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A binary VCSP is a general framework for the minimization problem of a function represented as the sum of
unary and binary cost functions. An important line of VCSP research is to investigate what functions can be
solved in polynomial time. Cooper and Zivny classified the tractability of binary VCSP instances according
to the concept of “triangle,” and showed that the only interesting tractable case is the one induced by the
joint winner property (JWP). Recently, Iwamasa, Murota, and Zivny made a link between VCSP and discrete
convex analysis, showing that a function satisfying the JWP can be transformed into a function represented as
the sum of two quadratic M-convex functions, which can be minimized in polynomial time via an M-convex
intersection algorithm if the value oracle of each M-convex function is given.

In this paper, we give an algorithmic answer to a natural question: What binary finite-valued CSP instances
can be represented as the sum of two quadratic M-convex functions and can be solved in polynomial time
via an M-convex intersection algorithm? We solve this problem by devising a polynomial-time algorithm
for obtaining a concrete form of the representation in the representable case. Our result presents a larger
tractable class of binary finite-valued CSPs, which properly contains the JWP class.
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1 INTRODUCTION

The valued constraint satisfaction problem (VCSP) provides a general framework for discrete opti-
mization (see [39] for details). Informally, the VCSP framework deals with the minimization problem
of a function represented as the sum of “small” arity functions, which are called cost functions.
It is known that various kinds of combinatorial optimization problems can be formulated in the
VCSP framework. In general, the VCSP is NP-hard. An important line of research is to investigate
what restrictions on classes of VCSP instances ensure polynomial time solvability. Two main types
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of VCSPs with restrictions are structure-based VCSPs and language-based VCSPs (see e.g., [24]).
Structure-based VCSPs deal with restrictions on graph structures representing the appearance
of variables in a given instance. For example, it is known (e.g., [1]) that if the graph (named the
Gaifman graph) corresponding to a VCSP instance has a bounded treewidth then the instance can
be solved in polynomial time. Language-based VCSPs deal with restrictions on cost functions that
appear in a VCSP instance. Kolmogorov, Thapper, and Zivny [22] gave a precise characterization
of tractable valued constraint languages via the basic LP relaxation. Kolmogorov, Krokhin, and
Rolinek [21] gave a dichotomy for all language-based VCSPs (see also [3, 38] for a dichotomy for
all language-based CSPs).

Hybrid VCSPs, which deal with a combination of structure-based and language-based restrictions,
have emerged recently [7]. Among many kinds of hybrid restrictions, a binary VCSP, VCSP with
only unary and binary cost functions, is a representative hybrid restriction that includes numerous
fundamental optimization problems. Cooper and Zivny [5] showed that if a given binary VCSP
instance satisfies the joint winner property (JWP), then it can be minimized in polynomial time. The
same authors classified in [6] the tractability of binary VCSP instances according to the concept of
“triangle,” and showed that the only interesting tractable case is the one induced by the JWP (see
also [7]). Furthermore, they introduced cross-free convexity as a generalization of JWP, and devised
a polynomial-time minimization algorithm for cross-free convex instances F when a “cross-free
representation” of F is given; see related works below for details.

In this paper, we introduce a novel tractability principle going beyond triangle and cross-free
representation for binary finite-valued CSPs, denoted from now on as binary VCSPs. A binary
VCSP is formulated as follows, where Dy, D», ..., D, (r > 2) are finite sets.

Given: Unary cost functions F, : D, — Rforp € {1,2,...,r} and binary cost functions
Fpq:DpyxDg —»Rfor1<p<gqg<r.
Problem: Find a minimizer of F : D; X Dy X - - - X D, — R defined by

F(X1,Xo, ..., X)) = Z}@mp+ zlfha@&) 1.1)

1<p<r 1<p<qs<r

Our tractability principle is built on discrete convex analysis (DCA) [28, 30], which is a theory of
convex functions on discrete structures. In DCA, L-convexity and M-convexity play primary roles;
the former is a generalization of submodularity, and the latter is a generalization of matroids. A
variety of polynomially solvable problems in discrete optimization can be understood within the
framework of L-convexity/M-convexity (see e.g., [30-32]). Recently, it has also turned out that
discrete convexity is deeply linked to tractable classes of VCSPs. L-convexity is closely related to
the tractability of language-based VCSPs. Various kinds of submodularity induce tractable classes
of language-based VCSP instances [22], and a larger class of such submodularity can be understood
as L-convexity on certain graph structures [14]; see also [15]. On the other hand, Iwamasa, Murota,
and Zivny [20] have pointed out that M-convexity plays a role in hybrid VCSPs. They revealed the
reason for the tractability of a VCSP instance satisfying the JWP from a viewpoint of M-convexity.
We here continue this line of research, and explore further applications of M-convexity in hybrid
VCSPs.

A function f : {0,1}" — R U {+c0o} is called M-convex [25, 30] if it satisfies the following
generalization of the matroid exchange axiom: for x = (x1,x3,...,%,) and y = (y1, Y2, - . - , Yn) With
f(x) < 40 and f(y) < +oo,and i € {1,2,...,n} with x; > y;, there exists j € {1,2,...,n} with
y; > xj such that

f+f@) = flx—xi+x)+fy+xi—x)
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where y; is the ith unit vector. Although M-convex functions are defined on Z" in general, we
only need functions on {0, 1}" here. M-convex functions on {0, 1}" are equivalent to the negative
of valuated matroids introduced by Dress and Wenzel [10, 11]. An M-convex function can be
minimized in a greedy fashion similarly to the greedy algorithm for matroids. Furthermore, a
function f : {0,1}" — R U {400} that is representable as the sum of two M-convex functions is
called M;-convex. In particular, f is called quadratically representable M,-convex (QR-M,-convex) if
f is representable as the sum of two quadratic M-convex functions. As a generalization of matroid
intersection, the problem of minimizing an M;-convex function, called the M-convex intersection
problem, can also be solved in polynomial time if the value oracle of each constituent M-convex
function is given [26, 27]; see also [29, Section 5.2]. Our proposed tractable class of VCSPs is based
on this result.

Let us return to binary VCSPs. The starting observation for relating VCSP to DCA is that
the objective function F on D; X D; X - - - X D, can be regarded as a function f on {0, 1}" with
n:=Y1<p<r |Dpl by the following correspondence between the domains:

1
D,:={1,2,...,n,} 3i «— (0,...,0,1,0,...,0). (1.2)
p

With this correspondence, the minimization of F can be transformed to that of f. A binary VCSP
instance F is said to be quadratic M,-representable if the function f obtained from F via the
correspondence (1.2) is QR-M;-convex.

It is shown in [20] that a binary VCSP instance satisfying the JWP can be transformed to a
quadratic My-representable instance,” and two M-convex summands can be obtained in polynomial
time. Here the following natural question arises: What binary VCSP instances are quadratic M,-
representable? In this paper, we give an algorithmic answer to this question by considering the
following problem:

TESTING QUADRATIC M;-REPRESENTABILITY

Given: A binary VCSP instance F.

Problem: Determine whether F is quadratic M,-representable or not. If F is quadratic M,-
representable, obtain a decomposition f = f; + f, of the function f into two quadratic
M-convex functions fi and f2, where f is the function transformed from F via (1.2).

Our main result is the following:
THEOREM 1.1. TESTING QUADRATIC M,-REPRESENTABILITY can be solved in O(n*) time.

An M,-convex function f can be minimized in O(nr® + nr log n) time if such a decomposition is
given (the time complexity can be easily derived from a minimization algorithm for M;-convex
functions in [27]). Thus we obtain the following corollary of Theorem 1.1.

COROLLARY 1.2. A quadratic My-representable binary VCSP instance can be minimized in O(n*)
time.

Overview. We outline our approach to TESTING QUADRATIC M;-REPRESENTABILITY via taking
a small concrete example of a quadratic M,-representable binary VCSP instance. Suppose that
Dy = Dy = D3 = Dy = {0,1}. Unary cost functions Fy, F,, F3, F4; and binary cost functions Fy,

*In [20], a binary VCSP instance satisfying the JWP was transformed into the sum of two quadratic M8 -convex functions. It
can be easily seen that this function can also be transformed into the sum of two quadratic M-convex functions.
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(1 < p < g < 4) are given by

1 0 | 1 0 ]

F15=[0], F21=[1 , F31=[0], F41=[1 ,
3 0 [ 2 0 1 0|

F12:=|:1 4:|’ F13 = _1 3 :|’ F14::|:0 1-’ (13)
2 0 (3 0 2 0]

F233=[0 2}, Fyy := 1 1], F341=[0 ol

where F, is regarded as a 2 X 2 matrix with the (i, j)-component F4(i—1,j—1) for 1 < i,j < 2,and
F,, is also regarded as a 2-dimensional vector in a similar way. Based on the correspondence (1.2),
the function f on {0, 1}® is constructed as follows (this construction will be introduced formally in
Section 2.1):

0 oo 1T 7.1

o o | T Fis Fiy F
0 oo
1 F, | o o | Iz Faq F,
fx) = =x" X+ x (1.4)
2 R I R B - F
13 23 o 0 34 3
0 oo

L I VR A Fy

for x € {0,1}® with 3,.;<sx; = 4 and f(x) := +oo for other x. Recall that F is quadratic M-
representable if and only if f is QR-M;-convex and that F is efficiently minimizable if and only if f
is.

Our algorithm constructs the following two M-convex summands f; and f; of f:

x; ] [6 6]4]2 [ xp ]
X3 6 642 0 X3
x5 4 4 42 X5
1 X7 2 2 2 2 X7
== 1.
fiw =5 | 7 s o (19)
X3 2 2 Xg
X 0 0 X2
| x¢ | | 011 x6 |
and
Tx 1[0 oo T 1 T =317 x ]
X3 o 0 O X3 7 X3
X3 0 oo X3 -8 X3
1 xy o 0 X4 -1 Xy
fa(x) == 7| xs o s | 3 s (1.6)
X6 0 (o] 0 X6 2 X6
X7 0 o0 X7 0 X7
L xs | | o 0 ][ xg ] 1 L x5 |

for x € {0,1}3 with 3, ;s x; = 4, and f;(x) := +00 and f;(x) := +oo for other x. The first function
f1in (1.5) is a laminar convex function [30, Section 6.3], which is a typical example of M-convex
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functions. Indeed, by using a laminar family £ = {{1,3,5,7}, {1, 3,5}, {1, 3}, {4, 8}}, f1 is written as

filx) = Z (in) . (1.7)

XelL \ieX

The second function f; in (1.6) is nothing but a linear function on the base family of the partition
matroid with partition {{1, 2}, {3, 4}, {5, 6}, {7, 8}}, and hence f; is also M-convex.

We establish a representation theorem (Theorem 2.3), which says that QR-M;-convex functions
arising from binary VCSP instances always admit the above type of the decomposition. For a set
X c{1,2,...,n},let ZX be the quadratic function defined on {0, 1}" by

2

Ox(x) = (Z xl-) . (1.8)
ieX

The theorem states that a function f arising from a binary VCSP instance is QR-M;-convex if and

only if f is a laminar convex function restricted to the base family of the partition matroid with

partition A of {1,2,...,n}, i.e,

f: Z szx-i-h-i-(sﬂ,
Xel
where £ is a laminar family, cx is a positive weight on X € L, h is a linear function, and § # is the
{0, +0o}-function taking 0 on the bases and +oco on the non-bases.

The main difficulty in solving TESTING QUADRATIC M,-REPRESENTABILITY is that a representation
of quadratic functions on the base family of the partition matroid is not unique. Indeed, we see
that the coefficients in (1.4) do not equal the sum of coefficients in (1.5) and (1.6). In particular, £x
satisfies the following relations:

{x +0a=1Cxua, +h+8n ifA,eAandA,NX =0, (1.9)
Ix +8a="Llz...apnx +H +3a, (1.10)
where h and h’ are linear functions. This means that f can be QR-M;-convex even if f is written as
f= exlx+h+0n (1.11)
XeF

for a non-laminar family ¥ . Based on this consideration, we divide TESTING QUADRATIC M;-
REPRESENTABILITY into two subproblems named DECOMPOSITION and LAMINARIZATION.

DECOMPOSITION is the problem of obtaining a representation (1.11) of a given QR-M,-convex
function f for some family ¥ not necessarily laminar but laminarizable by repeating the following
transformations corresponding to (1.9) and (1.10):

X XUApor X\ A, (1.12)
X {1,2,...,n}\ X (1.13)

for X € ¥, where A, N X = 0 or A, C X. We present a polynomial-time algorithm for DE-
COMPOSITION in Section 3. LAMINARIZATION is the problem of constructing a laminar family £
from the family # obtained in DECOMPOSITION by repeating the transformations (1.12) and (1.13).
LAMINARIZATION can be seen as a purely combinatorial problem for a set system. We present a
polynomial-time algorithm for LAMINARIZATION in Section 4.

If we apply our DEcompOsITION algorithm to f in (1.4), we obtain a representation (1.11)
for a partition A := {{1,2},{3,4},{5,6},{7,8}} of {1,2,...,8} and a non-laminar family ¥ :=
{{1,3,5,7},{1,3,5},{2,4}, {3, 7}}. Then, by solving LAMINARIZATION for ¥, we obtain a laminar
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Fig. 1. The left figure illustrates the input & of LAMINARIZATION and the right figure illustrates an output
laminar family £, where black nodes indicate elements of {1, 2, ..., 8}, gray rectangles indicate members in
A, and solid curves indicate four sets in ¥ and L, respectively.

family £ := {{1,3,5,7},{1,3,5}, {1,3}, {4, 8}}. Indeed, we can transform {2, 4} to {1, 3} by repeating
transformations (1.12) and (1.13) since {1,3} = ({1,2,...,8}\ {2,4}) \ {5, 6,7, 8}. See Figure 1. Thus
we can verify the QR-M;-convexity of f by constructing two M-convex summands of f.

Application to quadratic pseudo-Boolean function minimization. Pseudo-Boolean function mini-
mization is a fundamental and well-studied problem in theoretical computer science (see e.g., [2, 8]).
Our result provides a new tractable class of quadratic pseudo-Boolean functions minimization.
Consider a pseudo-Boolean function F : {0,1}" — R represented as

F(x1,%2,...,%xy) = Z aijxixj + Z a;x;.

1<i<j<n 1<i<n

Then F is lifted to f : {0,1}*" — R U {+oo} defined by: For x € {0, 1}*" with 3, ;< X; = 1,

O, Xn, Xpa1s - o5 Xop) = E ajjxix; + E 00+ XiXnp+i + § aixi,

1<i<j<n 1<i<n 1<i<n

and for other x, f(x) := +co. Then F(x1,...,xn) = f(*1,...,%n,1 — x1,...,1 — x) for any
x € {0,1}". Hence minimizing F is equivalent to minimizing f.

We can regard f as a function arising from the binary VCSP instance F with the partition
A ={A1, Ay, ..., Ap} of {1,2,...,2n} givenby A; = {i,n+ i} fori = 1,2,...,n. Therefore, if f is
QR-M;-convex, then we can obtain two M-convex functions f; and f; satisfying f = fi + f, by our
proposed algorithm, and we can minimize f (and hence F) in polynomial time.

