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Abstract

Fulla, Uppman, and Živný [ACM ToCT’18] established a dichotomy theorem for Boolean surjective
general-valued constraint satisfaction problems (VCSPs), i.e., VCSPs on two-element domains in
which both labels have to be used in a solution. This result, in addition to identifying the complexity
frontier, features the discovery of a new non-trivial tractable case (called EDS) that does not appear
in the non-surjective setting.

In this work, we go beyond Boolean domains. As our main result, we introduce a generalisation of
EDS to arbitrary finite domains called SEDS (similar to EDS) and establish a conditional complexity
classification of SEDS VCSPs based on a reduction to smaller domains. This gives a complete
classification of SEDS VCSPs on three-element domains. The basis of our tractability result is a
natural generalisation of the Min-Cut problem, in which only solutions of certain size (given by a
lower and upper bound) are permitted. We show that all near-optimal solutions to this problem can
be enumerated in polynomial time, which might be of independent interest.

2012 ACM Subject Classification Theory of Computation→ Problems, reductions and completeness

Keywords and phrases constraint satisfaction problems, valued constraint satisfaction, surjective
constraint satisfaction, graph cuts

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.48

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.
Gregor Matl: Work done while at the University of Oxford.
Stanislav Živný: Supported by a Royal Society University Research Fellowship.

1 Introduction

Constraint satisfaction problems (CSPs) are fundamental computer science problems studied
in artificial intelligence, logic (as model checking of the positive primitive fragment of
first-order logic), graph theory (as homomorphisms between relational structures), and
databases (as conjunctive queries) [13]. A vast generalisation of CSPs is that of general-
valued CSPs (VCSPs) [21], see also [6]. Recent years have seen some remarkable progress on
our understanding of the computational complexity of CSPs and VCSPs, as will be discussed
later in related work. We start with a few definitions to state existing as well as our new
results.

We consider regular, surjective and lower-bounded VCSPs on the extended rationals
Q = Q ∪ {∞}. An instance I = (V,D, φI) of either of these problems is given by a finite set
of variables V = {x1, . . . , xn}, a finite set of labels D called the domain, and an objective
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48:2 Beyond Boolean Surjective VCSPs

function φI : Dn → Q. The objective function is of the form

φI (x1, . . . , xn) =
t∑
i=1

wi · γi (xi) ,

where t ∈ N and, for each 1 ≤ i ≤ t, γi : Dar(γi) → Q is a weighted relation of arity ar (γi) ∈ N,
wi ∈ Q≥0 is a weight and xi ∈ V ar(γi) is a tuple of variables from V called the scope of γi.

Regular, surjective and lower-bounded VCSPs differ only in their solution space, although
this makes a big difference in complexity. If I is an instance of a regular VCSP, an assignment
is a map s : V → D assigning a label from D to each variable. In the surjective setting, only
a surjective map s : V → D is an assignment. For lower-bounded VCSPs, a lower bound
l : D → N0 is provided and an assignment is a map s : V → D such that

∣∣s−1 (d)
∣∣ ≥ l (d) for

every label d ∈ D. In other words, a lower bound l (d) on the number of occurrences of each
label d ∈ D is imposed. The value of an assignment s is given by φI (s (x1) , . . . , s (xn)). An
assignment is called feasible if its value is finite, and is called optimal if it is of minimal value
among all assignments for the instance. The objective is to obtain an optimal assignment.

While finding an optimal assignment is NP-hard in general, valued constraint languages
impose a natural restriction on the types of instances that are allowed. A valued constraint
language, or simply a language, is a possibly infinite set of weighted relations. In this paper,
we only consider languages of bounded arity, that is languages admitting a fixed upper bound
on the arity of all weighted relations contained in them. Weighted relations in any VCSP
instance will be stored explicitly.

We denote the class of regular VCSP instances with objective functions using only weighted
relations from a language Γ by VCSP (Γ). Similarly, VCSPs (Γ) is the class of surjective
VCSP instances with weighted relations from Γ and, for some lower bound l : D → N0,
VCSPl (Γ) is the class of lower-bounded VCSP instances over Γ with bound l.

A language Γ is globally tractable if there is a polynomial-time algorithm for solving
each instance of VCSP (Γ), or globally intractable if VCSP (Γ) is NP-hard. Analogously,
Γ is globally s-tractable if there is a polynomial-time algorithm for VCSPs (Γ), or globally
s-intractable if VCSPs (Γ) is NP-hard. And Γ is globally `-tractable if VCSPl (Γ) is solvable in
polynomial time for every fixed lower bound l : D → N0, or globally `-intractable if VCSPl (Γ)
is NP-hard for at least one fixed lower bound l : D → N0. Thus, global `-tractability implies
global s-tractability, and global s-intractability implies global `-intractability.

The following examples show how well-studied variants of the Min-Cut problem can be
modelled in the VCSP frameworks we have defined.

I Example 1 (r-Terminal Min-Cut). Given a graph G = (V,E) with non-negative edge
weights w : E → Q≥0 and designated terminal vertices s1, . . . , sr ∈ V , the r-Terminal
Min-Cut problem asks to partition V into subsets X1, . . . , Xr such that sd ∈ Xd for all
d ∈ [r] := {1, . . . , r}, while the accumulated weight of all edges going between distinct sets Xi

and Xj is minimised. For r = 2, this problem is also known as the (s, t)-Min-Cut problem.
We show how this problem can be represented as a regular VCSP. Let γr-cut denote the

binary weighted relation defined for x, y ∈ [r] by γr-cut (x, y) = 0 if x = y and γr-cut (x, y) = 1
otherwise. Furthermore, for each label d ∈ [r], let ρd denote the constant relation given by
ρd (d) = 0 and ρd (x) =∞ for d 6= x ∈ [r] . Let Γr-cut = {γr-cut, ρ1, . . . , ρr}.

