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We give a complexity dichotomy for the Quantified Constraint Satisfaction Problem QCSP(H) when H is a

reflexive tournament. It is well-known that reflexive tournaments can be split into a sequence of strongly

connected components H1, . . . ,H𝑛 so that there exists an edge from every vertex of H𝑖 to every vertex of H𝑗

if and only if 𝑖 < 𝑗 . We prove that if H has both its initial and final strongly connected component (possibly

equal) of size 1, then QCSP(H) is in NL and otherwise QCSP(H) is NP-hard.
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1 INTRODUCTION
The Quantified Constraint Satisfaction Problem QCSP(B), for a fixed template (structure) B, is a
popular generalisation of the Constraint Satisfaction Problem CSP(B). In the latter, one asks if

a primitive positive sentence (the existential quantification of a conjunction of atoms) 𝜑 is true
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111:2 Larose et al.

on B, while in the former this sentence may also have universal quantification
1
. Much of the

theoretical research into (finite-domain
2
) CSPs has been in respect of a complexity classification

project [5, 11], recently completed by [4, 22, 24], in which it is shown that all such problems are

either in P or NP-complete. Various methods, including combinatorial (graph-theoretic), logical

and universal-algebraic were brought to bear on this classification project, with many remarkable

consequences.

Complexity classifications for QCSPs appear to be harder than for CSPs. Indeed, a classification

for QCSPs will give a fortiori a classification for CSPs (if B ⊎ K1 is the disjoint union of B with

an isolated element, then QCSP(B ⊎ K1) and CSP(B) are polynomial-time many-one equivalent).

Just as CSP(B) is always in NP, so QCSP(B) is always in Pspace. However, no polychotomy has

been conjectured for the complexities of QCSP(B), though, until recently, only the complexities P,
NP-complete and Pspace-complete were known. Recent work [25] has shown that this complexity

landscape is considerably richer, and that dichotomies of the form P versus NP-hard (using Turing

reductions) might be the sensible place to be looking for classifications.

CSP(B) may equivalently be seen as the homomorphism problem which takes as input a struc-

ture A and asks if there is a homomorphism from A to B. The surjective CSP, SCSP(B), is a cousin of

CSP(B) in which one requires that this homomorphism from A to B be surjective. From the logical

perspective this translates to the stipulation that all elements of B be used as witnesses to the

(existential) variables of the primitive positive input 𝜑 . The surjective CSP appears in the literature

under a variety of names, including surjective homomorphism [2], surjective colouring [12, 15] and

vertex compaction [19, 20]. CSP(B) and SCSP(B) have various other cousins: see the survey [2] or,

in the specific context of reflexive tournaments, [15]. The only one we will dwell on here is the

retraction problem CSP
𝑐 (B) which can be defined in various ways but, in keeping with the present

narrative, we could define logically as allowing atoms of the form 𝑣 = 𝑏 in the input sentence 𝜑

where 𝑏 is some element of B (the superscript 𝑐 indicates that constants are allowed). It has only

recently been shown that there exists a B so that SCSP(B) is in P while CSP
𝑐 (B) is NP-complete

[23]. It is still not known whether such an example exists among the (partially reflexive) graphs.

It is well-known that the binary cousin relation is not transitive, so let us ask the question

as to whether the surjective CSP and QCSP are themselves cousins? The algebraic operations

pertaining to the CSP are polymorphisms and for QCSP these become surjective polymorphisms.

On the other hand, a natural use of universal quantification in the QCSP might be to ensure some

kind of surjective map (at least under some evaluation of many universally quantified variables).

So it is that there may appear to be some relationship between the problems. Yet, there are known

irreflexive graphs H for which QCSP(H) is in NL, while SCSP(H) is NP-complete (take the 6-

cycle [18, 20]). On the other hand, one can find a 3-element B whose relations are preserved by a

semilattice-without-unit operation such that both CSP
𝑐 (B) and SCSP(B) are in P but QCSP(B) is

Pspace-complete. We are not aware of examples like this among graphs and it is perfectly possible

that for (partially reflexive) graphs H, SCSP(H) being in P implies that QCSP(H) is in P.

Tournaments, both irreflexive and reflexive (and sometimes in between), have played a strong

role as a testbed for conjectures and a habitat for classifications, for relatives of the CSP both

complexity-theoretic [1, 10, 15] and algebraic [14, 21]. Looking at Table 1 one can see the last

unresolved case is precisely QCSP on reflexive tournaments. This is the case we address in this

paper. For irreflexive tournaments H, QCSP(H) is in P if and only if SCSP(H) in P, but for reflexive

1
Typically, primitive positive logic also possesses equality, but these can be propagated out by substitution, or removed in

the case 𝑥 = 𝑥 . In the presence of universal quantification, any atom 𝑥 = 𝑦 whose innermost variable is universal is false

(unless 𝑥 and 𝑦 are the same variable). Other instances of equality may be propagated out as before. It follows that the

complexity of QCSP(B) is not affected by the presence or absence of equality, up to logarithmic space reducability.

2
All structures considered in this article are finite.
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tournaments this is not the case. When H is a reflexive tournament, we prove that QCSP(H) is in
NL if H has both initial and final strongly connected components trivial, and is NP-hard otherwise.

In contrast to the proof from [10] and like the proof of [15], we will henceforth work largely

combinatorially rather than algebraically. Note that we do not investigate beyond NP-hard, so our

dichotomy cannot be compared directly to the trichotomy of [10] for irreflexive tournaments which

distinguishes between P, NP-complete and Pspace-complete.

QCSP CSP Surjective CSP Retraction

irreflexive

tournaments

trichotomy [10] dichotomy [1] dichotomy [1] dichotomy [1]

reflexive

tournaments

this paper all trivial dichotomy [15] dichotomy [14]

Table 1. Our result in a wider context. The results for irreflexive tournaments were all proved in the more
general setting of irreflexive semicomplete digraphs in the papers cited.

In Section 3 we prove the NP-hard cases of our dichotomy. Our proof method follows that from

[15], while adapting the ideas of [8] in order to make what was developed for Surjective CSP

applicable to QCSP. The QCSP is not naturally a combinatorial problem but can be seen thusly

when viewed in a certain way. We indeed closely mirror [15] with [8] in the strongly connected

case. For the not strongly connected case, the adaptation from the strongly connected case was

straightforward for the Surjective CSP in [15]. However, the straightforward method does not work

for the QCSP. Instead, we seek a direct argument that essentially sees us extending the method

from [15].

In Section 4 we prove the NL cases of our dichotomy. Here, we use ideas originally developed in

(the conference version of) [8] and first used in the wild in [17]. Thus, we do not introduce new

proof techniques as such but rather weave our proof through the reasonably intricate synthesis

of different known techniques. In Section 5 we state our dichotomy and give some directions for

future work.

2 PRELIMINARIES
For an integer 𝑘 ≥ 1, we write [𝑘] := {1, . . . , 𝑘}. A vertex 𝑢 ∈ 𝑉 (𝐺) in a digraph 𝐺 is backwards-
adjacent to another vertex 𝑣 ∈ 𝑉 if (𝑢, 𝑣) ∈ 𝐸. It is forwards-adjacent to another vertex 𝑣 ∈ 𝑉 if

(𝑣,𝑢) ∈ 𝐸. If a vertex 𝑢 has a self-loop (𝑢,𝑢), then 𝑢 is reflexive; otherwise 𝑢 is irreflexive. A digraph

𝐺 is reflexive or irreflexive if all its vertices are reflexive or irreflexive, respectively.
The directed path on 𝑘 vertices is the digraph with vertices 𝑢0, . . . , 𝑢𝑘−1 and edges (𝑢𝑖 , 𝑢𝑖+1) for

𝑖 = 0, . . . , 𝑘 − 2. By adding the edge (𝑢𝑘−1, 𝑢0), we obtain the directed cycle on 𝑘 vertices. A digraph

G is strongly connected if for all 𝑢, 𝑣 ∈ 𝑉 (G) there is a directed path in 𝐸 (G) from 𝑢 to 𝑣 . A double
edge in a digraph G consists in a pair of distinct vertices 𝑢, 𝑣 ∈ 𝑉 (G), so that (𝑢, 𝑣) and (𝑣,𝑢) belong
to 𝐸 (G). A digraph G is semicomplete if for every two distinct vertices 𝑢 and 𝑣 , at least one of (𝑢, 𝑣),
(𝑣,𝑢) belongs to 𝐸 (G). A semicomplete digraph G is a tournament if for every two distinct vertices

𝑢 and 𝑣 , exactly one of (𝑢, 𝑣), (𝑣,𝑢) belongs to 𝐸 (G). A reflexive tournament G is transitive if for
every three vertices 𝑢, 𝑣,𝑤 with (𝑢, 𝑣), (𝑣,𝑤) ∈ 𝐸 (G), also (𝑢,𝑤) belongs to 𝐸 (G). A digraph F is a

subgraph of a digraph G if𝑉 (F) ⊆ 𝑉 (G) and 𝐸 (F) ⊆ 𝐸 (G). It is induced if 𝐸 (F) coincides with 𝐸 (G)
restricted to pairs containing only vertices of 𝑉 (F). A subtournament is an induced subgraph of a

tournament. It is well known that a reflexive tournament H can be split into a sequence of strongly

connected components H1, . . . ,H𝑛 for some integer 𝑛 ≥ 1 so that there exists an edge from every

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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vertex of 𝐻𝑖 to every vertex of 𝐻 𝑗 if and only if 𝑖 < 𝑗 . We will use the notation H1 ⇒ · · · ⇒ H𝑛 for

H and we refer to H1 and H𝑛 as the initial and final components of H, respectively.

A homomorphism from a digraph G to a digraph H is a function 𝑓 : 𝑉 (G) → 𝑉 (H) such that for

all 𝑢, 𝑣 ∈ 𝑉 (G) with (𝑢, 𝑣) ∈ 𝐸 (G) we have (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸 (H). We say that 𝑓 is (vertex)-surjective
if for every vertex 𝑥 ∈ 𝑉 (H) there exists a vertex 𝑢 ∈ 𝑉 (G) with 𝑓 (𝑢) = 𝑥 . A digraph H

′
is a

homomorphic image of a digraph H if there is a surjective homomorphism from H to H
′
that is

also edge-surjective, that is, for all (𝑥 ′, 𝑦 ′) ∈ 𝐸 (H′) there exists an (𝑥,𝑦) ∈ 𝐸 (H) with 𝑥 ′ = ℎ(𝑥) and
𝑦 ′ = ℎ(𝑦).

The problem H-Retraction takes as input a graph G of which H is an induced subgraph

and asks whether there is a homomorphism from G to H that is the identity on H. This def-

inition is polynomial-time many-one equivalent to the one we suggested in the introduction

(see e.g. [2]). The quantified constraint satisfaction problem QCSP(H) takes as input a sentence

𝜑 := ∀𝑥1∃𝑦1 . . .∀𝑥𝑛∃𝑦𝑛 Φ(𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛), where Φ is a conjunction of positive atomic (binary

edge) relations. This is a yes-instance to the problem just in case H |= 𝜑 .

The canonical query of G (from [13]) is a primitive positive sentence 𝜑G that has the property

that, for all H, G has a homomorphism to H iff H |= 𝜑G. It is built by mapping edges (𝑥,𝑦) from
𝐸 (G) to atoms 𝐸 (𝑥,𝑦) is an existentially quantified conjunctive query.

