
Using a min-cut generalisation to go

beyond Boolean surjective VCSPs†

Gregor Matl
Department of Informatics, Technical University of Munich, Germany

matlg@in.tum.de

Stanislav Živný∗

Department of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract

In this work, we first study a natural generalisation of the Min-Cut problem, where a
graph is augmented by a superadditive set function defined on its vertex subsets. The goal
is to select a vertex subset such that the weight of the induced cut plus the set function
value are minimised. In addition, a lower and upper bound is imposed on the solution size.
We present a polynomial-time algorithm for enumerating all near-optimal solutions of this
Bounded Generalised Min-Cut problem.

Second, we apply this novel algorithm to surjective general-valued constraint satisfaction
problems (VCSPs), i.e., VCSPs in which each label has to be used at least once. On the
Boolean domain, Fulla, Uppman, and Živný [ACM ToCT’18] have recently established
a complete classification of surjective VCSPs based on an unbounded version of the
Generalised Min-Cut problem. Their result features the discovery of a new non-trivial
tractable case called EDS that does not appear in the non-surjective setting.

As our main result, we extend the class EDS to arbitrary finite domains and provide a
conditional complexity classification for surjective VCSPs of this type based on a reduction
to smaller domains. On three-element domains, this leads to a complete classification of
such VCSPs.

1 Introduction

Constraint satisfaction problems (CSPs) are fundamental computer science problems studied in
artificial intelligence, logic (as model checking of the positive primitive fragment of first-order
logic), graph theory (as homomorphisms between relational structures), and databases (as
conjunctive queries) [15]. A vast generalisation of CSPs is that of general-valued CSPs (VC-
SPs) [25], see also [7]. Recent years have seen some remarkable progress on our understanding

†An extended abstract of this work appeared in Proceedings of the 36th International Symposium on
Theoretical Aspects of Computer Science (STACS 2019) [22]. Stanislav Živný was supported by a Royal Society
University Research Fellowship. The work was done while Gregor Matl was at the University of Oxford. This
project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 714532). The paper reflects only the authors’
views and not the views of the ERC or the European Commission. The European Union is not liable for any
use that may be made of the information contained therein.
∗Corresponding author.

1

of the computational complexity of CSPs and VCSPs, as will be discussed later in related
work. We start with a few definitions to state existing as well as our new results.

We consider regular, surjective as well as lower-bounded VCSPs on the extended rationals
Q = Q ∪ {∞}. An instance I = (V,D, φI) of either of these problems is given by a finite
set of variables V = {x1, . . . , xn}, a finite set of labels D called the domain, and an objective
function φI : Dn → Q. The objective function is of the form

φI (x1, . . . , xn) =
t∑
i=1

wi · γi (xi) ,

where t ∈ N and, for each 1 ≤ i ≤ t, γi : Dar(γi) → Q is a weighted relation of arity ar (γi) ∈ N,
wi ∈ Q≥0 is a weight and xi ∈ V ar(γi) is a tuple of variables from V called the scope of γi.

Regular, surjective and lower-bounded VCSPs differ only in their solution space, although
this makes a big difference in complexity. If I is an instance of a regular VCSP, an assignment
is a map s : V → D assigning a label from D to each variable. In the surjective setting, only a
surjective map s : V → D is an assignment. For lower-bounded VCSPs, a fixed lower bound
l : D → N0 is provided and an assignment is a map s : V → D such that

∣∣s−1 (d)
∣∣ ≥ l (d) for

every label d ∈ D. In other words, a lower bound l (d) on the number of occurrences of each
label d ∈ D is imposed. This is a generalisation of surjective VCSPs where the lower bound
is always 1. (We are not aware of any previous work on lower-bounded VCSPs, which we
introduce in this work.) The value of an assignment s is given by φI (s (x1) , . . . , s (xn)). An
assignment is called feasible if its value is finite, and is called optimal if it is of minimal value
among all assignments for the instance. The objective is to obtain an optimal assignment.

While finding an optimal assignment is NP-hard in general, valued constraint languages
impose a natural restriction on the types of instances that are allowed. A valued constraint
language, or simply a language, is a possibly infinite set of weighted relations. In this paper,
we only consider languages of bounded arity, that is languages admitting a fixed upper bound
on the arity of all weighted relations contained in them. Weighted relations in any VCSP
instance will be stored explicitly.

We denote the class of regular VCSP instances with objective functions using only weighted
relations from a language Γ by VCSP(Γ). Similarly, VCSPs(Γ) is the class of surjective VCSP
instances with weighted relations from Γ and, for some lower bound l : D → N0, VCSPl(Γ) is
the class of lower-bounded VCSP instances over Γ with bound l.

A language Γ is globally tractable if there is a polynomial-time algorithm for solving each
instance of VCSP(Γ), or globally intractable if VCSP(Γ) is NP-hard. Analogously, Γ is globally
s-tractable if there is a polynomial-time algorithm for VCSPs(Γ), or globally s-intractable if
VCSPs(Γ) is NP-hard. And Γ is globally `-tractable if VCSPl(Γ) is solvable in polynomial time
for every fixed lower bound l : D → N0, or globally `-intractable if VCSPl(Γ) is NP-hard for at
least one fixed lower bound l : D → N0. Thus, global `-tractability implies global s-tractability,
and global s-intractability implies global `-intractability.

The following examples show how well-studied variants of the Min-Cut problem can be
modelled in the VCSP frameworks we have defined.

Example 1 (r-Terminal Min-Cut). Given a graph G = (V,E) with non-negative edge
weights w : E → Q≥0 and designated terminal vertices s1, . . . , sr ∈ V , the r-Terminal
Min-Cut problem asks to partition V into subsets X1, . . . , Xr such that sd ∈ Xd for all
d ∈ [r] := {1, . . . , r}, while the accumulated weight of all edges going between distinct sets Xi

and Xj is minimised. For r = 2, this problem is also known as the (s, t)-Min-Cut problem.

2

We show how this problem can be represented as a regular VCSP. Let γr-cut denote the
binary weighted relation defined for x, y ∈ [r] by γr-cut (x, y) = 0 if x = y and γr-cut (x, y) = 1
otherwise. Furthermore, for each label d ∈ [r], let ρd denote the constant relation given by
ρd (d) = 0 and ρd (x) =∞ for d 6= x ∈ [r]. Let Γr-cut = {γr-cut, ρ1, . . . , ρr}.

Finding an optimal r-terminal cut is equivalent to solving the VCSP(Γr-cut) instance
I = (V, [r] , φ) with objective function

φ (x1, . . . , xn) = ρ1 (s1) + · · ·+ ρr (sr) +
∑

(u,v)∈E

w (u, v) · γr-cut (u, v) .

To see this, observe that there is a correspondence between feasible assignments s : V → [r] and
r-terminal cuts X1, . . . , Xr by setting Xd = {v ∈ V : s (v) = d}. Hence, an optimal assignment
induces an optimal cut.

The r-Terminal Min-Cut problem can be solved in polynomial time if r = 2, but it
is NP-hard for any r ≥ 3 [9]. Since every VCSP(Γr-cut) instance can also be reduced to an
instance of the r-Terminal Min-Cut problem, the language Γr-cut is globally tractable if
r = 2 and globally intractable for r ≥ 3. ♣

Example 2 (r-Way Min-Cut). Without setting out any terminals, the r-Way Min-Cut
problem asks to partition V into non-empty subsets X1, . . . , Xr such that weight of the
induced cut is minimised. Finding an optimal r-way min-cut is equivalent to solving the
VCSPs({γr-cut}) instance I = (V, [r] , φ) with objective function

φ (x1, . . . , xr) =
∑

(u,v)∈E

w (u, v) · γr-cut (u, v) .

The r-Way Min-Cut problem can be solved in polynomial time for every fixed integer r [13].
Since every VCSPs({γr-cut}) instance can be reduced to an r-Way Min-Cut problem as well,
the language {γr-cut} is globally s-tractable. ♣

For a fixed l : D → V , VCSPl({γr-cut}) allows to model a generalisation of the r-Way
Min-Cut problem where a partition X1, . . . , Xr of V minimising the induced cut is sought
under the condition that |Xd| ≥ l (d) for every d ∈ D. As far as we know, the complexity of
both VCSPl({γr-cut}) and the lower-bounded r-Way Min-Cut problem is unknown.

Related Work Early results on CSPs include the fundamental results of Schaefer on Boolean
CSPs [24] and of Hell and Nešetřil on graph CSPs [14]. The computational complexity of
CSPs has drawn a lot of attention following the seminal paper of Feder and Vardi [11].
Using the algebraic approach [17, 4], the complexity of CSPs on finite domains was resolved
in two independent papers by Bulatov [5] and Zhuk [29]. The computational complexity
of the problem of minimising the number of unsatisfied constraints (and more generally
rational-valued weighted relations) was obtained by Thapper and Živný in [28]. Finally, the
computational complexity of general-valued CSPs on finite domains was obtained by the work
of Kozik and Ochremiak [21] and Kolmogorov, Krokhin, and Roĺınek [19].

Many constraint solvers allow not only constraints that apply locally to the variables
specified as arguments, but also some sort of global constraints. In fact, the latter are the
default representations in most constraint solvers [23]. Among VCSPs with global constraints
studied from the complexity point of view are CSPs with global cardinality constraints, or

3

CCSPs, where it is specified how often exactly each label has to occur in an assignment. A
dichotomy theorem for CCSPs on finite domains was established by Bulatov and Marx [6].