Finding an optimal r-terminal cut is equivalent to solving the VCSP (Γr-cut) instance
I = (V, [r] , φ) with objective function

φ (x1, . . . , xn) = ρ1 (s1) + · · ·+ ρr (sr) +
∑

(u,v)∈E

w (u, v) · γr-cut (u, v) .
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To see this, observe that there is a correspondence between feasible assignments s : V → [r]
and r-terminal cuts X1, . . . , Xr by setting Xd = {v ∈ V : s (v) = d}, with the objective value
remaining equal. Hence, an optimal assignment induces an optimal cut.

The r-Terminal Min-Cut problem can be solved in polynomial time if r = 2, but it
is NP-hard for any r ≥ 3 [8]. Since every VCSP (Γr-cut) instance can also be reduced to an
instance of the r-Terminal Min-Cut problem, the language Γr-cut is globally tractable if
r = 2 and globally intractable for r ≥ 3. ♣

I Example 2 (r-Way Min-Cut). Without setting out any terminals, the r-Way Min-Cut
problem asks to partition V into non-empty subsets X1, . . . , Xr such that weight of the
induced cut is minimised. Finding an optimal r-way min-cut is equivalent to solving the
VCSPs ({γr-cut}) instance I = (V, [r] , φ) with objective function

φ (x1, . . . , xr) =
∑

(u,v)∈E

w (u, v) · γr-cut (u, v) .

The r-Way Min-Cut problem can be solved in polynomial time for every fixed integer r [11].
Since every VCSPs ({γr-cut}) instance can be reduced to a r-Way Min-Cut problem as well,
the language {γr-cut} is globally s-tractable. ♣

For a fixed l : D → V , VCSPl ({γr-cut}) allows to model a generalisation of the r-Way
Min-Cut problem where a partition X1, . . . , Xr of V minimising the induced cut is sought
under the condition that |Xd| ≥ l (d) for every d ∈ D. As far as we know, the complexity of
both VCSPl ({γr-cut}) and the lower-bounded r-Way Min-Cut problem is unknown.

Related Work

Early results on CSPs include the fundamental results of Schaefer on Boolean CSPs [20]
and of Hell and Nešetřil on graph CSPs [12]. The computational complexity of CSPs
has drawn a lot of attention following the seminal paper of Feder and Vardi [9]. Using
the algebraic approach [15, 3], the complexity of CSPs on finite domains was resolved
in two independent papers by Bulatov [4] and Zhuk [24]. The computational complexity
of the problem of minimising the number of unsatisfied constraints (and more generally
rational-valued weighted relations) was obtained by Thapper and Živný in [23]. Finally, the
computational complexity of general-valued CSPs on finite domains was obtained by the
work of Kozik and Ochremiak [18] and Kolmogorov, Krokhin, and Rolínek [16].

In addition to constraints that apply locally to the variables specified as arguments, forms
of VCSPs have been considered where global conditions are imposed. Among those are CSPs
with global cardinality constraints, or CCSPs, where it is specified how often exactly each
label has to occur in an assignment. A dichotomy theorem for CCSPs on finite domains was
established by Bulatov and Marx [5].

Surjective VCSPs, which can be seen as imposing a global condition as well, have been
studied by Fulla, Uppman, and Živný [10], following earlier results on CSPs by Creignou and
Hébrard [7] and Bodirsky, Kára, and Martin [1]. Unfortunately, the algebraic approach that
has proved pivotal in the understanding of the computational complexity of regular CSPs
and VCSPs is not applicable in the surjective setting.

The following two facts are easy to show (see, e.g, [10]): (i) intractable languages are also
s-intractable; (ii) a tractable language Γ is also s-tractable if Γ includes all constant relations.
Consequently, new s-tractable languages can only occur (if at all) as subsets of tractable
languages that do not contain all constant relations. [10] identified the first example of such
languages. In particular, [10] identified languages on the Boolean domain that are essentially
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a downset, or EDS, as a new class of efficiently solvable problems and, in doing so, provided
a classification of surjective VCSPs on the Boolean domain.

The tractability result of EDS languages is based on the Generalised Min-Cut (GMC)
problem for graphs, also introduced in [10]. In a GMC instance, the goal is to find a non-
trivial subset of the vertices such that the weight of the induced cut and a superadditive set
function are minimised simultaneously. [10] showed how the objective function of surjective
VCSPs that are EDS can be approximated by an instance of the GMC problem. In addition,
they provided a polynomial-time algorithm to enumerate all solutions to the GMC problem
that are optimal up to a constant factor, which in combination results in an efficient algorithm
for surjective VCSPs that are EDS.

Contributions

This paper extends the class EDS to arbitrary finite domains. We introduce a class SIM of
languages that exhibit properties similar to Boolean languages. Based on this class, we define
the class SEDS as a natural extension of EDS and classify languages from this extension based
on two criteria. Firstly, we give a subclass SDS of SEDS that guarantees global `-tractability
without additional requirements. Secondly, we prove that the complexity of lower-bounded
VCSPs over any remaining SEDS languages is equivalent to the complexity over a particular
language on a smaller domain, which can be constructed by including all possible ways to
assign a certain label (formally defined in Section 3). This is illustrated in Figure 1 (left).