To the best of our knowledge, our new tractable class is incomparable with the existing ones,
and we are not aware of any nontrivial known tractable class contained in ours. Tractable classes
of (exactly minimizable) pseudo-Boolean functions introduced in [2, 8] are related to (i) bounded
treewidth, (ii) submodularity, or (iii) a switching reduction (which flips the values of a subset of
the variables) to (ii). These tractable classes are incomparable with ours. The minimum weight
perfect bipartite matching problem constitutes another tractable class of quadratic pseudo-Boolean
function minimization. Although this problem can be formulated as a matroid intersection problem
for two partition matroids, it is outside our class since a;; take only finite values in our model.
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Related works.

e Cooper and Zivny [5] introduced the joint winner property (JWP) for binary VCSP instances
as a sufficient condition for tractability. A binary VCSP instance F of the form (1.1) is said to
satisfy the JWP if

Fij(a,b) > min{Fj(a,c), Fjx(b,c)}

for all distinct i, j,k € [r] and all a € D;,b € Dj, c € Dg. It is shown in [5] that if F satisfies
the JWP, then F can be transformed, in polynomial time, into a function F’ satisfying the
JWP, argmin F’ C argmin F, and the additional special property named the Z-freeness, and
that Z-free instances can be minimized in polynomial time. Thus, if F satisfies the JWP, then
F can be minimized in polynomial time. Furthermore, Iwamasa, Murota, and Zivny [20]
revealed that Z-free instances are quadratic M,-representable.
The tractability based on quadratic Mz-representability depends solely on the function values,
and is independent of how the function F is given. Indeed, a quadratic M,-representable
instance F can be characterized by the existence of a Z-free instance F’ that satisfies F'(X) =
F(X) for all X. This stands in sharp contrast with the tractability based on the JWP, which
depends heavily on the representation of F. For example, let F(X) = 3 F,(X,)+3 Fpq(Xp, Xq)
be a binary VCSP instance satisfying the JWP. By choosing a pair of distinct p, q € {1,2,...,r},
d € Dy, and a € R arbitrarily, replace F,(d) and F,q(d, X4) by F,(d) + a and F,4(d, Xy) — a,
respectively. Then F does not change but violates the JWP in general. Although the binary
VCSP instance F in (1.3) does not satisfy the JWP by Fi2(1,1) = 4, Fi3(1,0) = 1, and F»3(1,0) =
0, F is quadratic M,-representable. Thus our result can explore such hidden M;-convexity.
e Cooper and Zivny [6] introduced a generalization of JWP, named cross-free convexity, for
not necessarily binary VCSP instances. A VCSP instance F : D; X Dy X -+ - X D, = R U {+00}
is said to be cross-free convex if the function f : {0,1}" — R U {+0co} obtained from F via
correspondence (1.2) can be represented as

f& =) 9x (Z x,-), (114)

XeF ieX

where 7 C 211:2-+m) is cross-free and, for each X € ¥, gx is a univariate function on Z
satisfying gx (m — 1) + gx(m + 1) > 2gx (m) for all m € Z. Here the equality (1.14) is required
for every x € {0, 1}" that corresponds to some X € D; XDy X---XD, via (1.2) and f(x) = +oo
for other x. A pair X, Y C {1,2,...,n} is said to be crossingif X NY, {1,2,...,n} \ (X UY),
X\ Y,and Y \ X are all nonempty, and a family 7 C 2{%%--~"} is said to be cross-free if there
is no crossing pair in F .

Cross-free convexity is a special class of M,-representability, where a VCSP instance F is
M;-representable if the function f obtained from F via correspondence (1.2) is Mz-convex.
Indeed, it follows from a similar argument to the M-convexity of laminar convex functions
that f in (1.14) is Mz-convex. Hence, a cross-free convex instance F is M,-representable.
Our result provides, for binary finite-valued CSPs, a polynomial-time minimization algorithm
for special cross-free convex instances (quadratic Mp-representable instances) even when the
expression (1.14) is not given.

o Our representation theorem (Theorem 2.3) is inspired by the polyhedral split decomposition
due to Hirai [13]. This general decomposition principle decomposes, by means of polyhedral
geometry, a function on a finite set D of points of R” into a sum of simpler functions, called
split functions, and a residue term. This aspect can be explained for our function f in (1.4)
roughly as follows. The expression } x¢ s exlx + f2 of f can be viewed as the polyhedral
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1:8 H. Hirai, Y. lwamasa, K. Murota, S. Zivny

split decomposition of f, where D is equal to the effective domain of f, cx{x on D is a sum
of split functions and a linear function (cf. (2.2)) for each X € £, and f; defined by (1.6) is a
residue term.

e Interestingly, LAMINARIZATION appears in a different problem in computational biology. A

phylogenetic tree is a graphical representation of an evolutionary history in a set of taxa in
which the leaves correspond to taxa and the non-leaves correspond to speciations. One of the
important problems in phylogenetic analysis is to assemble a global phylogenetic tree from
smaller pieces of phylogenetic trees, particularly, quartet trees. QUARTET COMPATIBILITY is to
decide whether there is a phylogenetic tree inducing a given collection of quartet trees, and to
construct such a phylogenetic tree if it exists. It is known [36] that QUARTET COMPATIBILITY
is NP-hard.
As a subsequent work to the present paper, Hirai and Iwamasa [16] have introduced two novel
classes of quartet systems, named complete multipartitite quartet systems and full multipartite
quartet systems, and showed that QUARTET COMPATIBILITY for these quartet systems can
be solved in polynomial time. In their algorithms, the algorithm proposed in this paper for
LAMINARIZATION is utilized for the polynomial-time solvability.

Notation. Let Z, R, Ry, and R, denote the sets of integers, reals, nonnegative reals, and positive
reals, respectively. In this paper, functions can take the infinite value +oo, where a < +c0, a + 00 =
+oofora € R, and 0 - (+00) = 0. Let R := R U {+0o}. For a function f:{0,1}" —» R, the effective
domain is denoted as dom f := {x € {0,1}" | f(x) < +oo}. For a positive integer k, we define
[k] :={1,2,...,k}. We often abbreviate a set {i1, iz, ..., i,} as ijiz - - - ig. For f : {0,1}" — R and
U C {0,1}", the function f on U means the “restriction” of f obtained from f by redefining f (x)
as +oo for each x ¢ U.

2 REPRESENTATION OF QR-M;-CONVEX FUNCTIONS

For a partition A := {A}, Ay, ..., A} of [n], let 64 : {0,1}" — R be the indicator function of the
base family of a partition matroid with partition A, that is, 5z (x) := 0if };ca, x; = 1 for each
p € [r] and 4 (x) := +oo otherwise. Let U be the set of characteristic vectors of the bases of a
partition matroid with partition A, i.e., Uz := {x € {0,1}" | Zl-eAP xi =1(p € [r])} =domS4. Let
U,,» be the set of characteristic vectors of the bases of the uniform matroid on [n] of rank r, i.e.,
Un,r == {x €{0,1}" | Xjen) xi = r}. Note that Ug C Uy, , for r > 2.

2.1 Representation theorem

We introduce a class of quadratic functions on {0, 1}" that has a bijective correspondence to binary
VCSP instances. Let A := {Aj, A, ..., A} be a partition of [n] with |A,| > 2 for p € [r]. We say
that f : {0,1}" — Ris a VCSP-quadratic function of type A if f is represented as

Z aijxixj + Z a;x; ifx € Un,n

f(x) :== {1<i<jzn 1<i<n (2.1)
+00 otherwise

for some a; € Rand a;; € R such that a;; = +oofori,j€ A, (p € [r]) and a;; < +oo for i € A, and
Jj €A (p.q€[r],p# q). We assume a;; = aj; for distinct i, j € [n]; see (1.4).

Suppose that a binary VCSP instance F of the form (1.1) is given, where we assume F,,q = Fg,, for
distinct p, g € [r]. The transformation of F to f based on (1.2) in Section 1 is formalized as follows.
Choose a partition A := {Ay, Ay, ..., A} of [n] with |A,| = n,(= |D,|) and identify A, with D,.
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Define
ai=Fpli) (i€ [n),
4= Fpq(i,j) (i€ Ay and j € A, for some distinct p, q € [r]),
/ +00 (i,j € Ap for some p € [r]).
Then the function f in (2.1) is a VCSP-quadratic function of type A.
We introduce two functions that will serve as the M-convex summands of an Mz-convex VCSP-
quadratic function of type A. A function h : {0,1}" — R is said to be A-linear if h is a linear

function on Ug, that is, if h can be represented as h(x) = §4(x) + X1 <i<n tix; + y for some linear
coefficient (u;);e[n) and constant y € R. We use such h as an M-convex summand. As the other

function, for technical reasons, we use the following {x instead of ZX in (1.8); the difference of ZX
and 2{x is linear. For X C [n], let {x : {0,1}" — R be defined by

tx(x) := Z Xix;. (2.2)
i,jeX,i<j
The following lemma guarantees the M-convexity of the two functions (like f; in (1.5) and f,

in (1.6)) obtained in our algorithm. Here a family & C 2! is said to be laminarif X C Y, X 2 Y,
orXNY =0holds forall X,Y € .

LEMMA 2.1. (1) An A-linear function is M-convex.
(2) For any laminar family L and positive weight ¢ on L, the function Y, x ¢ y ¢(X){x on Uy, , is
M-convex.

PRrROOF. (1). An A-linear function h can be viewed as a linear function on the base family of a
partition matroid with partition A. Hence h is M-convex.

(2). We can see that the quadratic coefficient of )y, c(X)€x satisfies a;; + ax; > min{a;; +
aji, a;;+aji ) for every distinct i, j, k, I € [n] (see also Lemma 2.5 below). Hence, by [19, Theorem 3.1]
(or Lemma 2.4 (I) below), >, xc r ¢(X){x on U, , is M-convex. O

Lemma 2.1 gives a sufficient condition for the QR-M;-convexity of a VCSP-quadratic function
f;if f can be represented as the sum of ),y r c¢(X){x on U, , for some laminar £ and a linear
function on Ug, then f is QR-M;-convex. Our representation theorem (Theorem 2.3) says that
this is also a necessary condition, that is, a QR-M;-convex VCSP-quadratic function is always
representable as the sum of ) xc » ¢(X){x on U, , for some laminar £ and a linear function on Uz.

A laminar family inducing the given QR-M;-convex VCSP-quadratic function possesses some kind
of uniqueness, which ensures the validity of our proposed algorithm. To describe the uniqueness in
Theorem 2.3, we introduce an equivalence relation on functions:

o For two functions f and f”’ on {0, 1}", we say that f and f”’ are A-linear equivalent (or f ~ ')
if the difference between f and f” is a linear function on U4, that is, f + 4 = f + h holds
for some A-linear function h.

The A-linear equivalence on {x’s can be regarded as a combinatorial property on sets X by

using the following notations.

e We say that a set X C [n] cuts A, if both X and [n] \ X have a nonempty intersection with
Apie, 0% (XNA,) %A,

e Aset X C [n] is called an A-cut if X cuts at least two elements in A.

e For X C [n], the cutting support of X, denote by (X), is defined as the union of A,’s cut by X.
That is,

(X) = U{Ap EA|D# (XNAY) #A,). (2.3)

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:10 H. Hirai, Y. lwamasa, K. Murota, S. Zivny

LEMMA 2.2. (1) For X C [n], {x + O is not A-linear if and only if X is an A-cut.
(2) For two A-cuts X and Y, functions {x and {y are A-linear equivalent if and only if

{ONX, X\NX}={I)NY, )Y}, (2.4)

that is, X and Y have the same cutting support and yield the same bipartition on it.

PROOF. As in (1.8) in the introduction, define x : {0,1}" — R by fx(x) := (X;cx xi)*. Then
it holds £x =~ €x/2 by x = x; for i € [n]. Hence it suffices to show the statements for £x. As
mentioned in (1.9) and (1.10), it holds (i) £x = ZXUA if XNA, =0, and (ii) lx =~ f I\x- The former
follows from quAp (x) = (ZieX Xi + Xiea, xl-)z ~ (Yiex xi +1)% = {x(x), and the latter follows
from €pupx (x) = (r = Yiex xi)* = €x(x).

(Only-if part of (1)). Suppose that X is not an A-cut. Then (X) C A, holds for some A, € A. By
(i), we may assume X C A,. Then it holds zx(x) = Qiex xl-)2 = Yiex x; for all x € Ug, implying
that ZX is A-linear.

(If part of (2)). Suppose that (2.4) holds. Then we can construct Y from X by repeating the
transformation X — [n] \ X, X UA,, or X \ A, for A, with (X) N A, = (. Hence lx ~Cy by (i)
and (ii) above.

(If part of (1)). To detect the non-linearity, we consider the following four points x**, x
Uag for distinct s,t € A, and u,v € A4 with distinct p, g € [r]:

ox]—x] =1fori=s,tandj = u,v, and

o X" =xiV =x!" =x!Yfori € [n]\ (A, UAy).

SO L.tu L.tv c

7x 7x

Since x*¥ + x'? = x*¥ + x'*, the inequality £x (x*%) + {x (x'?) # x(x*?) + £x (x**) implies that
{x is not linear on the four points. Let kx := (fx( SUY + €X(x”’)) ( x (x%Y) + €X(x“‘)). By
Cx(xY) = (IX N {i}] + |X N {j}] + k)? with a constant k, we have

2 if X N{s, t,u,v} ={s,u} or {t,v},
Kx =1-2 ifXnN{s t,uv}={sv}or{tul}, (2.5)
0  otherwise.

If X is an A-cut, we can choose distinct s,t € Ay, u,v € Ay for distinct A,, A € (X) such that
X N{s,t}| = X N{u,v}| =1, and it holds kx # 0.

(Only-if part of (2)). This can be shown in a similar way as the proof of the if part of (1). Suppose
that (2.4) does not hold. Then we can choose distinct s,t € A,,u,v € Ay with p # g such that
kx # Ky, which implies that £x and {y are not A-linear equivalent. Indeed, by {{X) N X, (X)\ X} #
{{Y)NY,(Y)\ Y}, there are A, and A, cut by (say) X such that {(A, UA,) N X, (A, UAy) \ X} #
{(ApUAy)NY, (A, UA,) \ Y} Hence we can choose points s € A, N X, t € Ap\ X, u € A;NX, and
v € Ag\ X such that Y N {s,t,u, v} # {s,u} and Y N {s, t,u, v} # {t,v}. Then (2.5) shows xx # xy.O

According to Lemma 2.2, we introduce the equivalence relations on sets, families, and positive
weights on families, and also introduce the concept of laminarizability as follows.

e For two A-cuts X and Y, we say that X and Y are A-equivalent (or X ~ Y)if X and Y
satisfy (2.4). That is, X ~ Y if and only if £x =~ {y.

o The A-equivalence relation is naturally extended to A-cut families ¥, G by: ¥ and G are
A-equivalent (or ¥ ~ G) if the set of the equivalence classes of all A-cuts in F coincides
with that of G.

e We define the A-equivalence relation ~ between a positive weight ¢ on ¥ and a positive
weightdon G by: ¢ ~dif ¥ ~ G and Jycr.y.x c(Y) = Jyegy-x d(Y) forall X C [n],
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where ¢(X) := 0 (resp. d(Y) := 0) if X ¢ F (resp. if Y ¢ G). It is clear, by the definition of ~,
thatif F ~ G and ¢ ~ d, then Y x ¢ c(X)€x = Y xeg d(X)Ex.
e An A-cut family F is said to be laminarizable if there is a laminar family £ with ¥ ~ L.
The formal description of our representation theorem is the following.

THEOREM 2.3. Let f be a VCSP-quadratic function of type A = {A1,Aq,...,A,}. Then f is
QR-M,-convex if and only if there exist a laminarizable A-cut family ¥ and a positive weight c on
such that

f =~ Z c(X)lx. (2.6)

XeF
In addition, ¥ and c are uniquely determined up to ~.

The proof of Theorem 2.3 is given in Sections 2.3 and 2.4.

2.2 Two subproblems: DEcomMPOsITION and LAMINARIZATION

By Theorem 2.3, TESTING QUADRATIC M3-REPRESENTABILITY can be divided into the following two
problems: (i) if f is QR-Mj-convex, then output a laminarizable A-cut family # and a positive
weight ¢ on ¥ satisfying the equation (2.6), and (ii) if the output ¥ of (i) is laminarizable, then
find a laminar family £ with £ ~ #. (i) and (ii) can be formulated as DEcomposITION and
LAMINARIZATION, respectively. An A-cut family ¥ is said to be non-redundant if no distinct X, Y
with X ~ Y are contained in .

DECOMPOSITION

Given: A VCSP-quadratic function f of type A.

Problem: Either detect the non-QR-M;-convexity of f, or obtain some non-redundant A-cut

family # and positive weight ¢ on F satisfying

f =~ Z c(X)lx. (2.7)
XeF
In addition, in case where f is QR-M;-convex, ¥ is required to be laminarizable.
We emphasize that DECOMPOSITION may possibly output the decomposition (2.7) even when the
input f is not QR-M;-convex. However, if DEcoMPosITION detects the non-QR-M;-convexity then
we can conclude that the input f is not QR-M,-convex.
LAMINARIZATION
Given: A non-redundant A-cut family ¥ .
Problem: Determine whether F is laminarizable or not. If it is laminarizable, obtain a non-
redundant laminar A-cut family £ with ¥ ~ L.

With these procedures, TESTING QUADRATIC M,-REPRESENTABILITY is solved as follows.

e Suppose that f is QR-M,-convex. First, by solving DECOMPOSITION, we obtain a non-redundant
laminarizable A-cut family # and a positive weight ¢ on ¥ satisfying (2.7) (and hence (2.6)).
Then, by solving LAMINARIZATION with ¥ as its input, we obtain a non-redundant laminar A-
cut family £ with £ ~ ¥ . Thus we can obtain two M-convex summands f; := Y xc p ¢"(X)€x
onU,,and f; := f — Y xes ¢ (X){x, where ¢* ~ c. Such c¢* can easily be constructed as
cX):==c(Y)forXe LandY € F withX ~ Y.

e Suppose that f is not QR-M;,-convex. By solving DECOMPOSITION, we can detect the non-QR-
M;-convexity of f or we obtain some A-cut family 7, positive weight c on ¥, and A-linear
function h that demonstrates (2.7). In the former case, we are done. In the latter case, by
solving LAMINARIZATION with ¥ as its input, we can detect the non-laminarizability of 7,
which denies the QR-M;-convexity of f.
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We devise an O(rn?)-time algorithm for DECOMPOSITION in Section 3 and an O(n?)-time algorithm
for LAMINARIZATION in Section 4. Thus we obtain Theorem 1.1.