Surjective VCSPs, which can be seen as imposing a global constraint, have been studied by
Fulla, Uppman, and Živný [12], following earlier results on CSPs by Creignou and Hébrard [8]
and Bodirsky, Kára, and Martin [2]. Unfortunately, the algebraic approach that has proved
pivotal in the understanding of the computational complexity of regular CSPs and VCSPs is
not applicable in the surjective setting.

The following two facts are easy to show (see, e.g, [12]): (i) intractable languages are also
s-intractable; (ii) a tractable language Γ is also s-tractable if Γ includes all constant relations.
Consequently, new s-tractable languages can only occur (if at all) as subsets of tractable
languages that do not contain all constant relations. The first example of such languages
have been presented in [12]. In particular, the authors of [12] have identified languages on the
Boolean domain that are essentially a downset, or EDS, as a new class of efficiently solvable
problems and, in doing so, have provided a complexity classification of surjective VCSPs on
the Boolean domain. Informally, a weighted relation γ is EDS if both the set of feasible tuples
of γ and the set of optimal tuples of γ are essentially downsets. Here a relation is called
essentially a downset if it can be written as a conjunction of downsets and binary equality
relations. Equivalently, a relation is essentially a downset if it admits a binary polymorphism
sub(x, y) = min(x, 1− y). A finite language is EDS if every weighted relation in Γ is EDS. The
definition for infinite languages is more complicated. We give a formal definition of the EDS
class in Section 3 and refer the reader to [12] for more details.

The tractability result of EDS languages is based on the Generalised Min-Cut (GMC)
problem for graphs, also introduced in [12]. In a GMC instance, the goal is to find a non-trivial
subset of the vertices such that the weight of the induced cut and a superadditive set function
are minimised simultaneously. In particular, the following has been shown in [12]. Firstly, the
objective function of surjective VCSPs that are EDS can be approximated by an instance of
the GMC problem. Secondly, there is a polynomial-time algorithm to enumerate all solutions
to the GMC problem that are optimal up to a constant factor. These two together give an
efficient algorithm for surjective VCSPs that are EDS.

Contributions This paper extends the class EDS to arbitrary finite domains. We introduce
a class SIM of languages that exhibit properties similar to a Boolean language. Based on this
class, we define the class SEDS of languages similar to EDS as a natural extension of EDS
and classify languages from this extension based on two criteria. Firstly, we give a subclass
SDS, or similar to a downset, of SEDS that guarantees global `-tractability without additional
requirements. Secondly, we prove that the complexity of lower-bounded VCSPs over any
remaining SEDS languages is equivalent to the complexity over a particular language on a
smaller domain, which can be constructed by including all possible ways to assign a certain
label. This is illustrated in Figure 1 (left), where we use the notation fix(Γ), formally defined
in Section 3.2. Informally, for a language Γ defined on domain D that includes the label 0,
fix(Γ) is the language on domain D \ {0} obtained by including, for every weighted relation
γ ∈ Γ of arity n and a subset U of the arguments of γ, the weighted relation fixU [γ], which is
a weighted relation on D \ {0} of arity n− |U | defined as the restriction of γ that fixes the
label 0 to all arguments in U .

One implication of our results is a dichotomy theorem for lower-bounded VCSPs on the
Boolean domain; every Boolean language is either globally `-tractable or globally `-intractable.

4

SDSSDS

SEDS

SIM

fix(Γ) globally
`-tractable

fix(Γ) globally
s-intractable

SDSSDS

SEDSSEDS

SIM

fix(Γ) globally
`-tractable

fix(Γ) globally
`-intractable

Figure 1: Classification of SEDS languages on arbitrary finite domains (left) and on three-
element domains (right). A language Γ is globally `-tractable when marked by horizontal (blue)
lines and globally s-intractable when marked by vertical (red) lines, depending on the language
fix(Γ) on a smaller domain. (Recall that global s-intractability implies global `-intractability.)
In case of three-element domains, the Boolean language fix(Γ) is either globally `-tractable or
globally `-intractable, while this is not known for larger domains.

Although lower-bounded VCSPs are more general than surjective VCSPs, this classification
coincides with the dichotomy theorem for surjective VCSPs given by [12].

In addition, combining our reduction of SEDS languages to a smaller domain and the
dichotomy theorem for the Boolean domain leads to a classification of all SEDS languages on
three-element domains with respect to `-tractability, which is featured on the right-hand side
of Figure 1.

The foundation of our results is an extension of the Generalised Min-Cut problem that
might be of independent interest. Given integers p, q ∈ N0, a graph with non-negative edge
weights and a superadditive set function defined on its vertices, the goal in the Bounded
Generalised Min-Cut problem is, just like in the GMC problem, to find a subset of the vertices
such that the sum of the induced cut and the superadditive set function evaluated on it are
minimal among all possible solutions. The solution space, however, is restricted to subsets
containing at least q and at most all but p vertices.

If an optimal solution has value 0, there can be exponentially many optimal solution, e.g.
when there are no edges and the superadditive function always evaluates to 0. Our main
algorithmic result is that, for all instances with non-zero optimal value and for any constant
bounds p, q ∈ N0, all solutions that are optimal up to a constant factor can be enumerated in
polynomial time (and thus, in particular, there are only polynomially many of them).

We finish with two remarks on, as far as we can tell, unrelated work. First, it is natural to
consider Karger’s elegant (randomised) min-cut algorithm [18], which also allows to enumerate
(polynomially many) near-optimal cuts, and try to adapt it to the newly introduced Bounded
Generalised Min-Cut problem. Despite trying, we do not see any way of doing it.1 Moreover,
we only know how to establish our tractability results on surjective VCSPs by a reduction
to the Bounded Generalised Min-Cut problem that includes that superadditive function, but
that one fails many properties required by Karger’s algorithm. (For instance, superadditive
functions are not necessarily submodular.) Second, it is notationally convenient to go back
and forth between weighted relations (on a domain of size k + 1) and k-set functions, as we

1It appears to be an issue that the superadditive set function is evaluated only for the solution set, while
the set of remaining vertices may exhibit an excessively large set function value even in an optimal solution.
That makes it implausible to think a local criterion for edge contractions could incorporate the superadditive
set function in a suitable manner, i.e. somehow preventing the set function value from getting too large.

5

will explain in Section 3 and use throughout the paper. We do not see a connection (suggested
by an anonymous reviewer of the extended abstract of this work [22]) to the characterisation
of arc consistency via set polymorphisms [11, 10], which are properties of (weighted) relations
but not their equivalent description. More generally, we do not know whether our tractability
result could be established using recent work on consistency methods for CSPs [1] or LP
relaxations for VCSPs [20, 27].

Organisation We will proceed in the following manner. Section 2 gives a polynomial-time
algorithm for enumerating all near-optimal optimal solutions of the Bounded Generalised
Min-Cut problem. In Section 3, we extend the notion of EDS to larger domains. A classification
of languages from this extension is presented in Section 4. Section 5 provides a dichotomy
theorem for lower-bounded VCSPs on the Boolean domain.

2 The Bounded Generalised Min-Cut Problem

We begin by presenting our algorithm for the Bounded Generalised Min-Cut problem. The
problem is based on the notion of superadditive set functions, which we define first.

Definition 3. A set function on a finite set V is a function f : 2V → Q defined on subsets of
V ; it is normalised if it satisfies f (∅) = 0 and f (X) ≥ 0 for all X ⊆ V .

A set function f on V is increasing if it is normalised and f (X) ≤ f (Y) for all X ⊆ Y ⊆ V .
It is superadditive if it is normalised and, for all disjoint X,Y ⊆ V , it holds that

f (X) + f (Y) ≤ f (X ∪ Y) . (SUP)

Since equation (SUP) implies that f (X) ≤ f (X) + f (Y \X) ≤ f (Y) for all X ⊆ Y ⊆ V ,
every superadditive set function must also be increasing.

Definition 4. For p, q ∈ N0, the Bounded Generalised Min-Cut problem with lower bound q
and upper bound p is denoted by GMCp

q .
A GMCp

q instance h is given by an undirected graph G = (V,E) with edge weights
w : E → Q≥0 ∪ {∞} and an oracle defining a superadditive set function f on V . For X ⊆ V ,
let w (X) =

∑
|{u,v}∩X|=1w ({u, v}) denote the weight of the cut induced by X.

A solution of instance h is any set X ⊆ V such that |X| ≥ q and |X| ≤ |V | − p. The
objective is to minimise the value h (X) = f (X) +w (X). A solution X is optimal if the value
h (X) is minimal among all solutions for this instance. We denote the value of an optimal
solution by λ. For any α ≥ 1, a solution X is α-optimal if h (X) ≤ αλ.

The Generalised Min-Cut problem, simply denoted by GMC, is the Bounded Generalised
Min-Cut problem with lower and upper bound 1. All α-optimal solutions of a GMC instance
can be enumerated in polynomial time according to [12, Theorem 5.11], which we restate here.

Theorem 5 ([12]). For any instance h of the GMC problem on n vertices with optimal value
0 < λ < ∞ and any constant α ∈ N, the number of α-optimal solutions is at most n20α−15.
There is an algorithm that finds all of them in polynomial time.

We will assume that all edges are strictly positive-valued, as they can be ignored otherwise.
Similarly to [12, Lemma 53] for the GMC problem, we can easily detect and solve the problem
when λ = 0 or λ =∞.

