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Abstract
A binary VCSP is a general framework for the minimization problem of a function represen-
ted as the sum of unary and binary cost functions. An important line of VCSP research is to
investigate what functions can be solved in polynomial time. Cooper–Živný classified the tract-
ability of binary VCSP instances according to the concept of “triangle,” and showed that the
only interesting tractable case is the one induced by the joint winner property (JWP). Recently,
Iwamasa–Murota–Živný made a link between VCSP and discrete convex analysis, showing that
a function satisfying the JWP can be transformed into a function represented as the sum of two
M-convex functions, which can be minimized in polynomial time via an M-convex intersection
algorithm if the value oracle of each M-convex function is given.

In this paper, we give an algorithmic answer to a natural question: What binary finite-valued
CSP instances can be solved in polynomial time via an M-convex intersection algorithm? We
solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the
representation in the representable case. Our result presents a larger tractable class of binary
finite-valued CSPs, which properly contains the JWP class.
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1 Introduction

The valued constraint satisfaction problem (VCSP) provides a general framework for discrete
optimization (see [25] for details). Informally, the VCSP framework deals with the minimiza-
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tion problem of a function represented as the sum of “small” arity functions, which are called
cost functions. It is known that various kinds of combinatorial optimization problems can be
formulated in the VCSP framework. In general, the VCSP is NP-hard. An important line of
research is to investigate what restrictions on classes of VCSP instances ensure polynomial
time solvability. Two main types of VCSPs with restrictions are structure-based VCSPs and
language-based VCSPs (see e.g., [4, 25]). Structure-based VCSPs deal with restrictions on
the hypergraph structure representing the appearance of variables in a given instance. For
example, Gottlob–Greco–Scarcello [7] showed that, if the hypergraph corresponding to a
VCSP instance has a bounded hypertree-width, then the instance can be solved in polynomial
time. Language-based VCSPs deal with restrictions on cost functions that appear in a
VCSP instance. Kolmogorov–Thapper–Živný [13] gave a precise characterization of tractable
valued constraint languages via the basic LP relaxation. Kolmogorov–Krokhin–Rolínek [12]
gave a dichotomy for all language-based VCSPs (see also [1, 24] for a dichotomy for all
language-based CSPs).

Hybrid VCSPs, which deal with a combination of structure-based and language-based
restrictions, have emerged recently [4]. Among many kinds of hybrid restrictions, a binary
VCSP, VCSP with only unary and binary cost functions, is a representative hybrid restriction
that includes numerous fundamental optimization problems. Cooper–Živný [2] showed that
if a given binary VCSP instance satisfies the joint winner property (JWP), then it can be
minimized in polynomial time. The same authors classified in [3] the tractability of binary
VCSP instances according to the concept of “triangle,” and showed that the only interesting
tractable case is the one induced by the JWP (see also [4]). Furthermore, they introduced
cross-free convexity as a generalization of JWP, and devised a polynomial-time minimization
algorithm for cross-free convex instances F , provided a “cross-free representation” of F is
given.

In this paper, we introduce a novel tractability principle going beyond triangle and
cross-free representation for binary finite-valued CSPs, from now on denoted by VCSPs. A
binary VCSP is formulated as follows, where D1, D2, . . . , Dr (r ≥ 2) are finite sets.
Given: Unary cost functions Fp : Dp → R for p ∈ {1, 2, . . . , r} and binary cost functions

Fpq : Dp ×Dq → R for 1 ≤ p < q ≤ r.
Problem: Find a minimizer of F : D1 ×D2 × · · · ×Dr → R defined by

F (X1, X2, . . . , Xr) :=
∑

1≤p≤r
Fp(Xp) +

∑
1≤p<q≤r

Fpq(Xp, Xq). (1)

Our tractability principle is built on discrete convex analysis (DCA) [18, 20], which is a theory
of convex functions on discrete structures. In DCA, L-convexity and M-convexity play primary
roles; the former is a generalization of submodularity, and the latter is a generalization
of matroids. A variety of polynomially solvable problems in discrete optimization can be
understood within the framework of L-convexity/M-convexity (see e.g., [20, 21, 22]). Recently,
it has also turned out that discrete convexity is deeply linked to tractable classes of VCSPs.
L-convexity is closely related to the tractability of language-based VCSPs. Various kinds of
submodularity induce tractable classes of language-based VCSP instances [13], and a larger
class of such submodularity can be understood as L-convexity on certain graph structures [9].
On the other hand, Iwamasa–Murota–Živný [11] have pointed out that M-convexity plays
a role in hybrid VCSPs. They revealed the reason for the tractability of a VCSP instance
satisfying the JWP from a view point of M-convexity. We here continue this line of research,
and explore further applications of M-convexity in hybrid VCSPs.

