. Given a digraph G = (V ,E)
with a source s ∈ V , sink t ∈ V , and edge weightsw : E → Q>0, the goal is to find a setC ⊆ V with

s ∈ C and t < C that minimises ∑
(u,v )∈E,u ∈C,v<C

w (u,v ) . (2)

We show how the (s, t )-Min-Cut problem can be expressed as a VCSP over a domain D = {0, 1}
(a domain of size 2 such as this one is called Boolean). We define a language Γcut = {ρ0, ρ1,γ } as

follows: For d ∈ D, ρd : D → Q is defined by ρd (x ) = 0 if x = d and ρd (x ) = ∞ if x , d . Weighted

relation γ : D2 → Q is defined by γ (x ,y) = 1 if x = 0 andy = 1, and γ (x ,y) = 0 otherwise. Given an

(s, t )-Min-Cut instance on a digraph G = (V ,E), the problem of finding an optimal (s, t )-Min-Cut

in G is equivalent to solving an instance I = (V ,D,ϕI ) of VCSP(Γcut) such that

ϕI (x1, . . . ,xn ) = ρ0 (s ) + ρ1 (t ) +
∑

(u,v )∈E

w (u,v ) · γ (u,v ) . (3)

It is well known that the (s, t )-Min-Cut problem is solvable in polynomial time. Since every instance

I of VCSP(Γcut) can be reduced to an instance of the (s, t )-Min-Cut problem, VCSP(Γcut) is solvable
in polynomial time.

A language Γ is called tractable if, for every finite Γ′ ⊆ Γ, VCSP(Γ′) is solvable in polynomial

time. If there exists a finite Γ′ ⊆ Γ such that VCSP(Γ′) is NP-hard, then Γ is called intractable.1

For example, language Γcut is tractable. It is natural to ask about the complexity of VCSP(Γ) for a
fixed language Γ. Cohen et al. [12] obtained a dichotomy classification of Boolean languages: They

identified eight tractable classes (one of which correspons to submodularity [40] and includes Γcut)
and showed that the remaining languages are intractable. The dichotomy classification from [12] is

an extension of Schaefer’s celebrated result [39], which gave a dichotomy for Boolean {0,∞}-valued
constraint languages, and the work of Creignou [13], which established a dichotomy classification

for Boolean {0, 1}-valued constraint languages.

The surjective variant of VCSPs further requires that assignments of domain labels to variables

be surjective (an assignment s : V → D is surjective if, for every d ∈ D, there exists x ∈ V such that

s (x ) = d). Thus, the goal is to find an assignment that is optimal among surjective assignments. For

Boolean VCSPs with D = {0, 1}, this simply means that the all-zero and all-one assignments are

disregarded. We define VCSP(Γ), tractability, and intractability in the surjective setting analogously

with regular VCSPs, and refer to them as VCSPs (Γ), s-tractability, and s-intractability.

For an example of a surjective VCSP, consider the (global) Min-Cut problem [40]. Given a graph

G = (V ,E) and edge weights w : E → Q>0, the goal is to find a set C ⊆ V with ∅ ⊊ C ⊊ V that

1
Defining tractability in terms of finite subsets ensures that the tractability of a language is independent of whether the

weighted relations are represented explicitly (by tables of values) or implicitly (by oracles).
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minimises ∑
{u,v }∈E, | {u,v }∩C |=1

w (u,v ) . (4)

Again, this problem can be expressed over a Boolean domain D = {0, 1}. We define a weighted

relation γ : D2 → Q by γ (x ,y) = 0 if x = y and γ (x ,y) = 1 if x , y. Then the problem of finding

an optimal Min-Cut in a graph G = (V ,E) is equivalent to solving an instance I = (V ,D,ϕI ) of
VCSPs ({γ }) such that

ϕI (x1, . . . ,xn ) =
∑
{u,v }∈E

w (u,v ) · γ (u,v ) . (5)

Note that the two non-surjective assignments to I correspond to sets ∅ andV , which are not admissi-

ble solutions to the Min-Cut problem. Since every instance of VCSPs ({γ }) can be straightforwardly

translated to a Min-Cut instance, and the Min-Cut problem is solvable in polynomial time (say,

by a reduction to the (s, t )-Min-Cut problem, though other algorithms exist [41]), language {γ } is
s-tractable.

The computational complexity of VCSP(Γ) and VCSPs (Γ) is closely related. Namely, VCSP(Γ)
is polynomial-time reducible to VCSPs (Γ) (see Lemma 2.5), i.e., any intractable language is also

s-intractable. Let CD = {ρd | d ∈ D}, where we define ρd : D → Q by ρd (x ) = 0 if x = d and ρd (x ) =
∞ if x , d ; these unary weighted relations are called constants. Conversely, VCSPs (Γ) is polynomial-

time reducible to VCSP(Γ ∪ CD ) (see Lemma 2.6), i.e., any tractable language containing constants

CD is also s-tractable. In the case of Boolean {0,∞}-valued languages, Schaefer’s dichotomy involves

six tractable classes. Four of them include constants, and hence they are s-tractable. Creignou and

Hébrard [14] showed that the remaining two classes (0-valid and 1-valid
2
) are s-intractable, thus

obtaining a dichotomy classification of Boolean {0,∞}-valued languages in the surjective setting.

Contributions
Complexity classification. As our main contribution, we establish a dichotomy classification of all

Boolean (Q-valued) languages in the surjective setting, which extends the classification from [14].

Let D = {0, 1}. Six of the eight tractable classes of Boolean languages identified by Cohen et al. [12]

include constants CD , and thus are also s-tractable. We show that languages in the remaining two

classes (0-optimal and 1-optimal
3
) are s-tractable if, for every weighted relation, the set of feasible

tuples and the set of optimal tuples are essentially downsets (in the 0-optimal case; see Definition 3.8)

or essentially upsets (in the 1-optimal case); otherwise, they are s-intractable.

Somewhat surprisingly, such languages are s-tractable regardless of the remaining (i.e., finite but

non-optimal) values. Those values must, however, bear on the time bound of any polynomial-time

algorithm solving surjective VCSPs over such languages (unless P = NP). In particular, we give an

example of an infinite language Γ that is s-tractable (i.e., VCSPs (Γ
′) can be solved in polynomial

time for every finite Γ′ ⊆ Γ) but VCSPs (Γ) is NP-hard (see Example 3.12). This is quite unusual;

all known tractable classes of VCSPs are in fact globally tractable, which means that VCSP(Γ′) is
solvable by the same polynomial-time algorithm for every finite subset Γ′ of a tractable language Γ,
and hence VCSP(Γ) is also polynomial-time solvable [7]. To capture this distinction, our main result

(Theorem 3.2) gives a classification in terms of global s-tractability,4 from which a classification

for s-tractability easily follows (see Remark 2). We call the condition that describes the borderline

2
A {0, ∞}-valued weighted relation is 0-valid (1-valid) if it assigns value 0 to the all-zero (all-one) tuple.

3
A weighted relation is 0-optimal (1-optimal) if the all-zero (all-one) tuple minimises it.

4
Weighted relations in an instance are assumed to be represented explicitly (by tables of values). We only consider languages

of bounded arity; this restriction is vital in some of our proofs. Also, unbounded arity presents new challenges to complexity

classification. For example, explicitly representing a weighted relation of an arity that is super-logarithmic in the number of

variables requires super-polynomial space.
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of global s-tractability in the 0-optimal case EDS (see Definition 3.1), drawing a parallel to the

corresponding condition for s-tractability, which involves essentially downsets. The 1-optimal case

is analogous (one only needs to exchange the roles of labels 0 and 1).

Tractability. While 0-optimal and 1-optimal languages are trivially tractable for VCSPs, the

algorithm for surjective VCSPs over the newly identified class of languages is nontrivial and

constitutes our second main contribution. The global s-tractability part of our result is established

by a reduction from Q-valued VCSPs to the generalised Min-Cut problem (defined in Section 5), for

which we require to find all α-optimal solutions in polynomial time, where α is a constant depending

on the valued constraint language. The generalised Min-Cut problem consists in minimising an

objective function f + д, where f is a superadditive set function given by an oracle and д is a

cut function (same as in the Min-Cut problem); see Section 5 for the details. We prove that the

running time of our algorithm is roughly O
(
n20α

)
, thus improving on the bound of O

(
n3

3α )
established in [43] (one of the two extended conference abstracts of this paper) for the special case

of {0, 1}-valued languages.

Hardness. The hardness part of our result is proved by analysing weighted relations that can be

obtained from a language using gadgets that preserve (global) s-tractability. Since not all standard

gadgets have this property (in particular, minimisation over a variable may affect the surjectivity

of a solution), we cannot employ the algebraic approach [11]. Instead, we define a collection of

operations that form building blocks of gadgets preserving tractability in the surjective setting (see

Definition 2.9 and Lemma 2.10). Such gadgets apply to non-Boolean domains as well, and may be

useful in future work on non-Boolean surjective VCSPs. Another important ingredient of our proof

is the NP-hardness of the Minimum Distance problem [45], which to the best of our knowledge has

not previously appeared in the literature on exact solvability of (V)CSPs.

Approximability. By a simple reduction, our main result implies a complexity classification of

the approximability of maximising Q≥0-valued surjective VCSPs (see Theorem 3.16).

Enumeration. For the globally s-tractable languages, we also show that all optimal solutions can

be enumerated with polynomial delay [44] (see Theorem 3.4). While this is an easy observation

for the already known globally s-tractable languages (since constants CD allow for a standard

self-reduction technique), we prove the same result for the newly discovered classes of languages,

which do not include constants CD .

Related work
Recent years have seen some remarkable progress on the computational complexity of CSPs

and VCSPs parametrised by the (valued) constraint language. We highlight the resolution of the

“bounded width conjecture” [2] and the result that a dichotomy for CSPs, conjectured in [18] and

recently established by two independent proofs [6, 48], implies a dichotomy for VCSPs [31, 32]. All

this work is for arbitrary (i.e., not necessarily Boolean) finite domains and relies on the algebraic

approach initiated in [7] and nicely described in a survey [3].

One of the important aspects of the algebraic approach is the assumption that constants CD
are present in (valued) constraint languages. (This is without loss of generality with respect to

polynomial-time solvability.) In the surjective setting, it is the lack of constants that makes it

difficult, if not impossible, to employ the algebraic approach. Chen made the first step in this

direction [9] but it is not clear how to take his result (for CSPs) further.

For a binary (unweighted) relation γ , VCSPs ({γ }) has been studied under the name of surjective

γ -Colouring [4, 24, 25, 35] and vertex-compaction [47]. We remark that our notion of surjectivity
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is global. For the γ -Colouring problem, a local version of surjectivity has also been studied [19, 20].

This version corresponds to finding a graph homomorphism such that the neighbourhood of every

vertex v is mapped surjectively onto the neighbourhood of the image of v .
Under the assumption of the unique games conjecture [30], Raghavendra has shown that the

optimal approximation ratio for maximisingQ≥0-valued VCSPs is achieved by the basic semidefinite

programming relaxation [37, 38].

Bach and Zhou have shown that any Max-CSP that is solvable in polynomial time in the non-

surjective setting admits a PTAS in the surjective setting, and that any Max-CSP that is APX-hard

in the non-surjective setting remains APX-hard in the surjective setting [1].

2 PRELIMINARIES
2.1 Weighted relations and VCSPs
We work in the arithmetic model of computation, i.e., every number is represented in constant

space, and basic arithmetic operations take constant time. Let Q = Q ∪ {∞} denote the set of

extended rationals. For any c ∈ Q, we define c ≤ ∞ and ∞ + c = c +∞ = ∞. If c ≥ 0, we define

c · ∞ = ∞ · c = ∞. We leave the result of multiplying∞ undefined for c < 0.

For any integer n ≥ 1, let [n] = {1, . . . ,n}.

Definition 2.1. Let r ≥ 1 be an integer. An r -aryweighted relation overD is a mappingγ : Dr → Q;
the arity of γ equals ar(γ ) = r . We denote by Feas(γ ) the underlying feasibility relation of γ , i.e.

Feas(γ ) =
{
x ∈ Dr �� γ (x) < ∞

}
. (6)

We denote by Opt(γ ) the relation consisting of the minimal-valued tuples, i.e.

Opt(γ ) =
{
x ∈ Feas(γ ) �� γ (x) ≤ γ (y) for every y ∈ Dr } . (7)

A weighted relation γ is called crisp if Feas(γ ) = Opt(γ ). In other words, there exists a constant

c ∈ Q such that γ (x) = c for all x ∈ Feas(γ ) and γ (x) = ∞ for all x ∈ Dr \ Feas(γ ).

Weighted relations that differ only by a constant are considered equivalent, as adding a rational

constant to a weighted relation changes the value of every solution to the VCSP by the same amount.

Therefore, a crispweighted relationγ can be equatedwith the relation Feas(γ ). Conversely, a relation
ρ can be seen as a crisp weighted relation γc with Feas(γc ) = ρ and the codomain equal to {c,∞}
for some c ∈ Q. Unless stated otherwise, we choose c = 0.