6

Lemma 6. For any p, q ∈ N0, where q is a constant, a polynomial-time algorithm can
determine whether the optimal value of a GMCp

q instance h on a graph G = (V,E) is λ = 0,
1 < λ <∞ or λ =∞. In case λ = 0, it can provide an optimal solution.

Proof. First, we assume λ = 0. Consider some optimal solution X ⊆ V . Then h(X) = 0
implies that X cannot cut any edges and, hence, must be a union of connected components
C1, . . . , Ck ⊆ V from G for some k ∈ N. The union Y = C1 ∪ · · · ∪ Cmin(k,q) of up to q of
those components must still satisfy q ≤ |Y | ≤ |X| ≤ |V | − p and h(Y) = 0, because the
superadditive set function f is increasing and Y ⊆ X. Consequently, an algorithm can check
all O (nq) combinations of up to q components from G in order to find the solution Y . And
vice versa, if no such solution of value 0 is found, it can be concluded that λ > 0.

Similarly, to probe whether λ = ∞, we consider those vertices that are connected by
infinite-weight edges as components, because any finite-valued solution cannot cut those edges.
It is then sufficient to check all O (nq) combinations of up to q components to see whether a
finite-valued solution exists. Otherwise, if all these candidates have infinite value when they
are comprised of q or more vertices, any solution that does not cut any infinity-edges must
be a superset of one of these candidates and therefore have infinite value as well due to the
increasing nature of f .

Consequently, our goal is to provide a polynomial-time algorithm for enumerating near-
optimal solutions in the case that the optimal value is both positive and finite. Before doing
so, we give two auxiliary lemmas based on [12, Lemma 5.6] and [12, Lemma 5.10].

Lemma 7. For any p, q ∈ N0, any GMCp
q instance h on a graph G = (V,E) and any subset

V ′ ⊆ V , there is a GMCp
q instance h′ on the induced subgraph G [V ′] that preserves the objective

value of all solutions X ⊆ V ′. In particular, any α-optimal solution X of h such that X ⊆ V ′
is α-optimal for h′ as well.

Proof. Edges with exactly one endpoint in V ′ need to be taken into account separately because
they do not appear in the induced subgraph. We accomplish that by defining the new set
function f ′ by

f ′ (X) = f (X) +
∑
u∈X

∑
v∈V \V ′

w (u, v)

for all X ⊆ V ′. By the construction, f ′ is superadditive, and the objective value h′ (X) for
any solution X ⊆ V ′ equals h (X).

Note that the minimum objective value for h′ is greater than or equal to the minimum
objective value for h. Therefore, any solution X ⊆ V ′ that is α-optimal for h is also α-optimal
for h′.

When a solution of some bounded GMC instance is split into two parts, the next lemma
gives a bound on the values of these parts based on edges involved in the split.

Lemma 8. Let h be a GMCp
q instance over vertices V with optimal value λ and let X,Y ⊆ V

such that h (X) ≤ αλ and w (Y) ≤ βλ for some α ≥ 1 and β ≥ 0. Then it holds

h (X\Y) + h (X ∩ Y) ≤ (α+ 2β)λ.

Proof. It is well-known and can easily be verified that the cut function w is posimodular,
meaning that w (A) + w (B) ≥ w (A\B) + w (B\A) for all A,B ⊆ V .

7

As a consequence, we have

w (X) + w (Y) ≥ w (X\Y) + w (Y \X)

w (Y) + w (Y \X) ≥ w (X ∩ Y) + w (∅) ,

and hence,
w (X) + 2w (Y) ≥ w (X\Y) + w (X ∩ Y) .

By superadditivity of f , it holds f (X) ≥ f (X\Y) + f (X ∩ Y). The claim then follows from
the fact that f (X) + w (X) + 2w (Y) ≤ (α+ 2β)λ.

With these preparations on hand, we now proceed with our main algorithmic result.

Theorem 9. For some constant q ≥ 2, let h be a GMC1
q instance on a graph G = (V,E)

of size n = |V | with optimal value 0 < λ < ∞. Let Y ∪ Z = V be a partition of V and let
Y1 ∪ · · · ∪ Yk = Y for some k ∈ N0 be a partition of Y satisfying 0 < |Yi| < q and h (Yi) ≤ λ

3q
for all 1 ≤ i ≤ k.

Then for every constant α ≥ 1, at most |Z|n ·n
τ(q,α) α-optimal solutions X ⊆ V of h satisfy

|X ∩ Y | < q, where τ (q, α) = 60qα + 41q + 7. These solutions can all be enumerated in
polynomial time.

Note that with Y = ∅ and Z = V , this theorem states for any GMC1
q instance that the

number of α-optimal solutions is bounded by nτ(q,α).

Proof. Proof by induction over n + |Z|
n+1 ; that is, induction primarily over n and, for equal

values of n, also over |Z|. For n ≤ q or Z = ∅, there are no solutions of the described form
and hence, the statement holds.

Now, fix some n > q, some GMC1
q instance h on a graph G = (V,E) of size n with optimum

value 0 < λ < ∞ and partitions Y ∪ Z = V and Y1 ∪ · · · ∪ Yk = Y as described. By the
induction hypothesis, we can assume that the theorem holds for every graph of size n′ < n as

well as for every partition Ỹ ∪ Z̃ = V of graph G satisfying
∣∣∣Z̃∣∣∣ < |Z|.

To simplify matters, we can replace any infinite edge weights in G with a large value
(α · (1 + f(V) +

∑
w(u,v)<∞w (u, v)) works) without affecting any of our assumptions or the set

of α-optimal solutions we are looking for. Thus, we will subsequently assume that all edges
are finite-valued.

According to Lemma 7, there exists a GMC1
q instance hZ on the induced subgraph G [Z]

that preserves the objective value of every solution X ′ (Z with respect to h. In the following,
we treat hZ as a GMC instance (i.e. with lower bound 1). Let λZ denote the optimal value of
hZ . We can assume λZ <∞ because otherwise, due to the absence of infinite-weight edges in
G and the superadditivity of f , no finite-valued solution X ⊆ V of h can satisfy X ∩ Z 6= ∅.
Let Yk+1 (Z be an optimal solution of hZ , i.e. hZ (Yk+1) = λZ .

If h (Yk+1) is sufficiently large, we show that it is essentially sufficient to enumerate GMC
solutions of G [Z] up to a constant factor. For small h (Yk+1), our strategy will be to reduce
the problem to the partition Y ′ ∪ Z ′ = V , where Y ′ = Y1 ∪ · · · ∪ Yk ∪ Yk+1 and Z ′ = Z\Yk+1.
This approach is outlined in Figure 2.

Consider any α-optimal solution X ⊆ V of h satisfying |X ∩ Y | < q. For some integer t, let
i1, . . . , it denote indices such that X ∩ Y = X ∩ (Yi1 ∪ · · · ∪ Yit), i.e. such that X has vertices
only in Yi1 , . . . , Yit and Z. Since |X ∩ Y | < q, we require that t < q. Let U = Yi1 ∪ · · · ∪ Yit .

8

Y1

Y2

Y3

. . . Yk

YZ

Yk+1

X

Y1

Y2

Y3

. . . Yk

YZ′

Yk+1

X

Figure 2: Given a partition V = Y ∪ Z with Y = Y1 ∪ · · · ∪ Yk of the vertices of a GMC1
q

instance h, we want to find every solution X such that h (X) ≤ αλ and |X ∩ Y | < q. Consider
the GMC instance hZ on G [Z] with optimal solution Yk+1. If h (Yk+1) ≥ λ

3q , X ∩ Z must
be a near-optimal solution of h (left, Case 1). Otherwise, we apply the induction hypothesis
either on the subgraph G [Z ′], where Z ′ = Z\Yk+1 (right, Case 2a), or on the partition
V = Z ′ ∪ (Y1 ∪ · · · ∪ Yk+1) (Case 2b).

Case 1: If λZ ≥ λ
3q , we aim to bound the value h (X ∩ Z) relative to λZ . Since w (Yi) ≤

h (Yi) ≤ λ
3q for every 1 ≤ i ≤ k by assumption, it must hold that

w (U) =
∑

|{u,v}∩U |=1

w ({u, v}) ≤
t∑

j=1

 ∑
∣∣∣{u,v}∩Yij ∣∣∣=1

w ({u, v})

=

t∑
j=1

w
(
Yij
)
≤ t · λ

3q
< q · λ

3q
=
λ

3
.

According to Lemma 8 with β = 1
3 , it follows that

h (X\U) + h (X ∩ U) ≤
(
α+

2

3

)
λ,

and in particular, since X ∩ Z = X\U , we have

h (X ∩ Z) ≤
(
α+

2

3

)
λ.

Assuming λZ ≥ λ
3q , we can limit the value h (X ∩ Z) relative to λZ by(

α+
2

3

)
λ ≤

(
α+

2

3

)
· 3qλZ = (3qα+ 2q)λZ .

Given that X ∩ Z 6= ∅, the above equation implies that if X ∩ Z (Z, then X ∩ Z is a
(3qα+ 2q)-optimal solution of the GMC instance hZ . According to Theorem 5, there are at
most

n20d3qα+2qe−15 ≤ n20(3qα+2q+1)−15 = n60qα+40q+5

(3qα+ 2q)-optimal solutions of GMC instance hZ , which can all be enumerated in polynomial
time. Pairing up these choices for X ∩ Z, in addition to the possibility X = Z, with the at

most
∑q−1

i=0

(
n
i

)
≤
∑q−1

i=0 n
i ≤

∑q−1
i=0

(
1
2

)q−i
nq ≤ nq sets of up to q − 1 vertices from Y gives at

most (
n60qα+40q+5 + 1

)
· nq ≤ n60qα+41q+6 =

1

n
· nτ(q,α) ≤ |Z|

n
· nτ(q,α) (Case 1)

overall choices for X in this case, as required.