SDSSDS

SEDS

SIM

fix0 (Γ) globally
`-tractable

fix0 (Γ) globally
s-intractable

SDSSDS

SEDSSEDS

SIM

fix0 (Γ) globally
`-tractable

fix0 (Γ) globally
`-intractable

Figure 1 Classification of SEDS languages on arbitrary finite domains (left) and on three-element
domains (right). A language Γ is globally `-tractable when marked by horizontal (blue) lines
and globally s-intractable when marked by vertical (red) lines, depending on the language fix0 (Γ)
on a smaller domain. (Recall that global s-intractability implies global `-intractability.) In case
of three-element domains, the Boolean language fix0 (Γ) is either globally `-tractable or globally
`-intractable, while this is not known for larger domains.

One implication of our results is a dichotomy theorem for lower-bounded VCSPs on the
Boolean domain; every Boolean language is either globally `-tractable or globally `-intractable.
Although lower-bounded VCSPs are more general than surjective VCSPs, this classification
coincides with the dichotomy theorem for surjective VCSPs given by [10]. (Details are given
in the full version of this paper [19].)

In addition, combining our reduction of SEDS languages to a smaller domain and the
dichotomy theorem for the Boolean domain leads to a classification of all SEDS languages on
three-element domains with respect to `-tractability, which is featured on the right-hand side
of Figure 1.

The foundation of our results is an extension of the Generalised Min-Cut problem that
might be of independent interest. Given integers p, q ∈ N0, a graph with non-negative edge
weights and a superadditive set function defined on its vertices, the goal in the Bounded
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Generalised Min-Cut problem is, just like in the GMC problem, to find a subset of the
vertices such that the sum of the induced cut and the superadditive set function evaluated
on it are minimal among all possible solutions. The solution space, however, is restricted to
subsets containing at least q and at most all but p vertices.

If an optimal solution has value 0, there can be exponentially many optimal solution,
e.g. when there are no edges and the superadditive function always evaluates to 0. Our
main algorithmic result is that, for all other instances and any constant bounds p, q ∈ N0, all
solutions that are optimal up to a constant factor can be enumerated in polynomial time
(and thus, in particular, there are only polynomially many of them).

2 The Bounded Generalised Min-Cut Problem

We begin by presenting our algorithm for the Bounded Generalised Min-Cut problem. The
problem is based on the notion of superadditive set functions, which we define first.

I Definition 3. A set function on a finite set V is a function f : 2V → Q defined on subsets
of V ; it is normalised if it satisfies f (∅) = 0 and f (X) ≥ 0 for all X ⊆ V .

A set function f on V is increasing if it is normalised and f (X) ≤ f (Y ) for all
X ⊆ Y ⊆ V . It is superadditive if it is normalised and, for all disjoint X,Y ⊆ V , it holds
that

f (X) + f (Y ) ≤ f (X ∪ Y ) . (SUP)

Since equation (SUP) implies that f (X) ≤ f (X) + f (Y \X) ≤ f (Y ) for all X ⊆ Y ⊆ V ,
every superadditive set function must also be increasing.

I Definition 4. For q, p ∈ N0, the Bounded Generalised Min-Cut problem with lower bound
q an upper bound p is denoted by GMCpq .

A GMCpq instance h is given by an undirected graph G = (V,E) with edge weights
w : E → Q≥0 ∪{∞} and an oracle defining a superadditive set function f on V . For X ⊆ V ,
let w (X) =

∑
|{u,v}∩X|=1 w ({u, v}) denote the weight of the cut induced by X.

A solution for instance h is any set X ⊆ V such that |X| ≥ q and |X| ≤ |V | − p. The
objective is to minimise the value h (X) = f (X) + w (X). A solution X is optimal if the
value h (X) is minimal among all solutions for this instance. We denote the value of an
optimal solution by λ. For any α ≥ 1, a solution X is α-optimal if h (X) ≤ αλ.

The Generalised Min-Cut problem, simply denoted by GMC, is the Bounded Generalised
Min-Cut problem with lower and upper bound 1. All α-optimal solutions of a GMC instance
can be enumerated in polynomial time according to [10, Theorem 5.11], which we restate
here.

I Theorem 5. For any instance h of the GMC problem on n vertices with optimal value
0 < λ <∞ and any constant α ∈ N, the number of α-optimal solutions is at most n20α−15.
There is an algorithm that finds all of them in polynomial time.

We will assume that all edges are positive-valued, as they can be ignored otherwise. To
simplify the problem further, observe that it can be determined in polynomial time whether
the optimal value of a GMCpq instance is λ = 0 or λ =∞. If λ = 0, an optimal solution can
be found by checking all connected components, because a solution of value 0 cannot cut
any edges and because the superadditive set function f is increasing. Moreover, in order
to determine whether λ = ∞ it is sufficient to check all solutions of size q. When these
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solutions all have infinite value, each one must either contain an edge of infinite weight or
the superadditive set function must evaluate to infinity. In either case, all supersets will have
infinite value as well, implying λ =∞.

Consequently, our goal is to provide a polynomial-time algorithm for enumerating near-
optimal solutions in the case that the optimal value is both positive and finite. Before doing
so, we give two auxiliary lemmas. The first one is based on [10, Lemma 5.6].

I Lemma 6. For any p, q ∈ N0, any GMCpq instance h on a graph G = (V,E) and any
subset V ′ ⊆ V , there is a GMCpq instance h′ on the induced subgraph G [V ′] that preserves
the objective value of all solutions X ⊆ V ′. In particular, any α-optimal solution X of h
such that X ⊆ V ′ is α-optimal for h′ as well.