Definition 2.2. We denote by ρ= the binary equality relation {(d,d ) | d ∈ D}. For any d ∈ D, we
denote by ρd the unary relation {(d )}, which is called a constant. We denote the set of constants on

D by CD = {ρd | d ∈ D}.
For any relation ρ, we denote by Soft(ρ) the soft variant of ρ defined by Soft(ρ) (x) = 0 if x ∈ ρ

and Soft(ρ) (x) = 1 otherwise.

Definition 2.3. A constraint language (or simply a language) over D is a (possibly infinite) set of

weighted relations over D.

In this paper, we only consider languages of bounded arity. Note that a crisp language is of a

bounded arity if and only if it is finite.

Definition 2.4. A language Γ is called s-tractable if, for every finite Γ′ ⊆ Γ, VCSPs (Γ
′) can be

solved in polynomial time. If VCSPs (Γ) can be solved in polynomial time, language Γ is called

globally s-tractable.
If there exists a finite Γ′ ⊆ Γ such that VCSPs (Γ

′) is NP-hard, language Γ is called s-intractable. If
VCSPs (Γ) is NP-hard, language Γ is called globally s-intractable.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:6 Peter Fulla, Hannes Uppman, and Stanislav Živný

Note that a globally s-tractable language is s-tractable, and an s-intractable language is globally

s-intractable.

Lemmas 2.5 and 2.6 establish a relation between the complexity of the VCSP and VCSPs. We

denote by ≤p the standard polynomial-time Turing reduction.

Lemma 2.5. For any constraint language Γ,

VCSP(Γ) ≤p VCSPs (Γ) . (8)

Proof. Given an instance I of VCSP(Γ), we construct an instance I ′ of VCSPs (Γ) by adding |D |
extra variables. Any solution to I can be extended to a surjective solution to I ′ of the same value

and, conversely, any (surjective) solution to I ′ induces a solution to I of the same value. □

Lemma 2.6. For any constraint language Γ,

VCSPs (Γ) ≤p VCSP(Γ ∪ CD ) . (9)

Proof. Given an instance I = (V ,D,ϕI ) of VCSPs (Γ), we iterate through all O
(
|V | |D |

)
injective

mappings f : D → V . For each mapping f , we construct an instance I ′f of VCSP(Γ ∪ CD ) by

adding constraints ρd ( f (d )) for all d ∈ D. The additional constraints guarantee that only surjective

solutions to I ′f are feasible. Conversely, any surjective solution to I is a feasible solution to I ′f for

some mapping f . Therefore, a solution of the smallest value among optimal solutions to I ′f for all f

is an optimal surjective solution to I . □

Corollary 2.7. Any (globally) tractable language Γ with CD ⊆ Γ is also (globally) s-tractable.

Now we define a few operations on weighted relations that occur throughout the paper.

Definition 2.8. Let γ be an r -ary weighted relation.

• Addition of a rational constant: For any c ∈ Q, γ + c = γ ′ such that γ ′(x) = γ (x) + c .
• Non-negative scaling: For any c ∈ Q≥0, c · γ = γ ′ such that γ ′(x) = c · γ (x). Note that

0 · γ = Feas(γ ).
• Coordinate mapping: For any arity r ′ and mapping f : [r ] → [r ′], f (γ ) = γ ′ such that

γ ′(x1, . . . ,xr ′ ) = γ
(
xf (1), . . . ,xf (r )

)
.

• Minimisation: For any i ∈ [r ], the minimisation of γ at coordinate i results in γ ′ such that

γ ′(x1, . . . ,xi−1,xi+1, . . . ,xr ) = minxi ∈D γ (x1, . . . ,xr ).
• Pinning: For any d ∈ D and i ∈ [r ], the pinning of γ to label d at coordinate i results in γ ′

such that γ ′(x1, . . . ,xi−1,xi+1, . . . ,xr ) = γ (x1, . . . ,xi−1,d,xi+1, . . . ,xr ). A pinning to label d
is called a d-pinning.
• Addition: For any weighted relations γ1,γ2 with ar(γ1) = ar(γ2), γ1 + γ2 = γ ′ such that

γ ′(x) = γ1 (x) + γ2 (x).

We extend operations on weighted relations to languages in the natural way, e.g., Feas(Γ) =
{Feas(γ ) | γ ∈ Γ}.
A weighted relational clone [11] is a language closed under certain operations (e.g., non-negative

scaling and minimisation) that preserve the tractability of languages in the following sense: The

VCSP over the smallest weighted relational clone containing a language Γ can be reduced in

polynomial time to VCSP(Γ). Weighted relational clones are characterised by their weighted

polymorphisms (a generalisation of multimorphisms defined in Definition 2.12), which enables the

employment of tools from universal algebra in the effort to obtain a complexity classification of

languages.
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In the surjective setting, however, minimisation may not preserve the tractability of languages,

and thus we need to define a language closure that excludes this operation. Consequently, we are

unable to use the algebraic approach in our proofs in Section 4.

Definition 2.9. A constraint language Γ is called closed if it is closed under addition, coordinate

mapping, non-negative scaling, addition of a rational constant, operation Opt, and, for all d ∈ D
such that ρd ∈ Γ, d-pinning.

We define Γ∗ to be the smallest closed language containing Γ.

Now we show that these closure operations preserve the complexity of the VCSPs. Note that we

require a language to be closed under d-pinning only if it contains ρd .

Lemma 2.10. For any constraint language Γ,

VCSPs (Γ
∗) ≤p VCSPs (Γ) . (10)

Proof. For most of the closure operations, standard reductions for the VCSP apply to the

surjective setting as well. Let γ1,γ2 ∈ Γ be weighted relations with ar(γ1) = ar(γ2), and let γ ′ =
γ1 + γ2. Then VCSPs (Γ ∪ {γ

′}) ≤p VCSPs (Γ), as any constraint of the form w · γ ′(x) can be

replaced with a pair of constraints w · γ1 (x), w · γ2 (x). Similarly, let γ ∈ Γ and γ ′ = f (γ ) where

f : [ar(γ )]→ [ar(γ ′)]; then any constraint of the formw · γ ′
(
x1, . . . ,xar(γ ′)

)
can be replaced with

a constraintw · γ
(
xf (1), . . . ,xf (ar(γ ))

)
. Non-negative scaling can be achieved by scaling the weight

of affected constraints. Addition of a rational constant changes the value of every solution by the

same amount, and thus it can be ignored.

Now we show that VCSPs (Γ ∪ {Opt(γ )}) ≤p VCSPs (Γ) for any γ ∈ Γ. Let I be an instance of

VCSPs (Γ ∪ {Opt(γ )}). Without loss of generality, assume that the minimum values assigned by γ
and Opt(γ ) equal 0 and all weighted relations in I assign non-negative values (this can be achieved

by adding rational constants). We may also assume that γ is not crisp (otherwise Opt(γ ) = γ ). Let
m denote the smallest positive value assigned by γ , and let M be an upper bound on the value

of any feasible solution to I (e.g., the weighted sum of the maximum finite values assigned by

the constraints of I ). We replace every constraint of the formw · Opt(γ ) (x) in I with a constraint

(M/m + 1) · γ (x) to obtain an instance I ′ ∈ VCSPs (Γ). Any feasible solution to instance I gets
assigned the same value by I ′. Any infeasible solution to instance I is either infeasible for I ′ as well,
or it incurs an infinite value from a constraint of the formw · Opt(γ ) (x) in I and thus a value of at

least (M/m + 1) ·m > M in I ′. Therefore, an optimal solution to I ′ is optimal for I as well.
In the case of pinning, we need a different reduction as the standard one relies on minimisation.

Suppose that ρd ∈ Γ. Letγ
′
be ad-pinning of a weighted relationγ ∈ Γ; without loss of generality, let

it be a pinning at the first coordinate. We show that VCSPs (Γ∪{γ
′}) ≤p VCSPs (Γ). Let I = (V ,D,ϕI )

be an instance of VCSPs (Γ ∪ {γ
′}) with V = {x1, . . . ,xn }. In a surjective solution to I , at least one

variable is assigned label d , but we do not a priori know which one. For every i ∈ [n], we construct
an instance Ii = (V ,D,ϕIi ) of VCSPs (Γ) by replacing all constraints of the form γ ′(x) with γ (xi , x)
and adding a constraint ρd (xi ) to force variable xi to take label d . A solution of the smallest value

among optimal solutions to I1, . . . , In is an optimal solution to I . □

2.2 Polymorphisms and multimorphisms
For any r ≥ 1 and a k-ary operation h : Dk → D, we extend h to r -tuples over D by applying it

componentwise. Namely, for x1, . . . , xk ∈ Dr
where xi = (xi,1, . . . ,xi,r ), we define h(x1, . . . , xk ) ∈

Dr
by

h (x1, . . . , xk ) =
(
h

(
x1,1, . . . ,xk,1

)
, . . . ,h

(
x1,r , . . . ,xk,r

))
. (11)

The following notion is at the heart of the algebraic approach to decision CSPs [7].
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Definition 2.11. Let γ be a weighted relation on D. A k-ary operation h : Dk → D is a poly-
morphism of γ (and γ is invariant under or admits h) if, for every x1, . . . , xk ∈ Feas(γ ), we have
h(x1, . . . , xk ) ∈ Feas(γ ). We say that h is a polymorphism of a language Γ if it is a polymorphism

of every γ ∈ Γ.

The following notion, which involves a collection of k k-ary polymorphisms, plays an important

role in the complexity classification of Boolean valued constraint languages [12], as we will see in

Theorem 2.14 in Section 2.3.

Definition 2.12. Let γ be a weighted relation on D. A list ⟨h1, . . . ,hk ⟩ of k-ary polymorphisms of

γ is a k-ary multimorphism of γ (and γ admits ⟨h1, . . . ,hk ⟩) if, for every x1, . . . , xk ∈ Feas(γ ), we
have

k∑
i=1

γ (hi (x1, . . . , xk )) ≤
k∑
i=1

γ (xi ) .

⟨h1, . . . ,hk ⟩ is a multimorphism of a language Γ if it is a multimorphism of every γ ∈ Γ.

The operations in Definition 2.9 preserve multimorphisms [12, 22], i.e., any multimorphism of a

language Γ is also a multimorphism of Γ∗. Consequently, all polymorphisms of a crisp weighted

relation are preserved.

2.3 Boolean VCSPs
In the rest of the paper, we consider only Boolean languages (i.e., D = {0, 1}), unless explicitly
mentioned otherwise. For any arity r ≥ 1, we denote by 0r (1r ) the zero (one) r -tuple. For r -tuples
x = (x1, . . . ,xr ) and y = (y1, . . . ,yr ) ∈ Dr

, we define x ≤ y if and only if xi ≤ yi for all i ∈ [r ]
(where 0 < 1). We also define the following operations on D:

• For any a ∈ D, ca is the constant unary operation such that ca (x ) = a for all x ∈ D.
• Operation ¬ is the unary negation, i.e. ¬(0) = 1 and ¬(1) = 0. For a weighted relation γ ,
we define ¬(γ ) to be the weighted relation ¬(γ ) (x) = γ (¬(x)). For a language Γ, we define
¬(Γ) = {¬(γ ) | γ ∈ Γ}. Note that ¬(Γ) can be obtained from Γ simply by exchanging the

labels {0, 1}, and hence has the same complexity as Γ.
• Binary operation ⊕ is the addition modulo 2 operation. In this case, we use the infix notation,

i.e., 0 ⊕ 0 = 0 = 1 ⊕ 1 and 0 ⊕ 1 = 1 = 1 ⊕ 0.

• Binary operation min (max) returns the smaller (larger) of its two arguments with respect to

the order 0 < 1.

• Binary operation sub (for subtraction) is defined as sub(x ,y) = min(x ,¬y).
• Ternary operationMn (for minority) is the unique ternary operation on D satisfying

Mn(x ,x ,y) = Mn(x ,y,x ) = Mn(y,x ,x ) = y

for all x ,y ∈ D.
• Ternary operationMj (for majority) is the unique ternary operation on D satisfying

Mj(x ,x ,y) = Mj(x ,y,x ) = Mj(y,x ,x ) = x

for all x ,y ∈ D.

Lemma 2.13. If a weighted relation admits polymorphism sub, then it also admits polymorphisms
c0 and min.

Proof. For every x ,y ∈ D, it holds c0 (x ) = 0 = sub(x ,x ) and min(x ,y) = sub(x , sub(x ,y)). □

Cohen et al. [12] established a complexity classification of Boolean constraint languages.
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Theorem 2.14 ([12, Theorem 7.1]). Let Γ be a Boolean Q-valued language. Then Γ is tractable
if it admits any the following eight multimorphisms: ⟨c0⟩, ⟨c1⟩, ⟨min,min⟩, ⟨max,max⟩, ⟨min,max⟩,
⟨Mn,Mn,Mn⟩, ⟨Mj,Mj,Mj⟩, ⟨Mj,Mj,Mn⟩. Otherwise, Γ is intractable.

Note that multimorphism ⟨min,max⟩ corresponds to submodularity [40]. Constants CD =

{ρ0, ρ1} admit multimorphisms ⟨min,min⟩, ⟨max,max⟩, ⟨min,max⟩, ⟨Mn,Mn,Mn⟩, ⟨Mj,Mj,Mj⟩,

⟨Mj,Mj,Mn⟩; hence, these six classes of languages are s-tractable by Lemma 2.6. However, ρ0 does
not admit ⟨c1⟩ and ρ1 does not admit ⟨c0⟩.