9

Case 2a: Now, let’s assume that λZ ≤ λ
3q and furthermore that |X ∩ Y ′| ≥ q, where

Y ′ = Y ∪ Yk+1. Then it must hold w (Yk+1) ≤ λZ ≤ λ
3q . Let U ′ = Yi1 ∪ · · · ∪ Yit ∪ Yk+1 so that

it holds X ∩ Y ′ ⊆ U ′. Similar to the previous case, we can bound w (U ′) by

w
(
U ′
)
≤ w (Yi1) + · · ·+ w (Yit) + w (Yk+1) ≤ (t+ 1) · λ

3q
≤ q · λ

3q
=
λ

3
.

According to Lemma 8 with β = 1
3 , it must then hold that

h
(
X\U ′

)
+ h

(
X ∩ U ′

)
≤
(
α+

2

3

)
λ.

Assuming that |X ∩ Y ′| ≥ q, the set X ∩ U ′ = X ∩ Y ′ is a solution of h and must have value
h (X ∩ U ′) ≥ λ. For Z ′ = Z\Yk+1, it therefore holds that

h
(
X ∩ Z ′

)
= h

(
X\U ′

)
≤
(
α+

2

3

)
λ− h

(
X ∩ U ′

)
≤
(
α− 1

3

)
λ.

Let hZ′ denote the GMC1
q instance on the induced subgraph G [Z ′] that preserves the value

of h as detailed in Lemma 7. Unless |X ∩ Z ′| < q or X ∩ Z ′ = Z ′, the set X ∩ Z ′ is an(
α− 1

3

)
-optimal solution of hZ′ (in particular, this case can be ignored when α < 4

3). By
applying the induction hypothesis on hZ′ with the trivial partition ∅ ∪ Z ′ = Z ′, it follows that
the number of

(
α− 1

3

)
-optimal solutions is at most

|Z ′|
|Z ′|
·
(∣∣Z ′∣∣)τ(q,α− 1

3) ≤ nτ(q,α−
1
3).

In addition, there are at most
∑q−1

i=0

(
n
i

)
≤ nq subsets of Z ′ that have size less than q.

Accounting also for the possibility X ∩ Z ′ = Z ′, there are at most

nτ(q,α−
1
3) + nq + 1 ≤ 3nτ(q,α−

1
3) ≤ nτ(q,α−

1
3)+1

choices for X ∩ Z ′ in this case.
Next, we limit the number of choices for X ∩ Y ′. Since X contains at most q − 1 vertices

from Y (less than nq choices) and since Yk+1 contains at most q − 1 vertices (at most 2q−1

choices), the number of possible choices for X ∩ Y ′ is limited by

nq · 2q−1 ≤ n2q.

Pairing up each possible choice for X ∩ Z ′ with each choice for X ∩ Y ′ gives a total of at
most

nτ(q,α−
1
3)+1 · n2q = nτ(q,α−

1
3)+2q+1 ≤ 1

n
· nτ(q,α) (Case 2a)

solutions, where the last inequality follows from the fact that

τ (q, α)− τ
(
q, α− 1

3

)
= 60q · 1

3
≥ 2q + 2.

10

Case 2b: Finally, let’s assume that λZ ≤ λ
3q and that |X ∩ Y ′| < q. Since hZ (Yk+1) = λZ <

λ implies |Yk+1| < q, we can apply the induction hypothesis for instance h with the partition
Y ′ ∪ Z ′ = V to limit the number of choices for X. Consequently, this number is at most

|Z ′|
n
· nτ(q,α) ≤ |Z| − 1

n
· nτ(q,α). (Case 2b)

Summing up the bounds for Case 2a and Case 2b, the overall number of choices for X if
λZ ≤ λ

3q is bounded by

1

n
· nτ(q,α) +

|Z| − 1

n
· nτ(q,α) =

|Z|
n
· nτ(q,α).

This proves the upper bound of |Z|n · n
τ(q,α) solutions of the described form.

A polynomial-time algorithm to enumerate all such solutions follows almost immediately
from these calculations. Given that λ might not be known beforehand, we simply check both
Case 1 and Case 2.

Note that the induction hypothesis is used only in Case 2a, where all
(
α− 1

3

)
-optimal

solutions of GMC1
q instance hZ′ with partition ∅ ∪ Z ′ need to be computed, and in Case

2b, where all α-optimal solutions of GMC1
q instance hZ with partition Y ′ ∪ Z ′ need to be

computed. It is straightforward to verify that the algorithmic complexity of all required
operations except for these two recursive calls can be bounded by some polynomial poly (n).
We show by induction that Tα (n,Z) = 3αn3α · |Z| · poly (n) is an upper bound on the overall
complexity.

Tα (n,Z) ≤ poly (n) + Tα− 1
3

(∣∣Z ′∣∣ , Z ′)+ Tα
(
n,Z ′

)
≤ poly (n) + (3α− 1)n3α · poly (n) + 3αn3α · (|Z| − 1) · poly (n)

≤ 3αn3α · |Z| · poly (n)

Corollary 10. For any p, q ∈ N0 and α ≥ 1, where q and α are constants, and for any
GMCp

q instance h with optimal value 0 < λ <∞, all α-optimal solutions can be enumerated
in polynomial time.

Proof. Let h = f + w be a GMCp
q instance with 0 < λ <∞. First, we assume that p ≥ 1 and

q ≥ 2. The superadditive set function

f ′ (X) =

{
∞ if |X| > |V | − p
f (X) otherwise

defines a GMC1
q instance h′ = f ′ + w where every solution X ⊆ V of size |X| > |V | − p has

infinite value so that the set of finite-valued solutions and their values are identical for h
and h′. Therefore, it is sufficient to enumerate all α-optimal solutions of h′, which can be
accomplished in polynomial time according to Theorem 9

If p = 0 or q < 2, there are up to |V |+ 2 additional solutions that can all be checked in
polynomial time.

11

3 Extending EDS to Larger Domains

In this section, we formally introduce the classes SIM, SEDS and SDS. In order to simplify our
notation, we will subsequently always consider the (k + 1)-element domain D = {0, 1, . . . , k}
for some integer k. Any other domain of size k + 1 can simply be relabelled without affecting
its properties. One label from the domain will play a special role; without loss of generality
(due to relabellings), it will be 0.

3.1 k-Set Functions

It will be convenient to go back and forth between weighted relations and k-set functions,
which is, subject to a minor technical assumption, always possible.

Definition 11. Let k ∈ N and let V be a finite set. A k-set function on V is a function
f : (k + 1)V → Q defined on k-tuples of pairwise disjoint subsets of V . A k-set function
f over V is normalised if it satisfies f (∅, . . . , ∅) = 0 and f (X1, . . . , Xk) ≥ 0 for all disjoint
X1, . . . , Xk ⊆ V .

Note that a 1-set function is simply a set function as defined in Section 2. The correspon-
dence between weighted relations and k-set functions is formalised by the next definition.

Definition 12. Let γ be an n-ary weighted relation on the (k + 1)-element domain D =
{0, 1, . . . , k}, and let f be the k-set function on V = [n] that is defined for disjoint sets
X1, . . . , Xk ⊆ V by f (X1, . . . , Xk) = γ (x), where the i-th coordinate of x is given by xi = d
if i ∈ Xd for some 0 6= d ∈ D and xi = 0 otherwise. Then γ corresponds to f .

Furthermore, we say that γ corresponds under normalisation to a k-set function if γ (0n) <
∞ and γ (0n) ≤ γ (x) for all x ∈ Dn. In this case, the k-set function corresponding under
normalisation to γ is the normalised k-set function corresponding to γ − γ (0n), i.e. the
weighted relation with offset such that the assignment 0n evaluates to 0.

According to this definition, there is a unique k-set function corresponding to every
weighted relation on the (k + 1)-element domain, and vice versa. Furthermore, assuming
that γ (0n) <∞, a weighted relation γ corresponds under normalisation to a k-set function
precisely if it admits multimorphism 〈c0〉, which we will formally define in Section 5.

The next definition states when a k-set function is approximated by a (1-)set function.
This approximation will serve as central tool in order to bring the structure of languages from
larger domains essentially down to a Boolean domain.

Definition 13. Let f be a k-set function and g a set function on V . We say that g α-
approximates f if, for all disjoint X1, . . . , Xk ⊆ V , it holds that

g (X1 ∪ · · · ∪Xk) ≤ f (X1, . . . , Xk) ≤ α · g (X1 ∪ · · · ∪Xk) .

3.2 Fixing a Label: Reduced Languages

Reducing a language to a smaller domain by fixing the occurrences of label 0, as defined
subsequently, will become a central tool in our classification.

12

Definition 14. Let γ be a weighted relation on domain D of arity n and let U ⊆ [n]. Then
fixU [γ] is the weighted relation on domain D∗ = D\ {0} of arity m = n − |U | defined for
x1, . . . , xm ∈ D∗ by

fixU [γ] (x1, . . . , xm) = γ (y1, . . . , yn) , where yi =

{
0 if i ∈ U
x|[i]\U | otherwise.