A function f : {0, 1}n → R ∪ {+∞} is called M-convex [15, 20] if it satisfies the following
generalization of the matroid exchange axiom: for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈
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dom f and i ∈ {1, 2, . . . , n} with xi > yi, there exists j ∈ {1, 2, . . . , n} with yj > xj such
that f(x) + f(y) ≥ f(x−χi +χj) + f(y+χi−χj), where, for a function f : D → R∪{+∞},
the effective domain is denoted as dom f := {x ∈ D | f(x) < +∞}, and χi is the ith
unit vector.4 An M-convex function can be minimized in a greedy fashion similarly to the
greedy algorithm for matroids. Furthermore, a function f : {0, 1}n → R ∪ {+∞} that is
representable as the sum of two M-convex functions is called M2-convex. As a generalization
of matroid intersection, the problem of minimizing an M2-convex function, called the M-
convex intersection problem, can also be solved in polynomial time if the value oracle of each
constituent M-convex function is given [16, 17]; see also [19, Section 5.2]. Our proposed
tractable class of VCSPs is based on this result.

Let us return to binary VCSPs. The starting observation for relating VCSP to DCA is
that the objective function F on D1 ×D2 × · · · ×Dr can be regarded as a function f on
{0, 1}n by the following correspondence between the domains:

Dp := {1, 2, . . . , np} 3 i ←→ (0, . . . , 0,
i

1̌, 0, . . . , 0︸ ︷︷ ︸
np

) (p ∈ {1, 2, . . . , r}). (2)

With this correspondence, the minimization of F can be transformed to that of f . A binary
VCSP instance F is said to be M2-representable if the function f obtained from F via the
correspondence (2) is M2-convex.

It is shown in [11] that a binary VCSP instance satisfying the JWP can be transformed to
an M2-representable instance,5 and two M-convex summands can be obtained in polynomial
time. Here the following natural question arises: What binary VCSP instances are M2-
representable? In this paper, we give an algorithmic answer to this question by considering
the following problem:
Testing M2-Representability
Given: A binary VCSP instance F .
Problem: Determine whether F is M2-representable or not. If F is M2-representable, obtain

a decomposition f = f1 + f2 of the function f into two M-convex functions f1 and f2,
where f is the function transformed from F via (2).

Our main result is the following:

I Theorem 1.1. Testing M2-Representability can be solved in O(n5) time.

An M2-convex function f can be minimized in polynomial time if such a decomposition can
be obtained in polynomial time. Thus we obtain the following corollary of Theorem 1.1.

I Corollary 1.2. An M2-representable binary VCSP instance can be minimized in polynomial
time.

Our result provides us with cross-free representations, and presents a new tractable class
of binary VCSPs that goes beyond JWP. A nice feature of our contribution is that the
tractability based on M2-representability is independent of a particular representation (1) of

4 Although M-convex functions are defined on Zn in general, we only need functions on {0, 1}n here.
M-convex functions on {0, 1}n are equivalent to the negative of valuated matroids introduced by
Dress–Wenzel [5, 6].

5 In [11], a binary VCSP instance satisfying the JWP was transformed into the sum of two M\-convex
functions. It can be easily seen that this function can also be transformed into the sum of two M-convex
functions.
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a given instance, while the tractability based on JWP or cross-free convexity depends on a
representation; see the full version [10] of this paper.

Our approach to a polynomial-time algorithm for Testing M2-Representability is
outlined as follows:

We establish a unique representation theorem of M2-convex functions arising from binary
VCSP instances (Theorem 2.2).
With this result, our problem can be separated into two subproblems named Decom-
position and Laminarization. The former is the problem of obtaining the unique
representation of a given M2-convex function, and the latter is the problem of making a
laminar family from a given family of subsets by means of certain transformations.
We devise a polynomial-time algorithm for each problem, Decomposition and Lamin-
arization (Theorems 3.4 and 4.8).

The proofs are omitted due to space limitation. The full version [10] of this paper will
give the proofs as well as more general results and application to pseudo-Boolean function
optimization.

Organization. In Section 2, we introduce the representation theorem (Theorem 2.2) of
quadratic M2-convex functions arising from VCSP instances as well as the subproblems,
Decomposition and Laminarization. In Sections 3 and 4, we present polynomial-time
algorithms for Decomposition and Laminarization, respectively.

Notation. Let Z, R, R+, and R++ denote the sets of integers, reals, nonnegative reals,
and positive reals, respectively. In this paper, functions can take the infinite value +∞,
where a < +∞, a +∞ = +∞ for a ∈ R, and 0 · (+∞) = 0. Let R := R ∪ {+∞}. For a
positive integer k, we define [k] := {1, 2, . . . , k}.

2 Towards testing M2-representability

2.1 Representation theorem
We introduce a class of quadratic functions on {0, 1}n that has a bijective correspondence
to binary VCSP instances. Let A := {A1, A2, . . . , Ar} be a partition of [n] with |Ap| ≥ 2
for p ∈ [r]. We say that f : {0, 1}n → R is a VCSP-quadratic function of type A if f is
represented as

f(x1, x2, . . . , xn) :=


∑
i∈[n]

aixi +
∑

1≤i<j≤n
aijxixj if

∑
i∈[n]

xi = r,

+∞ otherwise,
(3)

where ai ∈ R and aij ∈ R with aij := +∞⇔ i, j ∈ Ap for some p ∈ [r]. We assume aij = aji
for distinct i, j ∈ [n].