By Lemma 2.2 (2), LAMINARIZATION can be regarded as the problem of transforming a given
family ¥ to a laminar family by repeating the following operation: replace X € ¥ with [n] \ X,
X UAp, or X\ A, with some A, satisfying (X) N A, = 0. Figure 1 illustrates an example of the
input (left) and an output (right) of LAMINARIZATION.

2.3 Proof of Theorem 2.3: Characterization

In this subsection, we prove the if-and-only-if part of Theorem 2.3, i.e., a VCSP-quadratic function
f of type A is QR-M,-convex if and only if (2.6) holds for some laminarizable A-cut family # and
positive weight ¢ on F .

We first review fundamental facts about a general quadratic (not necessarily VCSP-quadratic)

function g : {0,1}" — R represented as
Z ajjXixXj + Z a;x; ifx € Un,rs
gx1, %2, ..., Xp) = {1<i<j<n 1<i<n (2.8)

+00 otherwise,

where r € Z with r > 2, a; € R, and a;; = a;; € R. We assume the following regularity condition
(R) for g.

(R): For all i € [n], there is x = (x1,x2, ..., Xp) such that g(x) < +o0 and x; = 1.
Denote the indicator function of dom g by J,, which is defined as §,(x) := 0 for x € domg and
bg(x) := +oo for x ¢ domg.

Let Gy’ be the graph on node set [n] such that edge {i, j} (i # j) exists if and only if a;; = +co.
Define m(Gy’) as the number of connected components of G;’. A connected component with at
least one edge is said to be non-isolated. The number of non-isolated connected components of G’
will be denoted by m* = m* (G;"). Let By, By, . . ., B+ be the node sets of the non-isolated connected
components of G

Then the M-convexity of g is characterized by the following lemma, which is a refinement of the
results of [18] and [33].

LEMMA 2.4 ([19, THEOREM 3.1]). A function g of the form (2.8) satisfying condition (R) is M-
convex if and only if each connected component of G7’ is a complete graph and one of the following
conditions (I), (IT), and (III) holds:

(D: m(G;") >r+2and
a;j + ag; 2 min{a;x + aji, a;; + aji} (2.9)

holds for every distinct i, j, k, I € [n].
(ID: m(Gy) =r+1and

ajj + ak; = a; + ajk (2.10)

holds for every p € [m*], distinct i,k € B, and distinct j,1 € [n] \ B,,.
I): m(Gy) = r and

ajj +ag; = a;] + ajk (2.11)
holds for every distinct p, q € [m*], distinct i, k € B, and distinct j,1 € By.

Moreover, (I) or (I) holds if and only if g is represented as g(x) = 84(x) + Xic[n) UiXi + y for some
u€R"andy € R.
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We say that (a;j); je[n) satisfies the anti-tree metric property if (2.9) holds, and that (a;;); je[n]
satisfies the anti-ultrametric property if

a;j > min{a;, aji} (2.12)

holds for all distinct i, j, k € [n]. It is known [9] that the anti-ultrametric property is stronger than
the anti-tree metric property (2.9). The anti-ultrametric property is related with a laminar family
as in Lemma 2.5 below. A subpartition of [n] is a family of disjoint nonempty subsets of [n]. For a
subpartition B, a family £ is said to be 8-laminar if £ is laminar and B C X or BN X = 0 holds for
each B € B and X € L, that is, if £ does not intersect with 8, £ U B is laminar, and each B € B is
minimal in £ U 8.

LEmMMA 2.5 ([20, LEMMA 8]). Let g be a quadratic function with a coefficient (a;;); je[n], and B be
the family of the node sets of the non-isolated connected components of G;’. Then (aij);, je[n] Satisfies
the anti-ultrametric property if and only if a;; can be represented as

_{+oo if i, j € B for some B € B,

ajj = . (213)
S{e(L) | Le L; i,je L} +a* otherwise

for some B-laminar family £ C 2"\ [n] and some positive weight ¢ on L, where a* := min; je[n] aij-

Lemma 2.5 follows from Lemma 8 of [20] by relating B to the set of complete graphs for ¢ = +o0
and relating L to the union of the set of complete graphs for & < +o00, where « is a parameter
appearing in Lemma 8 of [20].

The following is a variation of a well-known technique (the Farris transform) in phylogenetics [35]
to transform a tree metric to an ultrametric, and is implied by the validity of Algorithm I described
in Section 4.1 of [19]. In particular, Steps 1 and 2 of Algorithm I correspond to the following.

LEMMA 2.6 ([19]). Suppose that (aij)i je[n) Satisfies the anti-tree metric property. Let a* :=
min; jern) aij and by := minje(,) ax; — a* for k € [n]. Then minje[,) a;j = a* holds for alli € [n],
and (a;j — b; — bj); je[n) satisfies the anti-ultrametric property.

We are now ready to show the characterization part of Theorem 2.3. Note that, by the definition
of laminarizability, (2.6) holds for some laminarizable family ¥ if and only if (2.6) holds for some
laminar family £.

PROPOSITION 2.7 (THE CHARACTERIZATION PART OF THEOREM 2.3). Let f be a VCSP-
quadratic function of type A. Then f is QR-M,-convex if and only if

f =~ Z c(X)lx (2.14)

Xel
for some laminar A-cut family L and positive weight ¢ on L.

Proor. For a subpartiton B, define §g : {0,1}" — R by dg(x) :=0ifx € Uy, and };cpx; < 1
for each B € B, and §g(x) := +oo otherwise. Then, by Lemma 2.4, §g is an M-convex function that
can be represented as dg(x) = X ges X, jeB,i<j © * XiXj on Uy, ». The set of non-isolated connected
components of G is equal to 8. We say that a function f is of Type I, Type II, or Type III if
m(G}") >r+2, m(GJ‘Z") =r+1,or m(GJ"f’) = r holds, respectively (cf., Lemma 2.4).

(If part). By the A-linear equivalence, f is represented as f = Y xc, ¢(X){x + h for some A-
linear function h. By Lemma 2.1 (1) and (2), the functions A and } y ¢ » ¢(X)€x on U, , are M-convex.
Hence f is QR-M;-convex.

(Only-if part). Let fi, f; : {0,1}" — R be any quadratic M-convex functions with f = f; + f;.
Since f satisfies condition (R), fi and f; also satisfy condition (R) by dom f = dom f; N dom f5. Let
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B; and B, be the sets of non-isolated connected components of G‘T and GJ‘Z;’, respectively. Since fi
and f; are M-convex, each member of B (resp. B;) induces a complete graph in G]‘Z:’ (resp. G};’) by
Lemma 2.4. Hence dom f; = dom dg, and dom f; = dom dg, hold. Note that dom f = dom 4z =
dom (531 + 532).

Here the following claim holds.

Cram. There exist quadratic M-convex functions fi and f; such that f = fi + fo, BN B, =0,
and B, U By, = A.

PrOOF OF Cramm. Let fi, f5 : {0,1}" — R be any quadratic M-convex functions with f = f; + f;.
We first show that if 8; and B, satisfy (i) for each B € 8; U B, there is A € A such that B C A,
and (ii) each A € A belongs to B; U B, (i.e., A € B; U By), then Claim holds.

Suppose that (i) and (ii) hold, and that some B € B, violates B; N B, =@ or B; U B, = A, i.e,
B € B, or B ¢ A. Then we can modify fi so that f; is M-convex with f = f; + f> and dom f; is
changed from dom §g, to dom dg,\(p) as follows.

By (i) and (ii), there is A € A N B, such that B € A If f; is of Type Il or III, then f; =~ §g, by
Lemma 2.4. Hence we have

fit f2 =088, + f2=38,\(B) + f2

where the second equality follows from dom (ég, + f2) = dom (ég,\(p} + f2) by BC Aand A € B,.
Thus we can modify f; so that f; is M-convex with f = f; + f; and dom f; = dom 8g,\(p). If fj is
of Type [, then, by Lemma 2.4 (I) and Lemma 2.6, the quadratic coefficient of f are represented as
(a%j + b; + b;j)i je[n), where b; € R and (al!j) satisfies the anti-ultrametric property. By modifying
a}j(z +00) to M for i, j € B; with a sufficiently large M, we have dom f; = dom dg,\(p,} and the
value of fi + f> does not change. Furthermore (a}j) still satisfies the anti-ultrametric property.
Hence f; is M-convex. Thus we can modify f; so that f; is M-convex with f = f; + f, and
dom f; = dom dg,\(B). By repeating the above modification for f; or f;, we obtain the f; and f; in
Claim.

We finally show that (i) and (ii) hold.

(i). We can easily see that, for every i, j with a;; < +oco (i.e., i € A, and j € A, for some distinct
P> q), there is x € dom f such that x; = x; = 1. Hence, for such i, j, there is no B € 8; U8, satisfying
i,j € B. Therefore we obtain (i).

(ii). Let E# and Eg be the edge set of G?ﬂ and of Gg;h 165, respectively. That is, {i, j} € E# (resp.
{i,j} € Eg) if and only if i, j € A for some A € A (resp. i,j € B for some B € B, U B,). By (i), we
have E# 2 Eg. Suppose, to the contrary, that E# 2 Eg. Then there is {i, j} such that i, j € A, for
some p and {i,j} ¢ Eg. Let x € {0,1}" be a 0-1 vector such that x; = x; = 1, ¥;¢[n) X; = 1, and
ZieAq x; < 1 for each g distinct from p. Since E# 2 Eg, we have x € dom (g, + d3,), whereas
x ¢ dom 8 .#. This contradicts dom d # = dom (6, + d8,), and hence E# = Eg holds. Therefore we
obtain (ii).

This completes the proof of Claim. O

By Claim, we can take quadratic M-convex functions f; and f; satisfying f = f; + f>, dom f; =
dom §g,, and dom f, = dom dg,, where B; N B; = @ and B; U B, = A. In the following, we show
that f = fi + f, satisfies (2.14) with some laminar A-cut family £ and positive weight ¢ on L for
each of the three cases: (i) both f; and f; are of Type Il or III, (ii) f; is of Type I and f> is of Type II
or III, and (iii) both f; and f; are of Type L

(i). By Lemma 2.4 (II) or (IIT), we have f; ~ dg, ~ 0 and f ~ §g, =~ 0. Hence it holds that
f = fi + fo = 0. Thus we obtain (2.14) with £ = 0.
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(ii). Suppose that f; is represented as fi(x) = };<; a;jx;x; on Uy, . Note that a;; is not necessarily
finite. We can assume that (a;;) satisfies the anti-ultrametric property and min; ; a;; = 0. Indeed,
by Lemma 2.6, (a;; — b; — bj — a*); je[n) satisfies the anti-ultrametric property and min; j(a;; — b; —
bj — a*) = 0 for some b; (i € [n]) and o € R. Hence

-1
fl(x)zz(aij_bi -a )XXJ+Z r_l)bz z+r(r )(X
i<j
= Z aij — bi — bj — a*)x;x;
l<]

on dom §#. Thus we can redefine a;; < a;; — b; — b; — a” for distinct i,j € [n] to satisfy the
anti-ultrametric property and min; ; a;; = 0.

Since (a;;) satisfies the anti-ultrametric property, by Lemma 2.5, there are a $;-laminar family
L and a positive weight ¢; on £; representing (a;;) as (2.13). Hence it holds that

A= D al) Y xix+8s,(x)

LeL, i,jeL,i<j

= Z Cl(L)gL(x) +581(x)

Le/l,

= Y a)l) + s, (), (2.15)
Le Ly, L:A-cut
where the equivalence follows from Lemma 2.1 (1). Let A; := | J 4¢ 5, A be the subset of [n] corre-
sponding to B;. By the B;-laminarity of Ly, every L € L; satisfies L 2 B or L N B = 0 for each
B € B; € A. Hence, by Lemma 2.2 (1),

=10\ 4, (LeL). (2.16)
By combining (2.15) and (2.16), we obtain
A= ) G, (2.17)
Le /L]

where £ := {L\ A; | L € £y, L: A-cut} and ¢!(L) := Y{c1(L*) | L* \ A, = L}. Note that £} is a
laminar A-cut family and c] is an aggregation of c;.
On the other hand, by Lemma 2.4 (I) or (IIl), it holds f, ~ 0. Hence, by (2.17), it holds that

f=fitfhi= ) dWwe.
Le L]

Thus, by the laminarity of A-cut family L7, we obtain (2.14) with £ = £* and ¢ = c].

(iii). By the same argument as in (ii), f; satisfies (2.17) and f; satisfies

fa = Z ¢ (L)1, (2.18)
Le L]

where Ay == Upeg, A L5 = {L\ Ay | L € L3, L: A-cut}, and ¢;(L) := Y{ca(L*) | L* \ Ay = L} for
a B,-laminar family £, and a positive weight c, on £;. Note that £ is a laminar A-cut family.
We have Ay = [n] \ A; by B, N B, =0 and B, U B, = A

By adding (2.17) and (2.18), it holds

A+fox D Wi+ Y wil)L.

LeL; LeL;
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Hence we obtain (2.14) with £ = L7 U L] and ¢ = ¢; + ¢z, where (c; + ¢2)(L) = ¢;(L) for L € L]
and (c; + ¢2)(L) = c2(L) for L € L. Here L] U L] is a laminar A-cut family. Indeed, L] and £}
are laminar A-cut families, and Ly N L, = @ holds forall L; € £} and L, € L by L; C [n] \Al and
Ly C[n]\A; = A,

This completes the proof of Proposition 2.7. O

2.4 Proof of Theorem 2.3: Uniqueness

In this subsection, we prove the uniqueness of ¥ and c up to the A-equivalence in Theorem 2.3.
Let f be a VCSP-quadratic function of type A. We denote by Uz the convex hull of Ug, ie.,
Ug = {x € [0,1]" | Z,-GAP x; = 1forallp € [r]}. The convex closure f : Uz — R of f is the

maximum convex function satisfying f(x) = f(x) for x € U, which is given by

J_C(x) = Sup{ Z UiXi +y

1<i<n

ueR” yeR, f(y) > Z wiyi +y (yeUﬂ)}.

1<i<n

We first give another representation of £x up to the A-linear equivalence. For an A-cut X, define

a(X) := the number of elements A, € A with X 2 A,,
B(X) := the number of elements A, € A with X N A, # 0.

Note that, for any x € Ug with };ex x; = s, it holds };e(xynx Xi = s — a(X) and };e(xyx Xi =

B(X) —s.

LEmmA 2.8. For an A-cut X, it holds

k- Z x| (2.19)

ieX

[NCR Y

Ux(x) =

a(X)<k<pB(X)

Proor. For the left-hand side of (2.19), it holds £x =~ (£xynx + €xyx) /2 by Lemma 2.2 (2). For
the right-hand side of (2.19), we can see that

k—in

ieX

= Coonx (x) + Coxnx (x) (x € Ug), (2.20)

a(X)<k<p(X)

and this implies (2.19). Here (2.20) can be established as follows. For x € Uz with }};cxynx xi = S,
we have

Z (s — k) + Z (k —s)

a(X)+1<k<s s<k<B(X)-1

% ((s = a(X))(s — a(X) = 1) + (B(X) = )(B(X) =5 = 1)) .

a(X)<k<p(X)

On the other hand, by 3;cxynx xi = s — a(X) and 3;exynx xi = B(X) — s, we have

t—mm»%mm—j
2 2

2 (s = @00) s = @) = 1) + (BX) —9) (B —5 = 1))

Coonx (x) + Loxenx (x)
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Suppose that f is an M;-convex function. By Proposition 2.7 and Lemma 2.8, f is representable
as

=3

Lel a(X)<k<p(X)

+ Z uixi +y (x e Ugm)

1<i<n

k- in
ieX

for some laminar A-cut family £, positive weight c on £, linear coefficient u € R", and constant
Y € R. Then f is explicitly written as follows.

LEMMA 2.9.

F =y

5 + Z uix; +y (x € Ug). (2.21)
Lel a(X)<k<B(X)

1<i<n

k- in
iex

Proor. We denote by f the right-hand side of (2.21). It is clear that f(x f( x) for x € dom f.
Since f is p1ecew1se linear and convex, f (z) < f(z) for z € Uy by the deﬁnltlon of f. Thus it
suffices to show f(z) > f(z )forz € Ug.