In other words, fixU [γ] takes an assignment from domain D∗ to all variables except for
those with index in U , and evaluates it through γ by assigning label 0 to the remaining
variables. In Definition 15, we generalise this concept in order to express the language that is
generated by fixing every possible assignment of label 0.

Definition 15. Let Γ be a language on domain D. For any γ ∈ Γ, let fix(γ) denote the set
{fixU [γ] : U ⊆ [ar (γ)]} generated by fixing any possible subset of variables to label 0. We
define the language fix(Γ) on domain D∗ = D\ {0} by fix(Γ) =

⋃
γ∈Γ fix(γ).

3.3 Extending EDS to Larger Domains

The class EDS, or essentially a downset, has been introduced in [12] for the Boolean domain.

Definition 16. For any α ≥ 1, a normalised set function f on V is α-EDS if, for all X,Y ⊆ V ,
it holds that

f (X\Y) ≤ α · (f (X) + f (Y)) . (EDS)

A weighted relation is α-EDS if it corresponds under normalisation to a set function that
is α-EDS. Moreover, a language Γ is EDS if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-EDS.

Fulla et al. showed [12] that EDS languages are globally s-tractable. We improve upon
this result by proving that such languages are in fact globally `-tractable, and we extend the
idea of being essentially a downset to larger domains through the classes SIM, SEDS and SDS.

Intuitively, a language is SIM, or similar to a Boolean language, if it can be approximated
by a language over the Boolean domain using Definition 13. More precisely, for each weighted
relation, the value of any two assignments that assign label 0 to the same set of variables must
be equal up to a constant factor. This way, when disregarding constant factors, all non-zero
labels can be treated as a single one, leading us essentially to the Boolean domain.

Definition 17. Let f be a normalised k-set function on set V . For any α ≥ 1, f is
called α-SIM if, for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V such that
X1 ∪ · · · ∪Xk = Y1 ∪ · · · ∪ Yk, it holds that

f (X1, . . . , Xk) ≤ α · f (Y1, . . . , Yk) . (SIM)

A weighted relation is α-SIM if it corresponds under normalisation to a k-set function
that is α-SIM. Moreover, a language Γ is SIM if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-SIM.

Note that every normalised set function is 1-SIM. Hence, EDS is a subclass of SIM. Going
beyond the Boolean domain, the class SEDS of languages similar to EDS arises as a natural
generalisation of EDS. Intuitively, SEDS contains precisely those languages that can be
approximated by EDS languages.

13

Definition 18. For any α ≥ 1, a normalised k-set function f on V is α-SEDS if it is α-SIM
and, for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V , it holds that

f (X1\Y1, . . . , Xk\Yk) ≤ α · (f (X1, . . . , Xk) + f (Y1, . . . , Yk)) . (SEDS)

A weighted relation is α-SEDS if it corresponds under normalisation to a k-set function
that is α-SEDS. Moreover, a language Γ is SEDS if there is some α ≥ 1 such that every
weighted relation γ ∈ Γ is α-SEDS.

The class SDS, or similar to a downset, imposes a stricter requirement than SEDS. When
any arguments of a weighted relation are changed to label 0, the value should decrease, stay
equal or increase by at most a constant factor. Intuitively, weighted relations of these languages
can be approximated by increasing set functions.

Definition 19. For any α ≥ 1, a normalised k-set function f on V is α-SDS if it is α-SIM
and in addition, for all disjoint X1, . . . , Xk, Y1, . . . , Yk ⊆ V , it holds that

f (X1, . . . , Xk) ≤ α · f (X1 ∪ Y1, . . . , Xk ∪ Yk) . (SDS)

A weighted relation is α-SDS if it corresponds under normalisation to a k-set function that
is α-SDS, and a language Γ is SDS if there is some α ≥ 1 such that every weighted relation
γ ∈ Γ is α-SDS.

Note that SDS is a subclass of SEDS. To see this, consider any α-SDS k-set function f on
V . Then it holds for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V that

f (X1\Y1, . . . , Xk\Yk) ≤ α · f (X1, . . . , Xk) ≤ α · (f (X1, . . . , Xk) + f (Y1, . . . , Yk)) ,

proving that f is α-SEDS.

4 Classifying SEDS and SDS Languages

In this section, we first show that a SEDS language Γ is globally `-tractable if it is SDS or if
the reduced language fix(Γ) is globally `-tractable. Afterwards, we prove global s-intractability
of the remaining SEDS languages conditioned on global s-intractability of fix(Γ).

We begin by restating [12, Theorem 5.17] concerning EDS languages and then devise
similar approximations for SEDS and SDS languages.

Theorem 20 ([12]). For any α-EDS set function f on V , there exists a GMC instance h that
αn+2

(
n3 + 2n

)
-approximates f , where n = |V |.

Lemma 21. For any α-SEDS k-set function f on V , there exists an α-EDS set function g
that α2-approximates f .

Proof. We define the set function g on V by g (X) = 1
αf (X, ∅, . . . , ∅) . Observe that, since

f is normalised, it holds g (∅) = f (∅, . . . , ∅) = 0 and g (X) = 1
αf (X, ∅, . . . , ∅) ≥ 0 for every

X ⊆ V . Thus, g is normalised as well. In addition, for all X,Y ⊆ V , it holds that

α · (g (X) + g (Y)) = f (X, ∅, . . . , ∅) + f (Y, ∅, . . . , ∅)≥ 1

α
· f (X\Y, ∅, . . . , ∅) = g (X\Y) ,

14

where the second step uses equation (SEDS). Hence, g is α-EDS.
It remains to show that g α2-approximates f . For this purpose, consider any disjoint

X1, . . . , Xk ⊆ V and let X =
⋃k
i=1Xi denote their union. Since f is α-SIM, it holds that

g (X) =
1

α
f (X, ∅, . . . , ∅) ≤ f (X1, . . . , Xk) ≤ α · f (X, ∅, . . . , ∅) = α2 · g (X) .

By combining Lemma 21 and Theorem 20, we can deduce the following result.

Theorem 22. For any α-SEDS k-set function f on V , there exists a GMC instance h that
αn+4

(
n3 + 2n

)
-approximates f , where n = |V |.

Proof. Let f be an α-SEDS k-set function defined on V . According to Lemma 21, there exists
an α-EDS set function g that α2-approximates f , meaning that, for all disjoint X1, . . . , Xk ⊆ V ,
it holds

g

(
k⋃
i=1

Xk

)
≤ f (X1, . . . , Xk) ≤ α2 · g

(
k⋃
i=1

Xk

)
. (1)

According to Theorem 20, as an α-EDS set function, g is αn+2
(
n3 + 2n

)
-approximable by

some GMC instance h, meaning that, for every X ⊆ V , it holds

h (X) ≤ g (X) ≤ αn+2
(
n3 + 2n

)
· h (X) . (2)

By combining (1) and (2), it follows that, for all disjoint X1, . . . , Xk ⊆ V , we have

h

(
k⋃
i=1

Xi

)
≤ f (X1, . . . , Xk) ≤ αn+4

(
n3 + 2n

)
· h

(
k⋃
i=1

Xi

)
,

proving that h αn+4
(
n3 + 2n

)
-approximates f .

There is a more restrictive approximation of SDS languages through superadditive set
functions, which can be though of as GMC instances without edges.

Theorem 23. For any α-SDS k-set function f on V , there exists a superadditive set function
g that nαn+1-approximates f , where n = |V |.

Proof. Let the set function g on V be given by

g (X) =
α|X|−n−1 |X|

n
· f (X, ∅, . . . , ∅) . (3)

Observe that since f is normalised, it holds g (∅) = f (∅, . . . , ∅) = 0 and g (X) ≥ 1
nαn+1 ·

f (X, ∅, . . . , ∅) ≥ 0 for every X ⊆ V . Thus, g is normalised as well. Moreover, g is superadditive,
because for all disjoint ∅ 6= X,Y ⊆ V , it holds that

g (X) + g (Y) =
α|X|−n−1 |X|

n
· f (X, ∅, . . . , ∅) +

α|Y |−n−1 |Y |
n

· f (Y, ∅, . . . , ∅)

(SDS)

≤ α|X|−n−1 |X|
n

· α · f (X ∪ Y, ∅, . . . , ∅) +
α|Y |−n−1 |Y |

n
· α · f (X ∪ Y, ∅, . . . , ∅)

X,Y 6=∅
≤ α|X|+|Y |−n−1 |X|

n
· f (X ∪ Y, ∅, . . . , ∅) +

α|X|+|Y |−n−1 |Y |
n

· f (X ∪ Y, ∅, . . . , ∅)

X∩Y=∅
=

α|X∪Y |−n−1 |X ∪ Y |
n

· f (X ∪ Y, ∅, . . . , ∅) (since X ∩ Y = ∅)

= g (X ∪ Y) .

15

It remains to show that g nαn+1-approximates f . Consider any disjoint X1, . . . , Xk ⊆ V
and let X =

⋃k
i=1Xi. If X = ∅, it holds g (X) = f (X1, . . . , Xk) = 0. Otherwise, it holds on

the one hand that

g (X) =
α|X|−n−1 |X|

n
· f (X, ∅, . . . , ∅) ≤ 1

α
f (X, ∅, . . . , ∅)

(SIM)

≤ f (X1, . . . , Xk)

and on the other hand that

nαn+1 · g (X) = α|X| · |X| · f (X, ∅, . . . , ∅) ≥ α · f (X, ∅, . . . , ∅)
(SIM)

≥ f (X1, . . . , Xk) .