The direct product of two digraphsG andH, denotedG×H, is the digraph on vertex set𝑉 (G)×𝑉 (H)
with edges ((𝑥,𝑦), (𝑥 ′, 𝑦 ′)) if and only if (𝑥, 𝑥 ′) ∈ 𝐸 (G) and (𝑦,𝑦 ′) ∈ 𝐸 (H). We denote the direct

product of 𝑘 copies of 𝐺 by 𝐺𝑘
. A 𝑘-ary polymorphism of G is a homomorphism 𝑓 from 𝐺𝑘

to 𝐺 ; if

𝑘 = 1, then 𝑓 is also called an endomorphism. A 𝑘-ary polymorphism 𝑓 is essentially unary if there

exists a unary operation 𝑔 and 𝑖 ∈ [𝑘] so that 𝑓 (𝑥1, . . . , 𝑥𝑘 ) = 𝑔(𝑥𝑖 ) for every (𝑥1, . . . , 𝑥𝑘 ) ∈ G
𝑘
. Let

us say that a 𝑘-ary polymorphism 𝑓 is uniformly 𝑧 for some 𝑧 ∈ 𝑉 (G) if 𝑓 (𝑥1, . . . , 𝑥𝑘 ) = 𝑧 for every

(𝑥1, . . . , 𝑥𝑘 ) ∈ 𝑉 (G𝑘 ). We need the following two lemmas.

Lemma 2.1. Let𝐻 be a reflexive tournament and 𝑓 be a 𝑘-ary polymorphism ofH. If 𝑓 (𝑥, . . . , 𝑥) = 𝑧

for every 𝑥 ∈ 𝑉 (H), then 𝑓 is uniformly equal to 𝑧.

Proof. Consider some tuple (𝑥1, . . . , 𝑥𝑘 ) which has𝑚 distinct vertices. We proceed by induction

on𝑚, where the base case𝑚 = 1 is given as an assumption. Suppose we have the result for𝑚 vertices

and let (𝑥1, . . . , 𝑥𝑘 ) have𝑚 + 1 distinct entries. For simplicity (and w.l.o.g.) we will consider this

reordered and without duplicates as (𝑦1, . . . , 𝑦𝑚, 𝑦𝑚+1). Suppose 𝑓 maps (𝑥1, . . . , 𝑥𝑘 ) to 𝑧 ′. Assume

(𝑦𝑚, 𝑦𝑚+1) ∈ 𝐸 (H) (the case (𝑦𝑚+1, 𝑦𝑚) is symmetric). Then consider the tuples (𝑦1, . . . , 𝑦𝑚, 𝑦𝑚)
and (𝑦1, . . . , 𝑦𝑚+1, 𝑦𝑚+1). By the inductive hypothesis, 𝑓 maps each of these (when reordered and

padded appropriately with duplicates) to 𝑧. Furthermore, we have co-ordinatewise edges from

(𝑦1, . . . , 𝑦𝑚, 𝑦𝑚) to (𝑦1, . . . , 𝑦𝑚, 𝑦𝑚+1) and from (𝑦1, . . . , 𝑦𝑚, 𝑦𝑚+1) to (𝑦1, . . . , 𝑦𝑚+1, 𝑦𝑚+1). Since we
deduce by the definition of polymorphism that both (𝑧, 𝑧 ′), (𝑧 ′, 𝑧) ∈ 𝐸 (H), it follows that 𝑧 ′ = 𝑧.

Thus, 𝑓 maps also (𝑦1, . . . , 𝑦𝑚, 𝑦𝑚+1) (when reordered and padded appropriately with duplicates) to

𝑧. That is, 𝑓 (𝑥1, . . . , 𝑥𝑘 ) = 𝑧. □

Lemma 2.2. Let H be the reflexive tournament H1 ⇒ · · · ⇒ H𝑖 ⇒ · · · ⇒ H𝑛 . If 𝑓 is a 𝑘-ary
surjective polymorphism of H, then 𝑓 preserves each of 𝑉 (H1), . . . ,𝑉 (H𝑛); that is, for every 𝑖 and
every tuple of 𝑘 vertices 𝑥1, . . . , 𝑥𝑘 ∈ 𝑉 (H𝑖 ), 𝑓 (𝑥1, . . . , 𝑥𝑘 ) ∈ 𝑉 (H𝑖 ).

Proof. Suppose 𝑓 maps some tuple (𝑥1, . . . , 𝑥𝑚) from 𝑉 (H𝑖 ) to 𝑦 ∈ 𝑉 (Hℓ ). Let (𝑥 ′
1
, . . . , 𝑥 ′

𝑚) be
any tuple from 𝑉 (H𝑖 ). Since H𝑖 is strongly connected, 𝑓 (𝑥 ′

1
, . . . , 𝑥 ′

𝑚) in 𝑉 (Hℓ ). It follows that if
ℓ ≠ 𝑖 , e.g. w.l.o.g. ℓ < 𝑖 , then some component ℓ ′ ≥ 𝑖 can not be in the range of 𝑓 . □

The relevance of this lemma is in its sequent corollary, which follows according to Proposition

3.15 of [3].

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Corollary 2.3. Let H be the reflexive tournament H1 ⇒ · · · ⇒ H𝑖 ⇒ · · · ⇒ H𝑛 . Each subset of
the domain 𝑉 (H𝑖 ) is definable by a QCSP instance in one free variable.

An endomorphism 𝑒 of a digraph G is a constant map if there exists a vertex 𝑣 ∈ 𝑉 (G) such that

𝑒 (𝑢) = 𝑣 for every 𝑢 ∈ 𝑉 (G), and 𝑒 is the identity if 𝑒 (𝑢) = 𝑢 for every 𝑢 ∈ G. An automorphism is a

bijective endomorphism whose inverse is a homomorphism. An endomorphism is trivial if it is
either an automorphism or a constant map; otherwise it is non-trivial. A digraph is endo-trivial if
all of its endomorphisms are trivial. An endomorphism 𝑒 of a digraph G fixes a subset 𝑆 ⊆ 𝑉 (G)
if 𝑒 (𝑆) = 𝑆 , that is, 𝑒 (𝑥) ∈ 𝑆 for every 𝑥 ∈ 𝑆 , and 𝑒 fixes an induced subgraph F of G if it is the

identity on𝑉 (F). It fixes an induced subgraph F up to automorphism if 𝑒 (F) is an automorphic copy

of F. An endomorphism 𝑒 of G is a retraction of G if 𝑒 is the identity on 𝑒 (𝑉 (G)). A digraph is

retract-trivial if all of its retractions are the identity or constant maps. Note that endo-triviality

implies retract-triviality, but the reverse implication is not necessarily true (see [15]). However, on

reflexive tournaments both concepts do coincide [15].

We need a series of results from [15]. The third one follows from the well-known fact that every

strongly connected tournament has a directed Hamilton cycle [6].

Lemma 2.4 ([15]). A reflexive tournament is endo-trivial if and only if it is retract-trivial.

Lemma 2.5 ([15]). Let H be an endo-trivial reflexive digraph with at least three vertices. Then every
polymorphism of H is essentially unary.

Lemma 2.6 ([15]). If H is an endo-trivial reflexive tournament, then H contains a directed Hamilton
cycle.

Lemma 2.7 ([15]). If H is an endo-trivial reflexive tournament, then every homomorphic image of H
of size 1 < 𝑛 < |𝑉 (H) | has a double edge.

Corollary 2.8. If H is an endo-trivial reflexive digraph on at least three vertices, then QCSP(H) is
NP-hard (in fact it is even Pspace-complete).

Proof. This follows from Lemma 2.5 and [3]. □

3 THE PROOF OF THE NP-HARD CASES OF THE DICHOTOMY
We commence with the NP-hard cases of the dichotomy. The simpler NL cases will follow, in

Section 4. In this section, the central results will appear as Corollaries 3.9 and 3.15. However, each

of these proceeds via an induction where there are two base cases and two inductive (general) cases.

Thus, there are eight principal propositions. Propositions 3.3, 3.5, 3.7 and 3.8 lead to Corollary 3.9

and Propositions 3.11, 3.12, 3.13 and 3.14 lead to Corollary 3.15. The base cases are the simplest to

understand and are given in the most detail. The principal propositions commence in Section 3.2.

Before this we introduce our construction with some supporting lemmas.

3.1 The NP-Hardness Gadget
We introduce the gadget Cyl

∗
𝑚 from [15] drawn in Figure 1. Take𝑚 disjoint copies of the (reflexive)

directed𝑚-cycleDC
∗
𝑚 arranged in a cylindrical fashion so that there is an edge from 𝑖 in the 𝑗 th copy

to 𝑖 in the ( 𝑗 + 1)th copy (drawn in red), and an edge from 𝑖 in the ( 𝑗 + 1)th copy to (𝑖 + 1) mod𝑚

in the 𝑗th copy (drawn in green). We consider DC
∗
𝑚 to have vertices {1, . . . ,𝑚}. Recall that every

strongly connected (reflexive) tournament on𝑚 vertices has a Hamilton Cycle HC𝑚 . We label the

vertices of HC𝑚 as 1, . . . ,𝑚 in order to attach it to the gadget Cyl
∗
𝑚 .

3

3
The superscripted ∗ indicates that the corresponding graph is reflexive. This notation is inherited from [15]. It is not

significant since we could safely assume every graph we work with is reflexive as the template is a reflexive tournament.
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Fig. 1. The gadget Cyl∗𝑚 in the case𝑚 := 4 (self-loops are not drawn). We usually visualise the right-hand
copy of DC∗

4
as the “bottom” copy and then we talk about vertices “above” and “below” according to the red

arrows.

The following lemma follows from induction on the copies of DC
∗
𝑚 , since a reflexive tournament

has no double edges.

Lemma 3.1 ([15]). In any homomorphism ℎ from Cyl
∗
𝑚 , with bottom cycle DC∗

𝑚 , to a reflexive
tournament, if |ℎ(DC∗

𝑚) | = 1, then |ℎ(Cyl∗𝑚) | = 1.

We will use another property, denoted (†), of Cyl∗𝑚 , which is that the retractions from Cyl
∗
𝑚 to

its bottom copy of DC
∗
𝑚 , once propagated through the intermediate copies, induce on the top copy

precisely the set of automorphisms of DC
∗
𝑚 . That is, the top copy of DC

∗
𝑚 is mapped isomorphically

to the bottom copy, and all such isomorphisms may be realised. The reason is that in such a

retraction, the ( 𝑗 + 1)th copy may either map under the identity to the 𝑗th copy, or rotate one

edge of the cycle clockwise, and Cyl
∗
𝑚 consists of sufficiently many (namely𝑚) copies of DC

∗
𝑚 .

Now let H be a reflexive tournament that contains a subtournament H0 on 𝑚 vertices that is

endo-trivial. By Lemma 2.6, we find that H0 contains at least one directed Hamilton cycle HC0.

Define Spill𝑚 (H[H0,HC0]) as follows. Begin with H and add a copy of the gadget Cyl
∗
𝑚 , where

the bottom copy of DC
∗
𝑚 is identified with HC0, to build a digraph F(H0,HC0). Now ask, for some

𝑦 ∈ 𝑉 (H) whether there is a retraction 𝑟 of F(H0,HC0) to H so that some vertex 𝑥 (not dependent

on 𝑦) in the top copy of DC
∗
𝑚 in Cyl

∗
𝑚 is such that 𝑟 (𝑥) = 𝑦. Such vertices 𝑦 comprise the set

Spill𝑚 (H[H0,HC0]).
Remark 1. If 𝑥 belongs to some copy of DC

∗
𝑚 that is not the top copy, we can find a vertex 𝑥 ′

in

the top copy of DC
∗
𝑚 and a retraction 𝑟 ′ from F(H0,HC0) to H with 𝑟 ′(𝑥 ′) = 𝑟 (𝑥) = 𝑦, namely by

letting 𝑟 ′ map the vertices of higher copies of DC
∗
𝑚 to the image of their corresponding vertex in

the copy that contains 𝑥 . In particular this implies that Spill𝑚 (H[H0,HC0]) contains 𝑉 (H0).
We note that the set Spill𝑚 (H[H0,HC0]) is potentially dependent on which Hamilton cycle in H0

is chosen. We now recall that Spill𝑚 (H[H0,HC0]) = 𝑉 (H) if H retracts to H0.

Lemma 3.2 ([15]). If H is a reflexive tournament that retracts to a subtournament H0 with Hamilton
cycle HC0, then Spill𝑚 (H[H0,HC0]) = 𝑉 (H).