Suppose that a binary VCSP instance F of the form (1) is given, where we assume
Fpq = Fqp for distinct p, q ∈ [r]. The transformation of F to f based on (2) in Section 1 is
formalized as follows. Choose a partition A := {A1, A2, . . . , Ar} of [n] with |Ap| = np(= |Dp|)
and a bijective correspondence Ap → Dp. Define ai := Fp(d) if i ∈ Ap corresponds to d ∈ Dp,
aij := Fpq(d, e) if i ∈ Ap and j ∈ Aq correspond to d ∈ Dp and e ∈ Dq, respectively, and
aij := +∞ otherwise. Then the function f in (3) is a VCSP-quadratic function of type A.
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The class of M2-convex VCSP-quadratic functions admits a decomposition into simpler
functions `X . For X ⊆ [n], let `X : {0, 1}n → R be defined by

`X(x) :=
∑

k−(X)<k<k+(X)

∣∣∣∣∣k −∑
i∈X

xi

∣∣∣∣∣ ,
where k−(X) is the number of indices p ∈ [r] with X ⊇ Ap, and k+(X) is the number of
indices p ∈ [r] with X ∩Ap 6= ∅. That is, `X(x) is the sum of the distances from x ∈ {0, 1}n
to hyperplanes {x ∈ Rn |

∑
i∈X xi = k} for k−(X) < k < k+(X). In the following, we

consider subsets X with k−(X) + 2 ≤ k+(X), and denote the family of such subsets X by

Π = ΠA := {X ⊆ [n] | k−(X) + 2 ≤ k+(X)}.

In other words, X ∈ Π if and only if ∅ 6= X ∩Ap 6= Ap for more than one p ∈ [r].
A family F ⊆ Π is said to be laminar if X ⊆ Y , X ⊇ Y , or X ∩ Y = ∅ holds for all

X,Y ∈ F . Define δA : {0, 1}n → R by δA(x) := 0 if
∑
i∈Ap

xi = 1 for each Ap ∈ A, and
δA(x) := +∞ otherwise. Then the following holds.

I Lemma 2.1. For any laminar family L ⊆ Π and any positive weight c : L → R++, the
function

∑
X∈L c(X)`X on {x ∈ {0, 1}n |

∑
i∈[n] xi = r} is M-convex.

Our representation theorem (Theorem 2.2) says that an M2-convex VCSP-quadratic
function is always represented as the sum of

∑
X∈L c(X)`X on {x ∈ {0, 1}n |

∑
i∈[n] xi = r}

and a linear function on dom δA. To state it precisely, there are substantial complications
to be resolved. In our setting, we are given a VCSP-quadratic function f of type A, which
is defined only on dom f = dom δA. It can happen that functions `X and `Y are identical
on dom δA (i.e., `X + δA = `Y + δA) even when X 6= Y . Thus we have to make a judicious
choice between them to demonstrate M2-representability of f .

To cope with such complications, we define an equivalence relation ∼ by: X ∼ Y ⇔
`X +δA = `Y +δA. For F ⊆ Π, let F/∼ be the set of representatives (in Π/∼) of all elements
in F . The equivalence relation is extended to subsets F ,G of Π by: F ∼ G ⇔ F/∼ = G/∼.
A subset P of Π/∼ is said to be laminar if there is a laminar family L ⊆ Π with P = L/∼. A
family F ⊆ Π is said to be laminarizable if F/∼ is laminar. For simplicity, the equivalence class
of X ∈ Π is also denoted by X, and a member of Π/∼ is also denoted by its representative X.

Our first result is a representation theorem of M2-convex functions.

I Theorem 2.2. Let f be a VCSP-quadratic function of type A = {A1, A2, . . . , Ar}. Then
f is M2-convex if and only if there exist a laminar family Pf ⊆ Π/∼ and a positive weight
cf : Pf → R++ such that

f =
∑
X∈Pf

cf (X)`X + δA + (linear function), (4)

where “(linear function)” means a function x 7→
∑
i pixi + α for some (p1, p2, . . . , pn) ∈ Rn

and α ∈ R. In addition, Pf and cf in (4) are uniquely determined.

By Theorem 2.2, an M2-convex function f has the summand f1 :=
∑
X∈L cf (X)`X on

{x ∈ {0, 1}n |
∑
i∈[n] xi = r}, where L is a laminar family with L/∼ = Pf .

2.2 Decomposition and Laminarization
To test for M2-representability by Theorem 2.2, we first solve the following problem Decom-
position, which detects non-M2-convexity of f or obtains decomposition (4).

STACS 2018
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Decomposition
Given: A VCSP-quadratic function f of type A
Problem: Either detect the non-M2-convexity of f , or obtain some P ⊆ Π/∼ and c : P →

R++ satisfying

f =
∑
X∈P

c(X)`X + δA + (linear function), (5)

where P is not required to be laminar in general, but in case of M2-convex f , P and c
should coincide, respectively, with Pf and cf in (4).