Based on these approximations, we now show our main tractability theorem, which in
places closely follows the proof of [12, Theorem 5.18].

Theorem 24. Let Γ be a SEDS language. Then Γ is globally `-tractable if it is SDS or if the
reduced language fix(Γ) is globally `-tractable.

Proof. Let Γ be an SEDS language on domain D. Then every weighted relation γ ∈ Γ
corresponds under normalisation to a k-set function fγ . Furthermore, weighted relations in
Γ are of bounded arity. If Γ is SDS, Theorem 23 implies that for some α ∈ N, every such
k-set function fγ can be α-approximated by a superadditive set function hγ . In the following,
we treat hγ as a GMC instance without any edge weights. If Γ is not SDS, we can still
α-approximate every k-set function fγ by a GMC instance hγ according to Theorem 22, but
there is no restriction on the edge weights.

Let l : D → N0 be a fixed lower bound and consider any VCSPl(Γ) instance I with
objective function

φI (x1, . . . , xn) =
t∑
i=1

wi · γi
(
xi
)
.

Let fI be the k-set function corresponding under normalisation to the objective function φI .
We construct a GMC instance h that α-approximates fI .

For i ∈ [t], we relabel the vertices of hγi to match the variables in the scope xi of the i-th
constraint (i.e., vertex j is relabelled to xij) and identify vertices in case of repeated variables.
As the constraint is weighted by a non-negative factor wi, we also scale the weights of the
edges of hγi and the superadditive set function by wi (note that non-negative scaling preserves
superadditivity). Instance h is then obtained by adding up GMC instances hγi for all i ∈ [t].

In the following, we treat h as a GMC
l(0)
l∗ instance, where l∗ =

∑k
i=1 l (i). Note that if Γ is

SDS, h has zero edge weights.
Let X0, . . . , Xk be a partition of [n] such that fI (X1, . . . , Xk) is minimal among all

partitions satisfying |Xd| ≥ l (d) for all d ∈ D. In other words, X0, . . . , Xk corresponds to
an optimal assignment for instance I. Let X =

⋃k
d=1Xd denote all indices with non-zero

labels. In addition, let Y ⊆ [n] denote an optimal solution of the GMC
l(0)
l∗ instance h and let

λ = h (Y).
Since |Y | ≥ l∗, there must exist some partition Y1, . . . , Yk of Y such that |Yd| ≥ l (d) for

all 1 ≤ d ≤ k. Because h α-approximates fI , it holds that

λ ≤ h (X) ≤ fI (X1, . . . , Xk) ≤ fI (Y1, . . . , Yk) ≤ α · h (Y) = α · λ.

Hence, X is an α-optimal solution of h.

16

According to Lemma 6, it can be determined in polynomial time whether λ = 0, λ =∞ or
0 < λ <∞. Furthermore, in case λ = 0, a solution Z such that h (Z) = 0 can be found. We

explore this case first. Because Z must have size |Z| ≥ l∗ as a solution of GMC
l(0)
l∗ instance h,

we can select some partition Z1, . . . , Zk of Z such that |Zd| ≥ l (d) for all 1 ≤ d ≤ k. Since
h α-approximates fI , it must hold fI (Z1, . . . , Zk) ≤ α · h (Z) = 0, meaning that Z1, . . . , Zk
represents an optimal assignment for instance I.

If λ =∞, then obviously there are no feasible assignments.
Otherwise, it holds 0 < λ <∞. In this case, we distinguish whether Γ is SDS or fix(Γ) is

globally `-tractable.
First, we assume that Γ is SDS and hence, that h has zero edge weights. We claim

that the size of X is bounded by a constant. For the sake of contradiction, assume that
|X| ≥ (α+ 1) l∗. Then there are disjoint subsets Z1, Z2, . . . , Zα+1 ⊆ X such that |Zi| ≥ l∗ for
all 1 ≤ i ≤ α+ 1. Being a solution of h, every Zi must have value at least h (Zi) ≥ λ. Based
on the superadditivity of h, we arrive at the contradiction

(α+ 1) · λ ≤ h (Z1) + · · ·+ h (Zα+1) ≤ h (X) ≤ α · λ.

Thus, it must hold |X| < (α+ 1) l∗. This leaves less than O
(
n(α+1)l∗

)
possible choices for

X, each of which admits at most O
(
k(α+1)l∗

)
partitions of the form X1 ∪ · · · ∪Xk = X. By

checking all of these, we can retrieve the sets X1, . . . , Xk in polynomial time.
Now, we assume that fix(Γ) is globally `-tractable. According to Corollary 10, there are

only polynomially many α-optimal solutions of h, all of which can be computed in polynomial
time. X must be among those solutions. By repeating the following process for all of them,
we can assume that X is known, and so is X0 = [n] \X.

Let D∗ = D\ {0} and let l�D∗ : D∗ → N denote the restriction of l to D∗. We consider the
VCSPl�D∗

(fix(Γ)) instance IX = (X,D∗, φX), where objective function φX is constructed from

φI by fixing label 0 to the variables in X0. This construction can be realised by replacing every
weighted relation γi from φI with fixUi [γi] instead, where Ui are the indices of the variables
from X0 in the scope of γi, and the remaining variables in the scope of γi form the new scope
for fixUi [γi]. According to this construction, by assigning label 0 to the variables in X0, every
assignment for IX induces an assignment for I with the same objective value. This includes
the assignment for IX represented by the sets X1, . . . , Xk. Thus, an optimal assignment for
IX , which can be obtained efficiently when fix(Γ) is globally `-tractable, induces an optimal
assignment for I.

Remark 25. In fact, the algorithm presented in Theorem 24 can, for every fixed lower bound
l : D → N0 and every VCSPl(Γ) instance I with optimal value 0 < λ < ∞, enumerate all
optimal assignments for I in polynomial time if either

(i) Γ is SDS, or

(ii) Γ is SEDS, fix(Γ) is globally `-tractable and for every VCSPl(fix(Γ)) instance with optimal
value 0 < λ <∞, all optimal assignments can be enumerated in polynomial time.

To complete our analysis of SEDS languages, we will now focus on the case that a language
is not SDS and that fix(Γ) is globally s-intractable. Going even beyond SEDS, our main
hardness result is that SIM languages are globally s-intractable under those circumstances.

Theorem 26. Let Γ be a valued constraint language over domain D that is SIM, but not SDS,
and let fix(Γ) be globally s-intractable. Then Γ is globally s-intractable.

17

Proof. Since fix(Γ) is globally s-intractable, the domain D must have at least three elements.
Let α ≥ 1 be such that Γ is α-SIM. We show that VCSPs(fix(Γ)) is reducible to VCSPs(Γ).

For this purpose, let I = (V,D∗, φI) be any VCSPs(fix(Γ)) instance on domainD∗ = D\ {0}
with objective function φI (x) =

∑t
i=1wiγi (xi).

Every constraint γi must be of the form γi = fixUi [σi] for some weighted relation σi ∈ Γ
and some set Ui ⊆ [ar (σi)]. Let σ′i denote the identification of the weighted relation σi at the

coordinates in Ui, i.e. such that σ′i (xi, 0) = γi (xi) for every xi ∈ (D∗)ar(γi). Here and later
on in the proof, the notation σ′i (xi, 0) is shorthand for σ′i

(
xi,1, . . . , xi,ar(γi), 0

)
. Note that σ′i

is expressible over Γ. We will utilise these relations later in the proof in order to express the
objective function φI over Γ.

Let ε > 0 be a lower bound for the smallest positive difference between the values of any
two assignments for instance I. In other words, we select ε sufficiently small so that if the
objective value of some assignment is κ, then there is no other assignment with objective
value in (κ− ε, κ) or (κ, κ+ ε). Note that ε can be calculated efficiently by multiplying the
denominators of all values that the constraints can obtain and of all weights that occur in φI .

Similarly, let ω denote an upper bound for the largest finite value that any assignment for
instance I can obtain.

If Γ is not SDS, in particularly not
(

2|V |2·ω
ε · α4

)
-SDS, then there must exist a weighted

relation γ ∈ Γ of some arity r and disjoint X1, . . . , Xk, Y1, . . . , Yk ⊆ [r] such that, in violation
of equation (SDS), the k-set function f corresponding under normalisation to γ satisfies

f (X1, . . . , Xk) >
2 |V |2 · ω

ε
· α4 · f (X1 ∪ Y1, . . . , Xk ∪ Yk) . (4)

Let X =
⋃k
d=1Xd and Y =

⋃k
d=1 Yd. Since f is α-SIM, we can transform (4) to

f (X, ∅, . . . , ∅) > 2 |V |2 · ω
ε

· α2 · f (X ∪ Y, ∅, . . . , ∅) . (5)

Without loss of generality, we can assume that γ (0r) = 0 so that γ and f are inter-
changeable. In order to simplify notation, we first define the 3-ary weighted relation γ∗ by
γ∗ (x, y, z) = γ (sx,y,z) for x, y, z ∈ D, where the i-th coordinate si of sx,y,z is si = x if i ∈ X,
si = y if i ∈ Y and si = z otherwise.

According to the (5), it holds that

γ∗ (1, 0, 0) >
2 |V |2 · ω

ε
· α2 · γ (1, 1, 0) .