Proof. Edges with exactly one endpoint in V ′ need to be taken into account separately
because they do not appear in the induced subgraph. We accomplish that by defining the
new set function f ′ by

f ′ (X) = f (X) +
∑
u∈X

∑
v∈V \V ′

w (u, v)

for all X ⊆ V ′. By the construction, f ′ is superadditive, and the objective value h′ (X) for
any solution X ⊆ V ′ equals h (X).

Note that the minimum objective value for h′ is greater than or equal to the minimum
objective value for h. Therefore, any solution X ⊆ V ′ that is α-optimal for h is also α-optimal
for h′. J

The next lemma, which is based on [10, Lemma 5.10], can be deduced from the superad-
ditivity of f and the posimodularity of the cut function w.

I Lemma 7. Let h be a GMCpq instance over vertices V with optimal value λ and let
X,Y ⊆ V such that h (X) ≤ αλ and w (Y ) ≤ βλ for some α ≥ 1 and β ≥ 0. Then it holds

h (X\Y ) + h (X ∩ Y ) < (α+ 2β)λ.

We now proceed with our main algorithmic result. We only sketch the proof here but full
details are given in the full version [19].

I Theorem 8. For some constant q ≥ 2, let h be a GMC1
q instance on a graph G = (V,E)

of size n = |V | with optimal value 0 < λ < ∞. Let Y ∪ Z = V be a partition of V and let
Y1 ∪ · · · ∪Yk = Y for some k ∈ N0 be a partition of Y satisfying 0 < |Yi| < q and h (Yi) ≤ λ

3q
for all 1 ≤ i ≤ k.

Then for every constant α ≥ 1, at most |Z|n · n
τ(q,α) α-optimal solutions X ⊆ V of h

satisfy |X ∩ Y | < q, where τ (q, α) = 60qα+ 41q + 7. These solutions can all be enumerated
in polynomial time.

Note that with Y = ∅ and Z = V , this theorem states for any GMC1
q instance that the

number of α-optimal solutions is bounded by nτ(q,α).

Proof sketch. We give a proof by induction over n+ |Z|
n+1 . For n ≤ q or Z = ∅, there are no

solutions of the described form and hence, the statement holds.
Now, fix some n > q, some GMC1

q instance h on a graph G = (V,E) of size n with
optimum value 0 < λ < ∞ and partitions Y ∪ Z = V and Y1 ∪ · · · ∪ Yk = Y as described.
By the induction hypothesis, we can assume that the theorem holds for every graph of size
n′ < n as well as for every partition Ỹ ∪ Z̃ = V of graph G satisfying

∣∣Z̃∣∣ < |Z|.
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According to Lemma 6, there exists a GMC1
q instance hZ on the induced subgraph G [Z]

that preserves the objective value of every solution X ′ ( Z with respect to h. In the following,
we treat hZ as a GMC instance (i.e. with lower bound 1). Let λZ denote the optimal value
of hZ and let Yk+1 ( Z be an optimal solution of hZ , i.e. hZ (Yk+1) = λZ .

Consider any α-optimal solution X ⊆ V of h satisfying |X ∩ Y | < q. For some integer
t, let i1, . . . , it denote indices such that X ∩ Y = X ∩ (Yi1 ∪ · · · ∪ Yit), i.e. such that X
has vertices only in Yi1 , . . . , Yit and Z. Since |X ∩ Y | < q, we require that t < q. Let
U = Yi1 ∪ · · · ∪ Yit . We distinguish two cases, which are illustrated in Figure 2.

Y1

Y2

Y3

. . .
Yk

YZ

Yk+1

X

Y1

Y2

Y3

. . .
Yk

YZ′

Yk+1

X

Figure 2 Given a partition V = Y ∪Z with Y = Y1 ∪ · · · ∪ Yk of the vertices of a GMC1
q instance

h, we want to find every solution X such that h (X) ≤ αλ and |X ∩ Y | < q. Consider the GMC
instance hZ on G [Z] with optimal solution Yk+1. If h (Yk+1) ≥ λ

3q , X ∩ Z must be a near-optimal
solution of h (left, first case). Otherwise, we apply the induction hypothesis either on the partition
V = Z′ ∪ (Y1 ∪ · · · ∪ Yk+1) or on the subgraph G [Z′], where Z′ = Z\Yk+1 (right, second case).

In the first case, we assume that λZ ≥ λ
3q . From our assumption that h (Yi) ≤ λ

3q for all
1 ≤ i ≤ k, it can be deduced that w (U) < λ

3 . By Lemma 7 with β = 1
3 , it must hold that

h (X\U) + h (X ∩ U) ≤
(
α+ 2

3

)
λ.

Since X ∩ Z = X\U , our assumption λZ ≥ λ
3q then implies that h (X ∩ Z) ≤ (3qα+ 2q)λZ .

Hence, if X ∩ Z ( Z, then X ∩ Z is a (3qα+ 2q)-optimal solution of hZ when treated as a
GMC instance. The number of choices for X ∩ Z can then be bounded by Theorem 5.

At the same time, there are less than nq ways to pick at most q − 1 vertices from Y and
therefore less than nq choices for X ∩ Y . By pairing up all choices for X ∩ Z with those for
X ∩ Y , we can conclude that there are at most 1

n · n
τ(q,α) choices for X in this case.

In the second case, we assume λZ ≤ λ
3q . Note that hZ (Yk+1) = λZ < λ implies |Yk+1| < q.

Let Y ′ = Y ∪ Yk+1, Z ′ = Z\Yk+1 and U ′ = U ∪ Yk+1.
If |X ∩ Y ′| < q, we can apply the induction hypothesis for instance h with the partitions

Y ′ ∪Z ′ = V and Y ′ = Y1 ∪ · · · ∪ Yk ∪ Yk+1. Consequently, the number of such solutions is at
most |Z

′|
n · n

τ(α) ≤ |Z|−1
n · nτ(α).