Remark 1. Although Theorem 2.14 is stated only for the weaker notion of tractability (i.e., for finite

languages) in [12], the proofs there actually establish the same classification for the stronger notion

of global tractability as well.

In particular, all the tractable classes (characterised by the eight multimorphisms) are globally

tractable. Conversely, any globally intractable language is also intractable: If a language Γ does not

admit any of the eight multimorphisms, then there exists a finite subset Γ′ ⊆ Γ with |Γ′ | ≤ 8 that

does not admit any of the eight multimorphisms (since a single weighted relation suffices to violate

a multimorphism).

We note that Theorem 2.14 is a generalisation of Schaefer’s classification of {0,∞}-valued
constraint languages [39] and Creignou’s classification of {0, 1}-valued constraint languages [13].

In particular, Theorem 2.14 implies the following classification of Q-valued languages.

Theorem 2.15 ([12, Corollary 7.11]). Let Γ be a Boolean Q-valued language. Then Γ is tractable
if it admits any of the following multimorphisms: ⟨c0⟩, ⟨c1⟩, ⟨min,max⟩. Otherwise, Γ is intractable.

Creignou and Hébrard [14] established a complexity classification of Boolean {0,∞}-valued
languages in the surjective setting.

Theorem 2.16 ([14]). Let Γ be a Boolean {0,∞}-valued language. Then Γ is s-tractable if it is
invariant under any of the following operations: min, max, Mn, Mj. Otherwise, Γ is s-intractable.

3 RESULTS
We present our results in three parts: Section 3.1 defines the EDS property and states the main clas-

sification theorem, Section 3.2 focuses on finite EDS languages, and Section 3.3 gives a classification

in terms of approximability for the surjective Max-VCSP.

3.1 Boolean surjective VCSPs
We first define the property EDS (which stands for essentially a downset, see Definition 3.8) charac-

terising the newly discovered tractable class of weighted relations.

Definition 3.1. For any α ≥ 1, an r -ary weighted relation γ is α-EDS if, for every x, y ∈ Feas(γ ),
it holds 0r ∈ Feas(γ ) and

α · (γ (x) + γ (y) − 2 · γ (0r )) ≥ γ (sub(x, y)) − γ (0r ) . (12)

A weighted relation is EDS if it is α-EDS for some α ≥ 1. A language is EDS if there exists α ≥ 1

such that every weighted relation in the language is α-EDS.

Although this definition does not involve the notion of polymorphisms, it is stated in a similar vein.

Let h be a binary operation defined by h(x ,y) = 0; then the requirement “for every x, y ∈ Feas(γ ),
it holds 0r ∈ Feas(γ )” translates to “γ is invariant under h” (or, equivalently, “γ is invariant under

c0”).
56

In the case of α = 1, inequality (12) translates to that of admitting multimorphism ⟨sub,h⟩.

5
In fact, any EDS weighted relation admits multimorphism ⟨c0⟩ (see Lemma 3.5).

6
Note that the unary empty relation ρ∅ is vacuously α -EDS for all α ≥ 1, as Feas(ρ∅) = ∅.
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For more intuition behind this notion in the general case, see the corresponding definition of EDS

for set functions (Definition 5.13) in Section 5.3. Finite EDS languages admit a simpler equivalent

definition, see Corollary 3.11.

The following classification of Q-valued languages is our main result.

Theorem 3.2. Let Γ be a Boolean Q-valued language. Then Γ is globally s-tractable if it is EDS, or
¬(Γ) is EDS, or Γ admits any of the following multimorphisms: ⟨min,min⟩, ⟨max,max⟩, ⟨min,max⟩,
⟨Mn,Mn,Mn⟩, ⟨Mj,Mj,Mj⟩, ⟨Mj,Mj,Mn⟩. Otherwise, Γ is globally s-intractable.

Proof. The global s-tractability of languages admitting any of the six multimorphisms in the

statement of the theorem follows from Theorem 2.14 (see Remark 1) by Lemma 2.6. The global

s-tractability of EDS languages (whether Γ or ¬(Γ), which is symmetric) follows from Theorem 5.18,

proved in Section 5. Finally, the global s-intractability of the remaining languages follows from

Theorem 4.12, proved in Section 4. □

Remark 2. Theorem 3.2 gives us also a classification in terms of s-tractability. As noted in Section 2.1,

any globally s-tractable language is s-tractable. Consider now a globally s-intractable language Γ. It
does not admit any of the six multimorphisms, and hence there exists a finite subset of Γ that does

not admit them either (see Remark 1). If there exists a finite subset Γ′ ⊆ Γ such that neither Γ′ nor
¬(Γ′) is EDS, then Γ is s-intractable; otherwise Γ is s-tractable. Equivalently (by Corollary 3.11), Γ
is s-intractable if neither Feas(Γ) ∪ Opt(Γ) nor Feas(¬(Γ)) ∪ Opt(¬(Γ)) admit polymorphism sub,

and it is s-tractable otherwise.

To see how EDS languages fit into the classification of {0,∞}-valued languages established in

Theorem 2.16, note the following. Any {0,∞}-valued language of bounded arity is finite. By Corol-

lary 3.11, any EDS {0,∞}-valued language admits polymorphism sub, and hence also polymorphism

min (by Lemma 2.13).

For Q-valued languages, Theorem 3.2 gives a tighter classification: the only reasons for global

s-tractability are EDS and submodularity.

Theorem 3.3. Let Γ be a Boolean Q-valued language. Then Γ is globally s-tractable if it is EDS, or
¬(Γ) is EDS, or Γ admits the ⟨min,max⟩ multimorphism. Otherwise, Γ is globally s-intractable.

Proof. Weneed to show that in the case ofQ-valued languages, the remaining globally s-tractable

classes from Theorem 3.2 (which are characterised by polymorphisms ⟨min,min⟩, ⟨max,max⟩,

⟨Mn,Mn,Mn⟩, ⟨Mj,Mj,Mj⟩, and ⟨Mj,Mj,Mn⟩) collapse.

If a Q-valued r -ary weighted relation γ admits the ⟨min,min⟩ multimorphism, then it holds

γ (x) ≥ γ (y) for all x ≥ y. This implies that, for all x, y ∈ Feas(γ ), it holds γ (x) ≥ γ (sub(x, y)) and
γ (y) ≥ γ (0r ). Hence, γ is 1-EDS. If γ admits the ⟨max,max⟩ multimorphism, then ¬(γ ) admits the

⟨min,min⟩ multimorphism. Therefore, if a Q-valued language Γ admits ⟨min,min⟩ or ⟨max,max⟩

as a multimorphism, then Γ or ¬(Γ) is EDS.
Multimorphisms ⟨Mn,Mn,Mn⟩, ⟨Mj,Mj,Mj⟩, and ⟨Mj,Mj,Mn⟩ are all covered by the ⟨min,max⟩

multimorphism: Weighted relations that admit ⟨Mn,Mn,Mn⟩ or ⟨Mj,Mj,Mj⟩ as a multimorphism

are crisp [12, Propositions 6.20 and 6.22], and hence, in theQ-valued case, they are constant functions.
Q-valued weighted relations that admit the ⟨Mj,Mj,Mn⟩multimorphism are modular [12, Corollary

6.26], and hence they are submodular. □

Enumerating all optimal solutions to an instance with polynomial delay is a fundamental prob-

lem [27, 46] studied in the context of CSP [8, 16]. An algorithm outputting a sequence of solutions

works with polynomial delay if the time it takes to output the first solution as well as the time it

takes between every two consecutive solutions is bounded by a polynomial in the input size.
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It is known that, for a tractable constraint language Γ that includes constants CD , one can

enumerate all optimal solutions with polynomial delay [10]. Our results imply that the newly

discovered globally s-tractable EDS languages enjoy the same property (despite not including
constants).

Theorem 3.4. Let Γ be a Boolean Q-valued language. If Γ is globally s-tractable then there is a
polynomial-delay algorithm that enumerates all optimal solutions to any instance of VCSPs (Γ).

The theorem is proved in Section 5.3.

3.2 Finite EDS languages
The EDS property can be described in a simpler way for languages of finite size; see the following

observation and Corollary 3.11.

Observation 1. A language of finite size is EDS if and only if it consists of EDS weighted relations.

In the following we prove several useful properties EDS weighted relations.

Lemma 3.5. Any EDS weighted relation admits multimorphism ⟨c0⟩.

Proof. Let γ be an r -ary α-EDS weighted relation. For any x ∈ Feas(γ ), it holds 0r ∈ Feas(γ )
and

α · (2 · γ (x) − 2 · γ (0r )) ≥ γ (sub(x, x)) − γ (0r ) = 0 (13)

as sub(x, x) = 0r , and therefore γ (x) ≥ γ (0r ). □

Lemma 3.6. A crisp weighted relation is EDS if and only if it admits polymorphism sub.

Proof. Any EDS weighted relation admits polymorphism sub. For the converse implication,

note that any crisp weighted relation that admits polymorphism sub (and thus, by Lemma 2.13,

also polymorphism c0) satisfies (12) for any α ≥ 1. □

Lemma 3.7. A weighted relation γ is EDS if and only if both Feas(γ ) and Opt(γ ) are EDS.

Proof. Let γ be an r -ary α-EDS weighted relation. For any x, y ∈ Feas(γ ), it holds 0r ∈ Feas(γ )
and

∞ > α · (γ (x) + γ (y) − 2 · γ (0r )) ≥ γ (sub(x, y)) − γ (0r ) , (14)

and hence sub(x, y) ∈ Feas(γ ). By Lemma 3.6, Feas(γ ) is EDS. Similarly, for any x, y ∈ Opt(γ ), it
holds 0r ∈ Opt(γ ) (by Lemma 3.5) and

0 = α · (γ (x) + γ (y) − 2 · γ (0r )) ≥ γ (sub(x, y)) − γ (0r ) ; (15)

therefore sub(x, y) ∈ Opt(γ ) and Opt(γ ) is EDS.
To prove the converse implication, let us assume that Feas(γ ), Opt(γ ) are EDS and consider

any x, y ∈ Feas(γ ). As Opt(γ ) admits polymorphism c0, it holds 0r ∈ Opt(γ ) ⊆ Feas(γ ). Therefore,
the left-hand side of (12) is non-negative. Moreover, if it equals 0, then x, y ∈ Opt(γ ), and hence

sub(x, y) ∈ Opt(γ ) and the right-hand side equals 0 as well. Therefore, (12) holds for large enough

α , as there are only finitely many choices of x, y ∈ Feas(γ ). □

We show that relations invariant under sub have a simple structure.

Definition 3.8. An r -ary relation ρ is a downset if, for any r -tuples x, y such that x ≥ y and x ∈ ρ,
it holds y ∈ ρ.
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An r -ary relation ρ is essentially a downset if it can be written as a conjunction of a downset and

binary equality relations. Formally, there exists a downset ρ ′ with ar(ρ ′) = r ′ ≤ r , a permutation π
of [r ], and indices ar ′+1, . . . ,ar ∈ {π (1), . . . ,π (r

′)} such that

ρ (x1, . . . ,xr ) = ρ ′
(
xπ (1), . . . ,xπ (r ′)

)
+

r∑
i=r ′+1

ρ=
(
xπ (i ),xai

)
. (16)

(Note that addition of crisp weighted relations corresponds to conjunction.) In other words, remov-

ing duplicate coordinates
7
of ρ results in a downset.

Example 3.9. Relation ρ ′ = {(0, 0), (0, 1), (1, 0)} is a downset, while ρ = {(0, 0, 0), (0, 1, 1), (1, 0, 0)}
is only essentially a downset (as ρ (x ,y, z) = ρ ′(x ,y) + ρ= (y, z)).

Lemma 3.10. A relation is essentially a downset if and only if it admits polymorphism sub.

Proof. For any r -ary relation ρ that is essentially a downset and x, y ∈ ρ, we prove that

z = sub(x, y) ∈ ρ. Let x = (x1, . . . ,xr ), y = (y1, . . . ,yr ), z = (z1, . . . , zr ). It holds x ≥ z. Moreover,

for any coordinates i, j such that xi = x j and yi = yj , it holds zi = zj . Since ρ can be written as a

sum of a downset and equality relations, we have z ∈ ρ.
We prove the converse implication by contradiction. Suppose that ρ is a smallest-arity relation

that admits polymorphism sub but is not essentially a downset; let us denote its arity by r . If
there are distinct coordinates i, j such that zi = zj for all z = (z1, . . . , zr ) ∈ ρ, identifying these

coordinates yields an (r − 1)-ary relation ρ ′ such that ρ can be written as the sum of ρ ′ and a binary
equality relation. However, ρ ′ also admits sub, and hence is essentially a downset by the choice of

ρ, which implies that ρ is essentially a downset as well. Therefore, for any distinct coordinates i, j,

there exists z(i, j ) ∈ ρ with z (i, j )i , z (i, j )j .