Since γ is α-SIM, this implies for all x, y, z ∈ D∗ that

γ∗ (x, 0, 0) >
2 |V |2 · ω

ε
· γ (y, z, 0) . (6)

Finally, let ν > 0 be a sufficiently large value so that, for all x, y, z ∈ D such that
γ∗ (x, y, z) > 0, it holds that

ν · γ∗ (x, y, z) > ω. (7)

Based on these definitions, we can now complete the proof. We distinguish two cases.

18

Case 1: First, assume that γ∗ (1, 1, 1) = 0.
We construct the VCSPs(Γ) instance I ′ = (V ∪ {z} , D, φI′) with objective function

φI′ (x, z) =
∑
x,y∈V

ν · γ∗ (x, y, y) +
t∑
i=1

wiσ
′
i (xi, z) .

From γ∗ (1, 1, 1) = 0 and the fact that Γ is α-SIM, it follows that γ∗ (x, y, y) = 0 for all

x, y ∈ D∗. We focus on assignments for I ′ of the form x ∈ (D∗)|V | and z = 0. For every such
assignment, it must hold

φI′ (x, z) = 0 +
t∑
i=1

wiσ
′
i (xi, z) =

t∑
i=1

wiγi (xi) = φI (x) .

Hence, every assignment for I ′ of the form x ∈ (D∗)|V | and z = 0 induces an assignment

x ∈ (D∗)|V | for I with the same objective value, and vice versa. In particular, if I is feasible,
then there is an assignment for I ′ of value at most ω. To show that an optimal assignment for
I can be derived from an optimal assignment for I ′, it remains to show that every minimal
assignment for I ′ must be of the described form, which we do by showing that every assignment
violating this form must have value greater than ω.

Consider any surjective assignment for x and z. Since |D| ≥ 3, there must be some variable
x ∈ V such that x 6= 0. If there was any y ∈ V with assigned label y = 0, then it would hold
γ∗ (x, y, y) > 0 according to (6) and therefore

φI′ (x, z) ≥ ν · γ∗ (x, y, y)
(7)
> ω.

Thus, we can assume x ∈ (D∗)|V | in every minimal assignment. By the surjectivity of the
assignment, that implies z = 0 and completes the reduction proof in this case.

Case 2: Now, assume that γ∗ (1, 1, 1) > 0. In this case, we construct the VCSPs(Γ) instance
I∗ = (V ∪ {z} , D, φI∗ ,) with objective function

φI∗ (x, z) = ν · γ∗ (z, z, z) +
∑
x,y∈V

ε · γ∗ (x, y, z)

2 |V |2 max
a,b∈D∗

γ∗ (a, b, 0)
+

t∑
i=1

wiσ
′
i (xi, z) .

An assignment of the form x ∈ (D∗)|V | and z = 0 satisfies on the one hand that

φI∗ (x, z) ≤ 0 +
ε

2
+

t∑
i=1

wiγi (xi) =
ε

2
+ φI (x) ,

and on the other hand that

φI∗ (x, z) ≥
t∑
i=1

wiγi (xi) = φI (x) .

Hence, an assignment for I∗ of the form x ∈ (D∗)|V | and z = 0 induces an assignment

x ∈ (D∗)|V | for I of similar value, and vice versa. It remains to show that every minimal

19

assignment for I∗ must be of this form. This completes the reduction proof, because by our
choice of ε, a minimal assignment for I∗ of this form must then induce a minimal assignment
for I.

By the assumption γ∗ (1, 1, 1) > 0 and since Γ is SIM, we have γ∗ (z, z, z) > 0 for every
z ∈ D∗. Thus, every assignment of the form x ∈ D|V | and z ∈ D∗ must have objective value

φI∗ (x, z) ≥ ν · γ∗ (z, z, z)
(7)
> ω

and thereby cannot be optimal.
Otherwise, when z = 0, there must be some x ∈ V in every surjective assignment such that

x = 1. If there was any variable y ∈ V such that y = 0, then, for the summand γ∗ (x, y, z) in
the second part of φ∗I , it would hold that

γ∗ (x, y, z) = γ∗ (1, 0, 0) >
2 |V |2 · ω

ε
· max

06=a,b
γ∗ (a, b, 0) ,

and hence,

φI∗ (x, z) ≥
∑
x,y∈V

ε · γ∗ (x, y, z)

2 |V |2 max
a,b∈D∗

γ∗ (a, b, 0)
> ω.

Thus, in addition to z = 0, it must also hold x ∈ (D∗)|V | in every minimal assignment. This
reduces VCSPs(fix(Γ)) to VCSPs(Γ) in this case as well and thereby completes our proof.

5 Lower-Bounded VCSPs on the Boolean Domain

In this final section, we prove our dichotomy theorem for lower-bounded VCSPs on the Boolean
domain and, in the end, extend this result to SEDS languages on three-element domains. A
classification of Boolean surjective VCSPs has been given by [12] based on polymorphisms
and multimorphisms [17, 7], which we introduce in the following.

Definition 27. Let r and s be positive integers and let γ be a r-ary weighted relation on
domain D. An operation o : Ds → D is a polymorphism of γ (and γ admits polymorphism o)
if, for all x1, . . . ,xs ∈ Dr such that γ (x1) , . . . , γ (xs) < ∞, it holds γ (o (x1, . . . ,xs)) < ∞,
where o is applied componentwise as

o (x1, . . . ,xs) = (o (x1,1, . . . , xs,1) , . . . , o (x1,r, . . . , xs,r)) .

A language Γ admits polymorphism o if o is a polymorphism of every γ ∈ Γ.

Definition 28. Let r and s be positive integers and let γ be a r-ary weighted relation on
domain D. A list 〈o1, . . . , os〉 of s-ary polymorphisms of γ is a multimorphism of γ (and γ
admits multimorphism 〈o1, . . . , os〉) if, for all x1, . . . ,xs ∈ Dr, it holds that

s∑
i=1

γ (oi (x1, . . . ,xs)) ≤
s∑
i=1

γ (xi) .

A language Γ admits multimorphism 〈o1, . . . , os〉 if every γ ∈ Γ admits 〈o1, . . . , os〉.

20

For d ∈ D, the constant operation cd : D → D is defined by cd (x) = d for every x ∈ D.
According to this definition, a language Γ admits multimorphism 〈cd〉 for some d ∈ D if every
weighted relation γ ∈ Γ satisfies γ (d, d, . . . , d) ≤ γ (x) for all x ∈ Dar(γ). Such a language
is always tractable, but it may not be s-tractable or `-tractable. Note that the class SIM
and all subclasses only contain languages that admit multimorphism 〈c0〉, because this is a
requirement for corresponding under normalisation to a k-set function.

In addition, the following operations for the Boolean domain D = {0, 1}, which were
initially given by [7], will be relevant for us.

• The binary operation min (max) returns the smaller (larger) of its two arguments with
respect to the order 0 < 1.

• The minority operation Mn : D3 → D is defined for x, y ∈ D by Mn (x, x, y) =
Mn (x, y, x) = Mn (y, x, x) = y.

• Similarly, the majority operation Mj : D3 → D is given for x, y ∈ D by Mj (x, x, y) =
Mj (x, y, x) = Mn (y, x, x) = x.

Furthermore, given a Boolean language Γ, let ¬ (Γ) denote the language where labels 0
and 1 are flipped. This can be seen as relabelling the domain so that VCSPs over Γ and over
¬ (Γ) have the same complexity.

Based on these operations, [12, Theorem 3.2] gives a classification of Boolean Q-valued
languages with respect to global s-tractability, which we restate here.

Theorem 29 ([12]). Let Γ be a Boolean language. Then Γ is globally s-tractable if Γ
is EDS, if ¬ (Γ) is EDS or if Γ admits any of the following multimorphisms: 〈min,min〉,
〈max,max〉, 〈min,max〉, 〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. Otherwise, Γ is globally
s-intractable.

Note that if P 6= NP, global s-tractability and global s-intractability are mutually exclusive.
In order to extend Theorem 29 to lower-bounded VCSPs, we rely on the results from Section 4
as well as the following two auxiliary lemmas.

Lemma 30. Let Γ be a Boolean language and let α ≥ 1. Then Γ is α-SEDS if and only if it
is α-EDS.

Proof. As a Boolean language, Γ is α-SIM if every weighted relation γ ∈ Γ corresponds under
normalisation to a set function. This is the case if Γ is α-EDS.

The remainder of the definitions of EDS and SEDS from pages 13 and 14 are equivalent
for the Boolean domain, showing the statement.

Recall that for a label d ∈ D, the constant relation ρd is defined by ρd (d) = 0 and
ρd (x) =∞ for d 6= x ∈ D. Let CD = {ρd | d ∈ D} denote the set of constant unary relations.

Lemma 31. Let Γ be a language on domain D such that Γ ∪ CD is globally tractable. Then Γ
is globally `-tractable.

Proof. Let l : D → N0 be a fixed lower bound, let l∗ =
∑

d∈D l (d) and consider any VCSPl(Γ)

instance I = (V,D, φI). There are only O
(
|V |l

∗
)

, i.e. polynomially many, ways to select

disjoint sets Vd ⊆ V of size |Vd| = l (d) for all d ∈ D. For each such choice, we construct a

21

VCSP(Γ ∪ CD) instance I ′ = (V,D, φ′I), where φ′I is constructed from φI by adding a constraint
ρd (x) for every d ∈ D and every x ∈ Vd. These additional constraints guarantee that only
those assignments for I ′ are feasible that respect lower bound l.