Therefore, we now assume that |X ∩ Y ′| ≥ q and need to show that there are at most
1
n · n

τ(α) choices for X in this case. Given that λZ ≤ λ
3q , we can deduce that w (U ′) ≤ λ

3 .
Thus, Lemma 7 implies that

h (X\U ′) + h (X ∩ U ′) ≤
(
α+ 2

3

)
λ.

Being a solution of h, the set X ∩U ′ = X ∩ Y ′ must have value h (X ∩Q′) ≥ λ. It therefore
holds that

h (X ∩ Z ′) = h (X\U ′) ≤
(
α+ 2

3

)
λ− h (X ∩Q′) ≤

(
α− 1

3

)
λ.
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Let hZ′ denote the GMC1
q instance on the induced subgraph G [Z ′] that preserves the value

of h as detailed in Lemma 6. There are roughly nq choices for X such that |X ∩ Z ′| < q

or X = Z ′. Otherwise, the set X ∩ Z ′ must be an
(
α− 1

3
)
-optimal solution of hZ′ . By

applying the induction hypothesis on hZ′ with the trivial partition ∅ ∪ Z ′ = Z ′, the number
of
(
α− 1

3
)
-optimal solutions can be bounded by nτ(q,α−

1
3 ).

Next, we limit the number of choices for X ∩ Y ′. Since X contains at most q − 1 vertices
from Y (less than nq choices) and since Yk+1 contains at most q − 1 vertices (at most 2q−1

choices), the number of possible choices for X ∩ Y ′ is limited by nq · 2q−1 ≤ n2q.
Pairing up each possible choice for X ∩ Z ′ with each choice for X ∩ Y ′ gives a total of at

most 1
n · n

τ(q,α) solutions, as required.
A polynomial-time algorithm to enumerate all such solutions follows immediately from

these calculations. To see this, note that only the second case is defined recursively. Therefore,
checking both the first and the second case does not increase the overall complexity of nO(q+α).
In particular, it is not necessary to know the value λ beforehand. J

I Corollary 9. For any p, q ∈ N0 and α ≥ 1, where q and α are constants, and for any
GMCpq instance h with optimal value 0 < λ <∞, all α-optimal solutions can be enumerated
in polynomial time.

Proof. Let h = f + w be a GMCpq instance with 0 < λ < ∞. First, we assume that p ≥ 1
and q ≥ 2. The superadditive set function

f ′ (X) =
{
∞ if |X| > |V | − p
f (X) otherwise

defines a GMC1
q instance h′ = f ′ + w where every solution X ⊆ V of size |X| > |V | − p

is infeasible so that the set of feasible solutions and their values are identical for h and
h′. Therefore, it is sufficient to enumerate all α-optimal solutions of h′, which can be
accomplished in polynomial time according to Theorem 8

If p = 0 or q < 2, there are up to |V |+ 2 additional solutions that can all be checked in
polynomial time. J

3 Extending EDS to Larger Domains

In this section, we formally introduce the classes SIM, SEDS and SDS. In order to simplify our
notation, we will subsequently always consider the (k + 1)-element domain D = {0, 1, . . . , k}
for some integer k. Any other domain of size k+ 1 can simply be relabelled without affecting
its properties. One label from the domain will play a special role; without loss of generality
(due to relabellings), it will be 0.

3.1 k-Set Functions
It will be convenient to go back and forth between weighted relations and k-set functions,
which is, subject to a minor technical assumption, always possible.

I Definition 10. Let k ∈ N and let V be a finite set. A k-set function on V is a function
f : (k + 1)V → Q defined on k-tuples of pairwise disjoint subsets of V . A k-set function f
over V is normalised if it satisfies f (∅, . . . , ∅) = 0 and f (X1, . . . , Xk) ≥ 0 for all disjoint
X1, . . . , Xk ⊆ V .

Note that a 1-set function is simply a set function as defined in Section 2.
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I Definition 11. Let γ be an n-ary weighted relation on the (k + 1)-element domain D =
{0, 1, . . . , k}, and let f be the k-set function on V = [n] that is defined for disjoint sets
X1, . . . , Xk ⊆ V by f (X1, . . . , Xk) = γ (x), where the i-th coordinate of x is given by xi = d

if i ∈ Xd for some 0 6= d ∈ D and xi = 0 otherwise. Then γ corresponds to f .
Furthermore, we say that γ corresponds under normalisation to a k-set function if

γ (0n) <∞ and γ (0n) ≤ γ (x) for all x ∈ Dn. In this case, the k-set function corresponding
under normalisation to γ is the normalised k-set function corresponding to γ − γ (0n), i.e.
the weighted relation with offset such that the assignment 0n evaluates to 0.

According to this definition, there is a unique k-set function corresponding to every
weighted relation on the (k + 1)-element domain, and vice versa. Furthermore, assuming
that γ (0n) <∞, a weighted relation γ corresponds under normalisation to a k-set function
precisely if it admits multimorphism 〈c0〉 (the definition of which can be found in [6]).

I Definition 12. Let f be a k-set function and g a set function on V . We say that g
α-approximates f if, for all disjoint X1, . . . , Xk ⊆ V , it holds that

g (X1 ∪ · · · ∪Xk) ≤ f (X1, . . . , Xk) ≤ α · g (X1 ∪ · · · ∪Xk) .

3.2 Fixing a Label: Reduced Languages
Reducing a language to a smaller domain by fixing all possible occurrences of a certain label,
as defined subsequently, will be a central tool in our classification.