As ρ is not a downset, for some r -tuples x, y it holds x ≥ y, x ∈ ρ, y < ρ. We may assume without

loss of generality that, for some n ∈ [r ], the set of coordinates with label 1 equals [n] for x and [n−1]
for y. Let e = (e1, . . . , er ) ∈ ρ be a tuple with the smallest number of coordinates labelled 1 such

that en = 1. We claim that ei = 0 for all i , n: Otherwise, either sub
(
e, z(i,n)

)
= min

(
e,¬(z(i,n) )

)
or

sub

(
e, sub

(
e, z(i,n)

))
= min

(
e, z(i,n)

)
contradicts the minimality of e. But then sub(x, e) = y ∈ ρ,

which is a contradiction. □

Corollary 3.11. Let Γ be a finite language. The following conditions are equivalent.

(1) Language Γ is EDS.
(2) For every γ ∈ Γ, weighted relation γ is EDS.
(3) For every γ ∈ Γ, both Feas(γ ) and Opt(γ ) admit polymorphism sub.
(4) For every γ ∈ Γ, both Feas(γ ) and Opt(γ ) are essentially downsets.

Remark 3. In [23], a weighted relation γ is called PDS if both Feas(γ ) and Opt(γ ) are essentially
downsets. For a {0, 1}-valued weighted relation, this condition is equivalent to that of being almost-

min-min [43]. By Corollary 3.11, PDS and EDS are equivalent concepts for languages of finite

size.

As we show in the following example, there exists an infinite non-EDS language Γ such that every
finite subset Γ′ ⊆ Γ is EDS. Hence, Γ is s-tractable, although it is globally s-intractable (VCSPs (Γ) is
NP-hard).

7
A coordinate i is a duplicate of a coordinate j if, for every (x1, . . . , xr ) ∈ ρ , it holds xi = x j .
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Example 3.12. For anyw ∈ Z≥1, we define a ternary weighted relation µw on D = {0, 1} by

µw (x ,y, z) =




2 if z = 1 and x = y,

1 if z = 1 and x , y,

0 if z = 0 and x = y = 0,

w otherwise.

(17)

Note that Feas(µw ) = D3
and Opt(µw ) = {(0, 0, 0)} are downsets, and hence µw is EDS. However,

it is not α-EDS for any α < w/2: For x = (0, 1, 1), y = (1, 0, 1), we have µw (x) + µw (y) = 2 but

µw (sub(x, y)) = µw (0, 1, 0) = w . Language Γ =
{
µw | w ∈ Z≥1

}
is therefore not EDS.

By our classification (Theorem 3.2), language Γ is globally s-intractable; here we show it directly

by a reduction from the NP-hard Max-Cut problem. Given an undirected graph G = (V ,E) with no

isolated vertices, we construct a VCSPs (Γ) instance I as follows. Letw = 2|E | + 1. We introduce a

corresponding variable for every vertex inV , and add a special variable z. For every edge {x ,y} ∈ E,
we impose a constraint µw (x ,y, z).

Cuts inG are in one-to-one correspondence with assignments to I satisfying z = 1. In particular,

a cut of size k corresponds to an assignment to I with value k + 2( |E | −k ) = 2|E | −k . Any surjective
assignment with z = 0 is of value at leastw > 2|E | −k . Thus, solving I amounts to solving Max-Cut

in G.

3.3 Approximability of maximising surjective VCSP
Although the VCSP is commonly defined with a minimisation objective, it is easy to see that,

for exact solvability, its maximisation variant is essentially an identical problem: Minimising a

Q-valued function ϕI corresponds to maximising −ϕI . When studying approximability, however,

the two variants vastly differ (see [34] for a survey).

We focus on maximisation of the Q≥0-valued VCSP. This problem generalises the Max-CSP, in

which the objective is to maximise the number of satisfied constraints; in particular, the Max-CSP

corresponds to maximisation of the {0, 1}-valued VCSP. The complexity of exactly maximising

the Q≥0-valued VCSP was established by Thapper and Živný [42]. Raghavendra [37] showed that,

assuming the unique games conjecture, the basic semidefinite programming relaxation achieves the

optimal approximation ratio for the problem. In this section, we consider approximate maximisation

of the surjective Q≥0-valued VCSP.

Definition 3.13. An instance I = (V ,D,ϕI ) of the Max-VCSP on domain D is given by a finite set

of variables V = {x1, . . . ,xn } and an objective function ϕI : D
n → Q≥0 expressed as a weighted

sum of constraints over V , i.e.,

ϕI (x1, . . . ,xn ) =

q∑
i=1

wi · γi (xi ) , (18)

where γi is a Q≥0-valued weighted relation,wi ∈ Q≥0 is the weight and xi ∈ V ar(γi )
the scope of the

ith constraint.

Given an instance I , the goal is to find an assignment s : V → D of domain labels to the

variables that maximises ϕI . We denote the maximum value of the objective function by optI . For

any r ∈ [0, 1], an assignment s is an r -approximate solution to I if ϕI (s ) ≥ r · optI .
An assignment s is surjective if its image equals D. We denote the maximum objective value of

surjective assignments by s-optI . For any r ∈ (0, 1], a surjective assignment s is an r -approximate
surjective solution to I if ϕI (s ) ≥ r · s-optI .

We denote by Max-VCSPs (Γ) the surjective Max-VCSP problem on instances over a language Γ.
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Following the standard definitions, we say that Max-VCSPs (Γ) belongs to APX if, for some

r ∈ (0, 1], there exists a polynomial-time algorithm that finds an r -approximate surjective solution

to every Max-VCSPs (Γ) instance. If such an algorithm exists for every r < 1, we say that the

problem admits a polynomial-time approximation scheme (PTAS). Max-VCSPs (Γ) is APX-hard
if there exists a PTAS reduction (an approximation-preserving reduction, see [15]) from every

problem in APX to Max-VCSPs (Γ).
First, we prove that a polynomial-time algorithm for exactly maximising the Q≥0-valued VCSP

over a language Γ implies a PTAS forMax-VCSPs (Γ). Second, we establish a complexity classification

of Boolean languages in Theorem 3.16.

Lemma 3.14. Let Γ be a Q≥0-valued language and r , ϵ ∈ R such that 0 < ϵ ≤ r ≤ 1. There
is a polynomial-time algorithm that, given a Max-VCSP instance I = (V ,D,ϕI ) over Γ and an r -
approximate solution s to I , outputs an (r − ϵ )-approximate surjective solution s ′ to I .

Proof. Let amax denote the maximum arity of weighted relations in Γ, and n the number of

variables of I . If n < r · |D | ·amax

ϵ , we find an optimal surjective assignment to I by trying all O ( |D |n )
assignments.

Otherwise, we modify the given assignment s in order to obtain a surjective assignment s ′. For
any variable x ∈ V , let Bx ⊆ [q] be the set of indices of constraints in whose scopes x appears. We

define the contribution of x by

c (x ) =
∑
i ∈Bx

wi · γi (s (xi )) . (19)

It follows that the total contribution of all variables is at most amax · ϕI (s ).
Let U be a set of |D | variables with the smallest contribution. We assign to them labels D

bijectively. The resulting assignment s ′ is surjective, and it holds

ϕI (s
′) ≥ ϕI (s ) −

∑
x ∈U

c (x ) (20)

≥ ϕI (s ) −
|D |

n
· amax · ϕI (s ) (21)

≥

(
1 −
|D |

n
· amax

)
· r · optI (22)

≥ (r − ϵ ) · s-optI . (23)

□

Applying this lemma to an optimal solution to anMax-VCSP instance (i.e., r = 1) gives us the

following corollary.

Corollary 3.15. If theMax-VCSP over a Q≥0-valued language Γ is solvable in polynomial time,
then there is a PTAS forMax-VCSPs (Γ).

Finally, we classify Boolean Q≥0-valued languages by the complexity of the corresponding

Max-VCSPs. Since multimorphisms and the EDS property are defined in the context of minimisation,

the following theorem applies them to language −Γ instead of Γ (where −Γ = {−γ | γ ∈ Γ} and
(−γ ) (x) = −γ (x)).

Theorem 3.16. Let Γ be a Boolean Q≥0-valued language. Then
(1) Max-VCSPs (Γ) is solvable exactly in polynomial time if −Γ is EDS, or −(¬(Γ)) is EDS, or −Γ

admits the ⟨min,max⟩ multimorphism;
(2) otherwise it is NP-hard to solve exactly, but
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(a) it is in PTAS if −Γ admits ⟨c0⟩ or ⟨c1⟩,
(b) and is APX-hard otherwise.

Proof. Theorem 3.3 implies the case (1) and NP-hardness in the case (2). Case (2a) follows

from Theorem 2.15 and Corollary 3.15. By Theorem 2.15, if −Γ does not admit either of ⟨c0⟩,
⟨c1⟩ and ⟨min,max⟩, then Max-VCSP(Γ) is NP-hard. The proof of Theorem 2.15 in [12] actually

establishes thatMax-VCSP(Γ) is APX-hard. By the approximation-preserving reduction in the proof

of Lemma 2.5, this implies that Max-VCSPs (Γ) is APX-hard as well. □

Theorem 3.16 generalises the result of Bach and Zhou [1, Theorem 16] in two respects. Firstly,

we classify all Q≥0-valued languages as opposed to {0, 1}-valued languages. Secondly, we classify

constraint languages as being in P, in PTAS, or being APX-hard; [1] only distinguishes admitting a

PTAS versus being APX-hard. Finally, the main technical component of Theorem 3.16, Lemma 3.14,

has a slightly simpler proof compared to [1].

4 HARDNESS PROOFS
Consider a Boolean language Γ over D = {0, 1} that admits multimorphism ⟨c0⟩ (the case of

multimorphism ⟨c1⟩ is symmetric), but does not admit any of the following multimorphisms:

⟨min,min⟩, ⟨max,max⟩, ⟨min,max⟩, ⟨Mn,Mn,Mn⟩, ⟨Mj,Mj,Mj⟩, ⟨Mj,Mj,Mn⟩. Suppose that Γ is

not EDS. We prove that VCSPs (Γ) is NP-hard, i.e., Γ is globally s-intractable.

We start by showing that there exists a relation such that it is not invariant under sub and it

can be added to Γ without changing the complexity of VCSPs (Γ) (see Corollary 4.4). For finite Γ,
this follows simply from Corollary 3.11 and Lemma 2.10, as there exists γ ∈ Γ such that Feas(γ )
or Opt(γ ) is not invariant under sub. In general, however, a different argument is necessary. We

prove it by showing that Γ contains weighted relations arbitrarily “similar” to a relation which is

not invariant under sub, and that this relation may be thus added to Γ.

Definition 4.1. For any α ≥ 1, an r -ary weighted relation γ is α-crisp if its image γ (Dr ) lies in
[0, 1] ∪ (α ,∞]. We will denote by Roundα (γ ) the r -ary relation defined as

Roundα (γ ) (x) =



0 if γ (x) ∈ [0, 1],
∞ if γ (x) ∈ (α ,∞].

(24)

Note that an α-crisp weighted relation is α ′-crisp for any α ′ ≤ α . Moreover, a crisp weighted

relation ρ is α-crisp for any α ≥ 1, and Roundα (ρ) = ρ.

Lemma 4.2. Let Γ be a language and ρ a relation such that, for any α ≥ 1, there exists an α-crisp
weighted relation γ ∈ Γ with Roundα (γ ) = ρ. Then VCSPs (Γ ∪ {ρ}) ≤p VCSPs (Γ).

Proof. Let I be an instance of VCSPs (Γ∪{ρ}) with k constraints that apply relation ρ. By scaling
and adding rational constants to weighted relations in I , we ensure that all the assigned values are

non-negative integers. LetM be an upper bound on the maximum value of a feasible solution to I
(e.g., the weighted sum of the maximum finite values assigned by the constraints of I ). Let γ ∈ Γ be

aM · (k + 1)-crisp weighted relation such that RoundM ·(k+1) (γ ) = ρ. In each constraint applying

relation ρ, we replace it by γ with weight 1/(k + 1), and thus obtain an instance of VCSPs (Γ). Since
γ isM · (k + 1)-crisp, the value of any feasible assignment increases by at most k/(k + 1) < 1, and

the value of any infeasible assignment becomes larger thanM . □

Lemma 4.3. Let Γ be a language such that it admits multimorphism ⟨c0⟩ but is not EDS. Then there
exists a relation ρ that is invariant under c0 but not under sub and, for any α ≥ 1, there exists an
α-crisp weighted relation γ ∈ Γ∗ with Roundα (γ ) = ρ.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:16 Peter Fulla, Hannes Uppman, and Stanislav Živný

Proof. We will show that for any α ≥ 1, there exists an α-crisp weighted relation γ ∈ Γ∗ such
that Roundα (γ ) is a relation of arity at most 4 that is invariant under c0 but not under sub. As there
are only finitely many such relations, the claim of the lemma will follow.

Language Γ∗ admits multimorphism ⟨c0⟩ as well but is not EDS; in particular, it is not α17
-EDS.

Therefore, there exists an r -ary weighted relation γ ∈ Γ∗ and u, v ∈ Feas(γ ) such that γ (0r ) = 0 (as

Γ∗ is closed under adding rational constants) and

0 ≤ α17 · (γ (u) + γ (v)) < γ (sub(u, v)) . (25)

We may assume that there are no distinct coordinates i, j where ui = uj and vi = vj (otherwise
we identify them), and hence r ≤ 4. As Γ∗ is closed under scaling, we may also assume that

γ (u),γ (v) ≤ 1 and γ (sub(u, v)) > α17
.