Conversely, every assignment for I that respects lower bound l is an assignment for some
instance I ′ constructed from some disjoint sets Vd ⊆ V of the described form. Therefore, an
assignment that is minimal among all optimal assignments for instances I ′ must be an optimal
assignment for I.

Theorem 32. Let Γ be a Boolean language. Then Γ is globally `-tractable if and only it is
globally s-tractable. Otherwise, Γ is globally `-intractable.

Proof. We assume that P 6= NP, because otherwise every language is globally `-tractable and
the statement trivially holds true. If Γ is globally s-tractable, it must satisfy at least one of
the properties listed in Theorem 29.

First, we assume that Γ admits any of the multimorphisms 〈min,min〉, 〈max,max〉,
〈min,max〉, 〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉 or 〈Mj,Mj,Mn〉. Then Γ∪{ρ0, ρ1} must be tractable
as well, because the constant relations ρ0 and ρ1 both admit all of these multimorphisms. This
implies global `-tractability of Γ according to Lemma 31.

If Γ is EDS, it must also be SEDS according to Lemma 30. Furthermore, the reduced
language fix(Γ) is trivial in this case and, in particular, globally `-tractable. Hence, Γ must be
globally `-tractable by Theorem 24. The same applies if ¬ (Γ) is EDS.

Otherwise, Γ must be globally s-intractable according to Theorem 29. That immediately
implies global `-intractability.

Hence, the classification from Theorem 29 is also valid for lower-bounded VCSPs. For
Q-valued and {0,∞}-valued languages, a tighter classification of Boolean surjective VCSPs is
provided in [12], which can in the same way be lifted to lower-bounded VCSPs by Theorem
32. In particular, a Boolean Q-valued language Γ is globally `-tractable precisely if it is EDS,
if ¬ (Γ) is EDS or if Γ is submodular.

While our focus so far has been on global s-tractability and global `-tractability, there is
a further distinction for infinite languages. A language Γ is tractable if every finite subset
Γ′ ⊆ Γ is globally tractable, and intractable if some finite subset is globally intractable. The
terms s-tractability and `-tractability are defined analogously for surjective and lower-bounded
VCSPs. [12, Remark 2] outlines a dichotomy theorem for Boolean languages with respect to
s-tractability. We lift this result to lower-bounded VCSPs.

Corollary 33. Let Γ be a Boolean language. Then Γ is `-tractable if and only it is s-tractable.
Otherwise, Γ is `-intractable.

Proof. If Γ is s-tractable, every finite subset Γ′ ⊆ Γ is s-tractable. Since s-tractability and
global s-tractability coincide for finite languages, every finite Γ′ ⊆ Γ must be globally s-
tractable. By Theorem 32, every finite Γ′ ⊆ Γ is then globally `-tractable and therefore, Γ is
`-tractable.

Otherwise, if Γ is not s-tractable, there must be some finite subset Γ′ ⊆ Γ that is not
s-tractable. In this case, Γ′ cannot be globally s-tractable and must instead be globally
`-intractable by Theorem 32. Hence, Γ is `-intractable.

Moreover, we can now classify lower-bounded VCSPs over SEDS languages on three-element
domains.

22

Theorem 34. Let Γ be a SEDS language on domain D = {0, 1, 2}. Then Γ is globally
`-tractable if it is SDS or if fix(Γ) is globally `-tractable, and globally `-intractable otherwise.

Proof. If Γ is SDS or fix(Γ) globally `-tractable, the statement follows from Theorem 24.
Otherwise, fix(Γ) must be globally s-intractable by Theorem 32 and the dichotomy from [12,
Theorem 3.2]. Hence, Γ is globally s-intractable by Theorem 26, which gives the result.

6 Conclusions

Based on the newly introduced Bounded Generalised Min-Cut problem and its tractability,
which might be of independent interest, we have provided a conditional complexity classification
of surjective and lower-bounded SEDS VCSPs on non-Boolean domains. Consequently, we
obtained a dichotomy theorem with respect to `-tractability for Boolean domains as well as,
more interestingly, for SEDS languages on three-element domains.

While our results only pertain to languages that admit multimorphism 〈cd〉 for some label d
we expect our results and techniques to be useful in identifying new s-tractable and `-tractable
languages going beyond those admitting 〈cd〉.

As mentioned in Section 1, globally tractable languages that include constant relations are
also s-tractable. It is easy to show the same for global `-tractability. For example, this shows
that well-studied sources of tractability such as submodularity [26] and its generalisation k-
submodularity [16], which are known to be globally tractable [20], are also globally `-tractable.

What other non-Boolean languages are s-tractable and `-tractable? Our results are a first
step in this direction. In all cases we encountered global s-(in)tractability coincides with global
`-(in)tractability. We do not know whether this is true in general.

The natural next step is to consider languages on three-element domains. As is often
the case in the (V)CSP literature, languages on three-element domains are significantly
more complex than Boolean languages; for instance, compare two-element CSPs [24] and
three-element CSPs [3]. There is an interesting surjective CSP on a three-element domain,
known as the 3-No-Rainbow-Colouring problem [2]. The task is to colour the vertices of a
three-regular hypergraph such that every colour is used at least once, while no hyperedge
attains all three colours. It has recently been shown that the 3-No-Rainbow-Colouring is
NP-hard [30]. Consequently, we expect that it should be possible to classify all three-element
surjective CSPs and perhaps even all three-element surjective VCSPs.

Acknowledgements

We would like to thank the anonymous referees of both the conference [22] and this full version
of the paper. We also thank Costin-Andrei Oncescu for detailed feedback on a previous version
of this paper.

References

[1] Libor Barto and Marcin Kozik. Constraint Satisfaction Problems Solvable by Local
Consistency Methods. Journal of the ACM, 61(1), 2014. Article No. 3.

23

[2] Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective ho-
momorphism problems – a survey. Discrete Applied Mathematics, 160(12):1680–1690,
2012.

[3] Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. Journal of the ACM, 53(1):66–120, 2006.

[4] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the Complexity of
Constraints using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[5] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of the
58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17), pages
319–330, 2017.

[6] Andrei A. Bulatov and Dániel Marx. The complexity of global cardinality constraints.
Logical Methods in Computer Science, Volume 6, Issue 4, 2010.

[7] David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The
Complexity of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016,
2006.

[8] Nadia Creignou and Jean-Jacques Hébrard. On generating all solutions of generalized
satisfiability problems. Informatique Théorique et Applications, 31:499–511, 11 1997.

[9] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and
Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23(4):864–894, 1994.

[10] V́ıctor Dalmau and Justin Pearson. Set Functions and Width 1 Problems. In Proceedings
of the 5th International Conference on Constraint Programming (CP’99), volume 1713 of
Lecture Notes in Computer Science, pages 159–173. Springer, 1999.

[11] Tomás Feder and Moshe Y Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing, 28(1):57–104, 1998.

[12] Peter Fulla, Hannes Uppman, and Stanislav Živný. The complexity of Boolean surjective
general-valued CSPs. ACM Transactions on Computation Theory, 11(1), 2018. Article
No. 4.

[13] Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut
problem for fixed k. Mathematics of Operations Research, 19(1):24–37, 1994.

[14] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. Journal of Combina-
torial Theory, Series B, 48(1):92–110, 1990.

[15] Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity.
Computer Science Review, 2(3):143 – 163, 2008.

[16] Anna Huber and Vladimir Kolmogorov. Towards Minimizing k-Submodular Functions.
In Proceedings of the 2nd International Symposium on Combinatorial Optimization
(ISCO’12), volume 7422 of Lecture Notes in Computer Science, pages 451–462. Springer,
2012.

24

[17] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. Journal
of the ACM, 44(4):527–548, July 1997.

[18] David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-out
algorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’93), pages 21–30, 1993.

[19] Vladimir Kolmogorov, Andrei Krokhin, and Michal Roĺınek. The complexity of general-
valued CSPs. SIAM Journal on Computing, 46(3):1087–1110, 2017.

[20] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear pro-
gramming for general-valued CSPs. SIAM Journal on Computing, 44(1):1–36, 2015.

[21] Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. In Proceedings of the 42nd International Colloquium on Automata, Languages
and Programming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages
846–858. Springer Berlin Heidelberg, 2015.

[22] Gregor Matl and Stanislav Živný. Beyond Boolean surjective VCSPs. In Proceedings of
the 36th Annual Symposium on Theoretical Aspects of Computer Science (STACS’19),
pages 48:1–48:15, 2019.

[23] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. The Handbook of Constraint
Programming. Elsevier, 2006.

[24] Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226. ACM,
1978.

[25] Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Valued Constraint Satisfaction
Problems: Hard and Easy Problems. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI’95), pages 631–637, 1995.

[26] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

[27] Johan Thapper and Stanislav Živný. The power of Sherali-Adams relaxations for general-
valued CSPs. SIAM Journal on Computing, 46(4):1241–1279, 2017.

[28] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. Journal of
the ACM, 63(4):37:1–37:33, September 2016.

[29] D. Zhuk. A proof of CSP dichotomy conjecture. In Proceedings of the 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’17), pages 331–342, 2017.

[30] Dmitriy Zhuk. No-Rainbow Problem is NP-Hard. Technical report, 2020.

25

	Introduction
	The Bounded Generalised Min-Cut Problem
	Extending EDS to Larger Domains
	k-Set Functions
	Fixing a Label: Reduced Languages
	Extending EDS to Larger Domains

	Classifying SEDS and SDS Languages
	Lower-Bounded VCSPs on the Boolean Domain
	Conclusions