We emphasize that Decomposition may possibly output the decomposition (5) even when
the input f is not M2-convex, but if Decomposition detects the non-M2-convexity then
indeed the input f is not M2-convex.

Suppose that decomposition (5) is obtained after solving Decomposition. In this case
we have P at hand. Then we have to check for the laminarizability of an arbitrarily chosen
family F ⊆ Π with F/∼ = P. This motivates us to consider the following problem.
Laminarization
Given: F ⊆ Π
Problem: Determine whether there exists a laminar family L with F ∼ L. If it exists, obtain

a laminar family L with F ∼ L.
Laminarization is a purely combinatorial problem on a set system. Indeed, the equivalence
relation ∼ can be rephrased in a combinatorial way as follows. For X ∈ Π, define 〈X〉 :=⋃
{Ap ∈ A | ∅ 6= X ∩Ap 6= Ap}, which is the union of Ap contributing to `X + δA nonlinearly.

One can see the following.

I Lemma 2.3. For X,Y ∈ Π, X ∼ Y if and only if {〈X〉∩X, 〈X〉\X} = {〈Y 〉∩Y, 〈Y 〉\Y }.

Laminarization can be regarded as the problem of transforming a given family F to a
laminar family by repeating the following operation: replace X ∈ F with [n] \X, X ∪Ap, or
X \Ap with some Ap satisfying 〈X〉 ∩Ap = ∅.

A decomposition f = f1 + f2 into two M-convex functions f1 and f2 can be constructed
from cf and L found by Decomposition and Laminarization as f1 :=

∑
X∈L cf (X)`X on

{x ∈ {0, 1}n |
∑
i∈[n] xi = r} and f2 := f − f1. By Lemma 2.1, f1 is an M-convex function,

and f2 is a linear function on dom δA.
We devise an O(n5)-time algorithm for Decomposition in Section 3 and an O(n4)-time

algorithm for Laminarization in Section 4. Thus we obtain Theorem 1.1.

I Remark. Our representation theorem (Theorem 2.2) and decomposition algorithm (in
Section 3) are inspired by the polyhedral split decomposition due to Hirai [8]. This general
decomposition principle decomposes, by means of polyhedral geometry, a function on a finite
set D of points of Rn into a sum of simpler functions, called split functions, and a residue
term. Actually, (5) can be viewed as a specialization of the polyhedral split decomposition,
where D = dom δA, and `X + δA is a sum of split functions. We refer the reader to [8] for
details.

3 Algorithm for Decomposition

3.1 Outline
To describe our algorithm, we need the concept of restriction of a VCSP-quadratic function.
Let f be a VCSP-quadratic function of type A = {A1, A2, . . . , Ar}. For Q ⊆ [r], let
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AQ := {Ap}p∈Q and AQ :=
⋃
q∈QAq. For Q ⊆ [r], the restriction fQ : {0, 1}AQ → R of f

to Q is a VCSP-quadratic function of type AQ defined by

fQ(x) :=


∑
i∈AQ

aixi +
∑

i,j∈AQ (i < j)

aijxixj if
∑
i∈AQ

xi = |Q|,

+∞ otherwise.

I Lemma 3.1. If f is M2-convex, so is the restriction fQ for each Q ⊆ [r].

We abbreviate ΠA and ΠAQ
to Π and ΠQ, respectively. If f is M2-convex, then fQ can

also be represented in a form similar to (4), i.e.,

fQ =
∑

X∈PfQ

cfQ
(X)`X + δAQ

+ (linear function),

where `X and δAQ
are defined on {0, 1}AQ .

Our algorithm to obtain decomposition (5) is outlined as follows, where we abbreviate
{p, q} and {p} to pq and p, respectively, and also Pfpq

and cfpq
to Ppq and cpq, respectively:

We obtain a decomposition of the restriction fQ for Q = {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . , r}
in turn:

fQ =
∑
X∈PQ

cQ(X)`X + δAQ
+ (linear function). (6)

In the initial case for Q = {1, 2}, we can obtain the decomposition (6) by Algorithm 1
(Section 3.2).
To construct the decomposition (6) for Q = [r′] from that for Q = [r′ − 1], we first
compute (Ppr′ , cpr′) for all p ∈ [r′ − 1] by Algorithm 1 and then, with this information,
extend (P[r′−1], c[r′−1]) to (P[r′], c[r′]) by Algorithm 2 (Section 3.3).
We perform the above extension step for r′ = 3 to r′ = r, to arrive at the decomposition (5)
of f . This is described in Algorithm 3.

3.2 Initial case (r = 2)
To compute Ppq and cpq for all distinct p, q ∈ [r], we consider Decomposition algorithm
for the case of r = 2. Namely A = {A1, A2}. Note that Π = Π{A1,A2} = {X ⊆ [n] | ∅ 6=
X ∩ Ap 6= Ap for p = 1, 2}. A connected component with at least one edge is said to be
non-isolated.