Take any z € Ug. Then z satisfies the following system of inequalities and equations for some
integers kp, forall L € L:

0<z <1 (ie[n]), (2.22)

Z zi=1  (pelr]), (2.23)

icA,

kr—1< Z zi < kg (LelL). (2.24)
iel

The coefficient matrix M of the system (2.22)—(2.24) is totally unimodular. Indeed, let M’ be
the n x (|£] + r) matrix whose columns are the characteristic vectors of the members of £ and
{A1, Az, ..., Ar}. Misrepresentedas M = (I —I M’ — M")T, where I isthe n x n identity matrix.
Since £ and {A1,A;,...,A,} are laminar, M’ is totally unimodular [12]; see also [34, Theorem
41.11]. Thus M is also totally unimodular.

Let P be the polyhedron defined by the system (2.22)—(2.24). Then P is an integer polyhedron
by the total unimodularity of M. Hence all extreme points y; of P belong to Ux. By z € P, we
have z = }; A;y; for some coefficients A; of a convex combination. Therefore f (z2) =X A f (y,) =
i f y;) holds, where the first equality follows from the linearity of f on P. Since f(y;) = f (yi)
andfls convex, we obtain Y; A; f(y;) = X; Ai f(yl) > f(z) and hence f(z) > f(z) O

We are ready to show the uniqueness part of Theorem 2.3. Suppose that f is QR-M;-convex.
Recall that, by Proposition 2.7 and Lemma 2.8, f is representable as

fo= N koS

Lel 2 a(X)<k<p(X) ieX

+h

for some laminar A-cut family £, positive weight ¢ on £, and A-linear function h. Furthermore
we can assume that £ is non-redundant. By Lemma 2.9, the set of nondifferentiable points of f
(with respect to the set of relative interior points of Ug) is given by

U {erﬂ le-zk} = P(L).
Lel, a(L)<k<p(L)

ielL
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Suppose, to the contrary, that there is another (L', ¢’) with £ ~ L’ or ¢ »~ ¢’ that satisfies the
conditions in Theorem 2.3, and assume that £’ is non-redundant, i.e., | £| = | L’].

If L = [L’, then there is L € L such that L ~ L’ for all L’ € L’. For a set X C [n], denote
by 1x € {0, 1}" the characteristic vector of X. We can easily see that, for A-cut X with X ~ L,
0-1 vectors 14,,...,14,, 11, 1x are linearly independent. Hence, for k with a(L) < k < B(L), the
dimension of {x €Uz | YieLxi = k} is larger than that of {x €Uz | Yierxi=k, Siexxi = k’}
for each k’ with a(X) < k’ < B(X). This implies Uy(1y<k<p(r) {* € Unt | Sier xi = k} & P(L),
and hence P(L) # P(L’). Therefore ]_” has two different sets of nondifferentiable points P(£) and
P(L’), a contradiction. Hence £ ~ £’ holds, and we can assume £ = L’.If ¢ » ¢/, i.e.,,c # ¢/,
then there is L € £ such that ¢(L) # ¢’(L). By assuming c¢(L) > ¢’(L)(> 0), we can easily see that
f — ¢’(L)¢; has two different sets P(L) and P(L \ {L}) of nondifferentiable points, a contradiction.
Hence ¢(L) = ¢’(L) holds forall L € L.

We have thus proved the uniqueness part of Theorem 2.3.

3 ALGORITHM FOR DECOMPOSITION

Let f be a VCSP-quadratic function of type A = {A;, Az, ..., A,}. In this section, we devise an
O(rn?)-time algorithm for DECOMPOSITION, where as before n = 2i<p<r IDpl.

3.1 Outline

To describe our algorithm, we need the concept of restriction of a VCSP-quadratic function. Recall
that f is represented as (2.1). For Q C [r], let Ag := {Ap}pep be the subfamily of A corresponding
to Q and Ag := (Jpep Ap be the subset of [n] corresponding to Q. The restriction of f to Q is a

VCSP-quadratic function fp : {0, 1}4¢ — R of type Ap defined by

Z aijXiXj + Z a;x; if Z X; = |Q|,
fo(x) = qijeAg,i<j i€do iedp
+00 otherwise.

LeEmMmaA 3.1. If f is QR-M,-convex, then so is any of its restrictions.

Proor. By Lemma 2.5 and Proposition 2.7, f is representable as f = f’+ 3.4, where the quadratic
coefficient (a;;);, je[n] of f” satisfies the anti-ultrametric property. Then (aj;)ijea, also has the
anti-ultrametric property. Hence fo is naturally representable as fo = g+ .4, where the quadratic
coeficient of g is (a;;)i, jea,- Thus fo is QR-M-convex. O

Suppose that f is QR-M;-convex. Then fp is also QR-M,-convex by Lemma 3.1. By Theorem 2.3,
fo can be represented as

fo= Z co(X)lx + ho (3.1)

XeFo

for some laminarizable Ap-cut family g, positive weight co on Fp, and Ap-linear function kg,
where {x and hg are defined on {0, 1}4¢. Furthermore such Fo and cp are uniquely determined
up to ~.

Our algorithm for DECOMPOSITION obtains an appropriate decomposition (3.1) of fo for Q =
{1,2},{1,2,3},...,{1,2,3,...,r} in turn as follows.

e In the initial case for Q = {1, 2}, we can obtain the decomposition (3.1) with (Fp,co) =
(L12, c12) by executing Algorithm 1 for f; (Section 3.2).
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e For each t > 3, we extend (F(;-1], ¢[s-1]) to (Fs], c[s]) by Algorithm 2 (Section 3.3), where
Fl21 = L12. In order to construct (F, c[s)) from (Fs-1), c[r-1]), We use (Lp, ¢pr) for all
p € [t — 1], which can be obtained by executing Algorithm 1 for f,;.

e We perform the above extension step for t = 3 to ¢t = r. Then we can say that the resulting
A-cut family F7,) is laminarizable, as required. This is described in Algorithm 3 (Section 3.3).

Note that our algorithm may output some decomposition (2.7) even when f is not QR-M;-convex.
In this case, the A-cut family ¥ output by the algorithm is not laminarizable.

3.2 Caseofr=2

We consider the DEcoMPOSITION algorithm for the case of r = 2, where A is a bipartition of [n]
represented as {A;, A,}. Note that X is an A-cut if and only if X satisfies @ # (X N A;) # A; and
0 # (X NAz) # Az, and that two A-cuts X and Y are A-equivalent (i.e, X ~ Y)ifandonlyif X = Y
or X = [n] \ Y by (2.4). Let f be a VCSP-quadratic function of type {A;, A2}, and (a;;); jen) be the
quadratic coefficient of f, where a;; = aj; is always assumed.

Our algorithm makes use of the simple fact that, for any i* € [n] and b € R, the modification of
the coefficients as ag*j « a;j— b (as well as a]’.l.* «— aj+ — b) for all j € [n] \ {i"} does not affect the
QR-M;-convexity of f.Indeed, the difference between };; a;;x;x;j and 3,
function since, for x € Ug, it holds

Z ajjXixXj = Z (aji* - b)Xin* + Z (a,-*j - b)xl-*xj + Z aijXiXj + bx,-*.

i<j Ju<i* Jy>i i,jeln\{i*}i<j

, . .
j a;;XiXj is an A-linear

We repeat the above modification of coefficients for i* = 1,2, ..., n with appropriate choices of
b =by,b,,...,b, € R Then we test for the QR-M;-convexity with reference to the condition (CB)
below on a quadratic coefficient (a;;);, je[n]:
(CB) Let the distinct values of a;; (i € Ay,j € Ay) be g > az > -+ > ap, = min;.ja;j. For
all @ € {a1, s, ..., am-1}, every non-isolated connected component of G, := (V,E,) is a
complete bipartite graph, where E, := {{i,j} | i € A1, j € Ay, @ < a5},

The following lemma gives a sufficient condition for the QR-M;-convexity of f in (2.1).

LEMMA 3.2. If (a;j — bi — bj); jern] satisfies (CB) for some by, by, ...,b, € R, then f in (2.1) is
QR-M;-convex.

Proor. Let f’ be defined by the quadratic coefficient (a;; — b; — b;) as in (2.1). Then f is QR-M,-
convex if and only if f” is QR-M;-convex. For each s € [m — 1], denote by L° the set of non-isolated
connected components L of G, . Their union £ := (' £® is a laminar family. For L € £, denote
by L* the minimal element in £ U {[n]} properly containing L. We define af for L € L U {[n]}
as follows: ag,) == o, and g := a; if L € L5\ L5 with s € [m — 1], where L := (. Since
(aij — b; — bj) satisfies (CB), we have

Z(aij —b; — bj)x;x; Z (ap —ar+)tr(x) + ap
i<j LeL

Z (ap — ar+)Er(x),

Lel*

1R

where L* is the family of A-cuts in L. We have thus obtained a representation of f” in the form
of (2.6) with a laminar A-cut family £* and a positive weight ¢(L) = ar, — az+ on L*. Then f” is
QR-M;-convex by Theorem 2.3, and hence f is QR-M,-convex. O
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Fig. 2. The left figure illustrates the values of ai3, a4, a3, az4 before Step 1, and the right figure illustrates
those values after Step 1.

The DecomposITION algorithm for the case of r = 2 is described as Algorithm 1 below. The
validity of this algorithm (Proposition 3.4) implies that the converse of Lemma 3.2 is also true, that
is, if f is QR-M;-convex then (a;; — b; — b;); je[n] satisfies (CB) by appropriate b;’s, and that such
b;’s can be computed easily.

Algorithm 1 (for DEcomPOSsITION in the case of r = 2):

Input: A VCSP-quadratic function f of type {A;, Az}

Step 0: Define a* := min; jern) i< aij-

Step 1: For i = 1,2,...,n, do the following: Define b; := minje[,)\(;) 4;; — @, and update
ajj < a;j — b; (as well as aj; < aj; — b;) for j € [n] \ {i}. Then go to next i.

Step 2: Check whether (a;;);, je[n] satisfies (CB) or not. If (a;;); je[»] does not satisfy (CB), then
output “f is not QR-M-convex” and stop. If (a;;);,je[n] satisfies (CB), define oty > oz > -+ - >
am and G, as in the condition (CB).

Step 3: For each s € [m — 1], denote by L* the set of non-isolated connected components L
of Gg, . Define a laminar family £ by £ := |J™' L. For L € £, denote by L* the minimal
element in L U {[n]} properly containing L. Define ay for L € L U {[n]} by: o) := am
and ay := ag if L € L5\ L5 with s € [m — 1], where £° := 0. Define ¢ : £ — Ry, by
C(L) =op ot

Step 4: If both X and [n] \ X belong to L, then update ¢ by ¢(X) « ¢(X) + ¢([n] \ X) and
remove [n] \ X from L. We consider that the new c is a weight on the new L.

Step 5: Output £ and c. ]

Note that, by Step 4, the output L is non-redundant.

Example 3.3. For the function f in (1.4), we execute Algorithm 1 for the restriction fi, to {1, 2}.
Recallthatn = 4,a;3 =3,a14 =0, a3 = 1, asy = 4, and a3 = dzg = +00.

In Step 0, we define a* := 0. In Step 1, we update az; « 0 and ayq < 3 (see Figure 2). We can
easily see, by Figure 2, £ = {13, 24}, 13 = a24 = 3, and a1234 = 0 in Step 3. In Step 4, we redefine £
by L := {24} and ¢ : £ — Ry, by ¢(24) := 6. Then, in Step 5, we output £ and c. Note that, in Step
4, we can also redefine £ by £ := {13} and ¢ : £ — Ry, by ¢(13) := 6. [ |

PROPOSITION 3.4. Algorithm 1 solves DECOMPOSITION in O(n?) time.
For the proof of the validity of Algorithm 1, we need the following lemma.

LEMMA 3.5 ([19, LEMMA 4.2]). Suppose that (a;;); je[n] satisfies the anti-tree metric property (2.9)
and let o := min; je[n,i<j aij. If minjen) a;j = a* holds for alli € [n], then (aij); je[n] Satisfies the
anti-ultrametric property (2.12).

Proor oF ProPosITION 3.4. (Validity). We show that

o if f is not QR-M;,-convex, the algorithm terminates in Step 2, with the message that f is not
QR-M;-convex, and
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o if f is QR-M;-convex, the algorithm terminates in Step 5, with a correct representation of f

in the form (2.6).
This means, in particular, that the algorithm for r = 2 always detects non-QR-M;-convexity, and
never outputs a representation (2.7) with a non-laminarizable family # if f is not QR-M,-convex.

Suppose that f is not QR-M;-convex. By (the contrapositive of) Lemma 3.2, (a;;) in Step 2 does
not satisfy (CB). Accordingly, the algorithm terminates in Step 2, which is legitimate.

Suppose that f is QR-M,-convex. In this case, (a;;) in Step 2 satisfies (CB), which is shown in
Claim below. Then the algorithm terminates in Step 5 by outputting (£, ¢). The laminar family £,
obtained in Step 3, is an A-cut family. Indeed, by the operation in Step 1,

JI’I;{AIZ ajjr = ﬂné% ajj = a* (32)
holds for any i € A; and j € Aj;. This implies that each L € £ is an A-cut, since otherwise
min; e[,]\(i) @iy > " holds for some i € L. Therefore, by the proof of Lemma 3.2, the output (£, c)
gives a correct representation of f in the form (2.6).

It remains to prove the following claim.

Cramm. If f is QR-M,-convex, then (a;j); je[n] in Step 2 satisfies (CB).

Proor oF CLaIM. Suppose that f is QR-M;-convex. In the following, we prove that there is a
coefficient (a;;) satisfying the anti-ultrametric property such that a;; = a;; for every i € A; and
Jj € Ay, where it should be clear that a;; = +c0 if i, j € A; or i, j € Ay. This implies, by Lemma 2.5,
that there are a laminar family £ and a positive weight w on £ associated with (a;;) as (2.13). Then
a;j can be represented as

{c(L)|Le Lwithi,jeL}+a* ifi€Ajandje€ Ay,
aAi: =
Y 4o ifi,j € Ajori,j € A,.

Hence (a;;) satisfies (CB) and the laminar family obtained in Step 3 coincides with the family of
A-cuts in L.

We now start to prove the existence of (a;;). By Lemma 2.6 and Proposition 2.7, we have
fx)=2ica; ;Xixj, where (a; ;) is a coefficient satisfying the anti-ultrametric property. This implies
that 3, aijxix; — X a;jxixj is A-linear. Hence, for some b;, b]’. € Rwe have g;; = a;j +b] + bj’.
forevery i € Ay,j € Ay. Leta;; := a;j +b] + bJ’. for distinct i, j € [n]. Then a;; = a;; holds for any
i € Ay,j € Ay, and (a;;) is a coefficient satisfying the anti-tree metric property (2.9).

We can redefine the coefficient (a;;) so as to meet the anti-ultrametric property while maintaining
a;j = a;j for any i € Ay, j € A, as follows. Let f := a* — mina;;. Note that # > 0 holds by (3.2) and
a;j = a;j for i € A;,j € Aj. First suppose = 0. Then mina;; = «* holds. Furthermore, we have
min; a;; = a” for every i € [n]. Hence, by Lemma 3.5, (a;;) satisfies the anti-ultrametric property,
as required.

Next suppose f > 0. By a;; > o forany i € Ay,j € Ay, if apj» = 2" — B, then i*,j* € A; or
i*,j* € A, holds. Without loss of generality, we assume i*, j* € A;. Since (a;;) satisfies (2.9), it
holds that @;«j» + ax; > 2a” for all distinct k, [ € A,. Hence we have ming jca, ax; > o* + f. Let
Ei = f/2ifi € Ay and Ei = —p/2ifi € Ay. We redefine a;; as a;; « a;; + Ei + Ej. Then it is
easy to see that a;; = @;; holds for any i € A;,j € A;, and that (g;;) is a coefficient satisfying (2.9).
Furthermore a* — mind;; = 0 holds. Hence, by Lemma 3.5, (a;;) satisfies the anti-ultrametric
property, as required.