Let us consider, for any 0 ≤ i ≤ 16, the intersection of the image γ (Dr ) with the interval(
α i ,α i+1

]
. Since |Dr | ≤ 2

4 = 16, the intersection is empty for some i . Scaling γ by 1/α i then yields

an α-crisp weighted relation γ ′ ∈ Γ∗ such that Roundα (γ
′) is invariant under c0 but not under sub,

as γ ′(0r ),γ ′(u),γ ′(v) ≤ 1 and γ ′(sub(u, v)) > α . □

Corollary 4.4. Let Γ be a language such that it admits multimorphism ⟨c0⟩ but is not EDS. Then
VCSPs (Γ ∪ {ρ}) ≤p VCSPs (Γ) for some relation ρ that is invariant under c0 but not under sub.

Proof. By Lemmas 4.3 and 4.2, we have that VCSPs (Γ
∗ ∪ {ρ}) ≤p VCSPs (Γ

∗) for some relation ρ
that is invariant under c0 but not under sub. By Lemma 2.10, it holds VCSPs (Γ

∗) ≤p VCSPs (Γ). □

We define weighted relations γ0 = Soft(ρ0), γ1 = Soft(ρ1), and γ= = Soft(ρ=); a binary relation

ρ≤ = {(0, 0), (0, 1), (1, 1)}, and, for r ∈ {3, 4}, an r -ary relation

Ar =


(x1, . . . ,xr ) ∈ {0, 1}

r
������

r∑
i=1

xi ≡ 0 (mod 2)


. (26)

Assuming that Γ does not admit polymorphism sub, we prove that VCSPs (Γ) is NP-hard (see

Lemma 4.11). The proof makes use of several sources of hardness. More specifically, we show that

at least one of the following cases applies:

• VCSPs (Feas(Γ) ∪ Opt(Γ)) is NP-hard (by the classification of {0,∞}-valued languages, see

Theorem 2.16).

• VCSP(Γ ∪ CD ) reduces to VCSPs (Γ). In particular, it holds ρ≤ ∈ Γ∗, which can be used

to simulate constants (see Lemma 4.9). The intractability of VCSP(Γ ∪ CD ) follows from
Theorem 2.14.

• The NP-hard Minimum Distance problem [45] reduces to VCSPs (Γ). In particular, it holds

{A3,γ0} ⊆ Γ∗ or {A4,γ=} ⊆ Γ∗; the reduction from the Minimum Distance problem to these

languages is given in Lemma 4.10.

Before proving Lemma 4.11, we need a few auxiliary lemmas to establish the existence of certain

weighted relations in Γ∗.

Lemma 4.5. Let ρ be a relation invariant under c0 but not under ¬. Then ρ0 ∈ {ρ}
∗ or ρ≤ ∈ {ρ}∗.

Proof. Let r denote the arity of ρ. There exists an r -tuple u ∈ ρ such that ¬(u) < ρ. If 1r < ρ, we
obtain ρ0 by identifying all coordinates of ρ. Otherwise, we obtain ρ≤ by identifying all coordinates
where ui = 0 and identifying all coordinates where ui = 1. □

Lemma 4.6. Let γ be a non-crisp weighted relation such that it admits multimorphism ⟨c0⟩. Then
γ0 ∈ {γ , ρ0}

∗. If in addition Feas(γ ) and Opt(γ ) are invariant under ¬, then γ= ∈ {γ }∗.
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Proof. Let r denote the arity of γ . There exists an r -tuple u such that γ (0r ) < γ (u) < ∞. By
0-pinning at all coordinates where ui = 0 and identifying all coordinates where ui = 1, we obtain a

unary weighted relation γ ′ ∈ {γ , ρ0}
∗
such that γ ′(0) < γ ′(1) < ∞. From it, we can obtain γ0 by

adding a rational constant and scaling, as γ0 =
γ ′−γ ′ (0)

γ ′ (1)−γ ′ (0) .

If Feas(γ ) and Opt(γ ) are invariant under ¬, it holds γ (1r ) = γ (0r ) and γ (0r ) < γ (¬(u)) < ∞.
By identifying all coordinates where ui = 0 and identifying all coordinates where ui = 1, we obtain

a binary weighted relation γ ′ ∈ {γ }∗. Consider γ ′′ ∈ {γ }∗ defined as γ ′′(x ,y) = γ ′(x ,y) +γ ′(y,x ). It
holds γ ′′(0, 0) = γ ′′(1, 1) < γ ′′(0, 1) = γ ′′(1, 0) < ∞. From it, we can obtain γ= by adding a rational

constant and scaling. □

Lemma 4.7. Let ρ be a relation invariant under c0, ¬, and Mn, but not under sub. Then A4 ∈ {ρ}
∗.

Proof. Let ρ ′ be a smallest-arity relation in {ρ}∗ that is not invariant under sub, and denote its

arity by r . As 0r ∈ ρ ′ and Mn(x, y, 0r ) = x ⊕ y, relation ρ ′ is closed under the ⊕ operation. Let

u, v ∈ ρ ′ be r -tuples such that sub(u, v) < ρ ′. There are no distinct coordinates i, j where ui = uj
and vi = vj , otherwise we could identify them to obtain an (r − 1)-ary relation not invariant under

sub. For any a,b ∈ {0, 1}, there is a coordinate i where ui = a andvi = b, otherwise sub(u, v) would
be equal to ¬(v), u ⊕ v, 0r , or u respectively, which would imply sub(u, v) ∈ ρ ′. Therefore, r = 4,

and we may assume without loss of generality that u = (0, 0, 1, 1), v = (0, 1, 0, 1). As

sub(u, v) = (0, 0, 1, 0)

= (0, 0, 0, 1) ⊕ u
= (0, 1, 0, 0) ⊕ (u ⊕ v)
= (1, 0, 0, 0) ⊕ ¬(v) ,

it holds (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0) < ρ ′. Since ρ ′ is closed under ¬, we have ρ ′ =
A4. □

Lemma 4.8. Let ρ be a relation invariant under c0 but not under sub. If ρ is invariant under Mn,
then A3 ∈ {ρ, ρ0}

∗. If ρ is invariant under min or max, then ρ≤ ∈ {ρ, ρ0}
∗.

Proof. Let ρ ′ be a smallest-arity relation in {ρ, ρ0}
∗
that is not invariant under sub, and denote

its arity by r . Let u, v ∈ ρ ′ be r -tuples such that sub(u, v) < ρ ′. There are no distinct coordinates i, j
where ui = uj and vi = vj , otherwise we could identify them to obtain an (r − 1)-ary relation not

invariant under sub. For any b ∈ {0, 1}, there is a coordinate i where ui = 1 and vi = b, otherwise
sub(u, v) would be equal to 0r or u respectively, which would imply sub(u, v) ∈ ρ ′. However, there
is no coordinate i where ui = vi = 0, otherwise we could obtain an (r −1)-ary relation not invariant

under sub by 0-pinning ρ ′ at coordinate i . Therefore, r = 2 or r = 3. If r = 2, we have ρ≤ ∈ {ρ, ρ0}
∗
,

and ρ is not invariant under Mn (as neither is ρ≤).
If r = 3, we may assume without loss of generality that u = (0, 1, 1) and v = (1, 0, 1). Relation ρ

is not invariant undermin, otherwise it would holdmin(u, v) = (0, 0, 1) ∈ ρ ′ and we could obtain a

binary relation not invariant under sub by 0-pinning ρ ′ at the first coordinate. Similarly, relation ρ
is not invariant under max, otherwise it would hold max(u, v) = (1, 1, 1) ∈ ρ ′ and we could obtain

a binary relation not invariant under sub by identifying the first and third coordinate. Finally,

assume that relation ρ is invariant under Mn. Then ρ ′ is also closed under the ⊕ operation, as

Mn(x, y, 0r ) = x ⊕ y, and we have u ⊕ v = (1, 1, 0) ∈ ρ ′. Since sub(u, v) = (0, 1, 0) = (0, 0, 1) ⊕ u =
(1, 1, 1) ⊕ v = (1, 0, 0) ⊕ (u ⊕ v), it holds (0, 0, 1), (1, 1, 1), (1, 0, 0) < ρ ′, and therefore ρ ′ = A3. □

Lemma 4.9. If ρ≤ ∈ Γ, then VCSP(Γ ∪ CD ) ≤p VCSPs (Γ).
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Proof. For a given instance of VCSP(Γ ∪ {ρ0, ρ1}) with variables V , we construct an instance of

VCSPs (Γ) as follows: We introduce new variables y0, y1 and impose constraints ρ≤ (y0,x ), ρ≤ (x ,y1)
for all x ∈ V to ensure thaty0 = 0,y1 = 1 in any feasible surjective assignment. Thenwe replace each

constraint of the form ρ0 (x ) with ρ≤ (x ,y0) and each constraint of the form ρ1 (x ) with ρ≤ (y1,x ). □

Lemma 4.10. Languages {A3,γ0} and {A4,γ=} are both s-intractable.

Proof. First we show a reduction from the optimisation variant of the Minimum Distance

problem, which is NP-hard [45], to VCSPs ({A3,γ0}). A problem instance is given as anm ×n matrix

H over the field D = {0, 1}, and the objective is to find a non-zero vector x = (x1, . . . ,xn ) ∈ Dn

satisfying H · x = 0m with the minimum weight (i.e.

∑n
i=1 xi ).

Note that ρ0 = Opt(γ0), and therefore we may use relation ρ0 as well (by Lemma 2.10). We

construct a VCSPs instance I as follows: Let x1, . . . ,xn be variables corresponding to the elements

of the sought vector x. The requirement H · x = 0m can be seen as a system ofm linear equations,

each in the form

⊕k
i=1 xai = 0 for a set {a1, . . . ,ak } ⊆ [n] (the set may differ for each equation).

We encode such an equation by introducing new variables y0, . . . ,yk and imposing constraints

ρ0 (y0),A3 (yi−1,xai ,yi ) for all i ∈ [k], and ρ0 (yk ). These ensure that each variable yj is assigned the

value of the prefix sum

⊕j
i=1 xai , and that the total sum equals 0. Finally, we encode the objective

function of the Minimum Distance problem by imposing constraints γ0 (x1), . . . ,γ0 (xn ).
Every vector x ∈ Dn

satisfying H · x = 0m corresponds to a feasible assignment to I . If x is

non-zero, the corresponding assignment is surjective, as at least one of variables x1, . . . ,xn gets

label 1 and, for every equation, variable y0 gets label 0. Conversely, if a feasible assignment to I is
surjective, then it corresponds to a non-zero vector x (labelling all variables x1, . . . ,xn with 0 implies

that all the prefix sums yj equal 0 as well). The objective value of the assignment corresponding to

a vector x equals the weight of x, and hence finding an optimal surjective solution to I solves the
Minimum Distance problem.

Finally, we show that the language {A4,γ=} is s-intractable by a reduction from VCSPs ({A3,γ0})
to VCSPs ({A4,γ=}). Given an instance I , we construct an instance I ′ by introducing a new variable

w and replacing each constraint of the formA3 (x ,y, z) withA4 (x ,y, z,w ) and each constraint of the

form γ0 (x ) with γ= (x ,w ). Any surjective assignment to I can be extended to a surjective assignment

to I ′ of the same objective value by labellingw with 0. Conversely, consider a feasible surjective

assignment s ′ to I ′; we may assume s ′(w ) = 0 since language {A4,γ=} admits multimorphism ⟨¬⟩.

Restricting s ′ to the variables of I gives us a surjective assignment to I of the same objective value.

Note that if s ′ assigns label 1 to all the variables except w , its restriction will not be surjective;

however, such s ′ violates constraints ρ0 (y0) and thus is not feasible. □

Lemma 4.11. Let Γ be a language such that it admits multimorphism ⟨c0⟩ but not polymorphism
sub. If Γ ∪ CD is intractable, then VCSPs (Γ) is NP-hard.

Proof. Let Φ = Feas(Γ) ∪ Opt(Γ) ⊆ Γ∗. Suppose that Φ does not admit any of the following

polymorphisms: min, max, Mn, and Mj. By the classification of {0,∞}-valued languages (see Theo-

rem 2.16), Φ is s-intractable. Hence, VCSPs (Γ) is NP-hard by Lemma 2.10. In the rest of the proof,

we assume that Φ admits at least one of polymorphisms min, max, Mn, and Mj. Note that Φ admits

polymorphism c0 but not polymorphism sub. Since min(x ,y) = Mj(x ,y, 0), we may assume that Φ
admits at least one of polymorphisms min, max, and Mn.