Algorithm 1 (for Decomposition in the case of r = 2):
Input: A VCSP-quadratic function f of type {A1, A2}.
Step 0: Define α∗ := mini,j∈[n] aij and S := {i ∈ [n] | minj∈[n] aij > α∗}.
Step 1: For i ∈ [n] with bi := minj∈[n] aij − α∗ > 0, update aij ← aij − bi for j ∈ [n] \ {i}

in turn.
Step 2: Let the distinct finite values of aij (i ∈ A1, j ∈ A2) be given by α1 > α2 > · · · >

αm = α∗. For α ∈ R, define a graph Gα := ([n], Eα) by Eα := {{i, j} | i ∈ A1, j ∈
A2, α ≤ aij}. If, for some α ∈ {α1, α2, . . . , αm−1}, a (non-isolated) connected component
of Gα is not a complete bipartite graph, then output “f is not M2-convex” and stop.

Step 3: For s ∈ [m− 1], denote by Ls the set of non-isolated connected components L of
Gαs

. For L ∈ Ls \ Ls−1 with s ∈ [m− 1], let αL := αs, where L0 := ∅. Define a laminar
family L by L :=

⋃m−1
s=1 Ls. For L ∈ L, define c : L → R++ by c(L) := (αL − αL+) /2,

where L+ is the minimal element in L properly containing L if L is not maximal, and
αL+ := α∗ if L is maximal.

STACS 2018
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Step 4: Turn c : L → R++ to L/∼ → R++ by defining the value c on an equivalence class
as the sum of c(L) over (at most two) members L in the equivalence class. Output
P := L/∼ and c. J

Note that, for distinct L,L′ ∈ Π, we have L ∼ L′ ⇔ L = [n] \ L′.

I Proposition 3.2. Algorithm 1 solves Decomposition in O(n2) time.

3.3 General case (r ≥ 3)
To obtain the decomposition (6) of the restriction fQ forQ = {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . , r}
in turn, we need to extend (P[r′−1], c[r′−1]) to (P[r′], c[r′]) with the use of (Ppr′ , cpr′) (p ∈
[r′ − 1]) for r′ = 3, . . . , r. Algorithm 2 corresponds to this extension step.

Algorithm 2 (for extending f ′ to f):
Input: A VCSP-quadratic function f of type A and restriction f ′ := f[r−1] given as

f ′ =
∑
X∈P′

c′(X)`X + δA[r−1] + (linear function)

for a family P ′ ⊆ Π[r−1]/∼ with |P ′| ≤ 2|A[r−1]| and a positive weight c′ on P ′.
Output: Either detect the non-M2-convexity of f , or obtain expression

f =
∑
X∈P

c(X)`X + δA + (linear function),

with P ⊆ Π/∼ satisfying |P| ≤ 2n = 2|A[r]| and a positive weight c on P.

Step 1: For each p ∈ [r − 1], execute Algorithm 1 for fpr. If Algorithm 1 returns “fpr is not
M2-convex” for some p ∈ [r − 1], then output “f is not M2-convex” and stop. Otherwise,
obtain Ppr and cpr for all p ∈ [r − 1]. Let P := ∅.

Step 2: If P ′ = ∅, go to Step 3. Otherwise, do the following: Let X0 be an element of P ′
such that 〈X0〉 is maximal. Let {p1, p2, . . . , pk} be the set of indices p ∈ [r − 1] with
〈X0〉 = A{p1,p2,...,pk}. If there exist X ∈ Π/∼ and Xi ∈ Ppir (i = 1, 2, . . . , k) such that
X ∼[r−1] X0 and X ∼pir Xi for each i ∈ [k], then go to Step 2-1. Otherwise, go to
Step 2-2.
2-1: Update as

P ← P ∪ {X}, c(X)← min{c′(X0), cp1r(X1), cp2r(X2), . . . , cpkr(Xk)},
c′(X0)← c′(X0)− c(X), cpir(Xi)← cpir(Xi)− c(X) (i ∈ [k]),
P ′ ← P ′ \ {X0} if c′(X0) = 0, Ppir ← Ppir \ {Xi} if cpir(Xi) = 0 (i ∈ [k]),

and go to Step 2.
2-2: Update as P ← P ∪ {X0}, P ′ ← P ′ \ {X0}, and c(X0)← c′(X0). Go to Step 2.

Step 3: Update as P ← P ∪
⋃
i∈[k] Ppir, and c(X) ← cpir(X) for i ∈ [k] and X ∈ Ppir.

Then output P and c. J

The following proposition shows that Algorithm 2 works as expected.

I Proposition 3.3. If f is M2-convex, and P ′ = Pf ′ and c′ = cf ′ hold, then P = Pf and
c = cf hold. Furthermore, Algorithm 2 runs in O(n4) time.