We now review a variant of a construction from [8]. Let G be a graph containing H where

|𝑉 (H) | is of size 𝑛. Consider all possible functions 𝜆 : [𝑛] → 𝑉 (H) (let us write 𝜆 ∈ 𝑉 (H) [𝑛] of
cardinality 𝑁 ). For some such 𝜆, let G(𝜆) be the graph 𝐺 enriched with constants 𝑐1, . . . , 𝑐𝑛 where

these are interpreted over 𝑉 (H) according to 𝜆 in the natural way (acting on the subscripts). We

use calligraphic notation to remind the reader the signature has changed from {𝐸} to {𝐸, 𝑐1, . . . , 𝑐𝑛}
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but we will still treat these structures as graphs. If we write G(𝜆) without calligraphic notation we

mean we look at only the {𝐸}-reduct, that is, we drop the constants. Of course, G(𝜆) will always be
G.

Let G =
⊗

𝜆∈𝑉 (H) [𝑛] G(𝜆). That is, the vertices of G are 𝑁 -tuples over𝑉 (G) and there is an edge

between two such vertices (𝑥1, . . . , 𝑥𝑁 ) and (𝑦1, . . . , 𝑦𝑁 ) if and only if (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 ) ∈ 𝐸 (G).
Finally, the constants 𝑐𝑖 are interpreted as (𝑥1, . . . , 𝑥𝑁 ) so that 𝜆1 (𝑐𝑖 ) = 𝑥1, . . . , 𝜆𝑁 (𝑐𝑖 ) = 𝑥𝑁 . An

important induced substructure of G is {(𝑥, . . . , 𝑥) : 𝑥 ∈ 𝑉 (G)}. It is a copy of G called the diagonal
copy and will play an important role in the sequel. To comprehend better the construction of G
from the sundry G(𝜆), confer on Figure 2.

The final ingredient of our fundamental construction involves taking some structure G and

making its canonical query with all vertices other than those corresponding to 𝑐1, . . . , 𝑐𝑛 becoming

existentially quantified variables (as usual in this construction). We then turn the 𝑐1, . . . , 𝑐𝑛 to

variables 𝑦1, . . . , 𝑦𝑛 to make 𝜑G (𝑦1, . . . , 𝑦𝑛). Let H come from the given construction in which

𝐺 = 𝐻 . It is proved in [8] that H
′ |= ∀𝑦1, . . . , 𝑦𝑛 𝜑H (𝑦1, . . . , 𝑦𝑛) if and only if QCSP(H) ⊆ QCSP(H′)

(here we identify QCSP(H) with the set of sentences that form its yes-instances). By way of a

side note, let us consider a 𝑘-ary relation 𝑅 over H with tuples (𝑥1
1
, . . . , 𝑥1

𝑘
), . . . , (𝑥𝑟

1
, . . . , 𝑥𝑟

𝑘
). For

𝑖 ∈ [𝑟 ], let 𝜆𝑖 map (𝑐1, . . . , 𝑐𝑘 ) to (𝑥𝑖
1
, . . . , 𝑥𝑖

𝑘
). LetH =

⊗
𝜆∈{𝜆1,...,𝜆𝑟 } H(𝜆). Then 𝜑H (𝑦1, . . . , 𝑦𝑛) is

the closure of 𝑅 under the polymorphisms of H.

3.2 The strongly connected case: Two Base Cases
Recall that if H is a (reflexive) endo-trivial tournament, then QCSP(H) is NP-hard due to Lemma 2.5

combined with the results from [3]. Indeed, Theorem 5.2 in [3] states that anyHwith more than one

element, such that all surjective polymorphisms of H are essentially unary, satisfies that QCSP(H)
is Pspace-complete. However H may not be endo-trivial. We will now show how to deal with the

case where H is not endo-trivial but retracts to an endo-trivial subtournament. For doing this we

use the NP-hardness gadget, but we need to distinguish between two different cases.

Proposition 3.3 (Base Case I.). Let H be a reflexive tournament that retracts to an endo-trivial
subtournament H0 with Hamilton cycle HC0. Assume that H retracts to H

′
0
for every isomorphic

copy H
′
0
= 𝑖 (H0) of H0 in H with Spill𝑚 (H[H′

0
, 𝑖 (HC0)]) = 𝑉 (H). Then H0-Retraction can be

polynomially reduced to QCSP(H).
Proof. Let𝑚 be the size of |𝑉 (H0) | and 𝑛 be the size of |𝑉 (H) |. Let G be an instance of H0-

Retraction. We build an instance 𝜑 of QCSP(H) in the following fashion. First, take a copy of H

together with G and build G
′
by identifying these on the copy of H0 that they both possess as an

induced subgraph. Now, consider all possible functions 𝜆 : [𝑛] → 𝑉 (H). For some such 𝜆, let G′(𝜆)
be the graph enriched with constants 𝑐1, . . . , 𝑐𝑛 where these are interpreted over some subset of

𝑉 (H) according to 𝜆 in the natural way (acting on the subscripts).

Let G′ =
⊗

𝜆∈𝑉 (H) [𝑛] G′(𝜆). Let G′𝑑
, H

𝑑
and H

𝑑
0
be the diagonal copies of G

′
, H and H0 in G′

. Let

H be the subgraph of G′
induced by 𝑉 (H) × · · · ×𝑉 (H). Note that the constants 𝑐1, . . . , 𝑐𝑛 live in

H . Now build G′′
from G′

by augmenting a new copy of Cyl
∗
𝑚 for every vertex 𝑣 ∈ 𝑉 (H) \𝑉 (H𝑑

0
).

Vertex 𝑣 is to be identified with any vertex in the top copy of DC
∗
𝑚 in Cyl

∗
𝑚 and the bottom copy

of DC
∗
𝑚 is to be identified with HC0 in H

𝑑
0
according to the identity function. (Thus, in each case,

the new vertices are the middle cycles of Cyl
∗
𝑚 and all but one of the vertices in the top cycle of

Cyl
∗
𝑚 .)

Finally, build𝜑 from the canonical query ofG′′
where we additionally turn the constants 𝑐1, . . . , 𝑐𝑛

to outermost universal variables. The size of 𝜑 is doubly exponential in 𝑛 (the size of 𝐻 ) but this is

constant, so still polynomial in the size of 𝐺 .

We claim that G retracts to H0 if and only if 𝜑 ∈ QCSP(H).
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Fig. 2. Illustrations of direct product with constants.

First suppose that G retracts to H0. Let 𝜆 be some assignment of the universal variables of 𝜑

to H. To prove 𝜑 ∈ QCSP(H) it suffices to prove that there is a homomorphism from G′′
to H

that extends 𝜆. Then for this it suffices to prove that there is a homomorphism ℎ from G′
that

extends 𝜆. Let us explain why. Because H retracts to H0, we have Spill𝑚 (H[H0,HC0]) = 𝑉 (H) due
to Lemma 3.2. Hence, if ℎ(𝑥) = 𝑦 for two vertices 𝑥 ∈ 𝑉 (H) \𝑉 (H𝑑

0
) and 𝑦 ∈ 𝑉 (H), we can always

find a retraction of the graph F(H0,HC0) to H that maps 𝑥 to 𝑦, and we mimic this retraction on

the corresponding subgraph in G′′
. The crucial observation is that this can be done independently

for each vertex in 𝑉 (H) \𝑉 (H𝑑
0
), as two vertices of different copies of Cyl∗𝑚 are only adjacent if

they both belong to H .

Henceforth let us consider the homomorphic image of G′
that is G′(𝜆). To prove 𝜑 ∈ QCSP(H)

it suffices to prove that there is a homomorphism from G
′(𝜆) to H that extends 𝜆. Note that it will

be sufficient to prove that G
′
retracts to H. Let ℎ be the natural retraction from G

′
to H that extends

the known retraction from G to H0. We are done.
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Fig. 3. An interesting tournament H on six vertices (self-loops are not drawn). This tournament does not
retract to the DC∗

3
on the left-hand side, yet Spill

3
(H[DC∗

3
,DC3]) = 𝑉 (H).

Suppose now 𝜑 ∈ QCSP(H). Choose some surjection for 𝜆, the assignment of the universal

variables of 𝜑 to H. Recall 𝑁 = |𝑉 (H) [𝑛] |. The evaluation of the existential variables that witness

𝜑 ∈ QCSP(H) induces a surjective homomorphism 𝑠 from G′′
to H which contains within it a

surjective homomorphism 𝑠 ′ fromH = H
𝑁
to H. Consider the diagonal copy of H

𝑑
0
⊂ H

𝑑 ⊂ G
′𝑑

in G′
. By abuse of notation we will also consider each of 𝑠 and 𝑠 ′ acting just on the diagonal.

If |𝑠 ′(H𝑑
0
) | = 1, by construction of G′′

, we have |𝑠 ′(H𝑑 ) | = 1. Indeed, this was the property we

noted in Lemma 3.1. By Lemma 2.1, this would mean 𝑠 ′ is uniformly mapping H to one vertex,

which is impossible as 𝑠 ′ is surjective. Now we will work exclusively in the diagonal copy G
′𝑑
. As

1 < |𝑠 ′(H𝑑
0
) | < 𝑚 is not possible either due to Lemma 2.7, we find that |𝑠 ′(H𝑑

0
) | =𝑚, and indeed 𝑠 ′

maps H
𝑑
0
to a copy of itself in H which we will call H

′
0
= 𝑖 (H𝑑

0
) for some isomorphism 𝑖 .

We claim that Spill𝑚 (H[H′
0
, 𝑖 (HC𝑑

0
)]) = 𝑉 (H). In order to see this, consider a vertex 𝑦 ∈ 𝑉 (H).

As 𝑠 ′ is surjective, there exists a vertex 𝑥 ∈ 𝑉 (H) with 𝑠 ′(𝑥) = 𝑦. By construction, 𝑥 belongs to

some top copy of DC
∗
𝑚 in Cyl

∗
𝑚 in F(H0,HC0). We can extend 𝑖−1 to an isomorphism from the

copy of Cyl
∗
𝑚 (which has 𝑖 (HC𝑑

0
) as its bottom cycle) in the graph F(H′

0
, 𝑖 (HC𝑑

0
)) to the copy of

Cyl
∗
𝑚 (which has HC

𝑑
0
as its bottom cycle) in the graph F(H0,HC0). We define a mapping 𝑟 ∗ from

F(H′
0
, 𝑖 (HC𝑑

0
)) to H by 𝑟 ∗ (𝑢) = 𝑠 ′ ◦ 𝑖−1 (𝑢) if 𝑢 is on the copy of Cyl

∗
𝑚 in F(H′

0
, 𝑖 (HC𝑑

0
)) and 𝑟 ∗ (𝑢) = 𝑢

otherwise. We observe that 𝑟 ∗ (𝑢) = 𝑢 if 𝑢 ∈ 𝑉 (H′
0
) as 𝑠 ′ coincides with 𝑖 on H0. As H

𝑑
0
separates

the other vertices of the copy of Cyl
∗
𝑚 from 𝑉 (H𝑑 ) \𝑉 (H𝑑

0
), in the sense that removing H

𝑑
0
would

disconnect them, this means that 𝑟 ∗ is a retraction from F(H′
0
, 𝑖 (HC𝑑

0
)) to H. We find that 𝑟 ∗ maps

𝑖 (𝑥) to 𝑠 ′ ◦ 𝑖−1 (𝑖 (𝑥)) = 𝑠 ′(𝑥) = 𝑦. Moreover, as 𝑥 is in the top copy of DC
∗
𝑚 in F(H0,HC0), we

conclude that 𝑦 always belongs to Spill𝑚 (H[H′
0
, 𝑖 (HC𝑑

0
)]).

As Spill𝑚 (H[H′
0
, 𝑖 (HC𝑑

0
)]) = 𝑉 (H), we find, by assumption of the lemma, that there exists a

retraction 𝑟 from H to H
′
0
. Now, recalling that we can view 𝑠 ′ acting just on the diagonal copy H

𝑑

of H, 𝑖−1 ◦ 𝑟 ◦ 𝑠 ′ is the desired retraction of G to H0. □

We now need to deal with the situation in which we have an isomorphic copy H
′
0
= 𝑖 (H0) of H0

in H with Spill𝑚 (H[H′
0
, 𝑖 (HC0)]) = 𝑉 (H), such that H does not retract to H

′
0
(see Figure 3 for an

example). We cannot deal with this case in a direct manner and first show another base case. For

this we need the following lemma and an extension of endo-triviality that we discuss afterwards.