I Definition 13. Let f be a k-set function on V , let 0 ≤ d ≤ k be a label from the
domain and let U ⊆ V . Then fixd=U [f ] is the (k − 1)-set function defined for disjoint sets
X1, . . . , Xd−1, Xd+1, . . . , Xk ⊆ V \U by

fixd=U [f ] (X1, . . . , Xd−1, Xd+1, . . . , Xk) = f (X1, . . . , Xd−1, U,Xd+1, . . . , Xk) .

Let γ be the weighted relation on domain D corresponding to f . Then fixd=U [γ] denotes
the weighted relation of arity |V \U | on domain D\ {d} corresponding to fixd=U [f ].

In other words, fixd=U [γ] takes an assignment from the domain D\ {d} to all variables
except for those with index in U , and evaluates it through γ by assigning label d to the
remaining variables. In Definition 14, we generalise this concept in order to express the
language that is generated by fixing every possible assignment of a certain label.

I Definition 14. Let Γ be a language on domain D and let d ∈ D. For any γ ∈ Γ,
let fixd (γ) = {fixd=U [γ] : U ⊆ V }. We define the language fixd (Γ) on domain D\ {d} by
fixd (Γ) =

⋃
γ∈Γ fixd (γ) .

3.3 Extending EDS to Larger Domains
The class EDS, or essentially a downset, has been introduced in [10] for the Boolean domain.

I Definition 15. For any α ≥ 1, a normalised set function f on V is α-EDS if, for all
X,Y ⊆ V , it holds that

f (X\Y ) ≤ α · (f (X) + f (Y )) . (EDS)

A weighted relation is α-EDS if it corresponds under normalisation to a set function that
is α-EDS. Moreover, a language Γ is EDS if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-EDS.
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Fulla et al. showed [10] that EDS languages are globally s-tractable. We improve upon
this result by proving that such languages are in fact globally `-tractable, and we extend the
idea of being essentially a downset to larger domains through the classes SIM, SEDS and
SDS.

Intuitively, a language is SIM, or similar to a Boolean language, if, for every weighted
relation, the value of any two assignments that assign label 0 to precisely the same set of
variables is equal up to a constant factor.

I Definition 16. Let f be a normalised k-set function on set V . For any α ≥ 1, f is
called α-SIM if, for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V such that
X1 ∪ · · · ∪Xk = Y1 ∪ · · · ∪ Yk, it holds that

f (X1, . . . , Xk) ≤ α · f (Y1, . . . , Yk) . (SIM)

A weighted relation is α-SIM if it corresponds under normalisation to a k-set function
that is α-SIM. Moreover, a language Γ is SIM if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-SIM.

Note that every normalised set function is 1-SIM. Hence, EDS is a subclass of SIM. Going
beyond the Boolean domain, the class SEDS of languages similar to EDS arises as a natural
generalisation of EDS.

I Definition 17. For any α ≥ 1, a normalised k-set function f on V is α-SEDS if it is
α-SIM and, for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V , it holds that

f (X1\Y1, . . . , Xk\Yk) ≤ α · (f (X1, . . . , Xk) + f (Y1, . . . , Yk)) . (SEDS)

A weighted relation is α-SEDS if it corresponds under normalisation to a k-set function
that is α-SEDS. Moreover, a language Γ is SEDS if there is some α ≥ 1 such that every
weighted relation γ ∈ Γ is α-SEDS.

The class SDS, or similar to a downset, imposes a stricter requirement than SEDS. When
any arguments of a weighted relation are changed to label 0, the value should decrease, stay
equal or increase by at most a constant factor.

I Definition 18. For any α ≥ 1, a normalised k-set function f on V is α-SDS if it is α-SIM
and in addition, for all disjoint X1, . . . , Xk, Y1, . . . , Yk ⊆ V , it holds that

f (X1, . . . , Xk) ≤ α · f (X1 ∪ Y1, . . . , Xk ∪ Yk) . (SDS)

A weighted relation is α-SDS if it corresponds under normalisation to a k-set function
that is α-SDS, and a language Γ is SDS if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-SDS.

Note that SDS is a subclass of SEDS. To see this, consider any α-SDS k-set function f
on V . Then it holds for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V that

f (X1\Y1, . . . , Xk\Yk) ≤ α · f (X1, . . . , Xk) ≤ α · (f (X1, . . . , Xk) + f (Y1, . . . , Yk)) ,

proving that f is α-SEDS.
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4 Classifying SEDS and SDS Languages

In this section, we first show that a SEDS language Γ is globally `-tractable if it is SDS or if the
reduced language fix0 (Γ) is globally `-tractable. Afterwards, we prove global s-intractability
of the remaining SEDS languages conditioned on global s-intractability of fix0 (Γ).

We begin by restating [10, Theorem 5.17] concerning EDS languages and then devise
similar approximations for SEDS and SDS languages.

I Theorem 19. For any α-EDS set function f on V , there exists a GMC instance h that
αn+2 (n3 + 2n

)
-approximates f , where n = |V |.

I Lemma 20. For any α-SEDS k-set function f on V , there exists an α-EDS set function g
that α2-approximates f .