Suppose that Φ admits polymorphism ¬. Then it does not admit min, as sub(x ,y) = min(x ,¬y),
nor it admits max, as min(x ,y) = ¬max(¬x ,¬y). Therefore, Φ admits polymorphism Mn. If Γ is

crisp, then language Γ ∪ {ρ0, ρ1} admits multimorphism ⟨Mn,Mn,Mn⟩ and thus is tractable by

Theorem 2.14, which contradicts an assumption of the lemma. Hence, Γ is not crisp. By Lem-

mas 4.7 and 4.6, we have {A4,γ=} ⊆ Γ∗. Therefore, VCSPs (Γ) is NP-hard by Lemma 4.10.
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If Φ does not admit polymorphism ¬, then, by Lemma 4.5, we have ρ0 ∈ Γ
∗
or ρ≤ ∈ Γ

∗
. If ρ≤ ∈ Γ

∗
,

VCSPs (Γ) is NP-hard by Lemma 4.9 and we are done; in the rest of the proof we assume that ρ≤ < Γ
∗

and hence ρ0 ∈ Γ
∗
. If Φ admits polymorphism min or max, we get ρ≤ ∈ Γ

∗
by Lemma 4.8, which

is a contradiction. Therefore, Φ admits Mn, and thus Γ is not crisp (by the same argument as in

the previous paragraph). By Lemmas 4.8 and 4.6, we have {A3,γ0} ⊆ Γ∗. Therefore, VCSPs (Γ) is
NP-hard by Lemma 4.10. □

Theorem 4.12. Let Γ be a language such that it is not EDS,¬(Γ) is not EDS, and Γ does not admit any
of the following multimorphisms: ⟨min,min⟩, ⟨max,max⟩, ⟨min,max⟩, ⟨Mn,Mn,Mn⟩, ⟨Mj,Mj,Mj⟩,
⟨Mj,Mj,Mn⟩. Then VCSPs (Γ) is NP-hard.

Proof. If Γ does not admit at least one of multimorphisms ⟨c0⟩ and ⟨c1⟩, it is intractable by

Theorem 2.14, and hence VCSPs (Γ) is NP-hard by Lemma 2.5. Language Γ ∪ CD is, by the same

theorem, intractable. We may assume that Γ admits multimorphism ⟨c0⟩; if it does not, we consider
¬(Γ) instead. By Corollary 4.4 and Lemma 4.11, VCSPs (Γ) is NP-hard. □

5 TRACTABILITY OF EDS LANGUAGES
We prove that EDS languages are globally s-tractable by a reduction to a generalised variant of the

Min-Cut problem. The problem is defined in Section 5.1, its tractability is established in Section 5.2,

and the reduction is stated in Section 5.3.

5.1 Generalised Min-Cut problem
Let V be a finite set. A set function on V is a function γ : 2

V → Q≥0 ∪ {∞} with γ (∅) = 0.

Definition 5.1. A set function γ : 2
V → Q≥0 ∪ {∞} is symmetric if γ (X ) = γ (V \X ) for all X ⊆ V ;

it is increasing if γ (X ) ≤ γ (Y ) for all X ⊆ Y ⊆ V ; it is superadditive if

γ (X ) + γ (Y ) ≤ γ (X ∪ Y ) (27)

for all disjoint X ,Y ⊆ V ; it is posimodular if

γ (X ) + γ (Y ) ≥ γ (X \ Y ) + γ (Y \ X ) (28)

for all X ,Y ⊆ V ; and it is submodular if

γ (X ) + γ (Y ) ≥ γ (X ∩ Y ) + γ (X ∪ Y ) (29)

for all X ,Y ⊆ V .

Note that any superadditive set function is also increasing, as for all X ⊆ Y ⊆ V it holds

γ (X ) ≤ γ (X ) + γ (Y \ X ) ≤ γ (Y ) by superadditivity. In the case of symmetric set functions,

submodularity implies posimodularity, as

γ (X ) + γ (Y ) = γ (X ) + γ (V \ Y ) (30)

≥ γ (X ∩ (V \ Y )) + γ (X ∪ (V \ Y )) (31)

= γ (X \ Y ) + γ (V \ (Y \ X )) (32)

= γ (X \ Y ) + γ (Y \ X ) . (33)

and, similarly, posimodularity implies submodularity.

Example 5.2. Let V be a finite set and T ⊆ V a non-empty subset. We define a set function γ
on V by γ (X ) = 1 if T ⊆ X and γ (X ) = 0 otherwise. Intuitively, this corresponds to a soft NAND

constraint imposed on variables T . The set function γ is superadditive, and hence also increasing.

We now formally define the Min-Cut problem.
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Definition 5.3. An instance of the Min-Cut (MC) problem is given by an undirected graph

G = (V ,E) with edge weightsw : E → Q≥0 ∪ {∞}. The objective function д of the MC problem is a

set function on V defined by

д(X ) =
∑

|X∩{u,v } |=1

w (u,v ) . (34)

Function д is a well-known example of a submodular function. Since it is symmetric, it is also

posimodular.

A solution to the MC problem is a set X such that ∅ ⊊ X ⊊ V . Note that a cut (X ,V \ X )
corresponds to two solutions, namely X and V \ X . An optimal solution is a solution with the

minimum objective value among all solutions. A minimal optimal solution is an optimal solution

with no proper subset being an optimal solution.

Note that any two different minimal optimal solutions X ,Y must be disjoint, otherwise X \ Y or

Y \ X would be a smaller optimal solution (by the posimodularity of д).
Although the definition allows infinite weight edges, those can be easily eliminated by identifying

their endpoints, and so we may assume that all edge weights are finite. Edges with weight 0 are

conventionally disregarded.

Finally, we define the Generalised Min-Cut problem, which further generalises the problem

introduced in [43].

Definition 5.4. An instance J of the Generalised Min-Cut (GMC) problem is given by an undirected

graph G = (V ,E) with edge weights w : E → Q≥0 ∪ {∞}, and an oracle defining a superadditive

set function f on V . The objective function the GMC problem is a set function on V defined by

J (X ) = f (X ) + д(X ), where д is the objective function of the underlying Min-Cut problem on G.
A solution to the GMC problem is a set X such that ∅ ⊊ X ⊊ V . An optimal solution is a solution

with the minimum objective value among all solutions. We denote this minimum objective value

by λ. For any α ≥ 1, an α-optimal solution is a solution X such that J (X ) ≤ αλ.

We show in Theorem 5.11 that, in the case of 0 < λ < ∞ and a fixed α ≥ 1, there are only

polynomially many α-optimal solutions and they can be found in polynomial time.

5.2 Tractability of the Generalised Min-Cut problem
In this section, we present a polynomial-time algorithm that solves the Generalised Min-Cut

problem. We assume thatw (u,v ) ∈ Q>0 for all edges (u,v ).

Lemma 5.5. There is a polynomial-time algorithm that, given an instance J of the GMC problem,
either finds a solution X with J (X ) = λ = 0, or determines that λ = ∞, or determines that 0 < λ < ∞.

Proof. A solution X with J (X ) = f (X ) + д(X ) = 0 satisfies f (X ) = д(X ) = 0, and hence it does

not cut any edge. Since the set function f is increasing, we may assume that X is a single connected

component. The algorithm simply tries each connected component as a solution, which takes a

linear number of queries to the oracle for f .
The case of λ = ∞ occurs only if f (X ) = ∞ for all solutions X . Since f is increasing, it is

sufficient to check all solutions of size 1. □

In view of Lemma 5.5, we can assume that 0 < λ < ∞. Our goal is to show that, for a given

α ≥ 1, all α-optimal solutions to a GMC instance can be found in polynomial time. This is proved

in Theorem 5.11; before that we need to prove several auxiliary lemmas on properties of the MC

and GMC problems.
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Lemma 5.6. For any instance J of the GMC problem on a graph G = (V ,E) and any non-empty set
V ′ ⊆ V , there is an instance J ′ on the induced subgraph G[V ′] that preserves the objective value of all
solutions X ⊊ V ′. In particular, any α -optimal solution X of J such that X ⊊ V ′ is α -optimal for J ′ as
well.

Proof. Edges with exactly one endpoint in V ′ need to be taken into account separately because

they do not appear in the induced subgraph. We accomplish that by defining the new set function

f ′ by

f ′(X ) = f (X ) +
∑
u ∈X

∑
v ∈V \V ′

w (u,v ) (35)

for all X ⊆ V ′. By the construction, f ′ is superadditive, and the objective value J ′(X ) for any
X ⊊ V ′ equals J (X ).

Note that the minimum objective value for J ′ is greater than or equal to the minimum objective

value for J . Therefore, any solution X ⊊ V ′ that is α-optimal for J is also α-optimal for J ′. □

Lemma 5.7. Let X be an optimal solution to an instance of the GMC problem over vertices V with
λ < ∞, and Y a minimal optimal solution to the underlying MC problem. Then X ⊆ Y , X ⊆ V \ Y , or
X is an optimal solution to the underlying MC problem.

Proof. Assume that X ⊈ Y and X ⊈ V \ Y . If Y ⊆ X , we have f (Y ) ≤ f (X ) as f is increasing,

and hence f (Y ) +д(Y ) ≤ f (X ) +д(X ) < ∞. Therefore, Y is optimal for the GMC problem and X is

optimal for the MC problem. In the rest, we assume that Y ⊈ X .

By the posimodularity of д we have д(X ) + д(Y ) ≥ д(X \ Y ) + д(Y \ X ). Since Y \ X is a

proper non-empty subset of Y , it holds д(Y \ X ) > д(Y ), and hence д(X ) > д(X \ Y ). But then
f (X ) +д(X ) > f (X \Y ) +д(X \Y ) as∞ > f (X ) ≥ f (X \Y ). Set X \Y is non-empty, and therefore

contradicts the optimality of X . □

The following lemma relates the number of optimal solutions and the number of minimal optimal

solutions to the MC problem. Note that this bound is tight for (unweighted) paths and cycles with

at most one path attached to each vertex.

Lemma 5.8. For any instance of the MC problem on a connected graph with n ≥ 2 vertices and p
minimal optimal solutions, there are at most p (p − 1) + 2(n − p) optimal solutions.

We prove the lemma by induction on n, closely following the proof that establishes the cactus

representation of minimum cuts in [21]. We note that the cactus representation could be applied

directly to obtain a weaker bound of p (p − 1) +O (n) but we do not know how to achieve the exact

bound using it.

Proof. For n = 2, the lemma holds as there are exactly two solutions and both are minimal

optimal. Assume n ≥ 3. We denote the number of optimal solutions by s . A solution X is called a

star if |X | = 1 or |X | = n − 1, otherwise it is called proper.
First we consider the case where every optimal solution is a star. Let us denote the minimum

cuts by ({v1},V \ {v1}), . . . , ({vh },V \ {vh }). If h = 1, then we have s = p = 2 and the bound holds.

Otherwise, there are 2h optimal solutions but only h of them are minimal (i.e., {v1}, . . . , {vh }).
Hence,

p (p − 1) + 2(n − p) = 2h + (h − 1) · (h − 2) − 2 + 2(n − h) (36)

≥ 2h = s (37)

as it holds n ≥ h ≥ 2 and n ≥ 3.
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From now on we assume that there is a proper optimal solution, and hence n ≥ 4. We say that

solutions X ,Y cross if none of X \ Y , Y \ X , X ∩ Y , V \ (X ∪ Y ) is empty. Note that only proper

solutions might cross. If every proper optimal solution is crossed by some optimal solution, then the

graph is a cycle with edges of equal weight [21, Lemma 7.1.3]. In that case, there are n(n−1) optimal

solutions (all sets of contiguous vertices except for ∅ and V ) and n minimal optimal solutions (all

singletons), and therefore the bound holds.

Finally, assume that there is a proper optimal solution that is not crossed by any optimal solution,

and denote the corresponding minimum cut by (V1,V2). For any optimal solution X , it must hold

eitherX ⊆ V1,V1 ⊆ X ,X ⊆ V2, orV2 ⊆ X . For i ∈ {1, 2}, letGi be the result of shrinkingVi into a new
vertex ti so that the weight of any edge (ti ,v ) forv ∈ V \Vi equals the sum of weights of edges (u,v )
for u ∈ Vi . Denote by ni , pi , and si the number of vertices, minimal optimal solutions, and optimal

solutions to Gi . It holds n = n1 + n2 − 2. Consider any solution X ′ of Gi : If ti < X
′
, it corresponds

to a solution X = X ′ of the original graphG; otherwise it corresponds to X = X ′ \ {ti } ∪Vi . In both

cases, the objective values of X ′ and X in their respective problem instances are equal. Therefore,

any optimal solution X of G such that X ⊆ V2 or V1 ⊆ X corresponds to an optimal solution to G1,

and any optimal solution to G such that X ⊆ V1 or V2 ⊆ X corresponds to an optimal solution in

G2. Hence, p = p1 + p2 − 2 and s = s1 + s2 − 2, as only solutions V1 and V2 satisfy both conditions

simultaneously. By the inductive hypothesis, we get

p (p − 1) + 2(n − p) = p1 (p1 − 1) + 2(n1 − p1) + p2 (p2 − 1) + 2(n2 − p2)

+ 2(p1 − 2) · (p2 − 2) − 2 (38)

≥ s1 + s2 − 2 + 2(p1 − 2) · (p2 − 2) (39)

≥ s (40)

as it holds p1,p2 ≥ 2. □

Lemma 5.9. For any instance of the GMC problem on n vertices with 0 < λ < ∞, the number of
optimal solutions is at most n(n − 1). There is an algorithm that finds all of them in polynomial time.