Lemma 3.4 ([15]). Let H be a reflexive tournament, containing a subtournament H0 so that any
endomorphism of H that fixes H0 as a graph is an automorphism. Then any endomorphism of H that
maps H0 to an isomorphic copy H

′
0
= 𝑖 (H0) of itself is an automorphism of H.
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Let H0 be an induced subgraph of a digraph H. We say that the pair (H,H0) is endo-trivial if all
endomorphisms of H that fix H0 are automorphisms.

Proposition 3.5 (Base Case II). Let H be a reflexive tournament with a subtournament H0 with
Hamilton cycle HC0 so that (H,H0) and H0 are endo-trivial and Spill𝑚 (H[H0,HC0]) = 𝑉 (H). Then
H-Retraction can be polynomially reduced to QCSP(H).

Proof. Let G be an instance of H-Retraction. Let𝑚 be the size of |𝑉 (H0) | and 𝑛 be the size of

|𝑉 (H) |. We build an instance 𝜑 ofQCSP(H) in the following fashion. Consider all possible functions

𝜆 : [𝑛] → 𝑉 (H). For some such 𝜆, let G(𝜆) be the graph enriched with constants 𝑐1, . . . , 𝑐𝑛 where

these are interpreted over some subset of 𝑉 (H) according to 𝜆 in the natural way (acting on the

subscripts).

Let G =
⊗

𝜆∈𝑉 (H) [𝑛] G(𝜆). Let G𝑑
, H

𝑑
and H

𝑑
0
be the diagonal copies of G, H and H0 in G. Let

H be the subgraph of G induced by 𝑉 (H) × · · · ×𝑉 (H). Note that the constants 𝑐1, . . . , 𝑐𝑛 live in

H . Now build G′
from G by augmenting a new copy of Cyl

∗
𝑚 for every vertex 𝑣 ∈ 𝑉 (H) \𝑉 (H𝑑

0
).

Vertex 𝑣 is to be identified with any vertex in the top copy of DC
∗
𝑚 in Cyl

∗
𝑚 and the bottom copy

of DC
∗
𝑚 is to be identified with HC0 in H

𝑑
0
according to the identity function.

Finally, build𝜑 from the canonical query of G′
where we additionally turn the constants 𝑐1, . . . , 𝑐𝑛

to outermost universal variables.

First suppose that G retracts to H by 𝑟 . Let 𝜆 be some assignment of the universal variables of

𝜑 to H. To prove 𝜑 ∈ QCSP(H) it suffices to prove that there is a homomorphism from G′
to H

that extends 𝜆 and for this it suffices to prove that there is a homomorphism from G that extends 𝜆.

This is always possible since we have Spill𝑚 (H[H0,HC0]) = 𝑉 (H) by assumption.

Henceforth let us consider the homomorphic image of G that is G(𝜆). To prove 𝜑 ∈ QCSP(H) it
suffices to prove that there is a homomorphism from G(𝜆) to H that extends 𝜆. Note that it will be

sufficient to prove that G retracts to H. Well this was our original assumption so we are done.

Suppose now 𝜑 ∈ QCSP(H). Choose some surjection for 𝜆, the assignment of the universal

variables of 𝜑 to H. Recall 𝑁 = |𝑉 (H) [𝑛] |. The evaluation of the existential variables that witness

𝜑 ∈ QCSP(H) induces a surjective homomorphism 𝑠 from G′
to H which contains within it a

surjective homomorphism 𝑠 ′ from H = H
𝑁
to H. Consider the diagonal copy of H

𝑑
0
⊂ H

𝑑 ⊂ G
𝑑

in (G)𝑁 . By abuse of notation we will also consider each of 𝑠 and 𝑠 ′ acting just on the diagonal.

If |𝑠 ′(H𝑑
0
) | = 1, by construction of G′

, we have |𝑠 ′(H𝑑 ) | = 1. By Lemma 2.1, this would mean 𝑠 ′ is
uniformly mapping H to one vertex, which is impossible as 𝑠 ′ is surjective. Now we will work

exclusively on the diagonal copy G
𝑑
. As 1 < |𝑠 ′(H𝑑

0
) | < 𝑚 is not possible either due to Lemma 2.7,

we find that |𝑠 ′(H𝑑
0
) | = 𝑚, and indeed 𝑠 ′ maps H

𝑑
0
to a copy of itself in H which we will call

H
′
0
= 𝑖 (H𝑑

0
) for some isomorphism 𝑖 .

As (H,H0) is endo-trivial, Lemma 3.4 tells us that the restriction of 𝑠 ′ to H
𝑑
is an automorphism

of H
𝑑
, which we call 𝛼 . The required retraction from G to H is now given by 𝛼−1 ◦ 𝑠 ′. □

3.3 The strongly connected case: Generalising the Base Cases
We now generalise the two base cases to more general cases via some recursive procedure. After-

wards we will show how to combine these two cases to complete our proof. We will first need a

slightly generalised version of Lemma 3.4, which nonetheless has virtually the same proof. For

completeness of this article we provide this proof from [15].

Lemma 3.6 ([15]). Let H2 ⊃ H1 ⊃ 𝐻0 be a sequence of strongly connected reflexive tournaments,
each one a subtournament of the one before. Suppose that any endomorphism of H1 that fixes H0 is an
automorphism. Then any endomorphism ℎ of H2 that maps H0 to an isomorphic copy H

′
0
= 𝑖 (H0) of

itself also gives an isomorphic copy of H1 in ℎ(H1).

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

QCSP on Reflexive Tournaments 111:11

Proof. For contradiction, suppose there is an endomorphism ℎ of H2 that maps H0 to an

isomorphic copy H
′
0
= 𝑖 (H0) of itself that does not yield an isomorphic copy of H1. In particular,

|ℎ(H1) | < |𝑉 (H1) |. We proceed as in the proof of the Lemma 3.4. Chooseℎ−1 in the following fashion.
We let ℎ−1 of ℎ(H0) be the natural isomorphism of ℎ(H0) to H0 (that inverts the isomorphism given

by ℎ from H0 to H
′
0
). Otherwise we choose ℎ−1 arbitrarily, such that ℎ−1 (𝑦) = 𝑥 only if ℎ(𝑥) = 𝑦.

Since H2 is a reflexive tournament, ℎ−1 is an isomorphism. And ℎ−1 ◦ ℎ is an endomorphism of H2

that fixes H0 that does not yield an isomorphic copy of H1 in ℎ(H1), a contradiction. □

The following two lemmas generalise Propositions 3.3 and 3.5.

Proposition 3.7 (General Case I). Let H0,H1, . . . ,H𝑘 ,H𝑘+1 be reflexive tournaments, the first 𝑘
of which have Hamilton cycles HC0,HC1, . . . ,HC𝑘 , respectively, so that H0 ⊆ 𝐻1 ⊆ · · · ⊆ H𝑘 ⊆ H𝑘+1 .
Assume that H0, (H1,H0), . . . , (H𝑘 ,H𝑘−1) are endo-trivial and that

Spill𝑎0
(H1 [H0,HC0]) = 𝑉 (H1)

Spill𝑎1
(H2 [H1,HC1]) = 𝑉 (H2)

...
...

...

Spill𝑎𝑘−1
(H𝑘 [H𝑘−1,HC𝑘−1]) = 𝑉 (H𝑘 ).

Moreover, assume thatH𝑘+1 retracts toH𝑘 and also to every isomorphic copyH′
𝑘
= 𝑖 (H𝑘 ) ofH𝑘 inH𝑘+1

with Spill𝑎𝑘
(H𝑘+1 [H′

𝑘
, 𝑖 (HC𝑘 )]) = 𝑉 (H𝑘+1). Then H𝑘 -Retraction can be polynomially reduced to

QCSP(H𝑘+1).

Proof. Let 𝑎𝑘+1, . . . , 𝑎0 be the cardinalities of |𝑉 (H𝑘+1) |, . . . , |𝑉 (H0 |), respectively. Let 𝑛 = 𝑎𝑘+1.
LetG be an instance ofH𝑘 -Retraction. We will build an instance𝜑 ofQCSP(H𝑘+1) in the following
fashion. First, take a copy of H𝑘+1 together with G and build G

′
by identifying these on the copy of

H𝑘 that they both possess as an induced subgraph.

Consider all possible functions 𝜆 : [𝑛] → 𝑉 (H𝑘+1). For some such 𝜆, let G′(𝜆) be the graph en-

riched with constants 𝑐1, . . . , 𝑐𝑛 where these are interpreted over some subset of𝑉 (H𝑘+1) according
to 𝜆 in the natural way (acting on the subscripts).

Let G′ =
⊗

𝜆∈𝑉 (H𝑘+1) [𝑛] G′(𝜆). Let G′𝑑
, H

𝑑
𝑘+1 and H

𝑑
𝑘
etc. be the diagonal copies of G

′𝑑
, H𝑘+1

and H𝑘 in G′
. Let H𝑘+1 be the subgraph of G′

induced by 𝑉 (H𝑘+1) × · · · ×𝑉 (H𝑘+1). Note that the
constants 𝑐1, . . . , 𝑐𝑛 live inH𝑘+1. Now build G′′

from G′
by augmenting a new copy of Cyl

∗
𝑎𝑘

for

every vertex 𝑣 ∈ 𝑉 (H𝑘+1) \ 𝑉 (H𝑑
𝑘
). Vertex 𝑣 is to be identified with any vertex in the top copy

of DC𝑎𝑘 in Cyl
∗
𝑎𝑘

and the bottom copy of DC𝑎𝑘 is to be identified with HC𝑘 in H
𝑑
𝑘
according to the

identity function.

Then, for each 𝑖 ∈ [𝑘], and 𝑣 ∈ 𝑉 (H𝑑
𝑖 ) \𝑉 (H𝑑

𝑖−1), add a copy of Cyl
∗
𝑎𝑖−1 , where 𝑣 is identified with

any vertex in the top copy of DC
∗
𝑎𝑖−1 in Cyl

∗
𝑎𝑖−1 and the bottom copy of DC

∗
𝑖−1 is to be identified

with H𝑖−1 according to the identity map of DC
∗
𝑎𝑖−1 to HC𝑖−1.

Finally, build𝜑 from the canonical query ofG′′
where we additionally turn the constants 𝑐1, . . . , 𝑐𝑛

to outermost universal variables.

First suppose that G retracts to H𝑘 . Let 𝜆 be some assignment of the universal variables of 𝜑 to

H𝑘+1. To prove 𝜑 ∈ QCSP(H𝑘+1) it suffices to prove that there is a homomorphism from G′′
to H𝑘+1

that extends 𝜆 and for this it suffices to prove that there is a homomorphism from G′
that extends 𝜆.

Let us explain why. We map the various copies of Cyl
∗
𝑎𝑖−1 in G

′′
in any suitable fashion, which will

always exist due to our assumptions and the fact that Spill𝑎𝑘
(H𝑘+1 [H𝑘 ,HC𝑘 ]) = 𝑉 (H𝑘+1), which

follows from our assumption that H𝑘+1 retracts to H𝑘 and Lemma 3.2.

Henceforth let us consider the homomorphic image ofG′
that isG′(𝜆). To prove𝜑 ∈ QCSP(H𝑘+1)

it suffices to prove that there is a homomorphism from G
′(𝜆) to H𝑘+1 that extends 𝜆. Note that it
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will be sufficient to prove that G
′
retracts to H𝑘+1. Let ℎ be the natural retraction from G

′
to H𝑘+1

that extends the known retraction from G to H𝑘 . We are done.