Our proposed algorithm for Decomposition can be summarized as follows. It is noted
that, if P is laminar, then |P| is at most 2n = 2|A[r]| (see e.g., [23, Theorem 3.5]).
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Algorithm 3 (for Decomposition):
Step 1: Execute Algorithm 1 for the restriction f12. If Algorithm 1 returns “f12 is not

M2-convex,” then output “f is not M2-convex” and stop. Otherwise, obtain P12 and c12.
Step 2: For r′ = 3, . . . , r, execute Algorithm 2 for (f[r′],P[r′−1], c[r′−1]). If Algorithm 2

returns “f[r′] is not M2-convex” or |P[r′]| > 2|A[r′]| holds for some r′, output “f is not
M2-convex” and stop. Otherwise, obtain c[r′] and P[r′].

Step 3: Output P := P[r] and c := c[r]. J

I Theorem 3.4. Algorithm 3 solves Decomposition in O(n5) time.

4 Algorithm for Laminarization

For a VCSP-quadratic function f of type A, suppose that we have obtained P ⊆ Π/∼ by
solving Decomposition. The next step for solving Testing M2-Representability is to
check for the laminarity of P . Take F ⊆ Π with F/∼ = P ; such F can be constructed easily
from P. The input of Laminarization is F .

4.1 Outline
For families G,H ⊆ Π, we say that G is equivalent to H if G ∼ H. It is easy to see that a
laminar family can be constructed easily from a cross-free family G by switching X 7→ [n] \X
for appropriate X ∈ G (see e.g., [14, Section 2.2]); this can be done in O(|G|) time. Thus, by
X ∼ [n] \X, our goal is to construct a cross-free family equivalent to the input family.

In this section, we devise a polynomial-time algorithm for constructing a desired cross-free
family. Our algorithm makes use of weaker notions of cross-freeness, called 2- and 3-local
cross-freeness. The existence of a cross-free family is characterized by the existence of a
2-locally cross-free family (Section 4.2). The existence of such a 2-locally cross-free family
can be checked easily by solving a 2-SAT problem. If a 2-locally cross-free family exists, a
3-locally cross-free family also exists, and can be constructed in polynomial time (Section 4.4).
From a 3-locally cross-free family, we can construct a desired cross-free family in polynomial
time by the uncrossing operations (Section 4.3). Thus we solve Laminarization.

Without loss of generality, we assume that X ⊆ 〈X〉 for every X in the input F and no
distinct X,Y with X ∼ Y are contained in F , i.e., |F| = |F/∼|. For X ∈ F , let X := 〈X〉\X;
note X ∼ X. For X,Y, Z ∈ Π, we define 〈XY 〉 := 〈X〉 ∩ 〈Y 〉 and 〈XY Z〉 := 〈X〉 ∩ 〈Y 〉 ∩ 〈Z〉.
For X ∈ F and Q ⊆ [r] with AQ ⊆ 〈X〉, the partition line of X on AQ is a bipartition
{X∩AQ, X∩AQ} of AQ. We also assume that |F/∼| is at most 2n and that X ⊆ Y , X ⊆ Y ,
X ⊇ Y , or X ⊇ Y holds on 〈XY 〉 for distinct X,Y ∈ F with 〈XY 〉 6= ∅, since otherwise F
is not laminarizable.

We can also assume throughout that both 〈X〉 \ 〈Y 〉 and 〈Y 〉 \ 〈X〉 are nonempty for
all distinct X,Y ∈ F . Indeed, for each X ∈ F , we add a new set AX with |AX | = 2 to
the ground set [n] and to the partition A of [n]; the ground set will be [n] ∪

⋃
X∈F AX and

the partition will be A ∪ {AX | X ∈ F}. Define X+ := X ∪ {x}, where x is one of the two
elements of AX and F+ := {X+ | X ∈ F}. Note 〈X+〉 = 〈X〉 ∪AX and 〈X+〉 \ 〈Y+〉 6= ∅ for
all X+, Y+ ∈ F+. Then it is easily seen that there exists a cross-free family L with L ∼ F if
and only if there exists a cross-free family L+ with L+ ∼ F+.

4.2 2-local cross-freeness
For A ⊆ [n], a pair X,Y ⊆ [n] is said to be crossing on A if (X ∩ Y ) ∩ A, A \ (X ∪ Y ),
(X \ Y ) ∩A, and (Y \X) ∩A are all nonempty. A family G ⊆ Π is said to be cross-free on
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A if there is no crossing pair on A in G. A family G ⊆ Π is called 2-locally cross-free if no
X,Y ∈ G is crossing on 〈X〉 ∪ 〈Y 〉. A cross-free family is 2-locally cross-free.

The LC-graph G(F) = (V (F), Ef ∪ Eb) of the input F is defined by

V (F) := {XY | X,Y ∈ F , X 6= Y },
Ef := {{XY,XZ} | Y 6= Z, (〈Y 〉 \ 〈X〉) ∩ 〈Z〉 6= ∅},
Eb := {{XY, Y X} | 〈XY 〉 6= ∅},

where XY is an abbreviation of ordered pair (X,Y ). LC stands for Local Cross-freeness.
Note that the structure of LC-graph depends only on {〈X〉 | X ∈ F}. We call an edge e ∈ Ef
a forward edge and an edge e ∈ Eb a backward edge. A backward edge e = {XY, Y X} is said
to be flipping (resp. non-flipping) if X ⊆ Y or X ⊇ Y (resp. X ⊆ Y or X ⊇ Y ) holds on
〈XY 〉.