Proof. We define the set function g on V by g (X) = 1
αf (X, ∅, . . . , ∅). Observe that, since

f is normalised, it holds g (∅) = f (∅, . . . , ∅) = 0 and g (X) = 1
αf (X, ∅, . . . , ∅) ≥ 0 for every

X ⊆ V . Thus, g is normalised as well. In addition, for all X,Y ⊆ V , it holds that

α · (g (X) + g (Y )) = f (X, ∅, . . . , ∅) + f (Y, ∅, . . . , ∅)≥ 1
α
· f (X\Y, ∅, . . . , ∅) = g (X\Y ) ,

where the second step uses equation (SEDS). Hence, g is α-EDS.
It remains to show that g α2-approximates f . For this purpose, consider any disjoint

X1, . . . , Xk ⊆ V and let X =
⋃k
i=1Xi denote their union. Since f is α-SIM, it holds that

g (X) = 1
α
f (X, ∅, . . . , ∅) ≤ f (X1, . . . , Xk) ≤ α · f (X, ∅, . . . , ∅) = α2 · g (X) . J

By combining Lemma 20 and Theorem 19, we can deduce the following result.

I Theorem 21. For any α-SEDS k-set function f on V , there exists a GMC instance h that
αn+4 (n3 + 2n

)
-approximates f , where n = |V |.

For SDS languages, we can provide an even tighter result.

I Theorem 22. For any α-SDS k-set function f on V , there exists a superadditive set
function g that nαn+1-approximates f , where n = |V |.

Based on these approximations, we now show our main tractability theorem, which in
places closely follows the proof of [10, Theorem 5.18].

I Theorem 23. Let Γ be a SEDS language. Then Γ is globally `-tractable if it is SDS or if
the reduced language fix0 (Γ) is globally `-tractable.

Proof. Let Γ be an SEDS language on domain D. Then every weighted relation γ ∈ Γ
corresponds under normalisation to a k-set function fγ . Furthermore, weighted relations
in Γ are of bounded arity. If Γ is SDS, Theorem 22 implies that for some α ∈ N, every
such k-set function fγ can be α-approximated by a superadditive set function hγ . In the
following, we treat hγ as a GMC instance without any edge weights. If Γ is not SDS, we can
still α-approximate every k-set function fγ by a GMC instance hγ according to Theorem 21,
but there is no restriction on the edge weights.

Let l : D → N0 be a fixed lower bound and consider any VCSPl (Γ) instance I with
objective function

φI (x1, . . . , xn) =
t∑
i=1

wi · γi
(
xi
)
.
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Let fI be the k-set function corresponding under normalisation to the objective function φI .
We construct a GMC instance h that α-approximates fI .

For i ∈ [t], we relabel the vertices of hγi
to match the variables in the scope xi of the

i-th constraint (i.e., vertex j is relabelled to xij) and identify vertices in case of repeated
variables. As the constraint is weighted by a non-negative factor wi, we also scale the weights
of the edges of hγi and the superadditive set function by wi (note that non-negative scaling
preserves superadditivity). Instance h is then obtained by adding up GMC instances hγi

for
all i ∈ [t]. In the following, we treat h as a GMCl(0)

l∗ instance, where l∗ =
∑k
i=1 l (i). Note

that if Γ is SDS, h has zero edge weights.
Let X0, . . . , Xk be a partition of [n] such that fI (X1, . . . , Xk) is minimal among all

partitions satisfying |Xd| ≥ l (d) for all d ∈ D. In other words, X0, . . . , Xk corresponds to
an optimal assignment for instance I. Let X =

⋃k
d=1Xd denote all indices with non-zero

labels. In addition, let Y ⊆ [n] denote an optimal solution of the GMCl(0)
l∗ instance h and let

λ = h (Y ).
Since |Y | ≥ l∗, there must exist some partition Y1, . . . , Yk of Y such that |Yd| ≥ l (d) for

all 1 ≤ d ≤ k. Because h α-approximates fI , it holds that

λ ≤ h (X) ≤ fI (X1, . . . , Xk) ≤ fI (Y1, . . . , Yk) ≤ α · h (Y ) = α · λ.

Hence, X is an α-optimal solution of h.
As discussed in Section 2, it can be determined in polynomial time whether λ = 0, λ =∞

or 0 < λ < ∞. Furthermore, if λ = 0, a solution Z such that h (Z) = 0 can be found.
Because Z must have size |Z| ≥ l∗ as a solution of GMCl(0)

l∗ instance h, we can select some
partition Z1, . . . , Zk of Z such that |Zd| ≥ l (d) for all 1 ≤ d ≤ k. Since h α-approximates fI ,
it must hold fI (Z1, . . . , Zk) ≤ α · h (Z) = 0, meaning that Z1, . . . , Zk represents an optimal
assignment for instance I.

If λ =∞, then obviously there are no feasible solutions.
Otherwise, it holds 0 < λ <∞. In this case, we distinguish whether Γ is SDS or fix0 (Γ)

is globally `-tractable.
First, we assume that Γ is SDS and hence, that h has zero edge weights. We claim

that the size of X is bounded by a constant. For the sake of contradiction, assume that
|X| ≥ (α+ 1) l∗. Then there are disjoint subsets Z1, Z2, . . . , Zα+1 ⊆ X such that |Zi| ≥ l∗

for all 1 ≤ i ≤ α + 1. Being a solution of h, every Zi must have value at least h (Zi) ≥ λ.
Based on the superadditivity of h, we arrive at the contradiction

(α+ 1) · λ ≤ h (Z1) + · · ·+ h (Zα+1) ≤ h (X) ≤ α · λ.

Thus, it must hold |X| < (α+ 1) l∗. This leaves less than O
(
n(α+1)l∗) possible choices

for X, each of which admits at most O
(
k(α+1)l∗) partitions of the form X1 ∪ · · · ∪Xk = X.