Suppose now 𝜑 ∈ QCSP(H𝑘+1). Choose some surjection for 𝜆, the assignment of the universal

variables of 𝜑 to H𝑘+1. Let 𝑁 = |𝑉 (H𝑘+1) [𝑛] |. The evaluation of the existential variables that

witness 𝜑 ∈ QCSP(H𝑘+1) induces a surjective homomorphism 𝑠 from G′
to H𝑘+1 which contains

within it a surjective homomorphism 𝑠 ′ from H = H
𝑁
𝑘+1 to H𝑘+1. Consider the diagonal copy of

H
𝑑
0
⊂ · · · ⊂ H

𝑑
𝑘
⊂ H

𝑑
𝑘+1 ⊂ 𝐺 ′𝑑

inG′
. By abuse of notationwewill also consider each of 𝑠 and 𝑠 ′ acting

just on the diagonal. If |𝑠 ′(H𝑑
0
) | = 1, by construction of G′′

, we could follow the chain of spills to

deduce that |𝑠 ′(H𝑑
𝑘+1) | = 1, which is not possible by Lemma 2.1. Moreover, 1 < |𝑠 ′(𝐻𝑑

0
) | < |𝑉 (𝐻𝑑

0
) |

is impossible due to Lemma 2.7. Now we will work exclusively on the diagonal copy G
′𝑑
.

Thus, |𝑠 ′(H𝑑
0
) | = |𝑉 (H𝑑

0
) | and indeed 𝑠 ′ maps H

𝑑
0
to an isomorphic copy of itself in H𝑘+1 which

we will call H
′
0
= 𝑖 (H𝑑

0
). We now apply Lemma 3.6 as well as our assumed endo-trivialities to derive

that 𝑠 ′ in fact maps H
𝑑
𝑘
by the isomorphism 𝑖 to a copy of itself in H𝑘+1 which we will call H

′
𝑘
. Since

𝑠 ′ is surjective, we can deduce that Spill𝑎𝑘
(H𝑘+1 [H′

𝑘
, 𝑖 (HC𝑑

𝑘
)]) = 𝑉 (H𝑘+1) in the same way as in the

proof of Proposition 3.3. and so there exists a retraction 𝑟 from H𝑘+1 to H
′
𝑘
. Now 𝑖−1 ◦ 𝑟 ◦ 𝑠 ′ gives

the desired retraction of G to H𝑘 . □

Proposition 3.8 (General Case II). LetH0,H1, . . . ,H𝑘 ,H𝑘+1 be reflexive tournaments, the first𝑘+1
of which have Hamilton cycles HC0,HC1, . . . ,HC𝑘 , respectively, so that H0 ⊆ 𝐻1 ⊆ · · · ⊆ H𝑘 ⊆ H𝑘+1.
Suppose that H0, (H1,H0), . . . , (H𝑘 ,H𝑘−1), (H𝑘+1,H𝑘 ) are endo-trivial and that

Spill𝑎0
(H1 [H0,HC0]) = 𝑉 (H1)

Spill𝑎1
(H2 [H1,HC1]) = 𝑉 (H2)

...
...

...

Spill𝑎𝑘−1
(H𝑘 [H𝑘−1,HC𝑘−1]) = 𝑉 (H𝑘 )

Spill𝑎𝑘
(H𝑘+1 [H𝑘 ,HC𝑘 ]) = 𝑉 (H𝑘+1)

Then H𝑘+1-Retraction can be polynomially reduced to QCSP(H𝑘+1).

Proof. Let 𝑛 = 𝑎𝑘+1 = |𝑉 (H𝑘+1) | and let 𝑎𝑘 , . . . , 𝑎0 be the cardinalities of |𝑉 (H𝑘 ) |, . . . , |𝑉 (H0) |,
respectively. Let G be an instance of H𝑘+1-Retraction. We build an instance 𝜑 of QCSP(H𝑘+1)
in the following fashion. Consider all possible functions 𝜆 : [𝑛] → 𝑉 (H𝑘+1). For some such 𝜆, let

G(𝜆) be the graph enriched with constants 𝑐1, . . . , 𝑐𝑛 where these are interpreted over some subset

of 𝑉 (H𝑘+1) according to 𝜆 in the natural way (acting on the subscripts).

LetG =
⊗

𝜆∈𝑉 (H𝑘+1) [𝑛] G(𝜆). LetG𝑑
,H

𝑑
𝑘+1,H

𝑑
𝑘
, . . . ,H

𝑑
0
be the diagonal copies ofG,H𝑘+1,H𝑘 , . . . ,H0

in G. Let H𝑘+1 be the subgraph of G induced by 𝑉 (H𝑘+1) × · · · ×𝑉 (H𝑘+1). Note that the constants
𝑐1, . . . , 𝑐𝑛 live in H𝑘+1.

Build G′
from G by first augmenting a new copy of Cyl

∗
𝑎𝑘

for every vertex 𝑣 ∈ 𝑉 (H𝑘+1) \𝑉 (H𝑑
𝑘
).

Vertex 𝑣 is to be identified with any vertex in the top copy of DC𝑎𝑘 in Cyl
∗
𝑎𝑘

and the bottom copy

of DC𝑎𝑘 is to be identified with HC𝑘 in H
𝑑
𝑘
according to the identity function. Now, for each 𝑖 ∈ [𝑘],

and 𝑣 ∈ 𝑉 (H𝑑
𝑖 ) \𝑉 (H𝑑

𝑖−1), we add a copy of Cyl
∗
𝑎𝑖−1 , where 𝑣 is identified with any vertex in the top

copy of DC
∗
𝑎𝑖−1 in Cyl

∗
𝑎𝑖−1 and the bottom copy of DC

∗
𝑖−1 is to be identified with H

𝑑
𝑖−1 according to

the identity map of DC
∗
𝑎𝑖−1 to HC

𝑑
𝑖−1.

Finally, build𝜑 from the canonical query of G′
where we additionally turn the constants 𝑐1, . . . , 𝑐𝑛

to outermost universal variables.

First suppose that G retracts to H𝑘+1. Let ℎ be a retraction from G to H𝑘+1. Let 𝜆 be some

assignment of the universal variables of 𝜑 to H𝑘+1. To prove 𝜑 ∈ QCSP(H𝑘+1) it suffices to prove

that there is a homomorphism from G′
to H𝑘+1 that extends 𝜆 and for this it suffices to prove that
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there is a homomorphism from G that extends 𝜆. The extension of the latter to the former will

always be possible due to the spill assumptions.

Henceforth let us consider the homomorphic image of G that is G(𝜆). To prove 𝜑 ∈ QCSP(H𝑘+1)
it suffices to prove that there is a homomorphism from G(𝜆) to H𝑘+1 that extends 𝜆. Note that it
will be sufficient to prove that G retracts to H𝑘+1. Well this was our original assumption so we are

done.

Suppose now 𝜑 ∈ QCSP(H𝑘+1). Choose some surjection for 𝜆, the assignment of the universal

variables of 𝜑 to H𝑘+1. Let 𝑁 = |𝑉 (H𝑘+1) [𝑛] |. The evaluation of the existential variables that

witness 𝜑 ∈ QCSP(H𝑘+1) induces a surjective homomorphism 𝑠 from G to H𝑘+1 which contains

within it a surjective homomorphism 𝑠 ′ fromH𝑘+1 = H
𝑁
𝑘+1 to H𝑘+1. Consider the diagonal copy of

H
𝑑
0
⊂ H

𝑑
1
⊂ · · ·𝐻𝑑

𝑘+1 in G. By abuse of notation we will also consider each of 𝑠 and 𝑠 ′ acting just

on the diagonal. If |𝑠 ′(H𝑑
0
) | = 1, by construction of G′

, we have |𝑠 ′(H𝑑 ) | = 1. Now we follow the

chain of spills to deduce that |𝑠 ′(H𝑘+1) | = 1, a contradiction. We now apply Lemma 3.6 as well

as our assumed endo-trivialities to derive that 𝑠 ′ in fact maps H
𝑑
𝑘
by the isomorphism 𝑖 to a copy

of itself in H𝑘+1, which we will call H
′
𝑘
. Now we can deduce, via Lemma 3.4, that 𝑠 ′(H𝑑

𝑘+1) is an
automorphism of H𝑘+1, which we call 𝛼 . The required retraction from G to H𝑘+1 is now given by

𝛼−1 ◦ 𝑠 ′. □

Corollary 3.9. Let H be a non-trivial strongly connected reflexive tournament. Then QCSP(H) is
NP-hard.

Proof. As H is a strongly connected reflexive tournament, which has more than one vertex by

our assumption, H is not transitive. Note that H-Retraction is NP-complete (see Section 4.5 in

[15], using results from [5, 14, 16]). Thus, if H is endo-trivial, the result follows from Proposition 3.3

(note that we could also have used Corollary 2.8).

Suppose H is not endo-trivial. Then, by Lemma 2.4, H is not retract-trivial either. This means

that H has a non-trivial retraction to some subtournament H0. We may assume that H0 is endo-

trivial, as otherwise we will repeat the argument until we find a retraction from H to an endo-trivial

(and consequently strongly connected) subtournament.

Suppose that H retracts to all isomorphic copies H
′
0
= 𝑖 (H0) of H0 within it, except possibly

those for which Spill𝑚 (H[H′
0
, 𝑖 (HC0)]) ≠ 𝑉 (H). Then the result follows from Proposition 3.3. So

there is a copy H
′
0
= 𝑖 (H0) to which H does not retract for which Spill𝑚 (H[H′

0
, 𝑖 (HC0)]) = 𝑉 (H).

If (H,H′
0
) is endo-trivial, the result follows from Proposition 3.5. Thus we assume (H,H′

0
) is not

endo-trivial and we deduce the existence of H
′
0
⊂ H1 ⊂ H (H1 is strictly between H and H

′
0
)

so that (H1,H
′
0
) and 𝐻 ′

0
are endo-trivial and H retracts to H1. Now we are ready to break out.

Either H retracts to all isomorphic copies of H
′
1
= 𝑖 (H1) in H, except possibly for those so that

Spill𝑚 (H[H′
1
, 𝑖 (HC1)]) ≠ 𝑉 (H), and we apply Proposition 3.7, or there exists a copy H

′
1
, with

Spill𝑚 (H[H′
1
, 𝑖 (HC1)]) = 𝑉 (H), to which it does not retract. If (H,H′

1
) is endo-trivial, the result

follows from Proposition 3.8. Otherwise we iterate the method, which will terminate because our

structures are getting strictly smaller. □

3.4 An initial strongly connected component that is non-trivial
Let H

+
denote any reflexive tournament that has an initial strongly connected component H that

is non-trivial (not of size 1). Let Cyl
∗+
𝑚 be Cyl

∗
𝑚 but with a pendant out-edge hanging from the

top-most cycle. This edge is directed to the vertex 𝑥 . Thus, Cyl∗+𝑚 contains one additional vertex

to Cyl
∗
𝑚 and this has an incoming edge from some vertex in the top-most cycle DC

∗
𝑚 (it does not

matter which one). Cyl
∗+
𝑚 is drawn in Figure 4.
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Strongly connected

Initial component

strongly connected

Graph H H
+

Gadget Cyl
∗
𝑚 Cyl

∗+
𝑚

Subgraph

(strongly connected)

H0 H0

Hamilton cycle HC0 HC0

Spill Spill𝑚 (H[H0,HC0)) Spill
+
𝑚 (H+ [H0,HC0])

Table 2. Mapping notation from the strongly connected case to the case in which there is an initial strongly
connected component that is non-trivial.
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Fig. 4. The gadget Cyl∗+𝑚 in the case𝑚 := 4 (self-loops are not drawn). We usually visualise the right-hand
copy of DC∗

4
as the “bottom” copy and then we talk about vertices “above” and “below” according to the red

arrows. The vertex 𝑥 is depicted at the left-hand extremity.

Define Spill
+
𝑚 as Spill𝑚 but with respect to Cyl

∗+
𝑚 instead of Cyl

∗
𝑚 . At this point we risk confusion

with our overburdened notation. Let us address in Table 2 how our notation maps from the strongly

connected case to that in which there is an initial strongly connected component that is non-trivial.