An LC-labeling is a function s : V (F)→ {0, 1} such that

s(XY ) =


s(XZ) if {XY,XZ} is a forward edge,
s(Y X) if {XY, Y X} is a non-flipping backward edge,
1− s(Y X) if {XY, Y X} is a flipping backward edge, and

(7)

(s(XY ), s(Y X)) =


(0, 0) if X ( Y ,

(0, 1) if X ( Y ,

(1, 0) if X ) Y ,

(1, 1) if X ) Y ,

on 〈XY 〉 for backward edge {XY, Y X}. (8)

Note that (8) imposes no condition if the partition lines of X and Y on 〈XY 〉 are the same.
Node XY ∈ V (F) is said to be fixed if the value of an LC-labeling s for XY is determined
as (8), that is, if 〈XY 〉 6= ∅ and the partition lines of X and Y on 〈XY 〉 are different.

An LC-labeling s transforms the family F to another family Fs equivalent to F , which
is given by Fs := {Xs | X ∈ F} with Xs := X ∪

⋃
{〈Y 〉 \ 〈X〉 | Y ∈ F with s(XY ) =

1}. Thanks to condition (7) on forward edges, we have Xs ∩ (〈Y 〉 \ 〈X〉) = ∅ for Y ∈
F with s(XY ) = 0.

I Proposition 4.1. There exists a 2-locally cross-free family equivalent to F if and only
if there exists an LC-labeling s in G(F). To be specific, Fs is a 2-locally cross-free family
equivalent to F .

An LC-labeling is nothing but a feasible solution for the 2-SAT problem defined by the
constraints (7) and (8). Therefore we can check the existence of an LC-labeling s greedily
in O(|Ef ∪Eb|) = O(n4) time as follows, where XY is called a defined node if the value of
s(XY ) has been defined.
1. For each fixed node XY , define s(XY ) according to (8).
2. In each connected component of G(F), execute a breadth-first search from a defined node

XY , and define s(ZW ) for all reached nodes ZW according to (7). If a conflict in value
assignment to s(ZW ) is detected during this process, output “there is no LC-labeling.”

3. If there is an undefined node, choose any undefined node XY , and define s(XY ) as 0 or
1 arbitrarily. Then go to 2.

4.3 3-local cross-freeness
A family G ⊆ Π is called 3-locally cross-free if G is 2-locally cross-free and {X,Y, Z} is
cross-free on 〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉 for all X,Y, Z ∈ G with 〈XY Z〉 6= ∅. A cross-free family
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is 3-locally cross-free, and a 3-locally cross-free family is 2-locally cross-free, whereas the
converse is not true. We write X ⊆∗ Y to mean X ⊆ Y on 〈X〉 ∪ 〈Y 〉.

Our objective of this subsection is to give an algorithm for constructing a desired cross-free
family from a 3-locally cross-free family equivalent to the input F . The algorithm consists of
repeated applications of an elementary operation that preserves 3-local cross-freeness. The
operation is defined by (9) below, and is referred to as the uncrossing operation to X,Y .

I Proposition 4.2. Suppose that G is 3-locally cross-free. For X,Y ∈ G, define

G′ :=
{
G \ {X,Y } ∪ {X ∩ Y,X ∪ Y } if X ⊆∗ Y or Y ⊆∗ X,
G \ {X,Y } ∪ {X \ Y, Y \X} if X ⊆∗ [n] \ Y or [n] \ Y ⊆∗ X.

(9)

Then G′ is a 3-locally cross-free family equivalent to G.

Note, by the 2-local cross-freeness of G, that all X,Y ∈ G satisfy X ⊆∗ Y , Y ⊆∗ X,
X ⊆∗ [n] \ Y , or [n] \ Y ⊆∗ X. It is worth mentioning that the uncrossing operation does
not preserve 2-local cross-freeness.

Algorithm 4 (for constructing a cross-free family):
Input: A 3-locally cross-free family G.
Step 1: While there is a crossing pair X,Y in G, apply the uncrossing operation to X,Y

and modify G accordingly.
Step 2: Output G. J

I Proposition 4.3. Algorithm 4 runs in O(n2) time, and the output G is cross-free.

4.4 Constructing 3-locally cross-free family
Our final goal is to show that, for the input F equivalent to a 2-locally cross-free family,
we can always construct, in polynomial time, an LC-labeling s such that Fs is 3-locally
cross-free. In the following, we assume the existence of an LC-labeling.

The following Lemma 4.4 indicates that, more often than not, a triple X,Y, Z in any
2-locally cross-free family is cross-free on 〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉.