This completes the proof of Claim. O

(Complexity). It is clear that Steps 0 and 1 can be done in O(n?) time, and that Steps 4 and 5 can
be done in O(|L]) = O(n) time.
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We show that Steps 2 and 3 can be done in O(n?) time, improving the O(n®) time complexity of a
naive implementation. Our approach is based on the idea used in [19, Section 4.2.2] (see also [4, 37]).
Suppose that f is QR-M,-convex, and that we are given some L € L. We can compute in O(|L|?)
time the (disjoint) set £’ of all maximal members in L properly contained in L as follows. Let
Li:=A;NnLandL; := Ay N L. Observe that af = minj ¢y, a;y = miny ez, ar; holds for each i € L;
and j € L,. Choose arbitrary i € L, and compute argmin; .y, dij. If a;j is constant on j* € L, then
there is no member of L’ containing i. Otherwise, choose j from L, \ argmin; ., a;, and compute
argmin, ¢; ay;. Then one can see that the (unique) member L’ in £ containing i, j is equal to the
union of L; \ argmin; ¢ a; and L, \ argmin; .;, a;;. By repeating this procedure, we obtain £’
in O(|L|?) time. Thus, starting from L = [n], we recursively apply this procedure to the L’s so far
obtained, and finally get £ (as well as ¢ : £ — R, ;) in O(n?) time in total. Even when f is not
QR-M;-convex, we can apply this procedure and detect the non-QR-M,-convexity. Indeed, define
aj; as ai. for the final L containing i, j in the above procedure. Then a;; = a;; holds for any i, j if
and only if (a;;) satisfies the anti-ultrametric property, i.e., f is QR-M,-convex. O

3.3 Caseofr>3

To obtain the decomposition (3.1) of the restriction fp for O = {1,2},{1,2,3},...,{1,2,3,...,r}
in turn, we need to extend (#(;-1, c[s-1]) to (F[s, c[s]) With the use of (Lp:,¢pr) (p € [t - 1]) for
t =3,...,r. Algorithm 2 below corresponds to this extension procedure.

We explain the idea of the extension for t = r, i.e., from (F[,_13, c[r-1]) to (F[r], c[+])- Suppose that
we are given an Ap,_jj-cut family ' and a positive weight ¢’ on F satisfying, for f* := f{,_1j,

f = Z ¢ (X)x + b’ (3.3)
XeF”’
for some A[,_1}-linear function h’.
The extension procedure consists of two phases. In the first phase, we construct an A-cut family
¥ and a positive weight ¢ on ¥ that represent f as

f= Z c(X)lx +h (3.4)
XeF
for some A-linear function A. In this representation, however, the family ¥ is not necessarily
laminarizable even when f is QR-M;-convex. In the second phase we modify (7, ¢) in (3.4) to
another pair (¥, c*) such that ¥ is laminarizable when f is QR-M;-convex. The key operation
of the second phase is called a “composition” operation.

The first phase is easy and straightforward. Suppose that we have a decomposition (3.3) for f” in
terms of (F',¢’).Forp = 1,2,...,r—1, we apply Algorithm 1 to f},, to obtain the decomposition (3.1)
of f,r in terms of (L, cpr). If Algorithm 1 should detect the non-QR-M;-convexity of f,,, for
some p € [r — 1], then f is not QR-M;-convex by Lemma 3.1, and therefore, we can give up our
construction immediately. Otherwise, we merge (¥',c¢’) and (L, c,r) (p € [r — 1]) to obtain a
representation of f. Let ¥ := ¥ U ,e[r—1] Lpr, Which is an A-cut family, and define a positive
weight ¢ on F by ¢(X) := ¢’(X) for X € ¥’ and ¢(X) := ¢, (X) for X € L,,. Then, with the

notation x|g := (xi)ica, € {0, 1}4¢ for x = (x1,x2, ..., %) € {0,1}" and Q C [r], we have
a,-jxl-xj+ Z Z aijjXiXj ifo,- =r,
fx) = {ijedp.i<j pelr-1]i,j€Apr,i<j i
+00 otherwise
= f/(x|[r—1]) + Z fpr(x|pr)
pelr-1]
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Fig. 3. The left figure illustrates (L12, c12), (L13, c13), and (L23, c23), and the right figure illustrates (123, c123)-
A pair (15, 35) is a composable tuple to 24 since 135 satisfies 135 ~13 24, 135 ~13 15, and 135 ~23 35

Fig. 4. The left figure illustrates (¥123, c123), (L14, c14), (L24, c24), and (L34, c34) and the right figure illustrates
(F,c¢). A triple (28,37,57) is a composable tuple to 135 since 1357 satisfies 1357 ~123 135, 1357 ~14 28,
1357 ~24 37, and 1357 ~34 57. Note that the output family 7 (described in the right) is the same as the family
described in the left in Figure 1.

~ Z c(X)Ly.

XeF

Thus the representation (3.4) for f is obtained. Recall that we do not impose laminarizability on
¥ even when f is QR-M;-convex. As the above argument shows, no substantial computation is
required in the first phase.

The second phase consists of modifying (7, c¢) in (3.4) to another pair (¥ *, ¢*) with the additional
property that ¥ * is laminarizable when f is QR-M,-convex. For this modification we introduce a
“composition” operation. Before entering into a formal description, we illustrate this modification
for simple examples in Figures 3 and 4. In Figure 3, the given family & = {24, 15,35} at the
left is not laminar and the resulting family #* = {135, 24} at the right is laminar; the new A-
cut X* = 135 is constructed by our algorithm by combining 24, 15, and 35. In Figure 4, the
given family & = {135, 24, 28,37,57} at the left is not laminarizable and the resulting family
F* = {135, 24, 1357,37} at the right is not laminar but laminarizable; the new A-cut X* = 1357 is
constructed by our algorithm by combining 135, 28, 37, and 57.
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In order to explain the composition operation, we introduce the Agp-equivalence ~p by general-
izing the characterization of ~ in (2.4). For a nonempty Q C [r], we define ~p for A-cuts X and Y
by:

X~ Yo {X)onX,X)\X}={Y)onY () \Y},
where (X)o = (X)NAp and (Y)p := (Y)NAp. See (2.3) for the notation (X) of the cutting support
of X. Note, for Ap-cuts X and Y, X ~ Y ifand only if X ~o Y.

Let us start the description of the composition operation. Suppose that X, is an Ap,_yj-cut
and let {py,ps,...,px} be the set of indices p € [r — 1] with (Xo) = Ay, p,.....pr)- We say that
(X1, X3, ..., Xk) is a composable tuple to X, if

o (X;)isan Ap,,-cut (ie, (X;) = Ay,,) for each i € [k], and

e there is an A-cut X satisfying X* ~[,_1} Xo and X* ~,, X; for i € [k].
We say that X* in the second condition is a composition of X, and (X1, X, ..., Xk). Note that a
composition X* is uniquely determined up to ~. Then it holds

€X0 + €X1 + -0+ ka ~ €<X0>mx* + f(lex* + -+ f(kax* ~ fx*, (3.5)
where the first equivalence follows from Lemma 2.2 (2) and the second follows form the definition of

{x. Let A be a positive value with A = min{c(Xy), ¢(X1), . . ., ¢(Xx)}. By substituting (3.5) into (3.4),
we obtain

frlae+ D @O-Dix+ Y Xk,
Xe{Xo, ... Xk} XeF\{Xo, ..., Xi }
and the above formula provides a new decomposition of f. For example, in Figure 4, we combine
Xo = 135,X; = 28,X, = 37,X5 =57 into X* = 1357 with 1 = 2.
The formal description of Algorithm 2 is the following. It is noted that, if # is a non-redundant

laminarizable A-cut family, then || is at most 2n = 2|A(,| (see e.g., [34, Theorem 3.5]).

Algorithm 2 (for extending f”’ to f):

Input: A VCSP-quadratic function f of type A and restriction f” := fi,_1] given as (3.3) with

(F',c¢’), where ¥ is non-redundant and satisfies |¥ | < 2|A[—q]|.
Output: Either detect the non-QR-M;-convexity of f, or obtain an expression of f as

Z c(X)lx +8a +h (3.6)
XeF

with a non-redundant A-cut family ¥ satisfying |F| < 2n = 2|A[,1| and a positive weight ¢
on ¥, where h is A-linear.

Step 1: For each p € [r — 1], execute Algorithm 1 for f},,. If Algorithm 1 returns “f,, is not QR-
M,-convex” for some p € [r — 1], then output “f is not QR-M;-convex” and stop. Otherwise,
for all p € [r — 1], obtain £,, and c;,. Let ¥ := 0.

Step 2: While ' # 0, do the following: Let X, be an element of ¥ such that (Xj) is maximal.
Let {p1,p2, ..., pxr} be the set of indices p € [r — 1] with (Xo) = Ay p,.....px})-

o If there exists a composable tuple (X1, Xa,...,Xk) to Xo such that X; € L, fori =
1,2,...k, then define A := min{c’(Xy), ¢, (X1), .. ., cpr(Xi)} and update as

F «— F U{X"},
o(X) — A,
¢'(Xo) « ¢’ (Xo) = A,
Cpir(Xi) — cpr(Xi) =4 (i € [K]),
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where X™ is a composition of X and (X;, Xy, . . ., Xi). Then remove X, from " if ¢’ (Xo) = 0,
and X; from L, if ¢, (X;) = 0.
e Otherwise, update as

F « F U{Xo},
c(Xy) « ¢’ (Xy),
F'— F'\ {Xo}.
Step 3: Update as
F «—F U U Ly,

pelr-1]
eX) = ep(X)  (pelr-1.X € Ly).
If || < 2n, then output ¥ and c. Otherwise, output “f is not QR-M,-convex.” |

Example 3.6. Let f be the VCSP-quadratic function in (1.4). We first see how Algorithm 2 runs for
fi23 with the input (L2 = {24}, ¢12(24) = 6). By executing Algorithm 1 for fi3 and f;3, we obtain
(L13 = {15}, ¢13(15) = 4) and (La3 = {35}, c23(35) = 4). In Step 2, we compose 15, 35, 24 to 135 as
in Figure 3. Then we obtain a family Fy,3 := {135, 24} and a positive weight c123 on F1,3 defined
by c123(135) := 4 and c¢123(24) := 2. We cannot execute a composition operation any more. Hence
Algorithm 2 outputs (F123, €123)-

Next we see how Algorithm 2 runs for f = fiy34 with the input (¥23, c123). By executing
Algorithm 1 for fis, f24, and f34, we obtain (L4 = {28}, ¢14(28) = 2), (L4 = {37}, ¢24(37) = 4), and
(L34 = {57}, ¢34(57) = 2). In Step 2, we compose 135, 28,37,57 to 1357 as in Figure 3. Then we
obtain a family ¥ := {1357, 135, 24,37} and a positive weight c on ¥ defined by ¢(X) := 2 for all
X € ¥ . Here we remark that we choose a composable tuple (28,37, 57) to (135) though (28, 37)
is also a composable tuple to 24. This is because (135) 2 (24); see Step 2. We cannot execute a
composition operation any more. Hence Algorithm 2 outputs (7, ¢). |

The following proposition shows that Algorithm 2 works as expected.

PRrROPOSITION 3.7. The following hold:
(1) If Algorithm 2 outputs (¥, c), then ¥ is non-redundant and the function (3.6) for (¥, c) is

equal to f.

(2) If f is QR-M,-convex and F ' is laminarizable, then Algorithm 2 outputs (¥ ,c) and F is
laminarizable.

(3) Algorithm 2 runs in O(n?) time provided |A,| < min{|A,|, |Az|, ..., |A—1]}.

For the proof of Proposition 3.7 (2), we need the following lemma.

LemMA 3.8. Suppose that f is QR-M,-convex, ¥ is a laminarizable A-cut family, and ¢ is a positive
weight on F, where (¥, c) represents f as in (2.6). ForQ C [r], let G :={XNAp | X € F,XNAp:
Agp-cut} and d be the positive weight on G defined by d(Y) := 3 {c(X) | X € F, XN Ag = Y}. Then
Fo and cg in (3.1) satisfy Fo ~ G andcg ~ d.

Proor. For an A-cut X and Q < [r], let (£x)p be the restriction of £x to {0, 1}42. Note that
(€x)o + 84, is linear on dom d.4,, if and only if X N Ag is not an Ag-cut. Therefore it holds that

fo= ) eX)(Ex)o

XeF

~ Z{’y-Z{c(X) |XeF, XNAg=Y)
YeG
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= Z d(Y)ty.

YeG

Furthermore, since ¥ is laminarizable, so is G. By the uniqueness of o and cp up to ~ (Theorem 2.3),
we obtain Fo ~ G and cg ~ d. o

We are now ready to show Proposition 3.7.

PRrROOF OF PROPOSITION 3.7. (1). By the argument before the formal description of Algorithm 2,
we can say that if Algorithm 2 outputs (¥, ¢), then it constructs some decomposition of f. Hence
the equality holds. The non-redundancy of ¥ is clear by its construction.

(2). Since f is QR-M;-convex, so is f;,, for p € [r — 1]. Hence, by Proposition 3.4, Algorithm 2
does not output “f is not QR-M;-convex” in Step 1. Let ¥ * be a non-redundant laminarizable A-cut
family and c* be a positive weight on ¥ * that satisfy (2.6) for the given QR-M;-convex function f.
We extend c* to a nonnegative weight on 2" by defining ¢*(X) := 0 for X ¢ . We can assume
thatif X € ¥ and Y € F * satisfies X ~ Y then it holds X = Y. It suffices to prove (i) c¢(X*) = ¢*(X™)
for X* obtained in the first half of Step 2, (ii) ¢(Xy) = ¢*(Xp) for X, obtained in the latter half of
Step 2, and (iii) ¢(X) = ¢*(X) for X obtained in Step 3. Indeed, the properties (i)—(iii) imply F C F*.
Since # * is laminarizable, so is ¥ and |¥ | < 2n. Hence Algorithm 2 outputs (¥, ¢) in Step 3. By
the uniqueness of ¥ * under ~ (Theorem 2.3), we can say ¥ = ¥ * and ¢ = ¢*.

(i). Let A := min{c’(Xo), ¢p,r (X1), Cp,r (X2), . . ., Cpr (Xk)}. We prove c*(X*) = A. It is easy to see
that ¢*(X*) < A holds since, by Lemma 3.8, we have ¢’(X) > ¢*(X*) and ¢, (X;) = ¢*(X") for
i € [k].

Suppose, to the contrary, that ¢*(X*) < A holds. Then the following holds:

Cramm. EveryYy € F* with Yy ~[,_1] X" satisfies Yo ~ X*.

On the other hand, by Lemma 3.8 with ¢*(X*) < A < ¢/(Xj), there must exist Y € F* satisfying
Yo ~[r-1] X* and Y; ~ X™. This contradicts the statement of Claim, and hence c*(X*) = A holds, as
required.

We now prove Claim.

Proor oF CLaim. Take any Yy € F* with Yy ~[_1) X" By ¢,,»(X;) > ¢*(X*) (i € [k]) and
Lemma 3.8, for every i € [k] thereis Y € ¥ with Y ~, . X; and Y « X*. Take Y € F* satisfying
Y » X* with {i € [k] | Y ~p,» X;} maximal among elements Y’ € ¥ * satisfying Y’ ~ X*. Let
I:={i e [k] | Y ~p,, X;}(# 0). By the maximality of (Xo) and Y ~ X*, we have [k] \ I # 0;
otherwise (Y) N A[,—1] 2 (Xo), contradicting the maximality of (Xj).

Choose an arbitrary j € [k]\ I. Then thereis Y; € " with Y; ~; , X; and Y; ~ X*. Furthermore,
by the maximality of I, there is i € I such that Y; ~«,,, X;. Hence Y; »,, Y ~, X" holds. In the
following, we denote Y by Y;.

Since Y;,Y;, Yy € #* and F " is laminarizable, so is {Y;, Y}, Yo}. Hence, by executing appropriate
transformations for {Y;, Y}, Yo}, we can make it laminar. We also denote the resulting laminar family
by {Y;, Y}, Yo}. We can assume Y; N Ay, = Yo N Ay, (# 0) and Y; N Ay, = Yo N Ap,;(# 0). Indeed,
YiNApy, # YyNAp means ([n] \ ;) N Ay, = Yy N Ap,. By the laminarity of ¥; and Y;, we have
Y; N Yy = 0. Hence {[n] \ Y}, Yy} is also laminar. Furthermore, note Y; N A, = Y; N A,(# 0) by
Yi ~pir Xi and Y] ~p;r Xj

By Yo ~pip; X * %pip; Yi and laminarity, it holds that Yy, N Ap, 2YiNAp orYoNAy CYiNAp,.
Assume Yo N A, = Y;NA, C YiN A (the argument for the other case is similar). Hence, by
YonY; #0and Y;NY; # 0, wehave Y, C Y; 2 Y. By Y; =y, ¥; ~5, X and Y; 2 Y}, we have
YoNnAy, =YiNAy, 2Y;NA. HenceY; 2 Y, 2 Y; holds. By Y; N A, = Y; N A,, it holds that

=

YinA, =Y;NA, =Y, NA,. This means Y, ~ X". m]
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(ii). By Lemma 3.8, it holds that

¢(Xo) = DU 1Y € F*, ¥~y Xo)
= ¢"(Xo) + ) A" (V) | Y € F*, (V) 2 Ap, Xo ~roy Y

Here the second term must be zero. Otherwise, by Lemma 3.8, we would have found Xj, X5, . .., Xj
in Step 2. Therefore c¢’(X,) = ¢*(Xo) holds. Thus we obtain ¢(Xy) = ¢’(Xo) = ¢*(Xo).