Note that Lemma 3.1, with Cyl
∗
𝑚 replaced by Cyl

∗+
𝑚 , does not hold.

Lemma 3.10. Let H+ be some reflexive tournament that has an initial strongly connected component
H that is non-trivial and contains endo-trivalH0 with Hamilton cycleHC0. Suppose Spill+𝑚 (H[H0,HC0]) =
𝑉 (H), then Spill

+
𝑚 (H+ [H0,HC0]) = 𝑉 (H+).

Proof. We only need to argue for the 𝑥 ∈ H
+ \𝐻 . In this case, we may evaluate all the cycles

in Cyl
∗+
𝑚 onto HC0 with each vertex mapping to the one directly beneath it. This works as 𝑥 is

forward-adjacent from every vertex in HC0. □

The condition of endo-triviality of H0 was not used in the proof of Lemma 3.10.

Proposition 3.11 (Base Case A-I.). Let H+ be some reflexive tournament that has an initial
strongly connected component H that is non-trivial and contains endo-trivial H0 with Hamilton
cycle HC0. Assume that H retracts to H

′
0
for every isomorphic copy H

′
0
= 𝑖 (H0) of H0 in H with

Spill
+
𝑚 (H[H′

0
, 𝑖 (HC0)]) = 𝑉 (H). Then H0-Retraction can be polynomially reduced to QCSP(H+).

Proof. Let𝑚 be the size of |𝑉 (H0) | and 𝑛 be the size of |𝑉 (H) |. Let G be an instance of H0-

Retraction. We build an instance 𝜑 of QCSP(H+) in the following fashion. First, take a copy of H
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together with G and build G
′
by identifying these on the copy of H0 that they both possess as an

induced subgraph.

Now, consider all possible functions 𝜆 : [𝑛] → 𝑉 (H). For some such 𝜆, let G′(𝜆) be the graph
enriched with constants 𝑐1, . . . , 𝑐𝑛 where these are interpreted over some subset of 𝑉 (H) according
to 𝜆 in the natural way (acting on the subscripts).

Let G′ =
⊗

𝜆∈𝑉 (H) [𝑛] G′(𝜆). Let G′𝑑
, H

𝑑
and H

𝑑
0
be the diagonal copies of G

′
, H and H0 in G′

. Let

H be the subgraph of G′
induced by 𝑉 (H) × · · · ×𝑉 (H). Note that the constants 𝑐1, . . . , 𝑐𝑛 live in

H . Now build G′′
from G′

by augmenting a new copy of Cyl
∗+
𝑚 for every vertex 𝑣 ∈ 𝑉 (H) \𝑉 (H𝑑

0
).

Vertex 𝑣 is to be identified with the vertex 𝑥 that is at the end of the out-edge pendant on the top

copy of DC
∗
𝑚 in Cyl

∗+
𝑚 and the bottom copy of DC

∗
𝑚 is to be identified with HC0 in H

𝑑
0
according to

the identity function. Call these the Cyl∗+𝑚 of the second stage.
Now build G′′′

by adding an edge from each vertex 𝑐𝑖 to a new vertex 𝑑𝑖 (for each 𝑖 ∈ [𝑛]). Now
add a copy of Cyl

∗+
𝑚 for every vertex 𝑣 ∈ {𝑑1, . . . , 𝑑𝑛}. Vertex 𝑣 is to be identified with the vertex 𝑥

that is at the end of the out-edge pendant on the top copy of DC
∗
𝑚 in Cyl

∗+
𝑚 and the bottom copy

of DC
∗
𝑚 is to be identified with HC0 in H

𝑑
0
according to the identity function. Call these the Cyl∗+𝑚

of the third stage.
Finally, build𝜑 from the canonical query ofG′′′

, where we additionally turn the vertices𝑑1, . . . , 𝑑𝑛
to outermost universal variables 𝑧1, . . . , 𝑧𝑛 . Then existentially quantify all remaining constants and

vertices innermost. Finally, restrict all except the universal variables to be in 𝑉 (H), appealing to
the definition guaranteed by Corollary 2.3.

We claim that G retracts to H0 if and only if 𝜑 ∈ QCSP(H+).
First suppose that G retracts to H0 by 𝑟 . Let 𝜆

′
be some assignment of the universal variables

𝑧1, . . . , 𝑧𝑛 of 𝜑 to H
+
and choose 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these in H, mapped by 𝜆. To prove

𝜑 ∈ QCSP(H+) it suffices to prove that there is a homomorphism from G′′
to H

+
that extends 𝜆

and for this it suffices to prove that there is a homomorphism ℎ from G′
to H that extends 𝜆. Let

us explain why. Because H retracts to H0, we have Spill𝑚 (H[H0,HC0]) = 𝑉 (H) due to Lemma 3.2

which implies the weaker Spill
+
𝑚 (H[H0,HC0]) = 𝑉 (H). For the Cyl

∗+
𝑚 of the second stage, the

weaker statement suffices, but for the Cyl
∗+
𝑚 of the third stage, the stronger statement is needed.

Henceforth let us consider the homomorphic image of G′
that is G′(𝜆). To prove 𝜑 ∈ QCSP(H+)

it suffices to prove that there is a homomorphism from G
′(𝜆) to H that extends 𝜆. Note that it will

be sufficent to prove that G
′
retracts to H. Let ℎ be the natural retraction from G

′
to H that extends

the known retraction 𝑟 from G to H0. We are done.

Suppose now 𝜑 ∈ QCSP(H+). Choose some surjection for 𝜆′ mapping 𝑧1, . . . , 𝑧𝑛 to H. Choose

some 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these and let this be the map 𝜆. Note that it is not possible

for all 𝑦1, . . . , 𝑦𝑛 to be evaluated as a single vertex as the initial strongly connected component is

non-trivial.

The evaluation of the existential variables that witness 𝜑 ∈ QCSP(H) induces a non-trivial

homomorphism 𝑠 from G′′
to H which contains within it a non-trivial homomorphism 𝑠 ′ from

H = H
𝑁
to H. Consider the diagonal copy of H

𝑑
0
⊂ H

𝑑 ⊂ G
′𝑑
in G′

. By abuse of notation we will

also consider each of 𝑠 and 𝑠 ′ acting just on the diagonal.

If |𝑠 ′(H𝑑
0
) | = 1, by construction of G′′

, we have that 𝑠 ′(H𝑑 ) is an in-star (that is, a single terminal

vertex receiving an edge from potentially numerous initial vertices), but this is not possible as H
𝑑

is strongly connected. As 1 < |𝑠 ′(H𝑑
0
) | < 𝑚 is not possible either due to Lemma 2.7, we find that

|𝑠 ′(H𝑑
0
) | =𝑚, and indeed 𝑠 ′ maps H

𝑑
0
to a copy of itself in H which we will call H

′
0
= 𝑖 (H𝑑

0
) for some

isomorphism 𝑖 .

We claim that Spill
+
𝑚 (H[H′

0
, 𝑖 (HC𝑑

0
)]) = 𝑉 (H). Since 𝜆′ is surjective on H

+
, this is enforced

explicitly by the Cyl
∗+
𝑚 of the third stage. As Spill

+
𝑚 (H[H′

0
, 𝑖 (HC𝑑

0
)]) = 𝑉 (H), we find, by assumption
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of the lemma, that there exists a retraction 𝑟 from H
𝑑
to H

′
0
. Now 𝑖−1 ◦ 𝑟 ◦ 𝑠 ′ is the desired retraction

of G to H0. □

Proposition 3.12 (Base Case A-II). Let H+ be some reflexive tournament that has an initial
strongly connected component H that is non-trivial and contains H0 with Hamilton cycle HC0 so
that (H,H0) and H0 are endo-trivial and Spill+𝑚 (H[H0,HC0]) = 𝑉 (H). Then H-Retraction can be
polynomially reduced to QCSP(H+).

Proof. Let 𝑚 be the size of |𝑉 (H0) | and 𝑛 be the size of |𝑉 (H) |. Let G be an instance of H-

Retraction. We build an instance 𝜑 of QCSP(H+) in the following fashion. Consider all possible

functions 𝜆 : [𝑛] → 𝑉 (H). For some such 𝜆, let G(𝜆) be the graph enriched with constants 𝑐1, . . . , 𝑐𝑛
where these are interpreted over some subset of 𝑉 (H) according to 𝜆 in the natural way (acting on

the subscripts).

Let G =
⊗

𝜆∈𝑉 (H) [𝑛] G(𝜆). Let G𝑑
, H

𝑑
and H

𝑑
0
be the diagonal copies of G, H and H0 in G. Let

H be the subgraph of G induced by 𝑉 (H) × · · · ×𝑉 (H). Note that the constants 𝑐1, . . . , 𝑐𝑛 live in

H . Now build G′
from G by augmenting a new copy of Cyl

∗+
𝑚 for every vertex 𝑣 ∈ 𝑉 (H) \𝑉 (H𝑑

0
).

Vertex 𝑣 is to be identified with the vertex 𝑥 that is at the end of the out-edge pendant on the top

copy of DC
∗
𝑚 in Cyl

∗+
𝑚 and the bottom copy of DC

∗
𝑚 is to be identified with HC0 in H

𝑑
0
according to

the identity function.

Now build G′′
by adding an edge from each vertex 𝑐𝑖 to a new vertex 𝑑𝑖 (for each 𝑖 ∈ [𝑛]).

Finally, build 𝜑 from the canonical query of G′′
, where we additionally turn the vertices 𝑑1, . . . , 𝑑𝑛

to outermost universal variables 𝑧1, . . . , 𝑧𝑛 . Then existentially quantify all remaining constants and

vertices innermost. Finally, restrict all except the universal variables to be in 𝑉 (H).
First suppose that G retracts to H by 𝑟 . Let 𝜆′ be some assignment of the universal variables

𝑧1, . . . , 𝑧𝑛 of 𝜑 to H
+
and choose 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these in H, mapped by 𝜆.

To prove 𝜑 ∈ QCSP(H+) it suffices to prove that there is a homomorphism from G′
to H

+
that

extends 𝜆 and for this it suffices to prove that there is a homomorphism ℎ from G to H that extends

𝜆. Let us explain why. By assumption, we have Spill
+
𝑚 (H[H0,HC0]) = 𝑉 (H).

Henceforth let us consider the homomorphic image of G that is G(𝜆). To prove 𝜑 ∈ QCSP(H+)
it suffices to prove that there is a homomorphism from G(𝜆) to H that extends 𝜆. Note that it will

be sufficient to prove that G retracts to H. We are done.

Suppose now 𝜑 ∈ QCSP(H+). Choose some surjection for 𝜆′ mapping 𝑧1, . . . , 𝑧𝑛 to H. Choose

some 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these (and therefore in H) and let this be the map 𝜆. Note

that it is not possible for all 𝑦1, . . . , 𝑦𝑛 to be evaluated as a single vertex as H is strongly connected.

Recall 𝑁 = |𝑉 (H) [𝑛] |. The evaluation of the existential variables that witness 𝜑 ∈ QCSP(H) induces
a non-trivial homomorphism 𝑠 from G′

to H which contains within it a non-trivial homomorphism

𝑠 ′ fromH = H
𝑁
to H. Consider the diagonal copy of H

𝑑
0
⊂ H

𝑑 ⊂ G
𝑑
in G. By abuse of notation we

will also consider each of 𝑠 and 𝑠 ′ acting just on the diagonal. If |𝑠 ′(H𝑑
0
) | = 1, by construction of G′′

with the Cyl
∗+
𝑚 , we have 𝑠 ′(H𝑑 ) is an in-star, but this is not possible as H

𝑑
is strongly connected. As

1 < |𝑠 ′(H𝑑
0
) | < 𝑚 is not possible either due to Lemma 2.7, we find that |𝑠 ′(H𝑑

0
) | =𝑚, and indeed 𝑠 ′

maps H
𝑑
0
to a copy of itself in H which we will call H

′
0
= 𝑖 (H𝑑

0
) for some isomorphism 𝑖 .