Note that the bound of n(n − 1) optimal solutions precisely matches the known upper bound of(
n
2

)
for the number of minimum cuts [29]; the bound is tight for cycles.

Proof. Let t (n) denote the maximum number of optimal solutions for such instances on n
vertices. We prove the bound by induction on n. If n = 1, there are no solutions and hence t (1) = 0.

For n ≥ 2, let Y1, . . . ,Yp be the minimal optimal solutions to the underlying MC problem. As

there exists at least one minimum cut and the minimal optimal solutions are all disjoint, it holds

2 ≤ p ≤ n.
First, suppose that

⋃
Yi = V . By Lemma 5.7, any optimal solution to the GMC problem is either a

proper subset of someYi or an optimal solution to the underlying MC problem. Restricting solutions

to a proper subset of Yi is, by Lemma 5.6, equivalent to considering a GMC problem instance on

vertices Yi , and hence the number of such optimal solutions is bounded by t ( |Yi |) ≤ |Yi | · ( |Yi | − 1).
Since it holds

∑
|Yi | = n and |Yi | ≥ 1 for all i , the sum

∑
|Yi | · ( |Yi | − 1) is maximised when p − 1 of

the setsYi are singletons and the size of the remaining one equals n−p+1. If the graph is connected,

then, by Lemma 5.8, there are at most p (p − 1) + 2(n − p) optimal solutions to the underlying MC
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problem. Adding these upper bounds we get

p (p − 1) + 2(n − p) +

p∑
i=1

|Yi | · ( |Yi | − 1) (41)

≤ p (p − 1) + 2(n − p) + (p − 1) · 1 · 0 + (n − p + 1) · (n − p) (42)

= n(n − 1) − 2(p − 2) · (n − p) (43)

≤ n(n − 1) . (44)

If the graph is disconnected, the sets Y1, . . . ,Yp are precisely its connected components. The

optimal solutions to the underlying MC problem are precisely unions of connected components

(with the exception of ∅ and V ), which means that there can be exponentially many of them.

However, only the sets Y1, . . . ,Yp themselves can be optimal solutions to the GMC problem: We

have 0 < λ ≤ f (Yi ) + д(Yi ) = f (Yi ). Since f is superadditive, it holds

f (Yi1 ∪ · · · ∪ Yik ) ≥ f (Yi1 ) + · · · + f (Yik ) ≥ kλ (45)

for any distinct i1, . . . , ik , and hence no union of two or more connected components can be an

optimal solution to the GMC problem. This gives us an upper bound of p ≤ p (p − 1) + 2(n −p), and
the rest follows as in the previous case.

Finally, suppose that

⋃
Yi , V , and hence the graph is connected. LetZ = V \

⋃
Yi . By Lemma 5.7,

any optimal solution to the GMC problem is a proper subset of some Yi , a proper subset of Z , set Z
itself, or an optimal solution to the underlying MC problem. Similarly as before, we get an upper

bound of

p (p − 1) + 2(n − p) +

p∑
i=1

|Yi | · ( |Yi | − 1) + |Z | · ( |Z | − 1) + 1 (46)

≤ p (p − 1) + 2(n − p) + p · 1 · 0 + (n − p) · (n − p − 1) + 1 (47)

= n(n − 1) − 2(p − 1) · (n − p) + 1 (48)

≤ n(n − 1) . (49)

Using a procedure generating all minimum cuts [46], it is straightforward to turn the above proof

into a recursive algorithm that finds all optimal solutions in polynomial time. □

Lemma 5.10. Let α , β ≥ 1. Let X be an α -optimal solution to an instance J of the GMC problem over
vertices V with 0 < λ < ∞, and Y an optimal solution to the underlying MC problem. If д(Y ) < λ/β ,
then

J (X \ Y ) + J (X ∩ Y ) <

(
α +

2

β

)
λ ; (50)

if д(Y ) ≥ λ/β , then X is an αβ-optimal solution to the underlying MC problem.

Proof. If д(Y ) ≥ λ/β , it holds д(X ) ≤ J (X ) ≤ αλ ≤ αβ · д(Y ), and hence X is an αβ-optimal

solution to the underlying MC problem. In the rest we assume that д(Y ) < λ/β .
Since д is posimodular, we have

д(X ) + д(Y ) ≥ д(X \ Y ) + д(Y \ X ) (51)

д(Y ) + д(Y \ X ) ≥ д(X ∩ Y ) + д(∅) , (52)

and hence

д(X ) + 2д(Y ) ≥ д(X \ Y ) + д(X ∩ Y ) . (53)

By superadditivity of f , it holds f (X ) ≥ f (X \Y ) + f (X ∩Y ). The claim then follows from the fact

that f (X ) + д(X ) + 2д(Y ) < (α + 2/β )λ. □
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Finally, we prove that α-optimal solutions to the GMC problem can be found in polynomial time.

Theorem 5.11. For any instance J of the GMC problem on n vertices with 0 < λ < ∞ and α ∈ Z≥1,
the number of α-optimal solutions is at most n20α−15. There is an algorithm that finds all of them in
polynomial time.

Note that for a cycle on n vertices, the number of α-optimal solutions to the MC problem is

Θ(n2α ), and thus the exponent in our bound is asymptotically tight in α .

Proof. Let β ∈ Z≥3 be a parameter. Throughout the proof, we relax the integrality restriction

on α and require only that αβ is an integer. For α = 1, the claim follows from Lemma 5.9, therefore

we assume α ≥ 1 + 1/β in the rest of the proof.

Define a linear function ℓ by

ℓ(x ) =
2(β + 1)

β − 2
· (βx − 3) . (54)

We prove that the number of α-optimal solutions is at most nℓ(α ) ; taking β = 4 then gives the

claimed bound. Function ℓ was chosen as a slowest-growing function satisfying the following

properties required in this proof: It holds ℓ(x ) + ℓ(y) ≤ ℓ(x +y − 3/β ) for any x ,y, and ℓ(x ) ≥ 2βx
for any x ≥ 1 + 1/β .

We prove the bound by induction on n + αβ . As it trivially holds for n ≤ 2, we assume n ≥ 3 in

the rest of the proof. LetY be an optimal solution to the underlying MC problem with k = |Y | ≤ n/2.
If д(Y ) ≥ λ/β then, by Lemma 5.10, any α-optimal solution to the GMC problem is an αβ-optimal

solution to the underlying MC problem. Since д(Y ) ≥ λ/β > 0, the graph is connected, and hence

there are at most

2
2α β

(
n

2αβ

)
≤ n2α β ≤ nℓ(α ) (55)

such solutions by [29]. (In detail, [29, Theorem 6.2] shows that the number of αβ-optimal cuts in

an n-vertex graph is 2
2α β−1

(
n

2α β

)
, and every cut corresponds to two solutions.)

From now on we assume that д(Y ) < λ/β , and hence inequality (50) holds. Upper bounds in this

case may be quite loose; in particular, we use the following inequalities:

(k/n)ℓ(α ) ≤ (k/n)ℓ(1+1/β ) = (k/n)2(β+1) ≤ (k/n)8 ≤ (k/n) (1/2)7 = k/128n (56)

(1/n)2β ≤ (1/n)6 ≤ (1/n) (1/3)5 < 1/128n . (57)

Consider any α-optimal solution to the GMC problem X .

If X ⊊ Y , then, by Lemma 5.6, X is an α-optimal solution to an instance on vertices Y . By the

induction hypothesis, there are at most kℓ(α ) ≤ (k/128n) · nℓ(α ) such solutions.

Similarly, if X ⊊ V \ Y , then X is an α-optimal solution to an instance on vertices V \ Y , and
there are at most

(n − k )ℓ(α ) = (1 − k/n)ℓ(α ) · nℓ(α ) ≤ (1 − k/n) · nℓ(α ) (58)

such solutions.

If Y ⊊ X , thenX \Y is an (α −1+2/β )-optimal solution on verticesV \Y by (50) and the fact that

J (X ∩Y ) ≥ λ. Similarly, ifV \Y ⊊ X , then X ∩Y is an (α − 1+ 2/β )-optimal solution on vertices Y .
In either case, we bound the number of such solutions depending on the value of α : For α < 2− 2/β ,
there are trivially none; for α = 2 − 2/β , Lemma 5.9 gives a bound of n(n − 1) ≤ nℓ(α )−2β ; and for

α > 2 − 2/β we get an upper bound of nℓ(α−1+2/β ) ≤ nℓ(α )−2β by the induction hypothesis. The

number of solutions is thus at most nℓ(α )−2β ≤ (1/128n) · nℓ(α ) for any α .
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Finally, we consider X such that ∅ ⊊ X \ Y ⊊ V \ Y and ∅ ⊊ X ∩ Y ⊊ Y , i.e., X \ Y and X ∩ Y
are solutions on vertices V \ Y and Y respectively. Let i be the integer for which(

1 +
i

β

)
λ ≤ J (X ∩ Y ) <

(
1 +

i + 1

β

)
λ . (59)

Then, by (50), it holds J (X \Y ) < (α − 1 − (i − 2)/β )λ. Therefore, X ∩Y is a (1 + (i + 1)/β )-optimal

solution on vertices Y and X \ Y is an (α − 1 − (i − 2)/β )-optimal solution on vertices V \ Y . Since
0 ≤ i ≤ (α − 2)β + 1, we can bound the number of such solutions by the induction hypothesis as at

most

kℓ
(
1+ i+1β

)
· (n − k )ℓ

(
α−1− i−2β

)
≤

(
k

n

)ℓ (1+ i+1β )
· nℓ

(
1+ i+1β

)
+ℓ

(
α−1− i−2β

)
(60)

≤

(
k

n

)
2(β+1)

·
1

2
i · n

ℓ(α ) , (61)

which is at most 2 · (k/128n) · nℓ(α ) in total for all i .
By adding up the bounds we get that the number of α-optimal solutions is at most nℓ(α ) . A

polynomial-time algorithm that finds the α-optimal solutions follows from the above proof using a

procedure generating all αβ-optimal cuts [46]. □

Remark 4. For our reduction from the VCSPs over EDS languages, we need to find all α-optimal

solutions to the GMC problem. However, if one is only interested in a single optimal solution, the

presented algorithm can be easily adapted to an even more general problem.

Let f ,д be set functions onV given by an oracle such that f : 2
V → Q≥0 ∪ {∞} is increasing and

д : 2
V → Q≥0 satisfies the posimodularity and submodularity inequalities for intersecting pairs of

sets (i.e. sets X ,Y such that neither of X ∩ Y ,X \ Y ,Y \ X is empty). The objective is to minimise

the sum of f and д.
The case when the optimum value λ = ∞ can be recognised by checking all solutions of size 1.

Assuming λ < ∞, note that the proof of Lemma 5.7 works even for this more general problem. Let

Y be a minimal optimal solution to д. It follows that there is an optimal solution X to f + д such

that X ⊆ Y , X ⊆ V \ Y , or X is itself a minimal optimal solution to д (as f is increasing). We can

find all minimal optimal solutions to д in polynomial time [36, Theorem 10.11]. Restricting f ,д to a

subset of V preserves the required properties, and hence we can recursively solve the problem on

Y and V \ Y . Therefore, an optimal solution to f + д can be found in polynomial time.

5.3 Reduction to the Generalised Min-Cut problem
At the heart of our reduction is an observation that EDS weighted relations can be approximated

by instances of the Generalised Min-Cut problem. We define this notion of approximability in

Definition 5.14. In Theorem 5.15, we show how to approximate any EDS weighted relation with a

constant factor. However, that construction does not yield a sufficient bound on the approximation

factor; we present it only in order to provide some intuition for the more opaque construction in

Theorem 5.17. Using that, we establish the global s-tractability of EDS languages in Theorem 5.18.

In this section, we equate weighted relations admitting multimorphism ⟨c0⟩ with set functions;

the correspondence is formally stated in the following definition. Note that we may without loss of

generality assume that the minimum assigned value equals 0, as adding a rational constant to a

weighted relation preserves tractability.

Definition 5.12. Let γ be an r -ary weighted relation such that, for any r -tuple x, γ (x) ≥ γ (0r ) = 0.

The corresponding set function γ ′ on [r ] is defined by γ ′(X ) = γ (x) where xi = 1 ⇐⇒ i ∈ X .
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The definition of α-EDS weighted relations then translates into the following:

Definition 5.13. For any α ≥ 1, a set function γ on V is α-EDS if, for every X ,Y ⊆ V , it holds

α · (γ (X ) + γ (Y )) ≥ γ (X \ Y ) . (62)

Remark 5. Inequality (12) could be modified so that (62) becomes symmetric, say

α · (γ (X ) + γ (Y )) ≥ γ (X \ Y ) + γ (Y \ X ) . (63)

It is easy to see that, although the set of α-EDS weighted relations for a fixed α would be different,

this change would not affect the set of EDS weighted relations. We opt for the shorter, albeit

asymmetric, definition.

Definition 5.14. Let J be an instance of the GMC problem on vertices V and γ a set function on

V . For any α ≥ 1, we say that J α-approximates γ if, for all X ⊆ V ,

J (X ) ≤ γ (X ) ≤ α · J (X ) . (64)

A set function is α -approximable if there exists a GMC instance that α-approximates it, and it is

approximable if it is α-approximable for some α ≥ 1.