(iii). We can show ¢(X) = ¢, (X) = ¢*(X) for any p € [r — 1] and X € L, by a similar argument
as for (ii).

(3). Note that |F'| = O(|A[,—q)]) and | L,,| = O(]A,|) for any p € [r — 1]. By the assumption
|Ar| < min{|Aq], |Azl, ..., |Ar-1|}, itholds that r|A,| = O(n).Step 1 canbe done in O(} pc[,—1)(14p|+
IAL)?) = O(Zperr1 14pl?) = O(n®) time by Proposition 3.4. In Step 2, we first need to sort the
elements in ¥ with respect to set-inclusion ordering in O(|A(,—1j|log [A[,-q]]) = O(nlogn) time
(this is done only once). In each iteration, we search for {Xj, Xz, . . ., Xk} satisfying the conditions
described in Step 2. This can be done in O(| U, £pr]) = O(n + rlA;|) = O(n) time by using the
structure of L, as follows.

We first construct 7; from L, as F; := G; U G; foralli € [k] in O(IUp Lprl) = O(n) time,
where

Gi ={XiNA | X; € Lp,r, Xi NAp, = Xo N Ay},
Gi = A N\Xi | Xi € Lpr, Ap, \ Xi = Xo N Ap,}.

Note that F U (Xo N Ap,) € Ly, if F € G and (A, \ F) U (Ap, \ Xo) € Ly, if F € G:. We can easily
see that there exists {X1, Xz, . . ., X} satisfying the conditions in Step 2 if and only if (;¢e i # 0.
By the laminarity of £, ., ¥; is a chain, and can be represented as F; = {Fl.l, Fiz, el F?i} fori € [k],
where F} D F? D -+ D F* (this chain can be obtained while constructing £, in Algorithm 1). If
Niefx) Fi # 0, we can obtain F € (;epx i in O (3; |Fil) = O(n) time. Indeed, take the maximal
elements F{,F,, ... ,F]i in 71, 2. . . ., Fi. respectively. If all i satisfy F} = ; Fjl, then output ; F]1
Otherwise, for each i with F} 2 ; F}, update 7; « 77 \ {F}}, and do the same thing. By repeating
this procedure, we can verify ;¢ Fi = 0 or obtain F € (;¢[x) i From this F in (;¢[x) Fi, we
can easily construct the desired X; as

o FU(XoNAp,) ifFegG,
S l@\P U@, \X) ifFeg;

for each i € [k]. Thus we can find {X1, X5, . . ., X} satisfying the conditions in Step 2 in O(n) time.
Furthermore we can calculate min{c’(Xy), ¢p,r (X1), ¢p,r (X2), . . ., ¢p.r (Xi)} in O(k) = O(n) time.
Since |F'| + | U, Lpr| decreases at least by one in each iteration in Step 2, the number of iterations
in Step 2 is bounded by O(|F’| + | U, Lpr|) = O(n). Hence Step 2 can be done in O(n?) time.
Step 3 can be done in O(| U, £pr| + n) = O(n) time. Hence the running-time of Algorithm 2 is
bounded by O(n?). )

Our proposed algorithm for DECOMPOSITION can be summarized as follows.

Algorithm 3 (for DECOMPOSITION):

Step 0: Rename Ay, Ay, ..., A, so as to satisfy [A;| = [Az] > -+ > |A,].

Step 1: Execute Algorithm 1 for the restriction fi,. If Algorithm 1 returns “fi, is not QR-M,-
convex, then output “f is not QR-M,-convex” and stop. Otherwise, obtain £, and ¢;5.
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Step 2: Fort = 3,...,r, execute Algorithm 2 for (F[;-1], c[;-1]), Where 2] = L2 and c[z] = c12.
If Algorithm 2 returns “fj;] is not QR-M,-convex,” output “f is not QR-M,-convex” and stop.
Otherwise, obtain (77}, c[])-

Step 3: Output (7], c[r])- ]

THEOREM 3.9. Algorithm 3 solves DECOMPOSITION in O(rn?) time.

Proor. Step 0 can be done in O(rlogr) time. Since the running-time of Algorithm 2 for ¢ is
bounded by O(|A[;+1]1%) = O(n?) by Proposition 3.7 (3), the running-time of Algorithm 3 is bounded
by O(rn?).

The validity of Algorithm 3 can be proved as follows. Suppose that Algorithm 3 stops at Step 1
or Step 2. By Proposition 3.4 and Proposition 3.7 (2), f is not QR-M;-convex. Hence Algorithm 3
works correctly.

Suppose that Algorithm 3 reaches Step 3. Since fl2) ~[2] Xxes, ¢[21(X){x by Proposition 3.4,
we obtain fis] =[] Zxew, ] (X)x forallt = 3,...,r by Proposition 3.7 (1), where ~p denotes
the Ap-linear equivalence and this notation is used for Q = [2],...,[r] here. Thus we have
[ = Zxe, o (X)¢x holds. Furthermore, if f is QR-M;-convex, then Fyz)(= L;2) is laminarizable
by Lemma 3.1 and Proposition 3.4. Hence 3], . . ., ] are laminarizable by Proposition 3.7 (2).
Thus Algorithm 3 works correctly. O

4 ALGORITHM FOR LAMINARIZATION

For a VCSP-quadratic function f of type A = {A1, As, ..., A,}, suppose that we have obtained a
non-redundant A-cut family ¥ by solving DEcomposiTION. The next step for solving TESTING
QUADRATIC M3-REPRESENTABILITY is to check for the laminarizability of 7.

Recall that a pair X, Y C [n] is said to be crossingif X NY, [n]\ (X UY), X \Y,and Y \ X are
all nonempty. An A-cut family G is said to be cross-free if there is no crossing pair in G. From
a cross-free A-cut family G, we can easily construct a laminar A-cut family A-equivalent to G
by switching X + [n] \ X for appropriate X € G (see e.g., [23, Section 2.2]); this can be done in
O(|G]) time. Furthermore, if 7 is laminarizable, then we can always construct a cross-free family
A-equivalent to ¥ without using transformation X + [n] \ X. Thus our goal is to construct a
cross-free family A-equivalent to the input family ¥ by repeating appropriate transformations
forX € F as X —> XUA, or X = X \ A, with some A, satisfying (X) N A, = 0. Recall that (X)
denote the cutting support of X defined in (2.3).

In this section, we devise a polynomial-time algorithm for constructing a desired cross-free family.
Our algorithm makes use of weaker notions of cross-freeness, called 2- and 3-local cross-freeness.
The existence of a cross-free family is characterized by the existence of a 2-locally cross-free family
(Section 4.2). The existence of a 2-locally cross-free family can be checked easily by solving a 2-SAT
problem. If a 2-locally cross-free family exists, then a 3-locally cross-free family also exists, and
can be constructed in polynomial time (Section 4.4). From a 3-locally cross-free family, we can
construct a desired cross-free family in polynomial time via the uncrossing operation (Section 4.3).
Thus we solve LAMINARIZATION.

4.1 Preliminaries
We use the following notations and terminologies. For X € ¥, let X := [n] \ X; note X ~ X by (2.4).
For A-cuts X, Y, Z, we define (XY) := (X) N(Y) and (XYZ) :=(X)N{Y)N(Z). For X € ¥ and
O C [r] with Ag < (X), the partition line of X on Ag is a bipartition {X N AQ,)_( NAg} of Ag. For
AC [n],if XNACYNAholds, wesay X CY on A

Without loss of generality, we can assume the following:

e |F | is at most 2n.
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e For distinct X,Y € F with (XY) # 0, oneof X C Y, X CY,X 2 Y,and X 2 Y holds on
(XY).

e For all distinct X, Y € ¥, both (X) \ (Y) and (Y) \ (X) are nonempty.
If the first or the second condition fails, then ¥ is not laminarizable. The third condition is satisfied
by the following preprocessing. For each X € ¥, we add a new set Ax with |Ax| = 2 to the ground
set [n] and to the partition A of [n]; the ground set will be [n] U [ x s Ax and the partition will
be AU {Ax | X € F}. Define X, := X U {x}, where x is one of the two elements of Ax and
Fr={X; | X € F}.Note (X;) = (X)UAx and (X )\ (Y;) # O forall X, Y, € F.. Thenitis easily
seen that there exists a cross-free family £ with £ ~ ¥ if and only if there exists a cross-free family
L, with L, ~ F,. Furthermore we can construct the cross-free family £ from L, by restricting
L, to[n], thatis, L={LNn[n]|Le L}

4.2 2-local cross-freeness
For A C [n], a pair X, Y C [n] is said to be crossingon Aif X NY)NA A\(XUY), (X\Y)NA,
and (Y \ X) N A are all nonempty. An A-cut family G is said to be cross-free on A if there is no
crossing pair on A in G. An A-cut family G is called 2-locally cross-freeif no X,Y € G are crossing
on (X) U (Y). A cross-free family is 2-locally cross-free. We denote the ordered pair (X, Y) by XY.
Our goal of this subsection is to construct a 2-locally cross-free family #* that is A-equivalent
to the input ¥ (if it exists). Such #* consists of X* that is obtained from each X € ¥ by adding or
deleting some A, not intersecting with the cutting support (X) of X, i.e., X* = (X \ Uper Ap) U

(UPE] Ap) for some I, J C [r], where A, N (X) = 0 for all p € I U J. By the 2-local cross-freeness,
for each ordered pair XY of members X, Y in ¥, either one of the following holds:

(XY:0) X* contains no A, contained in (Y) \ (X), i.e., X* N ((Y) \ (X)) = 0.

(XY:1) X* contains every A, contained in (Y) \ (X), i.e., X* 2 (Y) \ (X).
It turns out that a desired 2-locally cross-free family is obtained by specifying (XY:0) or (XY:1),
called the label of XY, for all ordered pairs XY. We observe that the labels satisfy the following
properties:

e Suppose that (XY) # 0 and the partition lines of X, Y on (XY) are different. Then the labels
of XY and YX are determined uniquely by their mutual configuration. For example, if X C Y
on (XY), then we have X* C Y* on (X) U (Y), namely, (XY:0) and (YX:1) hold. Also if X C Y
on (XY), then we have X* N Y* = 0 on (X) U (Y); (XY:0) and (YX:0) hold. Similarly for the
remaining cases, X 2 Yor X D Y on (XY).

e Suppose that (XY) # 0 and the partition lines of X, Y on (XY are the same. In this case, the
labels of XY and YX are not uniquely determined. If the label of YX is given, then the label
of XY is determined according to the mutual configuration of X and Y on (XY). For example,
suppose that we have X = Y on (XY). Then (YX:1) implies (XY:0) and vice versa.

e Suppose that X, Y, Z € ¥ satisfy (YZ) \ (X) # 0. Then the labels of XY and XZ must be
the same. Indeed, if (XY:1) holds, i.e., X* 2 (Y) \ (X), then X* N ((Z) \ (X)) is nonempty on
(X) U(Z). This implies that (XZ:1) holds.

An LC-labeling s for ¥ is a function on the set of ordered pairs of distinct members in 7 satisfying
the above properties, i.e.,

(0,0) ifX C Y on(XY),

)

(0,1) if X C Y on(XY),
)
)

(s(XY),s(YX)) = (4.1)

(1,0) ifX DY on(XY),
(1,1) ifX DY on(XY),
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XYy YyYx Yyw wy WzZ Zw ZX ZY

XW &0

Fig. 5. The LC-graph G(F ) for ¥ = {X,Y,Z, W} in Example 4.2, where the edges denoted by double lines are
prefixed edges, and the others are swapped edges. Flipping and non-flipping swapped edges are denoted by
dotted and solid line, respectively. The numbers 0/1 at the nodes denote the LC-labeling s in case of setting
s(XY) =1.

s(YX) ifX CYorX2Y on(XY),

(XY) = { . . (4.2)
—-s(YX) ifXCYorX 2Yon(XY),

s(XY) = s(XZ) if(YZ)\(X) # 0, (4.3)

where (4.1) and (4.2) apply only when (XY) # 0. Here LC stands for Local Cross-freeness.

From the definition, it is obvious that any 2-locally cross-free family #* that is A-equivalent to
¥ (without taking complements) gives rise to an LC-labeling s for 7. Indeed, define s(XY) := 0 if
X* is in case (XY:0) and s(XY) := 1 if X* is in case (XY:1). The converse is also possible. Let s be
an LC-labeling for #. Consider the following procedure for each X € ¥: For each A, € A with
Ap C{Y)\ (X) for some Y, if s(XY) = 1, then add A, to X, and if s(XY) = 0, then delete A, from
X. Let X* denote the resulting set. Thanks to the condition (4.3), this procedure is independent of
the choice of Y and is well-defined. Accordingly, define #° by

FS={X*|XeF) (4.4)
Then 7 is indeed 2-locally cross-free. To see this, it suffices to consider X, Y with (XY) # 0.

By (4.1) and (4.2), it holds X* C Y5, X* 2 Y5, X°NY* =0, or (X) UY) \ (X°UY®) =0on
(X) U(Y). Thus the following holds.

PROPOSITION 4.1. There exists a 2-locally cross-free family A-equivalent to ¥ if and only if there
exists an LC-labeling s for ¥ . To be specific, ¥ ° is a 2-locally cross-free family A-equivalent to F .

In order to find an LC-labeling in a greedy fashion, we introduce the LC-graph, which is also
utilized for constructing a 3-locally cross-free family A-equivalent to ¥ in Section 4.4. The LC-graph
G(F) = (V(F),Es U Ep) of the input F is defined by

V(F) ={XY|X,YeF,X+Y},

Es = ({XY,YX} | (XY) # 0},

E, ={{XY,XZ}| Y # Z, {YZ)\ (X) # 0}.
Note that the structure of LC-graph depends only on the family {(X) | X € ¥} of cutting supports.
We call an edge e € E; a swapped edge, which corresponds to (4.1) and (4.2), and an edge e € E,
a prefixed edge, which corresponds to (4.3). By the second assumption mentioned in Section 4.1,
exactly two types of swapped edges e = {XY, YX} can be distinguished; (i) X € Yor X 2 Y on
(XYY and (ii) X € Y or X 2 Y on (XY). The former type of swapped edges will be called flipping

(since s(XY) = 1 —s(YX)), and the latter type non-flipping (since s(XY) = s(YX)). See Figure 5 for
an example of LC-graph.
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An LC-labeling is nothing but a feasible solution for the 2-SAT problem defined by the con-
straints (4.1)—(4.3). Therefore we can check the existence of an LC-labeling s greedily in O(|Es U
Ey|) = O(n*) time. Node XY € V(¥) is said to be fixed if the value of an LC-labeling s for XY is
determined as (4.1), that is, if (XY) # 0 and the partition lines of X and Y on (XY are different,
and XY is said to be defined if the value of s(XY) has been defined. The algorithm is as follows.

(1) For each fixed node XY, define s(XY) according to (4.1).

(2) In each connected component of G(¥), execute a breadth-first search from a defined node
XY, and define s(ZW) for all reached nodes ZW according to (4.2) and (4.3). If a conflict in
value assignment to s(ZW) is detected during this process, output “there is no LC-labeling

(3) If there is an undefined node, choose any undefined node XY, and define s(XY) as 0 or 1
arbitrarily. Then go to 2.

Example 4.2. We consider the family # obtained in Example 3.6. After applying the preprocessing
to F,itholds F = {X,Y,Z, W}, where X := 1357a, Y := 135b, Z := 24c, and W := 37d with the
partition A = {12, 34, 56,78, aa’,bb’, cc’,dd’} of the ground set N := 12345678aa’bb’cc’dd’. The
LC-graph G(¥) is illustrated in Figure 5.

We obtain an LC-labeling s : V() — {0, 1} by defining, for example, s(XY) := 1. According
to (4.1)-(4.3), the all labels are determined as s(X’Y’) = 0 for X'Y’ € {YX, YW, XW} and s(X'Y’) =
1 otherwise. Then X® = 1357abb’cc’, Y® = 135bcc’, Z° = 245678aa’bb’cdd’, W* = 123567aa’bb’cc’d,
and F° is a cross-free family with #° ~ ¥ . Thus ¥’ := {X*,Y*, N\ Z°,N \ W*} is a laminar
family with ¥ ~ F.