As (H,H0) is endo-trivial, Lemma 3.4 tells us that the restriction of 𝑠 ′ to H
𝑑
is an automorphism

of H
𝑑
, which we call 𝛼 . The required retraction from G to H is now given by 𝛼−1 ◦ 𝑠 ′. □

It remains to generalise these base cases.

Proposition 3.13 (General Case A-I). Let H+
𝑘+1 be some reflexive tournament that has an initial

strongly connected component H𝑘+1. Let H0,H1, . . . ,H𝑘 ,H𝑘+1 be reflexive tournaments, the first 𝑘 of
which have Hamilton cycles HC0,HC1, . . . ,HC𝑘 , respectively, so that H0 ⊆ 𝐻1 ⊆ · · · ⊆ H𝑘 ⊆ H𝑘+1 .
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Assume that H0, (H1,H0), . . . , (H𝑘 ,H𝑘−1) are endo-trivial and that

Spill
+
𝑎0
(H1 [H0,HC0]) = 𝑉 (H1)

Spill
+
𝑎1
(H2 [H1,HC1]) = 𝑉 (H2)

...
...

...

Spill
+
𝑎𝑘−1

(H𝑘 [H𝑘−1,HC𝑘−1]) = 𝑉 (H𝑘 ).

Moreover, assume thatH𝑘+1 retracts toH𝑘 and also to every isomorphic copyH′
𝑘
= 𝑖 (H𝑘 ) ofH𝑘 inH𝑘+1

with Spill
+
𝑎𝑘
(H𝑘+1 [H′

𝑘
, 𝑖 (HC𝑘 )]) = 𝑉 (H𝑘+1). Then H𝑘 -Retraction can be polynomially reduced to

QCSP(H+
𝑘+1).

Proof. Let 𝑛 = 𝑎𝑘+1 = |𝑉 (H𝑘+1) | and let 𝑎𝑘 , . . . , 𝑎0 be the cardinalities of |𝑉 (H𝑘 ) |, . . . , |𝑉 (H0) |,
respectively. Let G be an instance of H𝑘 -Retraction. We will build an instance 𝜑 of QCSP(H+

𝑘+1)
in the following fashion. First, take a copy of H𝑘+1 together with G and build G

′
by identifying

these on the copy of H𝑘 that they both possess as an induced subgraph.

Consider all possible functions 𝜆 : [𝑛] → 𝑉 (H𝑘+1). For some such 𝜆, let G′(𝜆) be the graph en-

riched with constants 𝑐1, . . . , 𝑐𝑛 where these are interpreted over some subset of𝑉 (H𝑘+1) according
to 𝜆 in the natural way (acting on the subscripts).

Let G′ =
⊗

𝜆∈𝑉 (H𝑘+1) [𝑛] G′(𝜆). Let G′𝑑
, H

𝑑
𝑘+1 and H

𝑑
𝑘
etc. be the diagonal copies of G

′
, H𝑘+1 and

H𝑘 in G′
. Let H𝑘+1 be the subgraph of G′

induced by 𝑉 (H𝑘+1) × · · · × 𝑉 (H𝑘+1). Note that the

constants 𝑐1, . . . , 𝑐𝑛 live in H𝑘+1.
Now build G′′

from G′
by augmenting a new copy of Cyl

∗+
𝑎𝑘

for every vertex 𝑣 ∈ 𝑉 (H𝑘+1) \𝑉 (H𝑑
𝑘
).

Vertex 𝑣 is to be identified with the vertex 𝑥 that is at the end of the out-edge pendant on the top

copy of DC𝑎𝑘 in Cyl
∗+
𝑎𝑘

and the bottom copy of DC𝑎𝑘 is to be identified with HC𝑘 in H
𝑑
𝑘
according

to the identity function. Call these the Cyl
∗+
𝑎𝑘

of the second stage. Then, for each 𝑖 ∈ [𝑘], and
𝑣 ∈ 𝑉 (H𝑑

𝑖 ) \𝑉 (H𝑑
𝑖−1), add a copy of Cyl

∗+
𝑎𝑖−1 , where 𝑣 is identified with the vertex 𝑥 that is at the

end of the out-edge pendant on the top copy of DC
∗
𝑎𝑖−1 in Cyl

∗+
𝑎𝑖−1 and the bottom copy of DC

∗
𝑖−1 is

to be identified with H𝑖−1 according to the identity map of DC
∗
𝑎𝑖−1 to HC𝑖−1.

Now build G′′′
by adding an edge from each vertex 𝑐𝑖 to a new vertex 𝑑𝑖 (for each 𝑖 ∈ [𝑛]). Now

add a copy of Cyl
∗+
𝑎𝑘

for every vertex 𝑣 ∈ {𝑑1, . . . , 𝑑𝑛}. Vertex 𝑣 is to be identified with the vertex 𝑥

that is at the end of the out-edge pendant on the top copy of DC𝑎𝑘 in Cyl
∗+
𝑎𝑘

and the bottom copy

of DC𝑎𝑘 is to be identified with HC𝑘 in H
𝑑
𝑘
according to the identity function. Call these the Cyl∗+𝑎𝑘

of the third stage.
Finally, build𝜑 from the canonical query ofG′′′

, where we additionally turn the vertices𝑑1, . . . , 𝑑𝑛
to outermost universal variables 𝑧1, . . . , 𝑧𝑛 . Then existentially quantify all remaining constants and

vertices innermost. Finally, restrict all except the universal variables to be in 𝑉 (H).
First suppose that G retracts to H𝑘 by 𝑟 . Let 𝜆′ be some assignment of the universal variables

𝑧1, . . . , 𝑧𝑛 of 𝜑 to H
+
𝑘+1 and choose 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these in H𝑘+1, mapped by 𝜆. To

prove 𝜑 ∈ QCSP(H+
𝑘+1) it suffices to prove that there is a homomorphism from G′′

to H
+
𝑘+1 that

extends 𝜆 and for this it suffices to prove that there is a homomorphism ℎ from G′
that extends

𝜆. Let us explain why. Because H𝑘+1 retracts to H𝑘 , we have Spill𝑎𝑘
(H𝑘+1 [H𝑘 ,HC𝑘 ]) = 𝑉 (H𝑘+1)

due to Lemma 3.2 which implies the weaker Spill
+
𝑎𝑘
(H𝑘+1 [H𝑘 ,HC𝑘 ]) = 𝑉 (H𝑘+1). For the Cyl∗+𝑎𝑘 of

the second stage, the weaker statement suffices, but for the Cyl
∗+
𝑎𝑘

of the third stage, the stronger

statement is needed. We continue mapping now the various copies of Cyl
∗+
𝑎𝑖−1 in G

′′
in any suitable

fashion, which will always exist due to our assumptions.

Henceforth let us consider the homomorphic image ofG′
that isG′(𝜆). To prove𝜑 ∈ QCSP(H+

𝑘+1)
it suffices to prove that there is a homomorphism from G

′(𝜆) to H𝑘+1 that extends 𝜆. Note that it
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will be sufficient to prove that G
′
retracts to H𝑘+1. Let ℎ be the natural retraction from G

′
to H𝑘+1

that extends the known retraction 𝑟 from G to H𝑘 . We are done.

Suppose now 𝜑 ∈ QCSP(H+
𝑘+1). Choose some surjection for 𝜆, the assignment of the universal

variables of 𝜑 to H𝑘+1. Choose some 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these (and therefore in H𝑘+1)
and let this be the map 𝜆. Note that it is not possible for all 𝑦1, . . . , 𝑦𝑛 to be evaluated as a single

vertex as H𝑘+1 is strongly connected. Let 𝑁 = |𝑉 (H𝑘+1) [𝑛] |. The evaluation of the existential

variables that witness 𝜑 ∈ QCSP(H+
𝑘+1) induces a non-trivial homomorphism 𝑠 from G′

to H𝑘+1
which contains within it a non-trivial homomorphism 𝑠 ′ from H = H

𝑁
𝑘+1 to H𝑘+1. Consider the

diagonal copy of H
𝑑
0
⊂ · · · ⊂ H

𝑑
𝑘
⊂ H

𝑑
𝑘+1 ⊂ 𝐺 ′𝑑

in G′
. By abuse of notation we will also consider

each of 𝑠 and 𝑠 ′ acting just on the diagonal.

If |𝑠 ′(H𝑑
0
) | = 1, by construction of G′′

, we have that 𝑠 ′(H𝑑
1
) is either an in-star or a loop,

but the former is not possible as H
𝑑
1
is strongly connected. Iterating this argument we find that

|𝑠 ′(H𝑑
𝑘+1) | = 1, but this would mean 𝑠 ′ is uniformly mappingH𝑘+1 to one vertex, which is impossible

as 𝑠 ′ is non-trivial. As 1 < |𝑠 ′(H𝑑
0
) | < 𝑚 is not possible either due to Lemma 2.7, we find that

|𝑠 ′(H𝑑
0
) | =𝑚, and indeed 𝑠 ′ maps H

𝑑
0
to a copy of itself in H which we will call H

′
0
= 𝑖 (H𝑑

0
) for some

isomorphism 𝑖 .

We now apply Lemma 3.6 as well as our assumed endo-trivialities to derive that 𝑠 ′ in fact maps

H
𝑑
𝑘
by the isomorphism 𝑖 to a copy of itself in H𝑘+1 which we will call H

′
𝑘
.

We claim that Spill
+
𝑎𝑘
(H𝑘+1 [H′

𝑘+1, 𝑖 (HC
𝑑
𝑎𝑘
)]) = 𝑉 (H𝑘+1). Since 𝜆′ is surjective on H

+
𝑘+1, this is

enforced explicitly by the Cyl
∗+
𝑎𝑘

of the third stage. Thus, there exists a retraction 𝑟 from H𝑘+1 to H
′
𝑘
.

Now 𝑖−1 ◦ 𝑟 ◦ 𝑠 ′ gives the desired retraction of G to H𝑘 . □

Proposition 3.14 (General Case A-II). Let H+
𝑘+1 be some reflexive tournament that has an

initial strongly connected component H𝑘+1 that is non-trivial. Let H0,H1, . . . ,H𝑘 ,H𝑘+1 be reflexive
tournaments, the first 𝑘 + 1 of which have Hamilton cycles HC0,HC1, . . . ,HC𝑘 , respectively, so that
H0 ⊆ 𝐻1 ⊆ · · · ⊆ H𝑘 ⊆ H𝑘+1. Suppose that H0, (H1,H0), . . . , (H𝑘 ,H𝑘−1), (H𝑘+1,H𝑘 ) are endo-trivial
and that

Spill
+
𝑎0
(H1 [H0,HC0]) = 𝑉 (H1)

Spill
+
𝑎1
(H2 [H1,HC1]) = 𝑉 (H2)

...
...

...

Spill
+
𝑎𝑘−1

(H𝑘 [H𝑘−1,HC𝑘−1]) = 𝑉 (H𝑘 )
Spill

+
𝑎𝑘
(H𝑘+1 [H𝑘 ,HC𝑘 ]) = 𝑉 (H𝑘+1)

Then H𝑘+1-Retraction can be polynomially reduced to QCSP(H+
𝑘+1).

Proof. Let 𝑛 = 𝑎𝑘+1 = |𝑉 (H𝑘+1) | and let 𝑎𝑘 , . . . , 𝑎0 be the cardinalities of |𝑉 (H𝑘 ) |, . . . , |𝑉 (H0 |,
respectively. Let G be an instance of H𝑘+1-Retraction. We build an instance 𝜑 of QCSP(H+

𝑘+1)
in the following fashion. Consider all possible functions 𝜆 : [𝑛] → 𝑉 (H𝑘+1). For some such 𝜆, let

G(𝜆) be the graph enriched with constants 𝑐1, . . . , 𝑐𝑛 where these are interpreted over some subset

of 𝑉 (H𝑘+1) according to 𝜆 in the natural way (acting on the subscripts).