Theorem 5.15. Any α-EDS set function is approximable.

Proof. Let γ be an α-EDS set function on [n] and γ ′ the corresponding n-ary weighted relation.

By Corollary 3.11, both Feas(γ ′) and Opt(γ ′) are essentially downsets. The rest of the proof relies

only on this property and does not depend on the value of α . The intuition behind our construction

is that a downset can be represented by a superadditive function on [n], and binary equality relations
can be represented by edges.

There exist AFeas,AOpt ⊆ [n], downsets SFeas ⊆ 2
AFeas

, SOpt ⊆ 2
AOpt

, and sets of pairs of distinct

coordinates EFeas,EOpt such that |AFeas | + |EFeas | = |AOpt | + |EOpt | = n and

γ (X ) < ∞ ⇐⇒ X ∩AFeas ∈ SFeas ∧ |X ∩ {i, j}| , 1 for all {i, j} ∈ EFeas (65)

γ (X ) = 0 ⇐⇒ X ∩AOpt ∈ SOpt ∧ |X ∩ {i, j}| , 1 for all {i, j} ∈ EOpt . (66)

We construct an instance J of the GMC problem on vertices [n] as follows. LetwFeas (i, j ) = ∞
if {i, j} ∈ EFeas and wFeas (i, j ) = 0 otherwise. Let wOpt (i, j ) = 1 if {i, j} ∈ EOpt and wOpt (i, j ) = 0

otherwise. Then the weight of edge (i, j ) isw (i, j ) = wFeas (i, j )+wOpt (i, j ). Let fFeas be a set function
on [n] defined by fFeas (X ) = 0 ifX ∩AFeas ∈ SFeas and fFeas (X ) = ∞ otherwise; fFeas is superadditive
becauseSFeas is a downset. Let fOpt be a set function on [n] defined by fOpt (X ) = 0 ifX∩AOpt ∈ SOpt

and fOpt (X ) = |X ∩ AOpt | otherwise; fOpt is superadditive because SOpt is a downset. Then the

superadditive function defining instance J is f = fFeas + fOpt.
By the construction, it holds γ (X ) < ∞ ⇐⇒ J (X ) < ∞ and γ (X ) = 0 ⇐⇒ J (X ) = 0.

Moreover, for any X such that 0 < J (X ) < ∞, it holds 1 ≤ J (X ) ≤ n. If the set

B =
{
γ (X ) �� X ⊆ [n] ∧ 0 < γ (X ) < ∞

}
(67)

is empty, then instance J 1-approximates γ ; otherwise let bmin,bmax denote the minimum and

maximum of B. We scale the weights of the edgesw and the superadditive function f by a factor of

bmin/n to obtain an instance J ′ such that J ′(X ) ≤ γ (X ) for all X . Instance J ′ then (n · bmax/bmin)-
approximates γ . □

To establish the tractability of infinite EDS languages, we need a better bound on the approxima-

bility of α-EDS set functions than the one given in Theorem 5.15. This is achieved in Theorem 5.17,

which we prove using the following technical lemma. We refer the reader to [17, Theorem 1.1] for

an example of the application of this proof technique in a simpler setting.
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Lemma 5.16. Let γ be an α-EDS set function on V for some α ≥ 1. For any distinct u,v ∈ V , let
T{u,v } be a subset of V such that ��T{u,v } ∩ {u,v}�� = 1. Then, for any R ⊆ S ⊆ V , it holds

α |S |+2 · *.
,

(
|S |2 + 2

)
· γ (S ) +

∑
|R∩{u,v } |=1

γ
(
T{u,v }

)+/
-
≥ γ (R) . (68)

Proof. First, we show by induction that, for any X ,Y1, . . . ,Yn ⊆ V , it holds

αn · *
,
γ (X ) +

n∑
i=1

γ (Yi )+
-
≥ γ *

,
X \

n⋃
i=1

Yi+
-
. (69)

For n = 1, this is equivalent to (62). As for the inductive step, assume that (69) holds for n ≥ 1. By

the inductive hypothesis and (62), we get

αn+1 · *
,
γ (X ) +

n+1∑
i=1

γ (Yi )+
-
≥ α · *

,
γ *
,
X \

n⋃
i=1

Yi+
-
+ γ (Yn+1)+

-
(70)

≥ γ *
,
X \

n+1⋃
i=1

Yi+
-
. (71)

If γ (S ) = ∞, the inequality claimed by this lemma trivially holds. In the rest of the proof, we

assume γ (S ) < ∞. For any u ∈ R, v ∈ S \ R, we define a set T ′uv such that T ′uv ∩ {u,v} = {v}: If
v ∈ T{u,v } , let T

′
uv = T{u,v }; otherwise let T

′
uv = S \T{u,v } . We claim that

α ·
(
γ (S ) + γ

(
T{u,v }

))
≥ γ (T ′uv ) . (72)

This is trivially true in the case ofT ′uv = T{u,v } , and it follows from (62) in the case ofT ′uv = S \T{u,v } .
By (72), it holds ∑

|R∩{u,v } |=1

γ
(
T{u,v }

)
≥

∑
u ∈R

∑
v ∈S\R

γ
(
T{u,v }

)
(73)

≥
1

α

∑
u ∈R

∑
v ∈S\R

γ (T ′uv ) − |R | · |S \ R | · γ (S ) . (74)

For any u ∈ R, let

Wu = S \
⋃

v ∈S\R

T ′uv . (75)

By properties of T ′uv , it holds u ∈Wu ⊆ R. Moreover, we have

α |S\R | · *.
,
γ (S ) +

∑
v ∈S\R

γ (T ′uv )
+/
-
≥ γ (Wu ) (76)

by (69), which together with (74) gives us∑
|R∩{u,v } |=1

γ
(
T{u,v }

)
≥

1

α |S\R |+1

∑
u ∈R

γ (Wu ) − |R | · ( |S \ R | + 1) · γ (S ) (77)

≥
1

α |S\R |+1

∑
u ∈R

γ (Wu ) − |S |
2 · γ (S ) . (78)

As it holds

⋃
u ∈RWu = R, we have

α |R | · *
,
γ (S ) +

∑
u ∈R

γ (Wu )+
-
≥ γ (S \ R) , (79)
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and hence ∑
|R∩{u,v } |=1

γ
(
T{u,v }

)
≥

1

α |S |+1
· γ (S \ R) −

(
|S |2 + 1

)
· γ (S ) . (80)

As it holds α · (γ (S ) + γ (S \ R)) ≥ γ (R), this proves the claimed inequality. □

Theorem 5.17. Any α-EDS set function on V is αn+2
(
n3 + 2n

)
-approximable, where n = |V |.

Proof. Let γ be an α-EDS set function on V for some α ≥ 1. We construct an instance J of the

GMC problem on vertices V such that it αn+2
(
n3 + 2n

)
-approximates γ . The weight of edge (u,v )

is

w (u,v ) =
1

n3 + 2n
·min

{
γ (Z ) �� Z ⊆ V ∧ |Z ∩ {u,v}| = 1

}
. (81)

Let f be a set function on V defined as

f (X ) =
|X |

n3 + 2n
·min

{(
|Z |2 + 2

)
· γ (Z ) ��� X ⊆ Z ⊆ V

}
. (82)

We claim that f is a superadditive set function. As γ (∅) = 0, it holds f (∅) = 0. Consider any

disjoint X ,Y ⊆ V and let Z ⊇ X ∪ Y be a minimiser in (82) for f (X ∪ Y ). It holds f (X ) ≤

|X | ·
(
|Z |2 + 2

)
· γ (Z )/

(
n3 + 2n

)
and f (Y ) ≤ |Y | ·

(
|Z |2 + 2

)
· γ (Z )/

(
n3 + 2n

)
, and hence

f (X ) + f (Y ) ≤
|X ∪ Y |

n3 + 2n
·
(
|Z |2 + 2

)
· γ (Z ) = f (X ∪ Y ) . (83)

The edge weightsw and superadditive set function f define the GMC instance J . Now we prove

that it αn+2
(
n3 + 2n

)
-approximates γ .

First, we show that J (R) ≤ γ (R) for all R ⊆ V . By (82), we have f (R) ≤ |R | ·
(
|R |2 + 2

)
·

γ (R)/
(
n3 + 2n

)
. For any edge (u,v ) cut by R (i.e. |R∩{u,v}| = 1), it holdsw (u,v ) ≤ γ (R)/

(
n3 + 2n

)
by (81), and hence д(R) ≤ |R | · |V \ R | · γ (R)/

(
n3 + 2n

)
. Together, this gives

J (R) = f (R) + д(R) ≤
|R | ·

(
|R |2 + |V \ R | + 2

)
n3 + 2n

· γ (R) ≤ γ (R) . (84)

Second, we show that αn+2
(
n3 + 2n

)
· J (R) ≥ γ (R) for all R ⊆ V . For R = ∅, the inequality holds,

as J (∅) = γ (∅) = 0. Otherwise, let S ⊇ R be a minimiser in (82) for f (R), and T{u,v } a minimiser in

(81) for any edge (u,v ). It holds(
n3 + 2n

)
· f (R) = |R | ·

(
|S |2 + 2

)
· γ (S ) ≥

(
|S |2 + 2

)
· γ (S ) (85)(

n3 + 2n
)
· д(R) =

∑
|R∩{u,v }=1 |

γ
(
T{u,v }

)
, (86)

and therefore, by Lemma 5.16, αn+2
(
n3 + 2n

)
· J (R) ≥ α |S |+2

(
n3 + 2n

)
· J (R) ≥ γ (R). □

Theorem 5.18. Any EDS language is globally s-tractable.

Proof. Let Γ be an EDS language and α ′ ≥ 1 such that every weighted relation in Γ is α ′-EDS.

Without loss of generality, we may assume that γ
(
0ar(γ )

)
= 0 for every γ ∈ Γ, and hence identify

weighted relations with their corresponding set functions. Weighted relations in Γ are of bounded

arity and therefore, by Theorem 5.17, there exists α such that every γ ∈ Γ is α-approximable. We

will denote by Jγ a GMC instance that α-approximates γ .
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Given a VCSPs (Γ) instance I with an objective function

ϕ ′I (x1, . . . ,xn ) =

q∑
i=1

wi · γi (xi ) , (87)

we denote byϕI the corresponding set function and construct a GMC instance J that α-approximates

ϕI . For i ∈ [q], we relabel the vertices of Jγi to match the variables in the scope xi of the ith constraint
(i.e., vertex j is relabelled to x ij ) and identify vertices in case of repeated variables. As the constraint

is weighted by a non-negative factor wi , we also scale the weights of the edges of Jγi and the

superadditive function bywi . (Note that non-negative scaling preserves superadditivity.) Instance

J is then obtained by adding up GMC instances Jγi for all i ∈ [q].
Let x ∈ Dn

denote a surjective assignment minimising ϕ ′I , X ⊆ [n] the corresponding set

{i ∈ [n] | xi = 1}, Y ⊆ [n] an optimal solution to J , and λ = J (Y ). Since J α-approximates ϕI , it
holds

λ ≤ J (X ) ≤ ϕI (X ) ≤ ϕI (Y ) ≤ α · J (Y ) = αλ , (88)

and hence X is an α-optimal solution to J . By Lemma 5.5, we can determine whether λ = 0, in

which case any optimal solution to J is also optimal for ϕI ; and whether λ = ∞. If 0 < λ < ∞, we
find all α-optimal solutions by Theorem 5.11. □

We now prove Theorem 3.4.

Proof. We only need to prove the theorem in the case of an EDS language (whether Γ or ¬(Γ),
which is symmetric), as the remaining classes of globally s-tractable languages include constants

CD and thus admit a polynomial-delay algorithm using standard self-reduction techniques [10, 14].

Let Γ be an EDS language. As in the proof of Theorem 5.18, we may assume that every weighted

relation in Γ assigns 0 as the minimum value. Given an instance of VCSPs (Γ), we can determine

in polynomial time, by Lemma 5.5, whether λ = 0, 0 < λ < ∞, or λ = ∞. If λ = 0, then optimal

solutions incur the minimum value from every constraint. By applying Opt to all constraints, we

obtain a CSP instance invariant under min (by Lemma 2.13), and hence are able to enumerate all

optimal solutions with a polynomial delay by the results in [14]. If 0 < λ < ∞, then the claim

follows from the proof of Theorem 5.18; moreover, the number of optimal solutions is polynomially

bounded (see Theorem 5.11). Finally, the case λ = ∞ is trivial. □

6 CONCLUSIONS
We have established the complexity classification of surjective VCSPs on two-element domains. An

obvious open problem is to consider surjective VCSPs on three-element domains. A complexity

classification is known for {0,∞}-valued languages [5] and Q-valued languages [26] (the latter

generalises the {0, 1}-valued case obtained in [28]). In fact, [31] implies a dichotomy for Q-valued
languages on a three-element domain. However, all these results depend on the notion of core and

the presence of constants CD in the language, and thus it is unclear how to use them to obtain

a complexity classification in the surjective setting. Moreover, one special case of the CSP on a

three-element domain is the 3-No-Rainbow-Colouring problem [4], whose complexity status is open.
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