I Lemma 4.4. Let G be a 2-locally cross-free family. A triple {X,Y, Z} ⊆ G is cross-free on
〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉 if one of the following conditions holds:
(1) 〈XY 〉 6= ∅, and {X,Y } is cross-free on 〈X〉 ∪ 〈Y 〉 ∪ 〈Z〉.
(2) 〈XY 〉 6⊆ 〈Z〉, and 〈XZ〉 or 〈Y Z〉 is nonempty.
(3) The partition lines of X,Y, Z on 〈XY Z〉 are not the same.
(4) 〈XY 〉 = 〈ZY 〉 6= ∅, and there is a path (XY,XY1, . . . , XYk) in G(G) such that {X,Yk, Z}

is cross-free on 〈X〉 ∪ 〈Yk〉 ∪ 〈Z〉.

To construct a 3-locally cross-free family, a particular care is needed for those triples
X,Y, Z with 〈XY 〉 = 〈Y Z〉 = 〈ZX〉 6= ∅ for which there exists no path (XY,XY1, . . . , XYk)
satisfying 〈XY 〉 6= 〈XYk〉 6= ∅. This motivates the notion of special nodes and special
connected components in the LC-graph G(F) defined in Section 4.2. For distinct X,Y ∈ F ,
define

R(XY ) := {Z ∈ F | There is a path (XY,XY1, . . . , XZ)},
R∗(XY ) := {Z ∈ R(XY ) | 〈XZ〉 6= ∅}.
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We say that XY with 〈XY 〉 6= ∅ is special if 〈XZ〉 = 〈XY 〉 holds for all Z ∈ R∗(XY ).
For X,Y ∈ F such that both XY and Y X are special, let v(XY ) denote the connected
component (as a set of nodes) containing XY or Y X in G(F). We call such a component
special. Let v∗(XY ) denote the set of nodes ZW in v(XY ) with 〈ZW 〉 6= ∅. A special
component has an intriguing structure.

I Proposition 4.5. If both XY and Y X are special, then the following hold.
(i) v(XY ) = (R∗(XY )×R(Y X)) ∪ (R∗(Y X)×R(XY )).
(ii) v∗(XY ) = (R∗(XY )×R∗(Y X)) ∪ (R∗(Y X)×R∗(XY )).
(iii) If ZW ∈ v∗(XY ), then ZW is special and 〈ZW 〉 = 〈XY 〉.

For a special component v = v(XY ), we call 〈XY 〉 the center of v; this is well-defined by
(iii) of Proposition 4.5. For Q ⊆ [r], the Q-flower is the nonempty set with size at least two
of all special components having center AQ.

I Proposition 4.6. The Q-flower is given as {v(XiXj) | 1 ≤ i < j ≤ p} for some p ≥ 3
and distinct X1, X2, . . . , Xp ∈ F such that R(XiXj) = R(Xi′Xj) for all i, i′ < j, and
R(XiXj) ∩R(Xi′Xj′) = ∅ for all distinct j, j′ ∈ [p], i < j, and i′ < j′.

The above X1, X2, . . . , Xp are called the representatives of the Q-flower.
A component v is said to be fixed if v contains a fixed node, and said to be free otherwise.

A special component v(XY ) in the Q-flower is free if and only if the partition lines of X ′
and Y ′ on AQ are the same for all X ′ ∈ R∗(Y X) and Y ′ ∈ R∗(XY ). A free Q-flower is a
maximal set of free components in the Q-flower such that the partition lines on AQ is the
same. Now the set of free components of the Q-flower is partitioned to free Q-flowers each of
which is represented as {v(XisXit) | 1 ≤ s < t ≤ q} with a subset {Xi1Xi2 , . . . , Xiq} of the
representatives. A free Q-flower (for some Q ⊆ [r]) is also called a free flower.

We now provide a polynomial-time algorithm to construct a 3-locally cross-free family
Fs by defining an appropriate LC-labeling s.
Algorithm 5 (for constructing a 3-locally cross-free family):
Step 0: Determine whether there exists a 2-locally cross-free family equivalent to F . If not,

then output “F is not laminarizable” and stop.
Step 1: For all fixed nodes XY , define s(XY ) according to (8). By a breath-first search,

define s on all other nodes in fixed components appropriately.
Step 2: For each component v which is free and not special, take any node XY in v. Define

s(XY ) as 0 or 1 arbitrarily, and define s(ZW ) appropriately for all nodes ZW in v. Then
all the remaining (undefined) components are special and free.

Step 3: For each free flower, which is assumed to be represented as {v(XiXj) | 1 ≤ i < j ≤ q},
do the following:
3-1: Define the value of s(XiXj) for distinct i, j ∈ [q] so that {Xs

1 , X
s
2 , . . . , X

s
q} is

cross-free on
⋃
i∈[q]〈Xi〉.

3-2: Define s(ZW ) appropriately for all ZW ∈ v(XiXj).
Step 4: Output Fs. J

I Proposition 4.7. The output Fs is 3-locally cross-free, and Algorithm 5 runs in O(n4)
time.

By Propositions 4.3 and 4.7, we obtain the following theorem.

I Theorem 4.8. Algorithms 4 and 5 solve Laminarization in O(n4) time.
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