Recall that the original  is a family of subsets of 12345678. Let L be the family of #’ restricted
to 12345678, i.e., L = {1357, 135, 13, 48}, which is the same one as the family inducing M-convex
summand f; defined in (1.5); see also Figure 1. |

4.3 3-local cross-freeness

An A-cut family G is called 3-locally cross-free if G is 2-locally cross-free and {X, Y, Z} is cross-free
on the union of the cutting supports (X) U(Y) U (Z) for all X,Y,Z € G that have a nonempty
intersection of the cutting supports, i.e., (XYZ) # 0. A cross-free family is 3-locally cross-free, and a
3-locally cross-free family is 2-locally cross-free, whereas the converse is not true (see Remark 4.5).
We write X C* Y tomean X C Y on (X) U (Y).

Our objective of this subsection is to give an algorithm for constructing a desired cross-free
family from a 3-locally cross-free family A-equivalent to the input ¥ . The algorithm consists
of repeated applications of an elementary operation that preserves 3-local cross-freeness. The
operation is defined by (4.5) below, and is referred to as the uncrossing operation to X, Y. By the
2-local cross-freeness of G, the two cases in (4.5) exhaust all possibilities for X, Y € G.

PROPOSITION 4.3. Suppose that G is 3-locally cross-free. For X, Y € G, define

o - G\{X,YJUXNY,XUY} ifXC*YorYcC*X, 43)
T\ YIUX\Y,Y\X} ifXC*[n]\Yor[n]\YC*X. '

Then G’ is a 3-locally cross-free family A-equivalent to G.

The proof of Proposition 4.3 is given at the end of this subsection.
Algorithm 4 (for constructing a cross-free family):
Input: A 3-locally cross-free family G.
Step 1: While there is a crossing pair X, Y in G, apply the uncrossing operation to X, Y and
modify G accordingly.
Step 2: Output G. ]
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PROPOSITION 4.4. Algorithm 4 runs in O(n?) time, and the output G is cross-free.

ProoF. The number of crossing pairs in input G is at most O(n?) (since |G| = O(n)). Take
any {X,Y} € G which is crossing. Since the replacement X — [n]\ X or Y — [n] \ Y does not
change the (non-)cross-freeness of {X, Y}, {X, Z}, and {Y, Z} for Z € G, we can assume X C* Y or
Y C* X by appropriate replacement. Let G’ be the family resulting from the uncrossing operation
on X, Y. Then it is easily verified that, for any Z € G \ {X, Y}, the number of crossing pairs in
{{X NY,Z}L,{XUY,Z}} is at most that in {{X, Z},{Y, Z}}. Since {X N Y, X U Y} is not crossing,
the number of crossing pairs decreases at least by one. Furthermore, by Proposition 4.3, G’ is
also a 3-locally cross-free family A-equivalent to . Eventually, we arrive at a cross-free family
A-equivalent to . The above process involves at most O(n?) uncrossing operations. O

Remark 4.5. It is worth mentioning that the uncrossing operation does not preserve 2-local
cross-freeness. For example, we define X := 1356, Y := 1347, and Z := 1578 with a partition
{12, 34,56, 78}. Note that {X, Y, Z} is not 3-locally cross-free but 2-locally cross-free.

We consider to execute the uncrossing operation to X, Y. Then the resulting family is {XNY, X U
Y,Z}.Since XNY =13 and Z = 1578, {X NY, Z} is crossing on (X N Y) U (Z) = 123456. |

The rest of this subsection is devoted to the proof of Proposition 4.3. We first note the following
facts, which are also used in the proof of Proposition 4.11 in Section 4.4.

LEMMA 4.6. Let G be a 2-locally cross-free family. A triple {X,Y,Z} C G is cross-free on (X) U
(Y) U (Z) if one of the following conditions holds:
(1) (XY) # 0, and {X, Y} is cross-free on (X) U (Y) U (Z).
(2) (XY) € (Z), and(XZ) or (YZ) is nonempty.
(3) The partition lines of X, Y, Z on (XYZ) are not the same.
(4) (XY) = (ZY) # 0, and there is a path (XY, XY1,...,XYy) in G(G) such that {X, Yy, Z} is
cross-free on (X) U (Yi) U(Z).

Proor. Let S := (X) U (Y) U (Z). Note that {X, Y} is 2-locally cross-free if and only if so is
{[n] \ X, Y}. Hence, by appropriate replacement X — [n] \ X and/or Y — [n] \ Y, we can assume
X C* Y; we often use such replacement in this proof.

(1). By symmetry, it suffices to show that {X, Z} is cross-free on S. We assume X C* Z (the
argument for the case of Z C* X is similar). There are two cases: (i) (XY) \ (Z) # 0 and (ii)
(0 #){XY) C (Z). Note that X C* Z implies Z 2 (X) \ (Z) and X N ({Z) \ (X)) = 0.

(i). By the 2-local cross-freeness of {Y, Z} and (XY)\(Z) # 0, Z 2 (X)\(Z) implies Z 2 (Y)\(Z),
and hence Z 2 ((X) U(Y)) \ (Z) holds. Thus X C Z holds on S.

(ii). We can assume Y € X or X € Y on S. Then, by 0 # (XY) = (XYZ) and the 2-local cross-
freeness of {Y,Z}, wehave Y C* Zor Z C* Y. If Y C* Z, then Z 2 (Y) \ (Z) holds on S. Hence
X € Zholdson S.If Z C* Y, then X C Y must hold on S by X C€* Z. This means X C* Y, i.e,
XN Y)Y\ (X)) =0.Hence X C Z holds on S.

(2). We can assume X C* Y and (XZ) # 0. By (XY) ¢ (Z) and (XZ) # 0, there are two cases: (i)
(XZ) ¢ (Y) or (ii) (0 £)(XZ) C (XY).

(i). X €* Y implies Y 2 (X) \ (Y). By (XZ) € (Y), we have Y N ((Z) \ (Y)) # 0. Hence, by the
2-local cross-freeness of {Y, Z}, Y must contain (Z) \ (Y). Therefore, it holds that X C Y on S; then
we use (1) (note (XY) # 0).

(ii). We assume X C* Z by the 2-local cross-freeness of {X, Z} (the argument for the case of
Z C* X is similar). This implies Z 2 (X) \ (Z). By 0 # (XZ) C (XY), we have Z N ((Y) \ (Z)) # 0.
Hence, by the 2-local cross-freeness of {Y, Z}, Z must contain (Y) \ (Z). Therefore, it holds that
X C Z on S; then we use (1).
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(3). Note that (XY), (YZ), and (ZX) are all nonempty. We can assume that both X and Y properly
contain Z in (XYZ). Necessarily Z is disjoint from ((X) U (Y)) \ (Z) by the 2-local cross-freeness
of {X,Z} and {Y, Z}. Hence {X, Z} (or {Y, Z}) is cross-free on S; then we use (1).

(4). We can assume X C* Y by the 2-local cross-freeness of {X,Y}. Then we can also assume
XC"ZorZ C*X.If X C* Z, then X does not meet ((Y) U(Z)) \ (X), and {X, Y} is cross-free on
S; then we use (1). Hence suppose Z C* X. By X C* Y and the 2-local cross-freeness of {X, Y;} for
i € [k],itmusthold that X C* Y; fori € [k]. Since {X, Y, Z} is cross-free on (X)U(Y;YU(Z), it holds
that Z € X C Y on (X) U (Yx) U(Z). Here (Z) cannot meet (Y;) \ (X), since otherwise sequence
XY,XYq,...,XY;,XZ also forms a path in G(G) and hence it holds that X C* Z, a contradiction
to Z C* X. By this fact together with (Y;Y;1) \ (X) # 0, we can say (Y;Yi1) \ (Z) # 0. Hence,
by (XY) = (ZY), the sequence ZY,ZY, ..., ZY also forms a path in G(G). By Z C* Y; and the
2-local cross-freeness of {Z, Y;} for i € [k], we have Z C* Y. Now Z C* X and Z C* Y hold. This
means that Z does not meet ((X) U (Y)) \ (Z), which implies that {Y, Z} is cross-free on S; then we
use (1). o

We are now ready to give the proof of Proposition 4.3.

PRrROOF OF PROPOSITION 4.3. We only prove thatif X C* Y, then G’ := G\{X,Y}U{XNY,XUY}
is 3-locally cross-free with G’ ~ G; the other case is similar.

First we prove G’ ~ G, thatis, we show X ~ XNYandY ~ XUY.By X C* Y,wehave X = XNY
on{(X)U(Y)and Y = X UY on (X) U(Y). Furthermore, for any p € [r] with A, N ((X) U(Y)) =0,
XNY2A,or (XNY)NA, =0holdsand XUY 2 A, or (XUY)NA, =0 holds. This means
X~XNYandY ~XUY;then(X)=(XNY)and (Y) = (X UY) follow.

Next we show that G’ is 2-locally cross-free. Since the partition lines of X and Y are the same as
thoseof XNYand X UY, {X NY,X UY}is also cross-free on (X) U(Y). Hence {X N Y, X U Y}
is 2-locally cross-free. In the following, we prove that {X N Y,X U Y, Z} is 2-locally cross-free for
eachZ e G\ {X,Y}.

If {X, Y} is cross-free on (X) U (Y) U (Z), then the partition lines of X and Y on (X) U(Y) U (Z)
are the same as those of X N'Y and X U Y. Hence, by the 2-local cross-freeness of G, we obtain
that {X N Y,X U Y, Z} is also 2-locally cross-free. Therefore, it suffices to deal with the cases of (i)
(XZ) =(YZ) = 0, (ii) (XZ) # 0 and (XY) = (YZ) = 0, (iii) (YZ) # 0 and (XY) = (XZ) = 0, and
(iv) (XY) =(YZ) = (ZX) # 0. Indeed, for other cases, {X, Y, Z} is cross-free on (X) U(Y) U (Z) by
Lemma 4.6 (2), reducing to the cross-free case above.

(i). By the 2-local cross-freeness of G, we have both [X 2 (Z) or X N (Z) = 0] and [Y 2 (Z)
or YN(Z) = 0]. Hence both [(X NY) 2 (Z)or X NY)N(Z) = 0] and [XUY) 2 (Z) or
(X UY)N(Z)=0] hold. Therefore {X NY,X UY,Z}is 2-locally cross-free.

(ii) and (iii). By symmetry, we show (ii) only. By X C* Y, we have Y 2 (X) \ (Y). By (XZ) # 0
and (XY) =(YZ) = 0, it holds that Y N ((Z) \ (Y)) # 0. By the 2-local cross-freeness of {Y, Z}, Y
must contain (Z) \ (Y). Therefore X C Y holds on (X) U (Y) U (Z), reducing to the cross-free case.

(iv). (XY) =(YZ) = (ZX) # 0 implies (XYZ) # 0. Hence, by the 3-local cross-freeness of G,
{X,Y,Z} is cross-free on (X) U (Y) U (Z), reducing to the cross-free case.

Finally, we show that G’ is 3-locally cross-free. Take distinct S,T,U € G’ with (STU) # 0. If
{S, T, U} N{XNY,XUY}=0,then {S,T,U} does not change in the construction of G’. Hence
{S, T, U} is cross-free on (S)YU(TYUU). If |{S, T, UIN{XNY,XUY}| = 1,then {S, T,U}\{XNY, XUY}
is cross-free on (S) U (T) U (U). By the 2-local cross-freeness of G’ shown above and Lemma 4.6 (1),
{S,T,U} is also cross-free on (S) USTY UU). If |{S, T, U} N{XNY,XUY} =2(assume S =XNY
and T = X UY), then the partition lines of X N Y and X U Y on (X) U (Y) U (U) do not change in
the construction of G’, since {X, Y, U} is cross-free on (X) U(YYU(U). Thus (X NY,X U Y, U} is
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cross-free on (X) U(Y)U(U) = (X NY)U(X UY)U(U). This completes the proof of Proposition 4.3.
O

4.4 Constructing 3-locally cross-free family

Our final task is to show that, for an input ¥ that is A-equivalent to a 2-locally cross-free family,
we can always construct a 3-locally cross-free family in polynomial time. Specifically, we use the
LC-graph G(¥) introduced in Section 4.2, and construct an LC-labeling s with the property that
the family 7 ° in (4.4) transformed from ¥ by s is 3-locally cross-free. While the existence of an
LC-labeling is guaranteed by the assumed A-equivalence of F to a 2-locally cross-free family
(Proposition 4.1), we need to exploit a certain intriguing structure inherent in an LC-graph before
we can construct such a special LC-labeling.

Lemma 4.6 indicates that, more often than not, a triple X, Y, Z in any 2-locally cross-free family
is cross-free on (X) U (Y) U (Z). To construct a 3-locally cross-free family, particular cares are
needed for those triples X, Y, Z with (XY) = (YZ) = (ZX) # 0 for which there exists no path
(XY, XY1,...,XY) satisfying (XY) # (XYy) # 0. Indeed, suppose that (XY), (YZ), and (XZ) are
nonempty. If (XY) # (YZ), then it holds that (XY) € (Z) or (YZ) Z (X). Hence, by Lemma 4.6 (2),
{X,Y,Z} is cross-free on (X) U(Y) U (Z). If (XY) = (YZ) = (ZX) # 0 and there is a path
(XY, XY1,...,XY) satisfying (XY) # (XYk) # 0, then, by the above argument for (XYy) # (YZ),
{X, Yy, Z} is cross-free on (X) U (Yx) U (Z). Hence, by Lemma 4.6 (4), {X, Y, Z} is cross-free on
(XY U(Y)Yu(Z).

This motivates the notion of special nodes and special connected components in the LC-graph
G(F). For distinct X, Y € ¥, define

R(XY) :={Z € F | There is a path (XY, XY1,...,XZ) using only prefixed edges},
R*(XY) :={Z € RIXY) | (XZ) + 0}.

We say that a node XY (or an ordered pair of X and Y) with (XY) # 0 is special if (XZ) = (XY)
holds for all Z € R*(XY). For X,Y € ¥ with XY and YX both being special, let v(XY) denote
the connected component (as a set of nodes) containing XY (and YX) in G(¥ ). We call such a
component special. Let v*(XY) denote the set of nodes ZW in v(XY) with (ZW) # 0.

A special component has an intriguing structure; the proof is given at the end of this section.

PRrROPOSITION 4.7. If both XY and YX are special, then the following hold.

(1) v(XY) = (R*(XY) X R(YX)) U (R*(YX) X R(XY)).
(2) v*(XY) = (R*(XY) X R*(YX)) U (R*(YX) X R*(XY)).
(3) If ZW € v*(XY), then ZW is special and (ZW) = (XY).

For a special component v = v(XY), we call (XY) the center of v; this is well-defined by
Proposition 4.7 (3). For Q C [r], the set C of all special components whose center coincides with
Ag is called the Q-flower if the size |C| is at least two. The following proposition gives a concrete
representation of the Q-flower; the proof is given at the end of this section.

ProrosITION 4.8. A Q-flower is given as
{U(Xin) | 1<i <j Sp}

for some p > 3 and distinct X1, Xy, ...,X, € F such that R(X;X;) = R(XyX;) foralli andi’ < j,
and R(X;X;) NR(XyXj) = 0 for all distinct j,j’ € [p],i < j, andi’ < j'.

The above X1, Xs, ..., X, are called the representatives of the Q-flower.
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Fig. 6. Black nodes indicate elements of [n], gray rectangles indicate elements of A, and solid curves indicate

elements of ¥ = {S,T,U,V,X,Y,Z}. It holds that A; = (ST) = (TX) = (§X) and Ay = (XY) =(YZ) = (XZ).

Example 4.9. Let ¥ = {S,T,U,V, X, Y, Z} be the A-cut family illustrated in Figure 6, its LC-graph
G(¥) being illustrated in Figure 7. In G(¥), there are six special components v(ST)(= v(SV)),
v(5X), v(TX) (= v(VX)), v(XY), v(XZ), and v(YZ). We can see that {v(ST), v(5X),v(TX)} is the
{1}-flower and {v(XY),v(XZ),v(YZ)} is the {2}-flower. |

A component v is said to be fixed if v contains a fixed node, and free otherwise. A special
component v(XY) in the Q-flower is free if and only if the partition lines of X" and Y’ on Ag are
the same for all X" € R*(YX) and Y’ € R*(XY). A free Q-flower is a maximal set of free components
in the Q-flower such that the partition lines on Ag are the same. Now the set of free components
of the Q-flower is partitioned to free Q-flowers each of which is represented as

{U(Xiin,) | 1<s<t< q}

with a subset {X; X;,, ..., X;_} of the representatives. A free Q-flower (for some Q C [r]) is also
called a free flower.