By checking all of these, we can retrieve the sets X1, . . . , Xk in polynomial time.
Now, we assume that fix0 (Γ) is globally `-tractable. According to Corollary 9, there are

only polynomially many α-optimal solutions of h, all of which can be computed in polynomial
time. X must be among those solutions. By repeating the following process for all of them,
we can assume that X is known, and so is X0 = [n] \X.

Let D∗ = D\ {0} and let l�D∗ : D∗ → N denote the restriction of l to D∗. We can
efficiently find a minimal assignment for the VCSPl�D∗

(fix0 (Γ)) instance IX = (X,D∗, φX)
with objective function φX = fix0=X0 [φI ]. The sets X1, . . . , Xk represent an assignment for
IX and, by assigning label 0 to the variables in X0, every assignment for IX induces an
assignment for I with the same objective value. Thus, an optimal assignment for IX induces
an optimal assignment for I. J
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I Remark 24. If Γ is SDS, the algorithm presented in Theorem 23 can in fact, for every fixed
lower bound l : D → N0 and every VCSPl (Γ) instance I with optimal value 0 < λ < ∞,
enumerate all optimal solutions of I in polynomial time.

If Γ is SEDS and fix0 (Γ) is globally `-tractable, this property holds true under the
condition that for every VCSPl (fix0 (Γ)) instance with optimal value 0 < λ <∞, all optimal
solutions can be enumerated in polynomial time.

To complete our analysis of SEDS languages, we will now focus on the case that a language
is not SDS and that fix0 (Γ) is globally s-intractable. Going even beyond SEDS, our main
hardness result is that SIM languages are globally s-intractable under those circumstances.
We only give a brief sketch of the proof here and provide the full proof in the full version of
the paper [19].

I Theorem 25. Let Γ be a valued constraint language over domain D that is SIM, but not
SDS, and let fix0 (Γ) be globally s-intractable. Then Γ is globally s-intractable.

Proof sketch. Since Γ is not SDS, there must exist a weighted relation γ ∈ Γ of some arity r
and disjoint X1, . . . , Xk, Y1, . . . , Yk ⊆ [r] such that, in violation of equation (SDS), the k-set
function f corresponding under normalisation to γ satisfies

f (X1, . . . , Xk)� f (X1 ∪ Y1, . . . , Xk ∪ Yk) .

Given any VCSPs (fix0 (Γ)) instance I∗ = (V,D∗, φ∗I) on domain D∗ = D\ {0}, we
construct a VCSPs (Γ) instance I = (V ∪ {z} , D, φI) instance as follows. Let z denote
an additional variable. The objective function φI consists of two components. The first
component utilises the relation γ to ensure that any optimal assignment s for I must satisfy
s (z) = 0 and s (x) 6= 0 for all x ∈ V . The second component models φ∗I by replacing the
constraints by corresponding weighted relations from Γ, where pinning values to label 0 is
simulated by plugging in z.

This way, a solution for I∗ can be obtained by solving I, thereby reducing VCSPs (fix0 (Γ))
to VCSPs (Γ). J

On the Boolean domain, we obtain a complete classification of lower-bounded VCSPs,
which coincides with the classification of Boolean surjective VCSPs provided by [10].

I Theorem 26. Let Γ be a Boolean language. Then Γ is globally `-tractable if and only it is
globally s-tractable. Otherwise, Γ is globally `-intractable.

Moreover, we can now classify lower-bounded VCSPs over SEDS languages on three-
element domains.

I Theorem 27. Let Γ be a SEDS language on domain D = {0, 1, 2}. Then Γ is globally
`-tractable if it is SDS or if fix0 (Γ) is globally `-tractable, and globally `-intractable otherwise.

Proof. If Γ is SDS or fix0 (Γ) globally `-tractable, the statement follows from Theorem 23.
Otherwise, fix0 (Γ) must be globally s-intractable by Theorem 26 and the dichotomy from [10,
Theorem 3.2]. Hence, Γ is globally s-intractable by Theorem 25, which gives the result. J

5 Conclusions

Based on the newly introduced Bounded Generalised Min-Cut problem and its tractability,
which might be of independent interest, we have provided a conditional complexity classifica-
tion of surjective and lower-bounded SEDS VCSPs on non-Boolean domains. Consequently,
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we obtained a dichotomy theorem with respect to `-tractability for Boolean domains as well
as, more interestingly, for SEDS languages on three-element domains.

While our results only pertain to languages that admit multimorphism 〈cd〉 for some
label d we expect our results and techniques to be useful in identifying new s-tractable and
`-tractable languages going beyond those admitting 〈cd〉.

As mentioned in Section 1, globally tractable languages that include constant relations
are also s-tractable. It is easy to show the same for global `-tractability. For example,
this shows that well-studied sources of tractability such as submodularity [22] and its
generalisation k-submodularity [14], which are known to be globally tractable [17], are also
globally `-tractable.

What other non-Boolean languages are s-tractable and `-tractable? Our results are a first
step in this direction. In all cases we encountered global s-(in)tractability coincides with
global `-(in)tractability. We do not know whether this is true in general.

The natural next step is to consider languages on three-element domains. As is often
the case in the (V)CSP literature, languages on three-element domains are significantly
more complex than Boolean languages; for instance, compare two-element CSPs [20] and
three-element CSPs [2]. As a concrete open problem (of a surjective VCSP on a three-element
domain), the 3-No-Rainbow-Colouring problem [1] asks to colour the vertices of a three-
regular hypergraph such that every colour is used at least once, while no hyperedge attains
all three colours. The complexity of this problem is open both the in the decision setting (is
there a colouring) and also in the optimisation setting (what is the maximum number of
properly colourable hyperedges/minimum number of improperly colourable hyperedges).
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