LetG =
⊗

𝜆∈𝑉 (H𝑘+1) [𝑛] G(𝜆). LetG𝑑
,H

𝑑
𝑘+1,H

𝑑
𝑘
, . . . ,H

𝑑
0
be the diagonal copies ofG,H𝑘+1,H𝑘 , . . . ,H0

in G. Let H𝑘+1 be the subgraph of G induced by 𝑉 (H𝑘+1) × · · · ×𝑉 (H𝑘+1). Note that the constants
𝑐1, . . . , 𝑐𝑛 live in H𝑘+1.

Now build G′
from G by the following procedure. For each 𝑖 ∈ [𝑘 + 1], and 𝑣 ∈ 𝑉 (H𝑑

𝑖 ) \𝑉 (H𝑑
𝑖−1),

add a copy of Cyl
∗+
𝑎𝑖−1 , where 𝑣 is identified with the vertex 𝑥 that is at the end of the out-edge

pendant on the top copy of DC
∗
𝑎𝑖−1 in Cyl

∗+
𝑎𝑖−1 and the bottom copy of DC

∗
𝑖−1 is to be identified with

H𝑖−1 according to the identity map of DC
∗
𝑎𝑖−1 to HC𝑖−1.

Now build G′′
by adding an edge from each vertex 𝑐𝑖 to a new vertex 𝑑𝑖 (for each 𝑖 ∈ [𝑛]).
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Finally, build 𝜑 from the canonical query of G′′
, where we additionally turn the vertices 𝑑1, . . . , 𝑑𝑛

to outermost universal variables 𝑧1, . . . , 𝑧𝑛 . Then existentially quantify all remaining constants and

vertices innermost. Finally, restrict all except the universal variables to be in 𝑉 (H𝑘+1).
First suppose that G retracts to H𝑘+1 by 𝑟 . Let 𝜆

′
be some assignment of the universal variables

𝑧1, . . . , 𝑧𝑛 of 𝜑 to H
+
𝑘+1 and choose 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these in H𝑘+1, mapped by 𝜆. To

prove 𝜑 ∈ QCSP(H+
𝑘+1) it suffices to prove that there is a homomorphism from G′

to H
+
𝑘+1 that

extends 𝜆 and for this it suffices to prove that there is a homomorphism ℎ from G that extends 𝜆.

The extension of the latter to the former will always be possible due to the spill assumptions.

Henceforth let us consider the homomorphic image of G that is G(𝜆). To prove 𝜑 ∈ QCSP(H+
𝑘+1)

it suffices to prove that there is a homomorphism from G(𝜆) to H𝑘+1 that extends 𝜆. Note that it
will be sufficient to prove that G retracts to H𝑘+1. Well this was our original assumption so we are

done.

Suppose now𝜑 ∈ QCSP(H+
𝑘+1). Choose some surjection for 𝜆′ mapping 𝑧1, . . . , 𝑧𝑛 toH𝑘+1. Choose

some 𝑦1, . . . , 𝑦𝑛 backwards-adjacent to these (and therefore in H𝑘+1) and let this be the map 𝜆. Note

that it is not possible for all𝑦1, . . . , 𝑦𝑛 to be evaluated as a single vertex asH𝑘+1 is strongly connected.
Recall 𝑁 = |𝑉 (H) [𝑛] |. The evaluation of the existential variables that witness 𝜑 ∈ QCSP(H+

𝑘+1)
induces a non-trivial homomorphism 𝑠 from G to H𝑘+1 which contains within it a non-trivial

homomorphism 𝑠 ′ fromH𝑘+1 = H
𝑁
𝑘+1 to H𝑘+1. Consider the diagonal copy of H

𝑑
0
⊂ H

𝑑
1
⊂ · · ·𝐻𝑑

𝑘+1
in G. By abuse of notation we will also consider each of 𝑠 and 𝑠 ′ acting just on the diagonal.

If |𝑠 ′(H𝑑
0
) | = 1we deduce that 𝑠 ′(H𝑑

1
) is either an in-star or a loop, but the former is not possible as

H
𝑑
1
is strongly connected. Iterating this argument we find that |𝑠 ′(H𝑑

𝑘+1) | = 1, but this would mean

𝑠 ′ is uniformly mapping to one vertex, which is impossible as 𝑠 ′ is non-trivial. As 1 < |𝑠 ′(H𝑑
0
) | < 𝑚

is not possible either due to Lemma 2.7, we find that |𝑠 ′(H𝑑
0
) | =𝑚, and indeed 𝑠 ′ maps H

𝑑
0
to a copy

of itself in H which we will call H
′
0
= 𝑖 (H𝑑

0
) for some isomorphism 𝑖 .

We now apply Lemma 3.6 as well as our assumed endo-trivialities to derive that 𝑠 ′ in fact maps

H
𝑑
𝑘
by the isomorphism 𝑖 to a copy of itself in H𝑘+1, which we will call H

′
𝑘
. Now we can deduce,

via Lemma 3.4, that ℎ(H𝑑
𝑘+1) is an automorphism of H𝑘+1, which we call 𝛼 . The required retraction

from G to H𝑘+1 is now given by 𝛼−1 ◦ 𝑠 ′. □

The proof of the following is exactly as that for Corollary 3.9 modulo Spill becoming Spill
+
.

Corollary 3.15. Let H be a reflexive tournament with an initial strongly connected component
that is non-trivial. Then QCSP(H) is NP-hard.

4 THE PROOF OF THE NL CASES OF THE DICHOTOMY
A particular role in the tractable part of our dichotomy will be played by TT

∗
2
, the reflexive transitive

2-tournament, which has vertex set {0, 1} and edge set {(0, 0), (0, 1), (1, 1)}.

Lemma 4.1. Let H = H1 ⇒ · · · ⇒ H𝑛 be a reflexive tournament on𝑚 + 2 vertices with𝑉 (H1) = {𝑠}
and 𝑉 (H𝑛) = {𝑡}. Then there exists a surjective homomorphism from (TT∗

2
)𝑚 to H.

Proof. Build a surjective homomorphism 𝑓 from (TT∗
2
)𝑚 to H in the following fashion. Let 𝑥𝑖

be the𝑚-tuple which has 1 in the 𝑖th position and 0 in all other positions. For 𝑖 ∈ [𝑚], let 𝑓 map 𝑥𝑖
to 𝑖 . Let 𝑓 map (0, . . . , 0) to 𝑠 and everything remaining to 𝑡 .

By construction, 𝑓 is surjective. To see that 𝑓 is a homomorphism, let ((𝑦1, . . . , 𝑦𝑚), (𝑧1, . . . , 𝑧𝑚)) ∈
𝐸 ((TT∗

2
)𝑚), which is the case exactly when 𝑦𝑖 ≤ 𝑧𝑖 for all 𝑖 ∈ [𝑚]. Let 𝑓 (𝑦1, . . . , 𝑦𝑚) = 𝑢 and

𝑓 (𝑧1, . . . , 𝑧𝑚) = 𝑣 . First suppose that 𝑦1, . . . , 𝑦𝑚 are all 0. Then 𝑢 = 𝑠 . As 𝑠 has an out-edge to

every vertex of H, we find that (𝑢, 𝑣) ∈ 𝐸 (H). Now suppose that 𝑦1, . . . , 𝑦𝑚 contains a single 1. If

(𝑦1, . . . , 𝑦𝑚) = (𝑧1, . . . , 𝑧𝑚), then 𝑢 = 𝑣 . As H is reflexive, we find that (𝑢, 𝑣) ∈ H. If (𝑦1, . . . , 𝑦𝑚) ≠
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(𝑧1, . . . , 𝑧𝑚), then 𝑣 = 𝑡 . As 𝑡 has an in-edge from every vertex of H, we find that (𝑢, 𝑣) ∈ 𝐸 (H).
Finally suppose that 𝑦1, . . . , 𝑦𝑚 contains more than one 1. Then 𝑢 = 𝑣 = 𝑡 . As H is reflexive, we find

that (𝑢, 𝑣) ∈ 𝐸 (H). □

We also need the following lemma, which follows from combining some known results.

Lemma 4.2. If H is a transitive reflexive tournament then QCSP(H) is in NL.

Proof. It is noted in [15] that H has the ternary median operation as a polymorphism. It follows

from well-known results (e.g. in [7, 9]) that QCSP(H) is in NL. Specifically, one can apply Theorem

5.16 from [7] to reduce QCSP(H) to an ensemble of instances of CSP(H), which may also reference

constants, each of which can be solved in NL by Corollary 4 from [9]. Each of these instances may

be solved independently and the ensemble is polynomial in number, hence the whole procedure

can be accomplished in NL. □

The other tractable cases are more interesting.

We are now ready to prove the main result of this section.

Theorem 4.3. Let H = H1 ⇒ · · · ⇒ H𝑛 be a reflexive tournament. If |𝑉 (𝐻1) | = |𝑉 (𝐻𝑛) | = 1, then
QCSP(H) is in NL.

Proof. Let |𝑉 (H) | =𝑚 + 2 for some𝑚 ≥ 0. By Lemma 4.1, there exists a surjective homomor-

phism from (TT∗
2
)𝑚 to H. There exists also a surjective homomorphism from H to TT

∗
2
; we map 𝑠 to

0 and all other vertices of H to 1. It follows from Theorem 3.4 in [8] that QCSP(H) = QCSP(TT∗
2
)

meaning we may consider the latter problem. We note that TT
∗
2
is a transitive reflexive tournament.

Hence, we may appply Lemma 4.2. □

5 FINAL RESULT AND REMARKS
We are now in a position to prove our main dichotomy theorem.

Theorem 5.1. Let H = H1 ⇒ · · · ⇒ H𝑛 be a reflexive tournament. If |𝑉 (𝐻1) | = |𝑉 (𝐻𝑛) | = 1, then
QCSP(H) is in NL; otherwise it is NP-hard.

Proof. The NL case follow from Theorem 4.3. The NP-hard cases follow from Corollary 3.9 and

Corollary 3.15, bearing in mind the case with a non-trivial final strongly connected component

is dual to the case with a non-trivial initial strongly connected component (map edges (𝑥,𝑦) to
(𝑦, 𝑥)). □

Theorem 5.1 resolved the open case in Table 1. It is difficult to position this result in the overall

classification program for finite-domain QCSPs save to say that our methods are tailored, indeed

specialised, to reflexive tournaments. It is not clear that they can be applied easily to different or

wider classes (in this vein we return to mixed-type tournaments below). Since complexities outside

of P, NP-complete and Pspace-complete were discovered for QCSPs in [25], for example co-NP-

complete, DP-complete and ΘP

2
, the whole classification task has been thrown wide open. Classes

such as that of reflexive tournaments might provide comfort, as it is doubtful such monstrous

complexities could be found here. Though, we cannot be sure, with our lacuna between NP-hard

and Pspace-complete.

Recall that the results for the irreflexive tournaments in this table were all proven in a more

general setting, namely for irreflexive semicomplete graphs. One natural direction for future

research is to determine a complexity dichotomy for QCSP and SCSP for reflexive semicomplete

graphs. We leave this as an interesting open direction.

The task of promoting ourNP-hardness results to Pspace-complete, while using the samemethod,

seems to require corresponding Pspace-hardness results for reflexive tournaments with constants.

ACM Trans. Comput. Logic, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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If QCSP
𝑐 (H) were Pspace-complete, for H a non-trivial reflexive strongly connected tournament,

then likely our NP-hardness results, for the similar class of graphs, would easily rise to Pspace-
complete. The cases that are not strongly connected require additional arguments, and perhaps

even a different method.

Mixed-type tournaments, where some vertices are reflexive and others irreflexive, are well-

understood algebraically [21]. Indeed, from this paper there follows a complexity dichotomy for

CSP
𝑐 (H) where H is a mixed-type tournament. Furthermore, CSP(H) is either trivial or H is an

irreflexive tournament, so the complexity dichotomy for CSP(H) is also known. Though many of

our supporting lemmas hold for mixed-type tournaments, some do not. For example, Lemma 2.1

fails for the transitive 2-tournament TT2 in which one vertex is a self-loop and the other is not. To

extend our classification to mixed-type tournaments thus requires still some work.
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