We now provide a polynomial-time algorithm to construct a 3-locally cross-free family 7 * by
defining an appropriate LC-labeling s.

Algorithm 5 (for constructing a 3-locally cross-free family):

Step 0: Determine whether there exists a 2-locally cross-free family A-equivalent to ¥ . If not,
then output “F is not laminarizable” and stop.

Step 1: For all fixed nodes XY, define s(XY) according to (4.1). By a breath-first search, define
s on all other nodes in fixed components appropriately.

Step 2: For each component v which is free and not special, take any node XY in v. Define
s(XY) as 0 or 1 arbitrarily, and define s(ZW) appropriately for all nodes ZW in v. Then all
the remaining (undefined) components are special and free.

Step 3: For each free flower, which is assumed to be represented as {v(X;X;) | 1 <i < j < g},
do the following:
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Fig. 7. The LC-graph G(¥) for ¥ = {S,T,U,V,X.,Y,Z} defined in Figure 6. {1}-flower (resp. {2}-flower)
consists of the connected components included in the left solid curve (resp. the right dotted curve).

3-1: Define the value of s(X;X;) for i, j € [q] with i < j so that {X},X7,... . Xg)is cross-free
on U;e[q)¢Xi); such a labeling is given, for example, as

0 ifX;=X Ao,
S(GX)) = 40 TP OO (4.6)
1 if X; = Xj on Ag,
where Ag is the center of the free flower.
3-2: Define s(ZW) appropriately for all ZW € v(X;X;).
Step 4: Output F°. |

Example 4.10. We consider ¥ = {S,T,U,V, X, Y, Z} in Figure 6 and its LC-graph G(¥") in Figure 7.
We execute Algorithm 5 for G(F).

We can easily determine that there exists a 2-locally cross-free family A-equivalent to #, and
that there is no fixed node in G(¥). In Step 2, there is one component v which is free and not
special in G(¥) (the one at the bottom in Figure 7). We take, say, TV € v and define s(TV) := 1.
Then, by (4.2) and (4.3), we have s(X’Y’) = 0 for X'Y’ € {VT,VU} and s(X’Y”) = 1 for other nodes
in v. We consider Step 3. Two flowers ({1}-flower and {2}-flower) exist in G(F") (see Example 4.9).
Hence, for the {1}-flower {v(ST), v(5X), v(TX)}, we define s(ST) = s(SX) = s(TX) := 0, and for
the {2}-flower {v(XY), v(XZ),v(YZ)}, we define s(XY) = s(XZ) = s(YZ) := 0. Then we define the
other values according to (4.2) and (4.3). Thus we can construct an LC-labeling inducing a 3-locally
cross-free family. |

PROPOSITION 4.11. The output F* is 3-locally cross-free, and Algorithm 5 runs in O(n*) time.
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Proor. We show the 3-local cross-freeness of #°. Recall that ¥ ° is 2-locally cross-free and
(X®) =(X) for X* € ¥° (and X € F). Take any triple {X°,Y*, Z°} with (XYZ) # 0. It suffices to
deal with the case of (XY) = (YZ) = (ZX) # 0 by Lemma 4.6 (2). If XY is not special, there is a path
(XY,XY1,...,XYy) in G(F) such that 0 # (XYj) # (XY) = (XZ). Here (XYx) € (Z) or (XZ) ¢
(Yk) holds. By Lemma 4.6 (2), {X*, Y, Z%} is cross-free on (X) U(Yy) U(Z). Hence, by Lemma 4.6 (4),
{X,Y,Z} is cross-free on (X) U(Y) U (Z). Therefore, we assume that XY,YX,YZ,ZY,ZX,XZ are
special.

We can suppose that XY, YZ, ZX belong to special components of the Q-flower {v(X;X;) | 1 <
i <j<phie, (XY)=(YZ) =(ZX) = Ap. By Proposition 4.8, we can assume X € R*(XiX;),
Y € R*(X;X;), and Z € R*(X;Xy) for distinct i, j, k € [p] withi < j < k.

Suppose that v(X;X;), v(X;Xy), or v(X Xj) is fixed. Then we can assume that there is X €
R*(XiX;) such that the partition lines of X, Y, Z are not the same. By Lemma 4.6 (3), {X®, Y*, Z%} is
cross-free on (X) U (Y) U (Z). Furthermore, since there is a path (YX =YX, YX3,...,YX) = YX)
{X*,Y*%,Z%} is cross-free on (X) U (Y) U (Z) by Lemma 4.6 (4).

Suppose that v(X;X;), v(X;Xk), and v(X;Xy) are free. Then v(X;X;), v(X;X), v(X;X}) are con-
tained in the same free Q-flower. By the definition of s (cf. (4.6)), {X; ,XJ?,XZ} is cross-free on
(Xi)YU(Xj)U(X}). By applying repeatedly Lemma 4.6 (4), {X*, Y*, Z%} is cross-free on (X) U(Y)U(Z).

Finally we see the running-time of Algorithm 5. By the argument at the end of Section 4.2, Step 0
can be done in O(n*) time. We can also obtain an appropriate value of each s(XY) in Steps 1-3 in
O(n*) time. From s, we can construct ¥* in O(|V(¥)|) = O(n?) time. Thus the running-time of
Algorithm 5 is bounded by O(n*). O

By Propositions 4.4 and 4.11, we obtain the following theorem.
THEOREM 4.12. Algorithms 4 and 5 solve LAMINARIZATION in O(n?) time.

The rest of this section is devoted to proving Propositions 4.7 and 4.8. First we show a key lemma
about special nodes.

LEmMA 4.13. If XY is special and (XY) = (X'Y) for some X', then R(X'Y) € R(XY), and
(X'Z)y 2(XZ) forany Z € R(X'Y).

Proor. We prove Yy € R(XY) and (X'Yx) 2 (XYi) by induction on the length k of a path
(X'Y = X'Yy,X'Y1,...,X'Yy). For k = 0, we have Yy = Y € R(XY) and (X'Yy) 2 (XYj). For the
induction step, suppose that Y, € R(XY) and (X'Yy) 2 (XYi) for k > 0. Since a prefixed edge
{X"Yi, X" Y41} exists, we have (Y Y1) \ (X'Yi) # 0. Then Yy, # X holds. Indeed, if Y,y = X,
then (XYi) \ (X'Yi) # 0, a contradiction to (X'Yx) 2 (XYi). By (X'Yx) 2 (XYk), we obtain
(YiYei1) \ (XYi) # 0. Hence there is a prefixed edge {X Yy, XYk+1}. This means Yi,; € R(XY).

Suppose, to the contrary, that (X'Yj,1) 2 (XYis1), ie, (XYii1) \ (X'Yry1) # 0 holds. Note
that (XYg41) \ (X' Yk41) = (XYis1) \ (XX’) holds. Furthermore, by (XY) = (X’Y), we obtain
(XX') 2 (XY). Hence we have (X Y1) \(XY) # 0. However, since XY is special and Y;,; € R(XY),
it must hold that (XY ) = (XY) or (XYj,1) = 0; this is a contradiction. m]

PrOOF OF PROPOSITION 4.7. First we show the following three claims.
Cramm 1. R(XY)NR(YX) =0.

Proor. Suppose, to the contrary, that R(XY) N R(YX) # 0. For each Z € R(XY), we have
(XZ) C(YZ)since (XZ) = (XY)or(XZ)=10

Let Z € R(XY) N R(YX) be an element such that the length k of a path (YX,...,YZ) in G(F) is
shortest. If k > 2, there is a prefixed edge {YZy, YZy_1} and Zy_; # X. Thatis (ZxZy_1) \(YZ) # 0.
By (XZy) € (YZy), we obtain (Z Zr_1) \ (XZi) # 0. Hence a prefixed edge {XZj, XZ}_1} exists.
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This means Z,_; € R(XY) N R(YX), which contradicts the minimality of Z = Z. Therefore a
prefixed edge {YX, YZ} exists for some Z € R(XY) N R(YX). That is, (XZ) \ (XY) # 0. Hence we
obtain 0 # (XZ) # (XY). This contradicts the assumption that XY is special. ]

Cram 2. For any Y’ € R*(XY), it holds that R(YX) = R(Y'X), and (Y'Z) = (YZ) for any
Z € R(YX) = R(Y'X).

Proor. If R*(XY) = {Y}, the proof is trivial. Suppose R*(XY) \ {Y} # 0. Take any Y’ € R*(XY) \
{Y}. Then there is a swapped edge {XY’, Y’'X}. Therefore, for all Z € R(Y'X), XY and Y'Z are
connected. Since XY is special, it holds that (YX) = (Y’X). Since YX is special and (YX) = (Y'X),
by Lemma 4.13, we have R(Y’X) C R(YX) and (Y'Z) 2 (YZ) for all Z € R(Y'X).

In the following, we prove that, for each Z € R(YX), it holds that Z € R(Y'X) and (Y'Z) C (YZ),
which imply R(Y’'X) = R(YX) and (Y'Z) = (YZ). We show this by induction on the length of a
path (YX =YX, YXy,...,YXk1 = YZ). For X, we have R(Y'X) 3 X = X, and (YX) = (Y'Xp).
Suppose R(Y’X) 3 X} and (YX}) 2 (Y'X) by induction. Since a prefixed edge {Y X, YX1} exists,
we have (X Xj41) \ (YXk) # 0. By (YXi) 2 (Y'Xk), we obtain (X3 Xj11) \ (Y’ Xk) # 0. Hence there
is a prefixed edge {Y'Xk, Y'Xj+1}. This means R(Y'X) 3 Xy41 = Z.

Suppose, to the contrary, that (YXj11) 2 (Y'Xjs1), i€, (Y’ Xgs1) \ (YX41) # 0 holds. Then there
is a prefixed edge {Y X1, YY'}. Hence we have R(YX) > Y’. However this contradicts R(YX) # Y’
by Claim 1 and R(XY) > Y’. Therefore we obtain (YXj11) 2 (Y’ Xy41)- o

Cram 3. For ZW € v(XY), there is a path from XY or YX to ZW containing at most one swapped
edge.

ProoF. Suppose, to the contrary, that, for some ZW, all paths from XY to ZW and from YX to
ZW use at least two swapped edges. Take such a path P with a minimum number of swapped edges.
Denote the number of swapped edges in P by k(> 2). Without loss of generality, we assume that P
is a path from XY to ZW. By k > 2, P has a subpath (XY = XYy, ..., XoY1, V1Xo, ..., 1.X1, X1 Y7).
Note that Y; € R*(XY), and X; € R*(Y1X) = R*(YX) by Claim 2. Hence there is a path from YX to
X1Y; using only one swapped edge. Indeed, (YX = YoXo, ..., YoX1,X1Y0,...,X1Y1) is such a path.
This means that there is a path from YX to ZW with k — 1 swapped edges, a contradiction to the
minimality of P. O

We are now ready to show the statement of Proposition 4.7 (1). If Z € R*(XY) and W € R(YX),
then there is a path in G(¥) such as (XY, ..., XZ,ZX,...,ZW) since R(YX) = R(ZX) by Claim 2,
implying ZW € v(XY). Conversely, if ZW € v(XY), then there is a path from XY or YX to ZW
with at most one swapped edge by Claim 3. We may assume that there is such a path P from XY
to ZW. If P has no swapped edge, then Z = X € R*(YX) and W € R(XY) hold. If P has exactly
one swapped edge, then Z € R*(XY) and W € R(ZX) = R(YX) by Claim 2. Thus we obtain
Proposition 4.7 (1).

Next we show Proposition 4.7 (3). If ZW € v(XY), then there is a path from XY or YX to ZW
with at most one swapped edge by Claim 3. We may assume that there is such a path P from XY
to ZW. If P has no swapped edge, then (ZW) = (XY) or (ZW) = 0 holds since XY is special. If P
has one swapped edge, then (ZW) = (YW) holds by Claim 2 and (YW) = (XY) or (YW) = 0 holds
since YX is special. Therefore, if ZW € v*(XY), then (ZW) = (XY), and ZW is obviously special.
Thus we obtain Proposition 4.7 (3).

Finally we show Proposition 4.7 (2). For every Z € R*(XY) and W € R*(YX), we have (Z) 2
(XY) € (W) by (3). Hence (ZW) # 0, implying ZW € v*(XY). Conversely, let ZW € v*(XY). By
Proposition 4.7 (1), we may assume Z € R*(XY) and W € R(YX). Since (ZW) # 0, (ZW) = (XY)
holds by Proposition 4.7 (3). Hence (W) N (Y) 2 (XY) # 0. This means W € R*(YX). ]
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ProoF oF PROPOSITION 4.8. Let v(X;X>) be a special connected component with (X;X,) = Ag.
Take any special connected component v(Y;Y;) with (Y;Y2) = Ap. It suffices to show that, (i)
if R(X1X3) N R(Y1Y2) # 0, we have R(X;X;) = R(Y1Y;) (this implies v(Y1Y2) = v(Y1X;2) by V5 €
R*(X1X3)), and (ii) if R(X1X2) N R(Y1Y2) = 0, there exists a special connected component v(X,Y2)
with <X2Y2> = AQ, R(XzYz) = R(Y1Y2), and R(YzXz) = R(X1X2)

(i). If there exists Z € R*(X1X,) N R*(Y1Y2), then X;Z and Y1 Z are special and (X1Z) = (Y1Z)(=
Ap). Hence, by Lemma 4.13, we have R(X;Z) € R(Y;Z) and R(X;Z) 2 R(Y1Z), i.e, R(X;1Z) =
R(Y1Z). This implies R(X1X3) = R(X1Z) = R(Y1Z) = R(Y1Y3), as required. Thus, in the following,
we show that there exists Z € R*(X;X;) N R*(Y1Y>).

Suppose, to the contrary, R*(X;X2) N R*(Y;Y2) = 0. Note that R*(X;X;2) N R*(Y;Y;) = 0 implies
R*(X1X3) N R(Y1Y2) = R(X1Xz) N R*(Y1Y2) = 0. Indeed, each Z € R*(X;X;) N R(Y;Y,) satisfies
Z 2 Ap by Z € R*(X1X;). Hence Z € R*(Y;Y;) holds by Z € R(Y1Y:) and (Y1Z) # 0. Let
Z € R(X]Xz) N R(Y1Y2) = (R(X1X2) N R(Y1Y2)) \ (R*(XIXZ) U R*(Y1Y2)) be an element such
that the length of a path (X;X; = X1Zo, X121, ...,X1Zk = X1Z) is shortest; by the assumption,
k > 1. Since a prefixed edge {X1Zy, X1Z)_1} exists, we have (Z;Zy_1) \ (X1Zk) # 0. Furthermore,
by (X1Zk) = (Y1Z;) = 0, we obtain (Z;Zx_1) \ (Y1Z;) # 0. This means that a prefixed edge
{Y1Zy, Y1 Z—1} exists and Zy_; € R(X1X;) N R(Y1Y2) holds, a contradiction to the minimality of k.

(ii). First we show that (X]Y)) = Ap or (X]Y,) = 0 holds for any X, € R(X;X) and Y, € R(Y;Y>).
Since, for any Z € R(X;X;) UR(Y1Y3),(Z) 2 Ap or {Z) N Ap = 0 holds by Proposition 4.7 (3), we
have (X;Y,) 2 Ag or (X;Y,) N Ag = 0 for each X; € R(X;X3) and Y, € R(Y;Y;) with (X]Y,) # 0.
Suppose, to the contrary, that there exist X; € R(X;X) and Y, € R(Y1Y2) with @ # (X;Y,) # Ap.
Then (X;Y,)) 2 Ap or (X,Y,;) N Ap = 0 holds. Hence we have (X, Y,) \ (X; X]) # 0 by (X1X;) = Ap
or (X1X,) = 0. This means that there is a prefixed edge {X; X}, X;Y,} and R(X1X;) N R(Y1Y,) # 0
holds, a contradiction.

By (X2) 2 Ap < (Y2), wehave (X;Y;) # 0. Hence, by the above argument, we obtain (X,Y,) = Ap.
Furthermore Y1Y; is special and (Y;Y,) = (X;Y>) holds. By Lemma 4.13, we obtain R(X,Y,) C
R(Y1Y2). By (X3Z) = Ap or (XpZ) = 0 for every Z € R(X,Yz) € R(Y1Y2), it holds that X,Y, is
special. Furthermore, since XY, is special, we also obtain R(X;Y2) 2 R(Y;Y2) by Lemma 4.13.
Hence R(X;Y;) = R(Y;Y;) holds. By a similar argument, Y,X; is special and R(Y,X;) = R(X1X3)
holds. Thus, a special component v(X;Y;) with (X,Y;) = Ap exists. m]
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